File: matrix.c

package info (click to toggle)
pdl 1%3A2.007-4
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,848 kB
  • ctags: 6,321
  • sloc: perl: 32,760; fortran: 13,113; ansic: 9,273; makefile: 81; sh: 32
file content (544 lines) | stat: -rw-r--r-- 13,130 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
 * matrix.c - misc. routines for manipulating matrices and vectors.
 *
 * (C) Copyright 2001 by NetGroup A/S. All rights reserved.
 *
 * $Log$
 * Revision 1.1  2006/06/20 15:57:22  djburke
 * Hopefully a saner way to build Basic/MatrixOps
 *
 * Revision 1.1  2005/01/08 09:22:57  zowie
 * Added non-symmetric matrices to eigens; updated version to 2.4.2cvs.
 *
 * Revision 1.1.1.1  2001/07/06 13:39:35  kneth
 * Initial import of code.
 *
 *
 *
 * The matrices and vectors are indexed in C-style, i.e. from 0 to
 * N-1. A matrix is assumed to be declared as double **, and it is
 * allocated by MatrixAlloc.
 *
 *
 * References:
 * [1]   Numerical Recipes in C, 2nd edition,
 *       W.H. Press, S.A. Teukolsky, W.T. Vitterling, and B.P. Flannery,
 *       Cambridge University Press, 1992.
 * [2]   Numerical Analysis,
 *       D. Kincaid and W. Cheney,
 *       Brooks/Cole Publishing Company, 1991.
 * [3]   The C Programming Language, 2nd edition,
 *       B.W. Kernighan and D.M. Ritchie,
 *	 Prentice Hall, 1988.
 * [4]   Advanced Engineering Mathematics, 6th edition,
 *       E. Kreyszig,
 *       Wiley and Sons, 1988.
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#ifndef TINY
#  define TINY 1.0e-18
#endif

#include "sslib.h"
#include "matrix.h"


/*
 * MatrixAlloc allocates storage for a square matrix with dimension
 * n*n. An error message is printed, if it was impossible to allocate
 * the neccesary space, [3].
 *
 */

double **MatrixAlloc(const int n) {

  double **matrix;
  int    i;

  matrix=(double **)calloc(n, sizeof(double *));
  if (matrix==NULL)
    SSLerror("No memory available in routine MatrixAlloc");
  else 
    for(i=0; i<n; i++) {
      matrix[i]=(double *)calloc(n, sizeof(double));
      if (matrix[i]==NULL)
	SSLerror("No memory available in routine MatrixAlloc");
    } /* for i=1..n */
  return matrix;
} /* MatrixAlloc */


/*
 * VectorAlloc allocated space for an n-dimensional vector of the type
 * double *, [3]. It can be freed by VectorFree.
 *
 */

double *VectorAlloc(const int n) {

  double *temp;

  temp=(double *)calloc(n, sizeof(double));
  if (temp==NULL)
    SSLerror("No memory available in routine VectorAlloc");
  return temp;
} /* VectorAlloc */


/*
 * IntVectorAlloc is similar to VectorAlloc, except that the base type is 
 * integers (int) instead of reals (double), [3].
 *
 */

int *IntVectorAlloc(const int n) {

  int *temp;

  temp=(int *)calloc(n, sizeof(int));
  if (temp==NULL)
    SSLerror("No memory available in routine IntVectorAlloc");
  return temp;
} /* IntVectorAlloc */


/*
 * SSL_ComplexMatrixAlloc allocates space for a nxn matrix with complex elements.
 *
 */

SSL_Complex **SSL_ComplexMatrixAlloc(const int n) {

  int       i;
  SSL_Complex **temp;

  temp=(SSL_Complex **)calloc(n, sizeof(SSL_Complex *));
  if (temp==NULL)
    SSLerror("No memory available in routine SSL_ComplexMatrixAlloc");
  else {
    for(i=0; i<n; i++) {
      temp[i]=(SSL_Complex *)calloc(n, sizeof(SSL_Complex));
      if (temp[i]==NULL)
	SSLerror("No memory available in routine SSL_ComplexMatrixAlloc");
    } /* for i=1..n */
  } /* if else */
  return temp;
} /* SSL_ComplexMatrixAlloc */


