1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
*DECK PCHCE
SUBROUTINE PCHCE (IC, VC, N, X, H, SLOPE, D, INCFD, IERR)
C***BEGIN PROLOGUE PCHCE
C***SUBSIDIARY
C***PURPOSE Set boundary conditions for PCHIC
C***LIBRARY SLATEC (PCHIP)
C***TYPE SINGLE PRECISION (PCHCE-S, DPCHCE-D)
C***AUTHOR Fritsch, F. N., (LLNL)
C***DESCRIPTION
C
C PCHCE: PCHIC End Derivative Setter.
C
C Called by PCHIC to set end derivatives as requested by the user.
C It must be called after interior derivative values have been set.
C -----
C
C To facilitate two-dimensional applications, includes an increment
C between successive values of the D-array.
C
C ----------------------------------------------------------------------
C
C Calling sequence:
C
C PARAMETER (INCFD = ...)
C INTEGER IC(2), N, IERR
C REAL VC(2), X(N), H(N), SLOPE(N), D(INCFD,N)
C
C CALL PCHCE (IC, VC, N, X, H, SLOPE, D, INCFD, IERR)
C
C Parameters:
C
C IC -- (input) integer array of length 2 specifying desired
C boundary conditions:
C IC(1) = IBEG, desired condition at beginning of data.
C IC(2) = IEND, desired condition at end of data.
C ( see prologue to PCHIC for details. )
C
C VC -- (input) real array of length 2 specifying desired boundary
C values. VC(1) need be set only if IC(1) = 2 or 3 .
C VC(2) need be set only if IC(2) = 2 or 3 .
C
C N -- (input) number of data points. (assumes N.GE.2)
C
C X -- (input) real array of independent variable values. (the
C elements of X are assumed to be strictly increasing.)
C
C H -- (input) real array of interval lengths.
C SLOPE -- (input) real array of data slopes.
C If the data are (X(I),Y(I)), I=1(1)N, then these inputs are:
C H(I) = X(I+1)-X(I),
C SLOPE(I) = (Y(I+1)-Y(I))/H(I), I=1(1)N-1.
C
C D -- (input) real array of derivative values at the data points.
C The value corresponding to X(I) must be stored in
C D(1+(I-1)*INCFD), I=1(1)N.
C (output) the value of D at X(1) and/or X(N) is changed, if
C necessary, to produce the requested boundary conditions.
C no other entries in D are changed.
C
C INCFD -- (input) increment between successive values in D.
C This argument is provided primarily for 2-D applications.
C
C IERR -- (output) error flag.
C Normal return:
C IERR = 0 (no errors).
C Warning errors:
C IERR = 1 if IBEG.LT.0 and D(1) had to be adjusted for
C monotonicity.
C IERR = 2 if IEND.LT.0 and D(1+(N-1)*INCFD) had to be
C adjusted for monotonicity.
C IERR = 3 if both of the above are true.
C
C -------
C WARNING: This routine does no validity-checking of arguments.
C -------
C
C Fortran intrinsics used: ABS.
C
C***SEE ALSO PCHIC
C***ROUTINES CALLED PCHDF, PCHST, XERMSG
C***REVISION HISTORY (YYMMDD)
C 820218 DATE WRITTEN
C 820805 Converted to SLATEC library version.
C 870707 Minor corrections made to prologue..
C 890411 Added SAVE statements (Vers. 3.2).
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900328 Added TYPE section. (WRB)
C 910408 Updated AUTHOR section in prologue. (WRB)
C 930503 Improved purpose. (FNF)
C***END PROLOGUE PCHCE
C
C Programming notes:
C 1. The function PCHST(ARG1,ARG2) is assumed to return zero if
C either argument is zero, +1 if they are of the same sign, and
C -1 if they are of opposite sign.
C 2. One could reduce the number of arguments and amount of local
C storage, at the expense of reduced code clarity, by passing in
C the array WK (rather than splitting it into H and SLOPE) and
C increasing its length enough to incorporate STEMP and XTEMP.
C 3. The two monotonicity checks only use the sufficient conditions.
C Thus, it is possible (but unlikely) for a boundary condition to
C be changed, even though the original interpolant was monotonic.
C (At least the result is a continuous function of the data.)
C**End
C
C DECLARE ARGUMENTS.
C
INTEGER IC(2), N, INCFD, IERR
REAL VC(2), X(*), H(*), SLOPE(*), D(INCFD,*)
C
C DECLARE LOCAL VARIABLES.
C
INTEGER IBEG, IEND, IERF, INDEX, J, K
REAL HALF, STEMP(3), THREE, TWO, XTEMP(4), ZERO
SAVE ZERO, HALF, TWO, THREE
REAL PCHDF, PCHST
C
C INITIALIZE.
C
DATA ZERO /0./, HALF /0.5/, TWO /2./, THREE /3./
C
C***FIRST EXECUTABLE STATEMENT PCHCE
IBEG = IC(1)
IEND = IC(2)
IERR = 0
C
C SET TO DEFAULT BOUNDARY CONDITIONS IF N IS TOO SMALL.
