1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
#!/usr/bin/python3
#
# * This library is free software; you can redistribute it and/or
# * modify it under the terms of the GNU Lesser General Public
# * License as published by the Free Software Foundation; either
# * version 2.1 of the License, or (at your option) any later version.
# *
# * This library is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# * Lesser General Public License for more details.
#
#propka3.0, revision 182 2011-08-09
#-------------------------------------------------------------------------------------------------------
#-- --
#-- PROPKA: A PROTEIN PKA PREDICTOR --
#-- --
#-- VERSION 3.0, 01/01/2011, COPENHAGEN --
#-- BY MATS H.M. OLSSON AND CHRESTEN R. SONDERGARD --
#-- --
#-------------------------------------------------------------------------------------------------------
#
#
#-------------------------------------------------------------------------------------------------------
# References:
#
# Very Fast Empirical Prediction and Rationalization of Protein pKa Values
# Hui Li, Andrew D. Robertson and Jan H. Jensen
# PROTEINS: Structure, Function, and Bioinformatics 61:704-721 (2005)
#
# Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes
# Delphine C. Bas, David M. Rogers and Jan H. Jensen
# PROTEINS: Structure, Function, and Bioinformatics 73:765-783 (2008)
#
# PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions
# Mats H.M. Olsson, Chresten R. Sondergard, Michal Rostkowski, and Jan H. Jensen
# Journal of Chemical Theory and Computation, 7, 525-537 (2011)
#-------------------------------------------------------------------------------------------------------
from .vector_algebra import *
from . import bonds, pdb
from .lib import pka_print
class Protonate:
""" Protonates atoms using VSEPR theory """
def __init__(self):
self.valence_electrons = {'H':1,
'C':4,
'N':5,
'O':6,
'F':7,
'P':5,
'S':6,
'CL':7}
self.standard_charges= {'ARG-NH1':1.0,
'ASP-OD2':-1.0,
'GLU-OE2':-1.0,
'HIS-NE2':0.0,
'LYS-NZ':1.0,
'NTERM':1.0,
'CTERM':-1.0}
self.sybyl_charges = {'N.pl3':+1,
'N.3':+1,
'N.4':+1,
'N.ar':+1,
'O.co2+':-1}
# self.standard_conjugate_charges= {'ARG-NH1':1.0}
self.bond_lengths = {'C':1.09,
'N':1.01,
'O':0.96,
'F':0.92,
'Cl':1.27,
'Br':1.41,
'I':1.61}
self.ions = ['NA','CA']
# protonation_methods[steric_number] = method
self.protonation_methods = {4:self.tetrahedral,
3:self.trigonal}
self.my_bond_maker = bonds.bondmaker()
return
def protonate_protein(self, protein):
""" Will protonate all atoms in the protein """
pka_print('----- Protontion started -----')
# Remove all currently present hydrogen atoms
self.remove_all_hydrogen_atoms_from_protein(protein)
# make bonds
self.my_bond_maker.find_bonds_for_protein(protein)
# set charges
self.set_charges(protein)
# protonate all atom
non_H_atoms = []
for chain in protein.chains:
for residue in chain.residues:
if residue.resName.replace(' ','') not in ['N+','C-']:
for atom in residue.atoms:
non_H_atoms.append(atom)
for atom in non_H_atoms:
# if atom.resNumb ==35: #######################
self.protonate_atom(atom)
# fix hydrogen names
self.set_proton_names(non_H_atoms)
return
def protonate_ligand(self, ligand):
""" Will protonate all atoms in the ligand """
pka_print('----- Protontion started -----')
# Remove all currently present hydrogen atoms
self.remove_all_hydrogen_atoms_from_ligand(ligand)
pka_print(ligand)
# make bonds
self.my_bond_maker.find_bonds_for_ligand(ligand)
#import sys
#sys.exit(0)
# set charges
self.set_ligand_charges(ligand)