/*
 * SSL_ComplexVectorAlloc allocates a vector of dimension n with complex 
 * elements.
 *
 */
       
SSL_Complex *SSL_ComplexVectorAlloc(const int n) {

  SSL_Complex *temp;

  temp=(SSL_Complex *)calloc(n, sizeof(SSL_Complex));
  if (temp==NULL) 
    SSLerror("No memory available in routine SSL_ComplexVectorAlloc");
  return temp;
} /* SSL_ComplexVectorAlloc */


/*
 * MatrixMul computes the product between two square matrices, [4, pp. 
 * 357-358]. Both matrices are assumed to have the dimension n*n. A and B are 
 * input, and res is the output, i.e. the routine computes res=A*B.
 *
 */

void MatrixMul(const int n, double **res, double **A, double **B) {

  int       i, j, k;
  double    x;

  for(i=0; i<n; i++)
    for(j=0; j<n; j++) {
      x=0.0;
      for(k=0; k<n; k++)
	x+=A[i][k]*B[k][j];
      res[i][j]=x;
    } /* for j=1..n */
} /* MatrixMul */


/*
 * Transpose is simply doing as the name says, i.e. transposing the
 * matrix A, [4, pp. 368-370]. A is assumed to be a square matrix.
 *
 */

void Transpose(const int n, double **res, double **A) {

  int i, j;

  for(i=0; i<n; i++)
    for(j=0; j<n; j++)
      res[j][i]=A[i][j];
} /* Transpose */


/*
 * MatrixFree, VectorFree, IntVectorFree, SSL_ComplexMatrixFree, and 
 * SSL_ComplexVectorFree free the space used by the objects, [3].
 *
 */

void MatrixFree(const int n, double **matrix) {

  int i;

  for(i=0; i<n; i++)
    free((void *)matrix[i]);
  free((void *)matrix);
} /* MatrixFree */

void SSL_ComplexMatrixFree(const int n, SSL_Complex **matrix) {

  int i;

  for(i=0; i<n; i++)
    free((void *)matrix[i]);
  free((void *)matrix);
} /* SSL_ComplexMatrixFree */

void VectorFree(const int n, double *vector) {

  free((void *)vector);
} /* VectorFree */

void IntVectorFree(const int n, int *vector) {

  free((void *)vector);
} /* IntVectorFree */

void SSL_ComplexVectorFree(const int n, SSL_Complex *vector) {

  free((void *)vector);
} /* SSL_ComplexVectorFree */


/*
 * LUfact and LUsubst are plain LU decomposition and substitution routines, 
 * [1, pp. 43-50], [2, pp. 145-149]. The version here is Gaussian elimination 
 * with scaled row pivoting, and it is based on the algorithm given in [2].
 *
 * LUfact_fixed and LUsubst_fixed are specialised versions of LUfact and
 * LUsubst. They are used in OEE solvers.
 *
 * The parameters are used:
 *   n            the dimension of the matrix.
 *   a            the matrix; it contains both L and U at termination.
 *   p            permutation index.  
 *   b            the constant vector, and at termination it will contain
 *                the solution.
 *
 */

void LUfact(const int n, double **a, int *p) {

  int      i, j, k;             /* counters           */
  double   z;                   /* temporary real     */
  double  *s;                   /* pivot elements     */
  int      not_finished;        /* loop control var.  */
  int      i_swap;              /* swap var.          */
  double   temp;                /* another temp. real */

  s=VectorAlloc(n);
  for(i=0; i<n; i++) {
    p[i]=i;
    s[i]=0.0;
    for(j=0; j<n; j++) {
      z=fabs(a[i][j]);
      if (s[i]<z)
	s[i]=z;
    } /* for j */
  } /* for i */

  for(k=0; k<(n-1); k++) {
    j=k-1;           /* select j>=k so ... */
    not_finished=1;
    while (not_finished) {
      j++;
      temp=fabs(a[p[j]][k]/s[p[j]]);
      for(i=k; i<n; i++)  
	if (temp>=(fabs(a[p[i]][k])/s[p[i]]))
	  not_finished=0;          /* end loop */
    } /* while */
    i_swap=p[k];
    p[k]=p[j];
    p[j]=i_swap;
    temp=1.0/a[p[k]][k];
    for(i=(k+1); i<n; i++) {
      z=a[p[i]][k]*temp;
      a[p[i]][k]=z;
      for(j=(k+1); j<n; j++) 
	a[p[i]][j]-=z*a[p[k]][j];
    } /* for i */
  } /* for k */

