1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
# PDBG
pdbg is a simple application to allow debugging of the host POWER
processors from the BMC. It works in a similar way to JTAG programmers
for embedded system development in that it allows you to access GPRs,
SPRs and system memory.
A remote gdb sever is under development to allow integration with
standard debugging tools.
## Building
The output of autoconf is not included in the git tree so it needs to be
generated using autoreconf. This can be done by running `./bootstrap.sh` in the
top level directory. Static linking is supported and can be performed by adding
`CFLAGS=-static` to the command line passed to configure.
### Cross compiling for BMC (ARM)
First, work out if your BMC is using the hard or soft float ABI. If the
file /lib/ld-linux.so.3 exists, soft-float. If /lib/ld-linux-armhf.so.3
exists, hard-float.
To build for soft-float:
```
apt-get install gcc-arm-linux-gnueabi
./bootstrap.sh
./configure --host=arm-linux-gnueabi CFLAGS="-static"
make
rsync pdbg root@bmc:/usr/local/bin
```
For hard-float:
```
apt-get install gcc-arm-linux-gnueabihf
./bootstrap.sh
./configure --host=arm-linux-gnueabihf CFLAGS="-static"
make
rsync pdbg root@bmc:/usr/local/bin
```
## Testing
There is a test suite to perform some basic testing. The tests on the host
are mostly unit tests that exercise the device tree based targetting code.
```
make check
```
### BMC testing
To test on the bmc, make a build in a separate directory:
```
cd pdbg
mkdir obj-arm
cd obj-arm
../configure --host=arm-openbmc-linux-gnueabi
make -j
```
And create a configuration file `.test.pdbg` in the pdbg source directory:
```
BMC_HOST=rain71bmc.aus.stglabs.ibm.com
BMC_USER=root
BMC_PASS=passw0rd
PDBG_ARM_BUILD=obj-arm
```
The BMC must have the host powered on and be accessable via ssh.
Then run make check. It will test both the host unit tests, and copy the arm
binary to the BMC and run it there:
```
-- BMC HW tests
sending incremental file list
created directory /tmp/pdbg
...
Checking if the host is up... yes
SKIP: /tmp/pdbg/pdbg -p0 getcfam 0xc09
SKIP: /tmp/pdbg/pdbg -p0 getscom 0xf000f
SKIP: /tmp/pdbg/pdbg -p0 putmem 0x31000000
SKIP: /tmp/pdbg/pdbg -p0 getmem --raw 0x31000000 0x8
```
## Usage
Several backends are supported depending on which system you are using and are
selected using the `-b` option:
POWER8 Backends:
- i2c (default): Uses an i2c connection between BMC and host processor
- fsi: Uses a bit-banging GPIO backend which accesses BMC registers directly via
/dev/mem/. Requires `-d p8` to specify you are running on a POWER8 system.
POWER9 Backends:
- kernel (default): Uses the in kernel OpenFSI driver provided by OpenBMC
- fsi: Uses a bit-banging GPIO backend which accesses BMC registers directly via
/dev/mem. Requiers `-d p9w/p9r/p9z` as appropriate for the system.
- sbefifo: Uses the in kernel OpenFSI & SBEFIFO drivers provided by OpenBMC
When using the fsi backend POWER8 AMI based BMC's must first be put into debug
mode to allow access to the relevant GPIOs:
`ipmitool -H <host> -U <username> -P <password> raw 0x3a 0x01`
On POWER9 when using the fsi backend it is also a good idea to put the BMC into
debug mode to prevent conflicts with the OpenFSI driver. On the BMC run:
`systemctl start fsi-disable.service && systemctl stop
host-failure-reboots@0.service`
Usage is straight forward. Note that if the binary is not statically linked all
commands need to be prefixed with LD\_LIBRARY\_PATH=<path to libpdbg> in
addition to the arguments for selecting a backend.
### Target Selection
pdbg has commands that operate on specific hardware unit(s) inside the
POWER processor. To select appropriate hardware unit (commonly referred
as **target**), pdbg provides two different mechanisms.
