1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
*DECK PCHIM
SUBROUTINE PCHIM (N, X, F, D, INCFD, IERR)
C***BEGIN PROLOGUE PCHIM
C***PURPOSE Set derivatives needed to determine a monotone piecewise
C cubic Hermite interpolant to given data. Boundary values
C are provided which are compatible with monotonicity. The
C interpolant will have an extremum at each point where mono-
C tonicity switches direction. (See PCHIC if user control is
C desired over boundary or switch conditions.)
C***LIBRARY SLATEC (PCHIP)
C***CATEGORY E1A
C***TYPE SINGLE PRECISION (PCHIM-S, DPCHIM-D)
C***KEYWORDS CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
C PCHIP, PIECEWISE CUBIC INTERPOLATION
C***AUTHOR Fritsch, F. N., (LLNL)
C Lawrence Livermore National Laboratory
C P.O. Box 808 (L-316)
C Livermore, CA 94550
C FTS 532-4275, (510) 422-4275
C***DESCRIPTION
C
C PCHIM: Piecewise Cubic Hermite Interpolation to
C Monotone data.
C
C Sets derivatives needed to determine a monotone piecewise cubic
C Hermite interpolant to the data given in X and F.
C
C Default boundary conditions are provided which are compatible
C with monotonicity. (See PCHIC if user control of boundary con-
C ditions is desired.)
C
C If the data are only piecewise monotonic, the interpolant will
C have an extremum at each point where monotonicity switches direc-
C tion. (See PCHIC if user control is desired in such cases.)
C
C To facilitate two-dimensional applications, includes an increment
C between successive values of the F- and D-arrays.
C
C The resulting piecewise cubic Hermite function may be evaluated
C by PCHFE or PCHFD.
C
C ----------------------------------------------------------------------
C
C Calling sequence:
C
C PARAMETER (INCFD = ...)
C INTEGER N, IERR
C REAL X(N), F(INCFD,N), D(INCFD,N)
C
C CALL PCHIM (N, X, F, D, INCFD, IERR)
C
C Parameters:
C
C N -- (input) number of data points. (Error return if N.LT.2 .)
C If N=2, simply does linear interpolation.
C
C X -- (input) real array of independent variable values. The
C elements of X must be strictly increasing:
C X(I-1) .LT. X(I), I = 2(1)N.
C (Error return if not.)
C
C F -- (input) real array of dependent variable values to be inter-
C polated. F(1+(I-1)*INCFD) is value corresponding to X(I).
C PCHIM is designed for monotonic data, but it will work for
C any F-array. It will force extrema at points where mono-
C tonicity switches direction. If some other treatment of
C switch points is desired, PCHIC should be used instead.
C -----
C D -- (output) real array of derivative values at the data points.
C If the data are monotonic, these values will determine a
C a monotone cubic Hermite function.
C The value corresponding to X(I) is stored in
C D(1+(I-1)*INCFD), I=1(1)N.
C No other entries in D are changed.
C
C INCFD -- (input) increment between successive values in F and D.
C This argument is provided primarily for 2-D applications.
C (Error return if INCFD.LT.1 .)
C
C IERR -- (output) error flag.
C Normal return:
C IERR = 0 (no errors).
C Warning error:
C IERR.GT.0 means that IERR switches in the direction
C of monotonicity were detected.
C "Recoverable" errors:
C IERR = -1 if N.LT.2 .
C IERR = -2 if INCFD.LT.1 .
C IERR = -3 if the X-array is not strictly increasing.
C (The D-array has not been changed in any of these cases.)
C NOTE: The above errors are checked in the order listed,
C and following arguments have **NOT** been validated.
C
C***REFERENCES 1. F. N. Fritsch and J. Butland, A method for construc-
C ting local monotone piecewise cubic interpolants, SIAM
C Journal on Scientific and Statistical Computing 5, 2
C (June 1984), pp. 300-304.
C 2. F. N. Fritsch and R. E. Carlson, Monotone piecewise
C cubic interpolation, SIAM Journal on Numerical Ana-
C lysis 17, 2 (April 1980), pp. 238-246.
C***ROUTINES CALLED PCHST, XERMSG
C***REVISION HISTORY (YYMMDD)
C 811103 DATE WRITTEN
C 820201 1. Introduced PCHST to reduce possible over/under-
C flow problems.
C 2. Rearranged derivative formula for same reason.
C 820602 1. Modified end conditions to be continuous functions
C of data when monotonicity switches in next interval.
C 2. Modified formulas so end conditions are less prone
C of over/underflow problems.
C 820803 Minor cosmetic changes for release 1.
C 870813 Updated Reference 1.
C 890411 Added SAVE statements (Vers. 3.2).
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890703 Corrected category record. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 920429 Revised format and order of references. (WRB,FNF)
C***END PROLOGUE PCHIM
C Programming notes:
C
C 1. The function PCHST(ARG1,ARG2) is assumed to return zero if
C either argument is zero, +1 if they are of the same sign, and
C -1 if they are of opposite sign.
C 2. To produce a double precision version, simply:
C a. Change PCHIM to DPCHIM wherever it occurs,
C b. Change PCHST to DPCHST wherever it occurs,
C c. Change all references to the Fortran intrinsics to their
C double precision equivalents,
C d. Change the real declarations to double precision, and
C e. Change the constants ZERO and THREE to double precision.