  VectorFree(n, s);
} /* LUfact */

void LUsubst(const int n, double **a, int *p, double *b) {

  int        i, j, k;           /* counters               */
  double     sum;               /* temporary sum variable */
  double    *x;                 /* solution               */
  
  x=VectorAlloc(n);

  for(k=0; k<(n-1); k++)        /* forward subst */
    for(i=(k+1); i<n; i++)
      b[p[i]]-=a[p[i]][k]*b[p[k]];
  
  for(i=(n-1); i>=0; i--) {     /* back subst */
    sum=b[p[i]];
    for(j=(i+1); j<n; j++)
      sum-=a[p[i]][j]*x[j];
    x[i]=sum/a[p[i]][i];
  } /* for i */
    
  for(i=0; i<n; i++)             /* copy solution */
    b[i]=x[i];

  VectorFree(n, x);
} /* LUsubst */


/*
 * GaussSeidel is an implementation of the Gauss-Seidel method, which is an
 * iterative method, [2, pp. 189-191]. The norm applied is the L1-norm.
 *
 * The parameters are:
 *   n           the dimension.
 *   a           the coefficient matrix.
 *   b           the constant vector.
 *   x           the initial guess, and at termination the solution.
 *   eps         the precision.
 *   max_iter    the maximal number of iterations allowed.
 *
 */

void GaussSeidel(const int n, double **a, double *b, double *x, double eps, 
		 int max_iter) {

  int      iter, i, j;       /* counter        */
  double   sum;              /* temporary real */
  double  *x_old;            /* old solution   */ 
  double   norm;             /* L1-norm        */

  x_old=VectorAlloc(n);

  iter=0;
  do {                       /* repeat until safisfying sol. */
    iter++;
    for(i=0; i<n; i++)       /* copy old solution */
      x_old[i]=x[i];
    norm=0.0;                /* do an iteration */
    for(i=0; i<n; i++) {     
      sum=-a[i][i]*x[i];     /* don't include term i=j */
      for(j=0; j<n; j++) 
	sum+=a[i][j]*x[j];   
      x[i]=(b[i]-sum)/a[i][i];
      norm+=fabs(x_old[i]-x[i]);
    } /* for i */
  } while ((iter<=max_iter) && (norm>=eps));

  VectorFree(n, x_old);
} /* GaussSeidel */


/*
 * Jacobi is an iterative equation solver, [2, pp. 185-189]. The algorithm
 * can be optimised a bit, which is done in this implementation. The method 
 * is suitable for parallel computers.
 *
 * The arguments are the same as in GaussSeidel.
 *
 */

void Jacobi(const int n, double **a, double *b, double *x, double eps, 
	    int max_iter) {

  double    d;              /* temporary real */
  int       i, j, iter;     /* counters       */
  double  **a_new;          /* a is altered   */
  double   *b_new;          /* b is altered   */
  double   *u;              /* new solution   */
  double    norm;           /* L1-norm        */

  a_new=MatrixAlloc(3);
  b_new=VectorAlloc(3);
  u=VectorAlloc(3);

  for(i=0; i<n; i++) {       /* the trick */
    d=1.0/a[i][i];
    b_new[i]=d*b[i];
    for(j=0; j<n; j++)
      a_new[i][j]=d*a[i][j];
  } /* for i */

  iter=0;
  do {
    iter++;
    norm=0.0;
    for(i=0; i<n; i++) {       /* update process */
      d=-a_new[i][i]*x[i];     /* don't include term i=j */
      for(j=0; j<n; j++)
	d+=a_new[i][j]*x[j];   
      u[i]=b_new[i]-d;
      norm=fabs(u[i]-x[i]);
    } /* for i */
    for(i=0; i<n; i++)           /* copy solution */
      x[i]=u[i];
  } while ((iter<=max_iter) && (norm>=eps));
  