#### Select processor(s) / Core(s) / Thread(s) using -p/-c/-t/-a/-l
Many commands typically operate on hardware thread(s) or CPU(s)
as identified by Linux.
- all threads (`-a`)
- core 0 of processor 0 (`-p0 -c0`)
- all threads on processor 0 (`-p0 -a`)
- all threads on core 1 of processor 0 (`-p0 -c1 -a`)
- thread 2 on core 1 of processor 0 (`-p0 -c1 -t2`)
- thread 0 on all cores of processor 0 (`-p0 -t0 -a`)
- threads 1,2,3,4 on cores 1,3,5 of processor 1 (`-p1 -c1,3,5 -t1-4`)
- CPUs 15 and 17 as identified by Linux (`-l15,17`)
Note: `-l` option is only available when running `pdbg` on the host.
#### Select targets based on path using -P
To select any target in a device tree, it can be specified using `-P`.
The -P option takes path specification as an argument. This path specification
is constructed using the *class* names of targets present in a device tree.
Some of the targets currently available for selection are:
- `pib`
- `core`
- `thread`
- `adu`
- `fsi`
- `chiplet`
Path specification can be either an individual target or a *path* constructed
using more than one targets.
- all threads (`-P thread`)
- core 0 of processor 0 (`-P pib0/core0`)
- all threads on processor 0 (`-P pib0/thread`)
- all threads on core 1 of processor 0 (`-P pib0/core1/thread`)
- thread 2 on core 1 of processor 0 (`-P pib0/core1/thread2`)
- thread 0 on all cores of processor 0 (`-P pib0/thread0`)
- threads 1,2,3,4 on cores 1,3,5 of processor 1 (`-P pib1/core[1,3,5]/thread[1-4]`)
- chiplet at address 21000000 (-P `chiplet@21000000`)
- all adus (`-P adu`)
- First FSI (`-P fsi0`)
## Examples
```
$ ./pdbg --help
Usage: ./pdbg [options] command ...
Options:
-p, --processor=processor-id
-c, --chip=chiplet-id
-t, --thread=thread
-a, --all
Run command on all possible processors/chips/threads (default)
-b, --backend=backend
fsi: An experimental backend that uses
bit-banging to access the host processor
via the FSI bus.
i2c: The P8 only backend which goes via I2C.
kernel: The default backend which goes the kernel FSI driver.
-d, --device=backend device
For I2C the device node used by the backend to access the bus.
For FSI the system board type, one of p8 or p9w
Defaults to /dev/i2c4 for I2C
-s, --slave-address=backend device address
Device slave address to use for the backend. Not used by FSI
and defaults to 0x50 for I2C
-V, --version
-h, --help
Commands:
getcfam <address>
putcfam <address> <value> [<mask>]
getscom <address>
putscom <address> <value> [<mask>]
getmem <address> <count>
putmem <address>
getvmem <virtual address>
getgpr <gpr>
putgpr <gpr> <value>
getnia
putnia <value>
getspr <spr>
putspr <spr> <value>
start
step <count>
stop
threadstatus
probe
```
### Probe chip/processor/thread numbers
```
$ ./pdbg -a probe
proc0: Processor Module
fsi0: Kernel based FSI master (*)
pib0: Kernel based FSI SCOM (*)
chiplet16: POWER9 Chiplet
eq0: POWER9 eq
ex0: POWER9 ex
chiplet32: POWER9 Chiplet
core0: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
chiplet33: POWER9 Chiplet
core1: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
ex1: POWER9 ex
chiplet34: POWER9 Chiplet
core2: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
chiplet35: POWER9 Chiplet
core3: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
chiplet17: POWER9 Chiplet
eq1: POWER9 eq
ex0: POWER9 ex
chiplet36: POWER9 Chiplet
core4: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
chiplet37: POWER9 Chiplet
core5: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
ex1: POWER9 ex
chiplet18: POWER9 Chiplet