pka_print('PROTONATING')
# protonate all atoms
atoms = []
for atom in ligand.atoms:
if not atom.get_element() in self.ions:
atoms.append(atom)
for atom in atoms:
self.protonate_atom(atom)
# fix hydrogen names
self.set_proton_names(ligand.atoms)
return
def remove_all_hydrogen_atoms_from_protein(self, protein):
for chain in protein.chains:
for residue in chain.residues:
residue.atoms = [atom for atom in residue.atoms if atom.get_element() != 'H']
return
def remove_all_hydrogen_atoms_from_ligand(self, ligand):
ligand.atoms = [atom for atom in ligand.atoms if atom.get_element() != 'H']
return
def set_ligand_charges(self, ligand, standard_protonation_states = 1):
if standard_protonation_states:
for atom in ligand.atoms:
#pka_print('Charge before', atom, atom.charge)
if atom.name in list(self.sybyl_charges.keys()):
atom.charge = self.sybyl_charges[atom.name]
#pka_print('Charge', atom, atom.charge)
else:
pka_print('Custom protonation state choosen - don\'t know what to do')
return
def set_charges(self, protein, standard_protonation_states = 1):
if standard_protonation_states:
# set side chain charges
for chain in protein.chains:
for residue in chain.residues:
for atom in residue.atoms:
key = '%3s-%s'%(atom.resName, atom.name)
if key in list(self.standard_charges.keys()):
atom.charge = self.standard_charges[key]
pka_print('Charge', atom, atom.charge)
# set n-terminal charges
for chain in protein.chains:
for residue in chain.residues:
if residue.resName.replace(' ','') == 'N+':
for atom in residue.atoms:
if atom.name == 'N':
atom.charge = self.standard_charges['NTERM']
pka_print('Charge', atom, atom.charge)
# set c-terminal charges
for chain in protein.chains:
for residue in chain.residues:
if residue.resName.replace(' ','') == 'C-':
for atom in residue.atoms:
if atom.name in self.my_bond_maker.terminal_oxygen_names:
atom.charge = self.standard_charges['CTERM']
pka_print('Charge', atom, atom.charge)
else:
pka_print('Custom protonation state choosen - don\'t know what to do')
return
def protonate_atom(self, atom):
#print 'protonating atom:',atom.name
#print 'protonating',atom,'with %d bonds'%len(atom.bonded_atoms)
#for ba in atom.bonded_atoms:
# print ' ',ba
self.set_number_of_protons_to_add(atom)
self.set_steric_number_and_lone_pairs(atom)
self.add_protons(atom)
return
def set_proton_names(self, heavy_atoms):
for heavy_atom in heavy_atoms:
i = 1
for bonded in heavy_atom.bonded_atoms:
if bonded.element == 'H':
bonded.name+='%d'%i
i+=1
return
def set_number_of_protons_to_add(self, atom):
pka_print('*'*10)
pka_print('Setting number of protons to add for',atom)
atom.number_of_protons_to_add = 8
pka_print(' %4d'%8)
atom.number_of_protons_to_add -= self.valence_electrons[atom.get_element()]
pka_print('Valence eletrons: %4d'%-self.valence_electrons[atom.get_element()])
atom.number_of_protons_to_add -= len(atom.bonded_atoms)
pka_print('Number of bonds: %4d'%- len(atom.bonded_atoms))
atom.number_of_protons_to_add -= atom.number_of_pi_electrons_in_double_and_triple_bonds
pka_print('Pi electrons: %4d'%-atom.number_of_pi_electrons_in_double_and_triple_bonds)
atom.number_of_protons_to_add += int(atom.charge)
pka_print('Charge: %4.1f'%atom.charge)
pka_print('-'*10)
pka_print(atom.number_of_protons_to_add)
return
def set_steric_number_and_lone_pairs(self, atom):
pka_print('='*10)
pka_print('Setting steric number and lone pairs for',atom)
# costumly set the N backbone atoms up for peptide bond trigonal planer shape
#if atom.name == 'N' and len(atom.bonded_atoms) == 2:
# atom.steric_number = 3
# atom.number_of_lone_pairs = 0
# print 'Peptide bond: steric number is %d and number of lone pairs is %s'%(atom.steric_number,
# atom.number_of_lone_pairs)
# return
atom.steric_number = 0
pka_print('%65s: %4d'%('Valence electrons',self.valence_electrons[atom.get_element()]))
atom.steric_number += self.valence_electrons[atom.get_element()]
pka_print('%65s: %4d'%('Number of bonds',len(atom.bonded_atoms)))
atom.steric_number += len(atom.bonded_atoms)
pka_print('%65s: %4d'%('Number of hydrogen atoms to add',atom.number_of_protons_to_add))
atom.steric_number += atom.number_of_protons_to_add
pka_print('%65s: %4d'%('Number of pi-electrons in double and triple bonds(-)',atom.number_of_pi_electrons_in_double_and_triple_bonds))
atom.steric_number -= atom.number_of_pi_electrons_in_double_and_triple_bonds
pka_print('%65s: %4d'%('Number of pi-electrons in conjugated double and triple bonds(-)',atom.number_of_pi_electrons_in_conjugate_double_and_triple_bonds))
atom.steric_number -= atom.number_of_pi_electrons_in_conjugate_double_and_triple_bonds
pka_print('%65s: %4d'%('Number of donated co-ordinated bonds',0))
atom.steric_number += 0
pka_print('%65s: %4.1f'%('Charge(-)',atom.charge))
atom.steric_number -= atom.charge
atom.steric_number = math.floor(atom.steric_number/2.0)
atom.number_of_lone_pairs = atom.steric_number - len(atom.bonded_atoms) - atom.number_of_protons_to_add
pka_print('-'*70)
pka_print('%65s: %4d'%('Steric number',atom.steric_number))
pka_print('%65s: %4d'%('Number of lone pairs',atom.number_of_lone_pairs))
return
def add_protons(self, atom):
# decide which method to use
pka_print('PROTONATING',atom)
if atom.steric_number in list(self.protonation_methods.keys()):
self.protonation_methods[atom.steric_number](atom)
else:
pka_print('Warning: Do not have a method for protonating',atom,'(steric number: %d)'%atom.steric_number)
return
def trigonal(self, atom):
pka_print('TRIGONAL - %d bonded atoms'%(len(atom.bonded_atoms)))
rot_angle = math.radians(120.0)
c = multi_vector(atom1 = atom)
# 0 bonds
if len(atom.bonded_atoms) == 0:
pass
# 1 bond
if len(atom.bonded_atoms) == 1 and atom.number_of_protons_to_add > 0:
# Add another atom with the right angle to the first one
a = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[0])
# use plane of bonded trigonal atom - e.g. arg
if atom.bonded_atoms[0].steric_number == 3 and len(atom.bonded_atoms[0].bonded_atoms)>1:
# use other atoms bonded to the neighbour to establish the plane, if possible
other_atom_indices = []
for i in range(len(atom.bonded_atoms[0].bonded_atoms)):
if atom.bonded_atoms[0].bonded_atoms[i] != atom:
other_atom_indices.append(i)
if len(other_atom_indices)<2:
other_atom_indices = [0,1]
axis = multi_vector(atom1 = atom.bonded_atoms[0],
atom2 = atom.bonded_atoms[0].bonded_atoms[other_atom_indices[0]]
)**multi_vector(atom1 = atom.bonded_atoms[0],
atom2 = atom.bonded_atoms[0].bonded_atoms[other_atom_indices[1]])
else:
axis = a.orthogonal()
a = rotate_multi_vector_around_an_axis(rot_angle, axis, a)
a = self.set_bond_distance(a, atom.get_element())
self.add_proton(atom, c+a)
# 2 bonds
if len(atom.bonded_atoms) == 2 and atom.number_of_protons_to_add > 0:
# Add another atom with the right angle to the first two
a = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[1])
b = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[0])
axis = b**a
new_a = rotate_multi_vector_around_an_axis(rot_angle, axis, a)
new_a = self.set_bond_distance(new_a, atom.get_element())