  MatrixFree(3, a_new);
  VectorFree(3, b_new);
  VectorFree(3, u);
} /* Jacobi */


/*
 * DotProd computes the dot product between two vectors. They are assumed to
 * be of the same dimension.
 *
 */

double DotProd(const int n, double *u, double *v) {

  int      i;        /* counter        */
  double   sum=0.0;  /* temporary real */
    
  for(i=0; i<n; i++)
    sum+=u[i]*v[i];
  return sum;
} /* DotProd */


/*
 * MatrixVecProd computes the matrix product between a matrix and a vector of
 * the dimension n. The result is found in res.
 *
 */

void MatrixVecProd(const int n, double **A, double *v, double *res) {

  int    i, j;        /* counters       */

  for(i=0; i<n; i++) {
    res[i]=0.0;
    for(j=0; j<n; j++) 
      res[i]+=A[i][j]*v[j];
  } /* for i */
} /* MatrixVecProd */


/*
 * MatrixCopy copies the elements of the matrix A to the B.
 *
 */

void MatrixCopy(const int n, double **B, double **A) {

  int i, j;

  for(i=0; i<n; i++)
    for(j=0; j<n; j++)
      B[i][j]=A[i][j];
} /* MatrixCopy */


/*
 * L2VectorNorm computes the L2 or Eucleadian norm of a vector.
 *
 */

double L2VectorNorm(const int n, double *vec) {

  int    i;
  double norm=0.0;

  for(i=0; i<n; i++)
    norm+=vec[i]*vec[i];
  return sqrt(norm);
} /* L2VectorNorm */

/*
 * GSR is an implementation of the Gram-Schmidt Reorthonormalisation process, 
 * [2, pp. 246-250]. The n vectors are collected in a matrix, and the matrix is
 * both input and output. The implementation is actually the modified algorithm
 * as disucced in [2, p. 248]. Modified by the authors, so the vectors are 
 * normalised at the end.
 *
 */

void GSR(const int n, double **A) {

  int      i, j, k;     /* counters     */
  double   dot; 

  for(k=0; k<n; k++) {               /* orthogonalisation */
    for(j=(k+1); j<n; j++) {
      dot=0.0;                       /* dot product <Aj, Ak> */ 
      for(i=0; i<n; i++) 
	dot+=A[i][j]*A[i][k];
      for(i=0; i<n; i++)
	A[i][j]-=A[i][k]/dot;
    } /* for j */
  } /* for k */

  for(k=0; k<n; k++) {              /* normalisation */
    dot=0.0;                        /* Compute (L2 norm) */
    for(i=0; i<n; i++)
      dot+=A[i][k]*A[i][k];
    dot=sqrt(dot);
    if (dot==0.0) 
      SSLerror("Norm = 0 in routine GSR");
    for(i=0; i<n; i++)
      A[i][k]/=dot;
  } /* for k */
} /* GSR */


/*
 * InversMatrix calculates the inverse matrix. The method is the solution
 * of n linear set of equations which are solved by a LU factorisation.
 *
 */

void InversMatrix(const int n, double **b, double **ib) {

  double  **a;
  double   *e;
  int	    i,j;
  int  	   *p;

  a=MatrixAlloc(n);
  e=VectorAlloc(n);
  p=IntVectorAlloc(n);
  MatrixCopy(n, a, b);
  LUfact(n, a, p);
  for(i=0; i<n; i++) {
    for(j=0; j<n; j++)
      e[j]=0.0;
    e[i]=1.0;
    LUsubst(n, a, p, e);
    for(j=0; j<n; j++)
      ib[j][i]=e[j];
  } /* for i=1..n */

  MatrixFree(n, a);
  VectorFree(n, e);
  IntVectorFree(n, p);
} /* InversMatrix */