C
C DECLARE ARGUMENTS.
C
INTEGER N, INCFD, IERR
REAL X(*), F(INCFD,*), D(INCFD,*)
C
C DECLARE LOCAL VARIABLES.
C
INTEGER I, NLESS1
REAL DEL1, DEL2, DMAX, DMIN, DRAT1, DRAT2, DSAVE,
* H1, H2, HSUM, HSUMT3, THREE, W1, W2, ZERO
SAVE ZERO, THREE
REAL PCHST
DATA ZERO /0./, THREE /3./
C
C VALIDITY-CHECK ARGUMENTS.
C
C***FIRST EXECUTABLE STATEMENT PCHIM
IF ( N.LT.2 ) GO TO 5001
IF ( INCFD.LT.1 ) GO TO 5002
DO 1 I = 2, N
IF ( X(I).LE.X(I-1) ) GO TO 5003
1 CONTINUE
C
C FUNCTION DEFINITION IS OK, GO ON.
C
IERR = 0
NLESS1 = N - 1
H1 = X(2) - X(1)
DEL1 = (F(1,2) - F(1,1))/H1
DSAVE = DEL1
C
C SPECIAL CASE N=2 -- USE LINEAR INTERPOLATION.
C
IF (NLESS1 .GT. 1) GO TO 10
D(1,1) = DEL1
D(1,N) = DEL1
GO TO 5000
C
C NORMAL CASE (N .GE. 3).
C
10 CONTINUE
H2 = X(3) - X(2)
DEL2 = (F(1,3) - F(1,2))/H2
C
C SET D(1) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
C SHAPE-PRESERVING.
C
HSUM = H1 + H2
W1 = (H1 + HSUM)/HSUM
W2 = -H1/HSUM
D(1,1) = W1*DEL1 + W2*DEL2
IF ( PCHST(D(1,1),DEL1) .LE. ZERO) THEN
D(1,1) = ZERO
ELSE IF ( PCHST(DEL1,DEL2) .LT. ZERO) THEN
C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
DMAX = THREE*DEL1
IF (ABS(D(1,1)) .GT. ABS(DMAX)) D(1,1) = DMAX
ENDIF
C
C LOOP THROUGH INTERIOR POINTS.
C
DO 50 I = 2, NLESS1
IF (I .EQ. 2) GO TO 40
C
H1 = H2
H2 = X(I+1) - X(I)
HSUM = H1 + H2
DEL1 = DEL2
DEL2 = (F(1,I+1) - F(1,I))/H2
40 CONTINUE
C
C SET D(I)=0 UNLESS DATA ARE STRICTLY MONOTONIC.
C
D(1,I) = ZERO
IF ( PCHST(DEL1,DEL2) ) 42, 41, 45
C
C COUNT NUMBER OF CHANGES IN DIRECTION OF MONOTONICITY.
C
41 CONTINUE
IF (DEL2 .EQ. ZERO) GO TO 50
IF ( PCHST(DSAVE,DEL2) .LT. ZERO) IERR = IERR + 1
DSAVE = DEL2
GO TO 50
C
42 CONTINUE
IERR = IERR + 1
DSAVE = DEL2
GO TO 50
C
C USE BRODLIE MODIFICATION OF BUTLAND FORMULA.
C
45 CONTINUE
HSUMT3 = HSUM+HSUM+HSUM
W1 = (HSUM + H1)/HSUMT3
W2 = (HSUM + H2)/HSUMT3
DMAX = MAX( ABS(DEL1), ABS(DEL2) )
DMIN = MIN( ABS(DEL1), ABS(DEL2) )
DRAT1 = DEL1/DMAX
DRAT2 = DEL2/DMAX
D(1,I) = DMIN/(W1*DRAT1 + W2*DRAT2)
C
50 CONTINUE
C
C SET D(N) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
C SHAPE-PRESERVING.
C
W1 = -H2/HSUM
W2 = (H2 + HSUM)/HSUM
D(1,N) = W1*DEL1 + W2*DEL2
IF ( PCHST(D(1,N),DEL2) .LE. ZERO) THEN
D(1,N) = ZERO
ELSE IF ( PCHST(DEL1,DEL2) .LT. ZERO) THEN
C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
DMAX = THREE*DEL2
IF (ABS(D(1,N)) .GT. ABS(DMAX)) D(1,N) = DMAX
ENDIF
C
C NORMAL RETURN.
C
5000 CONTINUE
RETURN
C
C ERROR RETURNS.
C
5001 CONTINUE
C N.LT.2 RETURN.
IERR = -1
CALL XERMSG ('SLATEC', 'PCHIM',
+ 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
RETURN
C
5002 CONTINUE
C INCFD.LT.1 RETURN.
IERR = -2
CALL XERMSG ('SLATEC', 'PCHIM', 'INCREMENT LESS THAN ONE', IERR,
+ 1)
RETURN
C
5003 CONTINUE
C X-ARRAY NOT STRICTLY INCREASING.
IERR = -3
CALL XERMSG ('SLATEC', 'PCHIM', 'X-ARRAY NOT STRICTLY INCREASING'
+ , IERR, 1)
RETURN
C------------- LAST LINE OF PCHIM FOLLOWS ------------------------------
END
|