File: chfev.f

package info (click to toggle)
pdl 1%3A2.017-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 12,396 kB
  • ctags: 7,752
  • sloc: perl: 47,595; fortran: 13,113; ansic: 9,359; sh: 41; makefile: 38; sed: 6
file content (155 lines) | stat: -rw-r--r-- 4,969 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
*DECK CHFEV
      SUBROUTINE CHFEV (X1, X2, F1, F2, D1, D2, NE, XE, FE, NEXT, IERR)
C***BEGIN PROLOGUE  CHFEV
C***PURPOSE  Evaluate a cubic polynomial given in Hermite form at an
C            array of points.  While designed for use by PCHFE, it may
C            be useful directly as an evaluator for a piecewise cubic
C            Hermite function in applications, such as graphing, where
C            the interval is known in advance.
C***LIBRARY   SLATEC (PCHIP)
C***CATEGORY  E3
C***TYPE      SINGLE PRECISION (CHFEV-S, DCHFEV-D)
C***KEYWORDS  CUBIC HERMITE EVALUATION, CUBIC POLYNOMIAL EVALUATION,
C             PCHIP
C***AUTHOR  Fritsch, F. N., (LLNL)
C             Lawrence Livermore National Laboratory
C             P.O. Box 808  (L-316)
C             Livermore, CA  94550
C             FTS 532-4275, (510) 422-4275
C***DESCRIPTION
C
C          CHFEV:  Cubic Hermite Function EValuator
C
C     Evaluates the cubic polynomial determined by function values
C     F1,F2 and derivatives D1,D2 on interval (X1,X2) at the points
C     XE(J), J=1(1)NE.
C
C ----------------------------------------------------------------------
C
C  Calling sequence:
C
C        INTEGER  NE, NEXT(2), IERR
C        REAL  X1, X2, F1, F2, D1, D2, XE(NE), FE(NE)
C
C        CALL  CHFEV (X1,X2, F1,F2, D1,D2, NE, XE, FE, NEXT, IERR)
C
C   Parameters:
C
C     X1,X2 -- (input) endpoints of interval of definition of cubic.
C           (Error return if  X1.EQ.X2 .)
C
C     F1,F2 -- (input) values of function at X1 and X2, respectively.
C
C     D1,D2 -- (input) values of derivative at X1 and X2, respectively.
C
C     NE -- (input) number of evaluation points.  (Error return if
C           NE.LT.1 .)
C
C     XE -- (input) real array of points at which the function is to be
C           evaluated.  If any of the XE are outside the interval
C           [X1,X2], a warning error is returned in NEXT.
C
C     FE -- (output) real array of values of the cubic function defined
C           by  X1,X2, F1,F2, D1,D2  at the points  XE.
C
C     NEXT -- (output) integer array indicating number of extrapolation
C           points:
C            NEXT(1) = number of evaluation points to left of interval.
C            NEXT(2) = number of evaluation points to right of interval.
C
C     IERR -- (output) error flag.
C           Normal return:
C              IERR = 0  (no errors).
C           "Recoverable" errors:
C              IERR = -1  if NE.LT.1 .
C              IERR = -2  if X1.EQ.X2 .
C                (The FE-array has not been changed in either case.)
C
C***REFERENCES  (NONE)
C***ROUTINES CALLED  XERMSG
C***REVISION HISTORY  (YYMMDD)
C   811019  DATE WRITTEN
C   820803  Minor cosmetic changes for release 1.
C   890411  Added SAVE statements (Vers. 3.2).
C   890531  Changed all specific intrinsics to generic.  (WRB)
C   890703  Corrected category record.  (WRB)
C   890703  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
C***END PROLOGUE  CHFEV
C  Programming notes:
C
C     To produce a double precision version, simply:
C        a. Change CHFEV to DCHFEV wherever it occurs,
C        b. Change the real declaration to double precision, and
C        c. Change the constant ZERO to double precision.
C
C  DECLARE ARGUMENTS.
C
      INTEGER  NE, NEXT(2), IERR
      REAL  X1, X2, F1, F2, D1, D2, XE(*), FE(*)
C
C  DECLARE LOCAL VARIABLES.
C
      INTEGER  I
      REAL  C2, C3, DEL1, DEL2, DELTA, H, X, XMI, XMA, ZERO
      SAVE ZERO
      DATA  ZERO /0./
C
C  VALIDITY-CHECK ARGUMENTS.
C
C***FIRST EXECUTABLE STATEMENT  CHFEV
      IF (NE .LT. 1)  GO TO 5001
      H = X2 - X1
      IF (H .EQ. ZERO)  GO TO 5002
C
C  INITIALIZE.
C
      IERR = 0
      NEXT(1) = 0
      NEXT(2) = 0
      XMI = MIN(ZERO, H)
      XMA = MAX(ZERO, H)
C
C  COMPUTE CUBIC COEFFICIENTS (EXPANDED ABOUT X1).
C
      DELTA = (F2 - F1)/H
      DEL1 = (D1 - DELTA)/H
      DEL2 = (D2 - DELTA)/H
C                                           (DELTA IS NO LONGER NEEDED.)
      C2 = -(DEL1+DEL1 + DEL2)
      C3 = (DEL1 + DEL2)/H
C                               (H, DEL1 AND DEL2 ARE NO LONGER NEEDED.)
C
C  EVALUATION LOOP.
C
      DO 500  I = 1, NE
         X = XE(I) - X1
         FE(I) = F1 + X*(D1 + X*(C2 + X*C3))
C          COUNT EXTRAPOLATION POINTS.
         IF ( X.LT.XMI )  NEXT(1) = NEXT(1) + 1
         IF ( X.GT.XMA )  NEXT(2) = NEXT(2) + 1
C        (NOTE REDUNDANCY--IF EITHER CONDITION IS TRUE, OTHER IS FALSE.)
  500 CONTINUE
C
C  NORMAL RETURN.
C
      RETURN
C
C  ERROR RETURNS.
C
 5001 CONTINUE
C     NE.LT.1 RETURN.
      IERR = -1
      CALL XERMSG ('SLATEC', 'CHFEV',
     +   'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1)
      RETURN
C
 5002 CONTINUE
C     X1.EQ.X2 RETURN.
      IERR = -2
      CALL XERMSG ('SLATEC', 'CHFEV', 'INTERVAL ENDPOINTS EQUAL', IERR,
     +   1)
      RETURN
C------------- LAST LINE OF CHFEV FOLLOWS ------------------------------
      END