| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 
 | *DECK POLFIT
      SUBROUTINE POLFIT (N, X, Y, W, MAXDEG, NDEG, EPS, R, IERR, A)
C***BEGIN PROLOGUE  POLFIT
C***PURPOSE  Fit discrete data in a least squares sense by polynomials
C            in one variable.
C***LIBRARY   SLATEC
C***CATEGORY  K1A1A2
C***TYPE      SINGLE PRECISION (POLFIT-S, DPOLFT-D)
C***KEYWORDS  CURVE FITTING, DATA FITTING, LEAST SQUARES, POLYNOMIAL FIT
C***AUTHOR  Shampine, L. F., (SNLA)
C           Davenport, S. M., (SNLA)
C           Huddleston, R. E., (SNLL)
C***DESCRIPTION
C
C     Abstract
C
C     Given a collection of points X(I) and a set of values Y(I) which
C     correspond to some function or measurement at each of the X(I),
C     subroutine  POLFIT  computes the weighted least-squares polynomial
C     fits of all degrees up to some degree either specified by the user
C     or determined by the routine.  The fits thus obtained are in
C     orthogonal polynomial form.  Subroutine  PVALUE  may then be
C     called to evaluate the fitted polynomials and any of their
C     derivatives at any point.  The subroutine  PCOEF  may be used to
C     express the polynomial fits as powers of (X-C) for any specified
C     point C.
C
C     The parameters for  POLFIT  are
C
C     Input --
C         N -      the number of data points.  The arrays X, Y and W
C                  must be dimensioned at least  N  (N .GE. 1).
C         X -      array of values of the independent variable.  These
C                  values may appear in any order and need not all be
C                  distinct.
C         Y -      array of corresponding function values.
C         W -      array of positive values to be used as weights.  If
C                  W(1) is negative,  POLFIT  will set all the weights
C                  to 1.0, which means unweighted least squares error
C                  will be minimized.  To minimize relative error, the
C                  user should set the weights to:  W(I) = 1.0/Y(I)**2,
C                  I = 1,...,N .
C         MAXDEG - maximum degree to be allowed for polynomial fit.
C                  MAXDEG  may be any non-negative integer less than  N.
C                  Note -- MAXDEG  cannot be equal to  N-1  when a
C                  statistical test is to be used for degree selection,
C                  i.e., when input value of  EPS  is negative.
C         EPS -    specifies the criterion to be used in determining
C                  the degree of fit to be computed.
C                  (1)  If  EPS  is input negative,  POLFIT  chooses the
C                       degree based on a statistical F test of
C                       significance.  One of three possible
C                       significance levels will be used:  .01, .05 or
C                       .10.  If  EPS=-1.0 , the routine will
C                       automatically select one of these levels based
C                       on the number of data points and the maximum
C                       degree to be considered.  If  EPS  is input as
C                       -.01, -.05, or -.10, a significance level of
C                       .01, .05, or .10, respectively, will be used.
C                  (2)  If  EPS  is set to 0.,  POLFIT  computes the
C                       polynomials of degrees 0 through  MAXDEG .
C                  (3)  If  EPS  is input positive,  EPS  is the RMS
C                       error tolerance which must be satisfied by the
C                       fitted polynomial.  POLFIT  will increase the
C                       degree of fit until this criterion is met or
C                       until the maximum degree is reached.
C
C     Output --
C         NDEG -   degree of the highest degree fit computed.
C         EPS -    RMS error of the polynomial of degree  NDEG .
C         R -      vector of dimension at least NDEG containing values
C                  of the fit of degree  NDEG  at each of the  X(I) .
C                  Except when the statistical test is used, these
C                  values are more accurate than results from subroutine
C                  PVALUE  normally are.
C         IERR -   error flag with the following possible values.
C             1 -- indicates normal execution, i.e., either
C                  (1)  the input value of  EPS  was negative, and the
C                       computed polynomial fit of degree  NDEG
C                       satisfies the specified F test, or
C                  (2)  the input value of  EPS  was 0., and the fits of
C                       all degrees up to  MAXDEG  are complete, or
C                  (3)  the input value of  EPS  was positive, and the
C                       polynomial of degree  NDEG  satisfies the RMS
C                       error requirement.
