File: tred1.f

package info (click to toggle)
pdl 1%3A2.007-4
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 11,848 kB
  • ctags: 6,321
  • sloc: perl: 32,760; fortran: 13,113; ansic: 9,273; makefile: 81; sh: 32
file content (142 lines) | stat: -rw-r--r-- 4,606 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
*DECK TRED1
      SUBROUTINE TRED1 (NM, N, A, D, E, E2)
C***BEGIN PROLOGUE  TRED1
C***PURPOSE  Reduce a real symmetric matrix to symmetric tridiagonal
C            matrix using orthogonal similarity transformations.
C***LIBRARY   SLATEC (EISPACK)
C***CATEGORY  D4C1B1
C***TYPE      SINGLE PRECISION (TRED1-S)
C***KEYWORDS  EIGENVALUES, EIGENVECTORS, EISPACK
C***AUTHOR  Smith, B. T., et al.
C***DESCRIPTION
C
C     This subroutine is a translation of the ALGOL procedure TRED1,
C     NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C     This subroutine reduces a REAL SYMMETRIC matrix
C     to a symmetric tridiagonal matrix using
C     orthogonal similarity transformations.
C
C     On Input
C
C        NM must be set to the row dimension of the two-dimensional
C          array parameter, A, as declared in the calling program
C          dimension statement.  NM is an INTEGER variable.
C
C        N is the order of the matrix A.  N is an INTEGER variable.
C          N must be less than or equal to NM.
C
C        A contains the real symmetric input matrix.  Only the lower
C          triangle of the matrix need be supplied.  A is a two-
C          dimensional REAL array, dimensioned A(NM,N).
C
C     On Output
C
C        A contains information about the orthogonal transformations
C          used in the reduction in its strict lower triangle.  The
C          full upper triangle of A is unaltered.
C
C        D contains the diagonal elements of the symmetric tridiagonal
C          matrix.  D is a one-dimensional REAL array, dimensioned D(N).
C
C        E contains the subdiagonal elements of the symmetric
C          tridiagonal matrix in its last N-1 positions.  E(1) is set
C          to zero.  E is a one-dimensional REAL array, dimensioned
C          E(N).
C
C        E2 contains the squares of the corresponding elements of E.
C          E2 may coincide with E if the squares are not needed.
C          E2 is a one-dimensional REAL array, dimensioned E2(N).
C
C     Questions and comments should be directed to B. S. Garbow,
C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C     ------------------------------------------------------------------
C
C***REFERENCES  B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C                 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C                 system Routines - EISPACK Guide, Springer-Verlag,
C                 1976.
C***ROUTINES CALLED  (NONE)
C***REVISION HISTORY  (YYMMDD)
C   760101  DATE WRITTEN
C   890831  Modified array declarations.  (WRB)
C   890831  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   920501  Reformatted the REFERENCES section.  (WRB)
C***END PROLOGUE  TRED1
C
      INTEGER I,J,K,L,N,II,NM,JP1
      REAL A(NM,*),D(*),E(*),E2(*)
      REAL F,G,H,SCALE
C
C***FIRST EXECUTABLE STATEMENT  TRED1
      DO 100 I = 1, N
  100 D(I) = A(I,I)
C     .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
      DO 300 II = 1, N
         I = N + 1 - II
         L = I - 1
         H = 0.0E0
         SCALE = 0.0E0
         IF (L .LT. 1) GO TO 130
C     .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
         DO 120 K = 1, L
  120    SCALE = SCALE + ABS(A(I,K))
C
         IF (SCALE .NE. 0.0E0) GO TO 140
  130    E(I) = 0.0E0
         E2(I) = 0.0E0
         GO TO 290
C
  140    DO 150 K = 1, L
            A(I,K) = A(I,K) / SCALE
            H = H + A(I,K) * A(I,K)
  150    CONTINUE
C
         E2(I) = SCALE * SCALE * H
         F = A(I,L)
         G = -SIGN(SQRT(H),F)
         E(I) = SCALE * G
         H = H - F * G
         A(I,L) = F - G
         IF (L .EQ. 1) GO TO 270
         F = 0.0E0
C
         DO 240 J = 1, L
            G = 0.0E0
C     .......... FORM ELEMENT OF A*U ..........
            DO 180 K = 1, J
  180       G = G + A(J,K) * A(I,K)
C
            JP1 = J + 1
            IF (L .LT. JP1) GO TO 220
C
            DO 200 K = JP1, L
  200       G = G + A(K,J) * A(I,K)
C     .......... FORM ELEMENT OF P ..........
  220       E(J) = G / H
            F = F + E(J) * A(I,J)
  240    CONTINUE
C
         H = F / (H + H)
C     .......... FORM REDUCED A ..........
         DO 260 J = 1, L
            F = A(I,J)
            G = E(J) - H * F
            E(J) = G
C
            DO 260 K = 1, J
               A(J,K) = A(J,K) - F * E(K) - G * A(I,K)
  260    CONTINUE
C
  270    DO 280 K = 1, L
  280    A(I,K) = SCALE * A(I,K)
C
  290    H = D(I)
         D(I) = A(I,I)
         A(I,I) = H
  300 CONTINUE
C
      RETURN
      END