C
IF ( ABS(IBEG).GT.N ) IBEG = 0
IF ( ABS(IEND).GT.N ) IEND = 0
C
C TREAT BEGINNING BOUNDARY CONDITION.
C
IF (IBEG .EQ. 0) GO TO 2000
K = ABS(IBEG)
IF (K .EQ. 1) THEN
C BOUNDARY VALUE PROVIDED.
D(1,1) = VC(1)
ELSE IF (K .EQ. 2) THEN
C BOUNDARY SECOND DERIVATIVE PROVIDED.
D(1,1) = HALF*( (THREE*SLOPE(1) - D(1,2)) - HALF*VC(1)*H(1) )
ELSE IF (K .LT. 5) THEN
C USE K-POINT DERIVATIVE FORMULA.
C PICK UP FIRST K POINTS, IN REVERSE ORDER.
DO 10 J = 1, K
INDEX = K-J+1
C INDEX RUNS FROM K DOWN TO 1.
XTEMP(J) = X(INDEX)
IF (J .LT. K) STEMP(J) = SLOPE(INDEX-1)
10 CONTINUE
C -----------------------------
D(1,1) = PCHDF (K, XTEMP, STEMP, IERF)
C -----------------------------
IF (IERF .NE. 0) GO TO 5001
ELSE
C USE 'NOT A KNOT' CONDITION.
D(1,1) = ( THREE*(H(1)*SLOPE(2) + H(2)*SLOPE(1))
* - TWO*(H(1)+H(2))*D(1,2) - H(1)*D(1,3) ) / H(2)
ENDIF
C
IF (IBEG .GT. 0) GO TO 2000
C
C CHECK D(1,1) FOR COMPATIBILITY WITH MONOTONICITY.
C
IF (SLOPE(1) .EQ. ZERO) THEN
IF (D(1,1) .NE. ZERO) THEN
D(1,1) = ZERO
IERR = IERR + 1
ENDIF
ELSE IF ( PCHST(D(1,1),SLOPE(1)) .LT. ZERO) THEN
D(1,1) = ZERO
IERR = IERR + 1
ELSE IF ( ABS(D(1,1)) .GT. THREE*ABS(SLOPE(1)) ) THEN
D(1,1) = THREE*SLOPE(1)
IERR = IERR + 1
ENDIF
C
C TREAT END BOUNDARY CONDITION.
C
2000 CONTINUE
IF (IEND .EQ. 0) GO TO 5000
K = ABS(IEND)
IF (K .EQ. 1) THEN
C BOUNDARY VALUE PROVIDED.
D(1,N) = VC(2)
ELSE IF (K .EQ. 2) THEN
C BOUNDARY SECOND DERIVATIVE PROVIDED.
D(1,N) = HALF*( (THREE*SLOPE(N-1) - D(1,N-1)) +
* HALF*VC(2)*H(N-1) )
ELSE IF (K .LT. 5) THEN
C USE K-POINT DERIVATIVE FORMULA.
C PICK UP LAST K POINTS.
DO 2010 J = 1, K
INDEX = N-K+J
C INDEX RUNS FROM N+1-K UP TO N.
XTEMP(J) = X(INDEX)
IF (J .LT. K) STEMP(J) = SLOPE(INDEX)
2010 CONTINUE
C -----------------------------
D(1,N) = PCHDF (K, XTEMP, STEMP, IERF)
C -----------------------------
IF (IERF .NE. 0) GO TO 5001
ELSE
C USE 'NOT A KNOT' CONDITION.
D(1,N) = ( THREE*(H(N-1)*SLOPE(N-2) + H(N-2)*SLOPE(N-1))
* - TWO*(H(N-1)+H(N-2))*D(1,N-1) - H(N-1)*D(1,N-2) )
* / H(N-2)
ENDIF
C
IF (IEND .GT. 0) GO TO 5000
C
C CHECK D(1,N) FOR COMPATIBILITY WITH MONOTONICITY.
C
IF (SLOPE(N-1) .EQ. ZERO) THEN
IF (D(1,N) .NE. ZERO) THEN
D(1,N) = ZERO
IERR = IERR + 2
ENDIF
ELSE IF ( PCHST(D(1,N),SLOPE(N-1)) .LT. ZERO) THEN
D(1,N) = ZERO
IERR = IERR + 2
ELSE IF ( ABS(D(1,N)) .GT. THREE*ABS(SLOPE(N-1)) ) THEN
D(1,N) = THREE*SLOPE(N-1)
IERR = IERR + 2
ENDIF
C
C NORMAL RETURN.
C
5000 CONTINUE
RETURN
C
C ERROR RETURN.
C
5001 CONTINUE
C ERROR RETURN FROM PCHDF.
C *** THIS CASE SHOULD NEVER OCCUR ***
IERR = -1
CALL XERMSG ('SLATEC', 'PCHCE', 'ERROR RETURN FROM PCHDF', IERR,
+ 1)
RETURN
C------------- LAST LINE OF PCHCE FOLLOWS ------------------------------
END
|