C             2 -- invalid input parameter.  At least one of the input
C                  parameters has an illegal value and must be corrected
C                  before  POLFIT  can proceed.  Valid input results
C                  when the following restrictions are observed
C                       N .GE. 1
C                       0 .LE. MAXDEG .LE. N-1  for  EPS .GE. 0.
C                       0 .LE. MAXDEG .LE. N-2  for  EPS .LT. 0.
C                       W(1)=-1.0  or  W(I) .GT. 0., I=1,...,N .
C             3 -- cannot satisfy the RMS error requirement with a
C                  polynomial of degree no greater than  MAXDEG .  Best
C                  fit found is of degree  MAXDEG .
C             4 -- cannot satisfy the test for significance using
C                  current value of  MAXDEG .  Statistically, the
C                  best fit found is of order  NORD .  (In this case,
C                  NDEG will have one of the values:  MAXDEG-2,
C                  MAXDEG-1, or MAXDEG).  Using a higher value of
C                  MAXDEG  may result in passing the test.
C         A -      work and output array having at least 3N+3MAXDEG+3
C                  locations
C
C     Note - POLFIT  calculates all fits of degrees up to and including
C            NDEG .  Any or all of these fits can be evaluated or
C            expressed as powers of (X-C) using  PVALUE  and  PCOEF
C            after just one call to  POLFIT .
C
C***REFERENCES  L. F. Shampine, S. M. Davenport and R. E. Huddleston,
C                 Curve fitting by polynomials in one variable, Report
C                 SLA-74-0270, Sandia Laboratories, June 1974.
C***ROUTINES CALLED  PVALUE, XERMSG
C***REVISION HISTORY  (YYMMDD)
C   740601  DATE WRITTEN
C   890531  Changed all specific intrinsics to generic.  (WRB)
C   890531  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
C   920501  Reformatted the REFERENCES section.  (WRB)
C   920527  Corrected erroneous statements in DESCRIPTION.  (WRB)
C***END PROLOGUE  POLFIT
      DOUBLE PRECISION TEMD1,TEMD2
      DIMENSION X(*), Y(*), W(*), R(*), A(*)
      DIMENSION CO(4,3)
      SAVE CO
      DATA  CO(1,1), CO(2,1), CO(3,1), CO(4,1), CO(1,2), CO(2,2),
     1      CO(3,2), CO(4,2), CO(1,3), CO(2,3), CO(3,3),
     2  CO(4,3)/-13.086850,-2.4648165,-3.3846535,-1.2973162,
     3          -3.3381146,-1.7812271,-3.2578406,-1.6589279,
     4          -1.6282703,-1.3152745,-3.2640179,-1.9829776/
C***FIRST EXECUTABLE STATEMENT  POLFIT
      M = ABS(N)
      IF (M .EQ. 0) GO TO 30
      IF (MAXDEG .LT. 0) GO TO 30
      A(1) = MAXDEG
      MOP1 = MAXDEG + 1
      IF (M .LT. MOP1) GO TO 30
      IF (EPS .LT. 0.0  .AND.  M .EQ. MOP1) GO TO 30
      XM = M
      ETST = EPS*EPS*XM
      IF (W(1) .LT. 0.0) GO TO 2
      DO 1 I = 1,M
        IF (W(I) .LE. 0.0) GO TO 30
 1      CONTINUE