self.add_proton(atom, c+new_a)
return
def tetrahedral(self, atom):
pka_print('TETRAHEDRAL - %d bonded atoms'%(len(atom.bonded_atoms)))
rot_angle = math.radians(109.5)
# sanity check
# if atom.number_of_protons_to_add + len(atom.bonded_atoms) != 4:
# print 'Error: Attempting tetrahedral structure with %d bonds'%(atom.number_of_protons_to_add +
# len(atom.bonded_atoms))
c = multi_vector(atom1 = atom)
# 0 bonds
if len(atom.bonded_atoms) == 0:
pass
# 1 bond
if len(atom.bonded_atoms) == 1 and atom.number_of_protons_to_add > 0:
# Add another atom with the right angle to the first one
a = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[0])
axis = a.orthogonal()
a = rotate_multi_vector_around_an_axis(rot_angle, axis, a)
a = self.set_bond_distance(a, atom.get_element())
self.add_proton(atom, c+a)
# 2 bonds
if len(atom.bonded_atoms) == 2 and atom.number_of_protons_to_add > 0:
# Add another atom with the right angle to the first two
a = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[1])
axis = multi_vector(atom1 = atom.bonded_atoms[0],atom2 = atom)
new_a = rotate_multi_vector_around_an_axis(math.radians(120), axis, a)
new_a = self.set_bond_distance(new_a, atom.get_element())
self.add_proton(atom, c+new_a)
# 3 bonds
if len(atom.bonded_atoms) == 3 and atom.number_of_protons_to_add > 0:
a = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[2])
axis = multi_vector(atom1 = atom.bonded_atoms[0],atom2 = atom)
b = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[1])
cross = b**axis
angle = math.radians(120)
if angle_degrees(cross.vectors[0],a.vectors[0]) < 90:
angle = -angle
new_a = rotate_multi_vector_around_an_axis(angle, axis, a)
new_a = self.set_bond_distance(new_a, atom.get_element())
self.add_proton(atom, c+new_a)
return
def add_proton(self, atom, position):
residue = atom.residue
#pka_print(residue)
# Create the new proton
new_H = pdb.Atom()
new_H.setProperty(numb = None,
name = 'H',
resName = atom.resName,
chainID = atom.chainID,
resNumb = atom.resNumb,
x = None,
y = None,
z = None,
occ = None,
beta = None)
new_H.element = 'H'
pka_print(position)
# set all the configurations
for i in range(len(position.keys)):
#print ('adding',position.keys[i],position.vectors[i])
new_H.configurations[position.keys[i]] = [position.vectors[i].x,
position.vectors[i].y,
position.vectors[i].z]
new_H.setConfiguration(position.keys[0])
new_H.bonded_atoms = []
new_H.charge = 0
new_H.steric_number = 0
new_H.number_of_lone_pairs = 0
new_H.number_of_protons_to_add = 0
new_H.number_of_pi_electrons_in_double_and_triple_bonds = 0
residue.atoms.append(new_H)
atom.bonded_atoms.append(new_H)
atom.number_of_protons_to_add -=1
pka_print('added',new_H, 'to',atom)
return
def set_bond_distance(self, a, element):
d = 1.0
if element in list(self.bond_lengths.keys()):
d = self.bond_lengths[element]
else:
pka_print('WARNING: Bond length for %s not found, using the standard value of %f'%(element, d))
a = a.rescale(d)
return a
if __name__ == '__main__':
import protein, pdb, sys,os
arguments = sys.argv
if len(arguments) != 2:
pka_print('Usage: protonate.py <pdb_file>')
sys.exit(0)
filename = arguments[1]
if not os.path.isfile(filename):
pka_print('Error: Could not find \"%s\"'%filename)
sys.exit(1)
p = Protonate()
pdblist = pdb.readPDB(filename)
my_protein = protein.Protein(pdblist,'test.pdb')
p.remove_all_hydrogen_atoms_from_protein(my_protein)
my_protein.writePDB('before_protonation.pdb')
p.protonate_protein(my_protein)
## write out protonated file
my_protein.writePDB('protonated.pdb')
|