eq2: POWER9 eq
ex0: POWER9 ex
chiplet40: POWER9 Chiplet
core8: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
chiplet41: POWER9 Chiplet
core9: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
ex1: POWER9 ex
chiplet19: POWER9 Chiplet
eq3: POWER9 eq
ex0: POWER9 ex
chiplet44: POWER9 Chiplet
core12: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
chiplet45: POWER9 Chiplet
core13: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
ex1: POWER9 ex
chiplet46: POWER9 Chiplet
core14: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
chiplet47: POWER9 Chiplet
core15: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
chiplet20: POWER9 Chiplet
eq4: POWER9 eq
ex0: POWER9 ex
chiplet48: POWER9 Chiplet
core16: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
chiplet49: POWER9 Chiplet
core17: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
ex1: POWER9 ex
chiplet21: POWER9 Chiplet
eq5: POWER9 eq
ex0: POWER9 ex
ex1: POWER9 ex
chiplet54: POWER9 Chiplet
core22: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
chiplet55: POWER9 Chiplet
core23: POWER9 Core (*)
thread0: POWER9 Thread (*)
thread1: POWER9 Thread (*)
thread2: POWER9 Thread (*)
thread3: POWER9 Thread (*)
proc1: Processor Module
proc2: Processor Module
proc3: Processor Module
proc4: Processor Module
proc5: Processor Module
proc6: Processor Module
proc7: Processor Module
Note that only selected targets (marked with *) and targets in the
hierarchy of the selected targets will be shown above. If none are shown
try adding '-a' to select all targets.
```
Core-IDs are core/chip numbers which should be passed as arguments to `-c`
when performing operations such as getgpr that operate on particular cores.
Processor-IDs should be passed as arguments to `-p` to operate on different
processor chips. Specifying no targets is an error and will result in the
following error message:
```
Note that only selected targets will be shown above. If none are shown
try adding '-a' to select all targets
```
If the above error occurs even though targets were specified it means the
specified targets were not found when probing the system.
### Read SCOM register
```
$ ./pdbg -P pib getscom 0xf000f
p0: 0x00000000000f000f = 0x222d104900008040 (/proc0/pib)
p1: 0x00000000000f000f = 0x222d104900008040 (/proc1/pib)
```
### Write SCOM register on secondary processor
`$ ./pdbg -P pib1 putscom 0x8013c02 0x0`
### Get thread status
```
$ ./pdbg -a threadstatus
p0t: 0 1 2 3
c22: A A A A
c21: A A A A
c20: A A A A
c19: A A A A
c15: A A A A
c14: A A A A
c07: A A A A
c05: A A A A
p1t: 0 1 2 3
c23: A A A A
c22: A A A A
c21: A A A A
c20: A A A A
c19: A A A A
c18: A A A A
c17: A A A A
c16: A A A A
```
### Stop thread execution on thread 0-4 of processor 0 core/chip 22
Reading thread register values requires all threads on a given core to be in the
quiesced state.
```
$ ./pdbg -p0 -c22 -t0 -t1 -t2 -t3 stop
$ ./pdbg -p0 -c22 -t0 -t1 -t2 -t3 threadstatus
p0t: 0 1 2 3
c22: Q Q Q Q
```
### Read GPR on thread 0 of processor 0 core/chip 22
```
$ ./pdbg -p0 -c22 -t0 getgpr 2
p0:c22:t0:gpr02: 0xc000000000f09900
```
### Read SPR 8 (LR) on thread 0 of processor 0 core/chip 22
```
$ ./pdbg -p0 -c22 -t0 getspr 8
p0:c22:t0:spr008: 0xc0000000008a97f0
```
### Restart thread 0-4 execution on processor 0 core/chip 22
```
./pdbg -p0 -c22 -t0 -t1 -t2 -t3 start
./pdbg -p0 -c22 -t0 -t1 -t2 -t3 threadstatus
p0t: 0 1 2 3
c22: A A A A
```
### Write to memory through processor 1
```
$ echo hello | sudo ./pdbg -p 1 putmem 0x250000001