      GO TO 4
 2    DO 3 I = 1,M
 3      W(I) = 1.0
 4    IF (EPS .GE. 0.0) GO TO 8
C
C DETERMINE SIGNIFICANCE LEVEL INDEX TO BE USED IN STATISTICAL TEST FOR
C CHOOSING DEGREE OF POLYNOMIAL FIT
C
      IF (EPS .GT. (-.55)) GO TO 5
      IDEGF = M - MAXDEG - 1
      KSIG = 1
      IF (IDEGF .LT. 10) KSIG = 2
      IF (IDEGF .LT. 5) KSIG = 3
      GO TO 8
 5    KSIG = 1
      IF (EPS .LT. (-.03)) KSIG = 2
      IF (EPS .LT. (-.07)) KSIG = 3
C
C INITIALIZE INDEXES AND COEFFICIENTS FOR FITTING
C
 8    K1 = MAXDEG + 1
      K2 = K1 + MAXDEG
      K3 = K2 + MAXDEG + 2
      K4 = K3 + M
      K5 = K4 + M
      DO 9 I = 2,K4
 9      A(I) = 0.0
      W11 = 0.0
      IF (N .LT. 0) GO TO 11
C
C UNCONSTRAINED CASE
C
      DO 10 I = 1,M
        K4PI = K4 + I
        A(K4PI) = 1.0
 10     W11 = W11 + W(I)
      GO TO 13
C
C CONSTRAINED CASE
C
 11   DO 12 I = 1,M
        K4PI = K4 + I
 12     W11 = W11 + W(I)*A(K4PI)**2
C
C COMPUTE FIT OF DEGREE ZERO
C
 13   TEMD1 = 0.0D0
      DO 14 I = 1,M
        K4PI = K4 + I
        TEMD1 = TEMD1 + DBLE(W(I))*DBLE(Y(I))*DBLE(A(K4PI))
 14     CONTINUE
      TEMD1 = TEMD1/DBLE(W11)
      A(K2+1) = TEMD1
      SIGJ = 0.0
      DO 15 I = 1,M
        K4PI = K4 + I
        K5PI = K5 + I
        TEMD2 = TEMD1*DBLE(A(K4PI))
        R(I) = TEMD2
        A(K5PI) = TEMD2 - DBLE(R(I))
 15     SIGJ = SIGJ + W(I)*((Y(I)-R(I)) - A(K5PI))**2
      J = 0
C
C SEE IF POLYNOMIAL OF DEGREE 0 SATISFIES THE DEGREE SELECTION CRITERION
C
      IF (EPS) 24,26,27
C
C INCREMENT DEGREE
C
 16   J = J + 1
      JP1 = J + 1
      K1PJ = K1 + J
      K2PJ = K2 + J
      SIGJM1 = SIGJ
C
C COMPUTE NEW B COEFFICIENT EXCEPT WHEN J = 1
C
      IF (J .GT. 1) A(K1PJ) = W11/W1
C
C COMPUTE NEW A COEFFICIENT
C
      TEMD1 = 0.0D0
      DO 18 I = 1,M
        K4PI = K4 + I
        TEMD2 = A(K4PI)
        TEMD1 = TEMD1 + DBLE(X(I))*DBLE(W(I))*TEMD2*TEMD2
 18     CONTINUE
      A(JP1) = TEMD1/DBLE(W11)
C
C EVALUATE ORTHOGONAL POLYNOMIAL AT DATA POINTS
C
      W1 = W11
      W11 = 0.0
      DO 19 I = 1,M
        K3PI = K3 + I
        K4PI = K4 + I
        TEMP = A(K3PI)
        A(K3PI) = A(K4PI)
        A(K4PI) = (X(I)-A(JP1))*A(K3PI) - A(K1PJ)*TEMP
 19     W11 = W11 + W(I)*A(K4PI)**2
C
C GET NEW ORTHOGONAL POLYNOMIAL COEFFICIENT USING PARTIAL DOUBLE
C PRECISION
C
      TEMD1 = 0.0D0
      DO 20 I = 1,M
        K4PI = K4 + I
        K5PI = K5 + I
        TEMD2 = DBLE(W(I))*DBLE((Y(I)-R(I))-A(K5PI))*DBLE(A(K4PI))
 20     TEMD1 = TEMD1 + TEMD2
      TEMD1 = TEMD1/DBLE(W11)
      A(K2PJ+1) = TEMD1
C
C UPDATE POLYNOMIAL EVALUATIONS AT EACH OF THE DATA POINTS, AND
C ACCUMULATE SUM OF SQUARES OF ERRORS.  THE POLYNOMIAL EVALUATIONS ARE
C COMPUTED AND STORED IN EXTENDED PRECISION.  FOR THE I-TH DATA POINT,
C THE MOST SIGNIFICANT BITS ARE STORED IN  R(I) , AND THE LEAST
C SIGNIFICANT BITS ARE IN  A(K5PI) .
