File: radf3.f

package info (click to toggle)
pdl 1%3A2.017-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 12,396 kB
  • ctags: 7,752
  • sloc: perl: 47,595; fortran: 13,113; ansic: 9,359; sh: 41; makefile: 38; sed: 6
file content (83 lines) | stat: -rw-r--r-- 2,939 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
*DECK RADF3
      SUBROUTINE RADF3 (IDO, L1, CC, CH, WA1, WA2)
C***BEGIN PROLOGUE  RADF3
C***SUBSIDIARY
C***PURPOSE  Calculate the fast Fourier transform of subvectors of
C            length three.
C***LIBRARY   SLATEC (FFTPACK)
C***TYPE      SINGLE PRECISION (RADF3-S)
C***AUTHOR  Swarztrauber, P. N., (NCAR)
C***ROUTINES CALLED  (NONE)
C***REVISION HISTORY  (YYMMDD)
C   790601  DATE WRITTEN
C   830401  Modified to use SLATEC library source file format.
C   860115  Modified by Ron Boisvert to adhere to Fortran 77 by
C           (a) changing dummy array size declarations (1) to (*),
C           (b) changing definition of variable TAUI by using
C               FORTRAN intrinsic function SQRT instead of a DATA
C               statement.
C   881128  Modified by Dick Valent to meet prologue standards.
C   890831  Modified array declarations.  (WRB)
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900402  Added TYPE section.  (WRB)
C***END PROLOGUE  RADF3
      DIMENSION CH(IDO,3,*), CC(IDO,L1,3), WA1(*), WA2(*)
C***FIRST EXECUTABLE STATEMENT  RADF3
      TAUR = -.5
      TAUI = .5*SQRT(3.)
      DO 101 K=1,L1
         CR2 = CC(1,K,2)+CC(1,K,3)
         CH(1,1,K) = CC(1,K,1)+CR2
         CH(1,3,K) = TAUI*(CC(1,K,3)-CC(1,K,2))
         CH(IDO,2,K) = CC(1,K,1)+TAUR*CR2
  101 CONTINUE
      IF (IDO .EQ. 1) RETURN
      IDP2 = IDO+2
      IF((IDO-1)/2.LT.L1) GO TO 104
      DO 103 K=1,L1
CDIR$ IVDEP
         DO 102 I=3,IDO,2
            IC = IDP2-I
            DR2 = WA1(I-2)*CC(I-1,K,2)+WA1(I-1)*CC(I,K,2)
            DI2 = WA1(I-2)*CC(I,K,2)-WA1(I-1)*CC(I-1,K,2)
            DR3 = WA2(I-2)*CC(I-1,K,3)+WA2(I-1)*CC(I,K,3)
            DI3 = WA2(I-2)*CC(I,K,3)-WA2(I-1)*CC(I-1,K,3)
            CR2 = DR2+DR3
            CI2 = DI2+DI3
            CH(I-1,1,K) = CC(I-1,K,1)+CR2
            CH(I,1,K) = CC(I,K,1)+CI2
            TR2 = CC(I-1,K,1)+TAUR*CR2
            TI2 = CC(I,K,1)+TAUR*CI2
            TR3 = TAUI*(DI2-DI3)
            TI3 = TAUI*(DR3-DR2)
            CH(I-1,3,K) = TR2+TR3
            CH(IC-1,2,K) = TR2-TR3
            CH(I,3,K) = TI2+TI3
            CH(IC,2,K) = TI3-TI2
  102    CONTINUE
  103 CONTINUE
      RETURN
  104 DO 106 I=3,IDO,2
         IC = IDP2-I
CDIR$ IVDEP
         DO 105 K=1,L1
            DR2 = WA1(I-2)*CC(I-1,K,2)+WA1(I-1)*CC(I,K,2)
            DI2 = WA1(I-2)*CC(I,K,2)-WA1(I-1)*CC(I-1,K,2)
            DR3 = WA2(I-2)*CC(I-1,K,3)+WA2(I-1)*CC(I,K,3)
            DI3 = WA2(I-2)*CC(I,K,3)-WA2(I-1)*CC(I-1,K,3)
            CR2 = DR2+DR3
            CI2 = DI2+DI3
            CH(I-1,1,K) = CC(I-1,K,1)+CR2
            CH(I,1,K) = CC(I,K,1)+CI2
            TR2 = CC(I-1,K,1)+TAUR*CR2
            TI2 = CC(I,K,1)+TAUR*CI2
            TR3 = TAUI*(DI2-DI3)
            TI3 = TAUI*(DR3-DR2)
            CH(I-1,3,K) = TR2+TR3
            CH(IC-1,2,K) = TR2-TR3
            CH(I,3,K) = TI2+TI3
            CH(IC,2,K) = TI3-TI2
  105    CONTINUE
  106 CONTINUE
      RETURN
      END