Wrote 6 bytes starting at 0x0000000250000001
```
### Read 6 bytes from memory through processor 1
```
$ sudo ./pdbg -p 1 getmem 0x250000001 6 | hexdump -C
0x0000000250000000: 68 65 6c 6c 6f 0a
$ sudo ./pdbg -p 1 getmem 0x250000001 6 --raw | hexdump -C
00000000 68 65 6c 6c 6f 0a |hello.|
00000006
```
### Write to cache-inhibited memory through processor 1
```
$ echo hello | sudo ./pdbg -p 1 putmem --ci 0x3fe88202
Wrote 6 bytes starting at 0x000000003fe88202
```
### Read from cache-inhibited memory through processor 1
```
$ sudo ./pdbg -p 1 getmem --ci 0x3fe88202 6 --raw | hexdump -C
00000000 68 65 6c 6c 6f 0a |hello.|
00000006
```
### Read 4 bytes from the hardware RNG
```
$ lsprop /proc/device-tree/hwrng@3ffff40000000/
ibm,chip-id 00000000
compatible "ibm,power-rng"
reg 0003ffff 40000000 00000000 00001000
phandle 100003bd (268436413)
name "hwrng"
$ sudo ./pdbg -p 0 getmem --ci 0x0003ffff40000000 4 --raw |hexdump -C
00000000 01 c0 d1 79 |...y|
00000004
$ sudo ./pdbg -p 0 getmem --ci 0x0003ffff40000000 4 --raw |hexdump -C
00000000 77 9b ab ce |w...|
00000004
$ sudo ./pdbg -p 0 getmem --ci 0x0003ffff40000000 4 --raw |hexdump -C
00000000 66 8d fb 42 |f..B|
00000004
$ sudo ./pdbg -p 0 getmem --ci 0x0003ffff40000000 4 --raw |hexdump -C
00000000 fa 9b e3 44 |...D|
00000004
```
### Hardware Trace Macro (HTM)
Exploitation of HTM is limited to POWER8 Core from the powerpc host.
#### Prerequisites
Core HTM on POWER8 needs to run SMT1 and no power save, so you need to
run this first:
```
ppc64_cpu --smt=1
for i in /sys/devices/system/cpu/cpu*/cpuidle/state*/disable;do echo 1 > $i;done
```
Also, using HTM requires a kernel built with both `CONFIG_PPC_MEMTRACE=y`
(v4.14) and `CONFIG_SCOM_DEBUGFS=y`. debugfs should be mounted at
`/sys/kernel/debug`. Ubuntu 18.04 has this by default.
#### How to run HTM
pdbg provides a `htm` command with a variety of sub-commands. The most
useful command is `record` which will start the trace, wait for buffer
to fill (~1 sec), stop and then dump the trace to a file (~5 sec). eg.
```
pdbg -l 0 htm core record
```
pdbg -l allows users to specify CPUs using the same addressing as
scheme as taskset -c. This can be useful for tracing workloads. eg.
```
taskset -c 0 myworkload
sleep 1
pdbg -l 0 htm core record
```
There are also low level htm commands which can also be used:
- `start` will configure the hardware and start tracing in wrapping mode.
- `stop` will still stop the trace and de-configure the hardware.
- `dump` will dump the trace to a file.
### GDBSERVER
At the moment gdbserver is only supported on P8 while the cores are in the
kernel.
To run a gdbserver on a P8 machine from a BMC running openbmc:
Stop all the threads of the core you want to look at
$ ./pdbg -d p8 -c11 -a stop
Run gdbserver on thread 0 of core 11, accessible through port 44
$ ./pdbg -d p8 -p0 -c11 -t0 gdbserver 44
On your local machine:
$ gdb
(gdb) set architecture powerpc:common64
(gdb) target remote palm5-bmc:44
Debugging info:
(gdb) set debug remote 10
Notes:
1. DON'T RUN PDBG OVER FSI WHILE HOSTBOOT IS RUNNING. Weird things seem to
happen.
2. If you want to view the kernel call trace then run gdb on the vmlinux that
the host is running (the kernel needs to be compiled with debug symbols).
## Submitting patches
Development and patch review happens on the mailing list at:
pdbg@lists.ozlabs.org
Patches are tracked through patchwork:
https://patchwork.ozlabs.org/project/pdbg/list
Pull requests via Github are also acceptable if you are not familiar with email
based patch submission.
|