C
      SIGJ = 0.0
      DO 21 I = 1,M
        K4PI = K4 + I
        K5PI = K5 + I
        TEMD2 = DBLE(R(I)) + DBLE(A(K5PI)) + TEMD1*DBLE(A(K4PI))
        R(I) = TEMD2
        A(K5PI) = TEMD2 - DBLE(R(I))
 21     SIGJ = SIGJ + W(I)*((Y(I)-R(I)) - A(K5PI))**2
C
C SEE IF DEGREE SELECTION CRITERION HAS BEEN SATISFIED OR IF DEGREE
C MAXDEG  HAS BEEN REACHED
C
      IF (EPS) 23,26,27
C
C COMPUTE F STATISTICS  (INPUT EPS .LT. 0.)
C
 23   IF (SIGJ .EQ. 0.0) GO TO 29
      DEGF = M - J - 1
      DEN = (CO(4,KSIG)*DEGF + 1.0)*DEGF
      FCRIT = (((CO(3,KSIG)*DEGF) + CO(2,KSIG))*DEGF + CO(1,KSIG))/DEN
      FCRIT = FCRIT*FCRIT
      F = (SIGJM1 - SIGJ)*DEGF/SIGJ
      IF (F .LT. FCRIT) GO TO 25
C
C POLYNOMIAL OF DEGREE J SATISFIES F TEST
C
 24   SIGPAS = SIGJ
      JPAS = J
      NFAIL = 0
      IF (MAXDEG .EQ. J) GO TO 32
      GO TO 16
C
C POLYNOMIAL OF DEGREE J FAILS F TEST.  IF THERE HAVE BEEN THREE
C SUCCESSIVE FAILURES, A STATISTICALLY BEST DEGREE HAS BEEN FOUND.
C
 25   NFAIL = NFAIL + 1
      IF (NFAIL .GE. 3) GO TO 29
      IF (MAXDEG .EQ. J) GO TO 32
      GO TO 16
C
C RAISE THE DEGREE IF DEGREE  MAXDEG  HAS NOT YET BEEN REACHED  (INPUT
C EPS = 0.)
C
 26   IF (MAXDEG .EQ. J) GO TO 28
      GO TO 16
C
C SEE IF RMS ERROR CRITERION IS SATISFIED  (INPUT EPS .GT. 0.)
C
 27   IF (SIGJ .LE. ETST) GO TO 28
      IF (MAXDEG .EQ. J) GO TO 31
      GO TO 16
C
C RETURNS
C
 28   IERR = 1
      NDEG = J
      SIG = SIGJ
      GO TO 33
 29   IERR = 1
      NDEG = JPAS
      SIG = SIGPAS
      GO TO 33
 30   IERR = 2
      CALL XERMSG ('SLATEC', 'POLFIT', 'INVALID INPUT PARAMETER.', 2,
     +   1)
      GO TO 37
 31   IERR = 3
      NDEG = MAXDEG
      SIG = SIGJ
      GO TO 33
 32   IERR = 4
      NDEG = JPAS
      SIG = SIGPAS
C
 33   A(K3) = NDEG
C
C WHEN STATISTICAL TEST HAS BEEN USED, EVALUATE THE BEST POLYNOMIAL AT
C ALL THE DATA POINTS IF  R  DOES NOT ALREADY CONTAIN THESE VALUES
C
      IF(EPS .GE. 0.0  .OR.  NDEG .EQ. MAXDEG) GO TO 36
      NDER = 0
      DO 35 I = 1,M
        CALL PVALUE (NDEG,NDER,X(I),R(I),YP,A)
 35     CONTINUE
 36   EPS = SQRT(SIG/XM)
 37   RETURN
      END
 |