File: sgeco.f

package info (click to toggle)
pdl 1%3A2.017-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 12,396 kB
  • ctags: 7,752
  • sloc: perl: 47,595; fortran: 13,113; ansic: 9,359; sh: 41; makefile: 38; sed: 6
file content (207 lines) | stat: -rw-r--r-- 6,471 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
*DECK SGECO
      SUBROUTINE SGECO (A, LDA, N, IPVT, RCOND, Z)
C***BEGIN PROLOGUE  SGECO
C***PURPOSE  Factor a matrix using Gaussian elimination and estimate
C            the condition number of the matrix.
C***LIBRARY   SLATEC (LINPACK)
C***CATEGORY  D2A1
C***TYPE      SINGLE PRECISION (SGECO-S, DGECO-D, CGECO-C)
C***KEYWORDS  CONDITION NUMBER, GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
C             MATRIX FACTORIZATION
C***AUTHOR  Moler, C. B., (U. of New Mexico)
C***DESCRIPTION
C
C     SGECO factors a real matrix by Gaussian elimination
C     and estimates the condition of the matrix.
C
C     If  RCOND  is not needed, SGEFA is slightly faster.
C     To solve  A*X = B , follow SGECO by SGESL.
C     To compute  INVERSE(A)*C , follow SGECO by SGESL.
C     To compute  DETERMINANT(A) , follow SGECO by SGEDI.
C     To compute  INVERSE(A) , follow SGECO by SGEDI.
C
C     On Entry
C
C        A       REAL(LDA, N)
C                the matrix to be factored.
C
C        LDA     INTEGER
C                the leading dimension of the array  A .
C
C        N       INTEGER
C                the order of the matrix  A .
C
C     On Return
C
C        A       an upper triangular matrix and the multipliers
C                which were used to obtain it.
C                The factorization can be written  A = L*U , where
C                L  is a product of permutation and unit lower
C                triangular matrices and  U  is upper triangular.
C
C        IPVT    INTEGER(N)
C                an integer vector of pivot indices.
C
C        RCOND   REAL
C                an estimate of the reciprocal condition of  A .
C                For the system  A*X = B , relative perturbations
C                in  A  and  B  of size  EPSILON  may cause
C                relative perturbations in  X  of size  EPSILON/RCOND .
C                If  RCOND  is so small that the logical expression
C                           1.0 + RCOND .EQ. 1.0
C                is true, then  A  may be singular to working
C                precision.  In particular,  RCOND  is zero  if
C                exact singularity is detected or the estimate
C                underflows.
C
C        Z       REAL(N)
C                a work vector whose contents are usually unimportant.
C                If  A  is close to a singular matrix, then  Z  is
C                an approximate null vector in the sense that
C                NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
C
C***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C                 Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED  SASUM, SAXPY, SDOT, SGEFA, SSCAL
C***REVISION HISTORY  (YYMMDD)
C   780814  DATE WRITTEN
C   890531  Changed all specific intrinsics to generic.  (WRB)
C   890831  Modified array declarations.  (WRB)
C   890831  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900326  Removed duplicate information from DESCRIPTION section.
C           (WRB)
C   920501  Reformatted the REFERENCES section.  (WRB)
C***END PROLOGUE  SGECO
      INTEGER LDA,N,IPVT(*)
      REAL A(LDA,*),Z(*)
      REAL RCOND
C
      REAL SDOT,EK,T,WK,WKM
      REAL ANORM,S,SASUM,SM,YNORM
      INTEGER INFO,J,K,KB,KP1,L
C
C     COMPUTE 1-NORM OF A
C
C***FIRST EXECUTABLE STATEMENT  SGECO
      ANORM = 0.0E0
      DO 10 J = 1, N
         ANORM = MAX(ANORM,SASUM(N,A(1,J),1))
   10 CONTINUE
C
C     FACTOR
C
      CALL SGEFA(A,LDA,N,IPVT,INFO)
C
C     RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
C     ESTIMATE = NORM(Z)/NORM(Y) WHERE  A*Z = Y  AND  TRANS(A)*Y = E .
C     TRANS(A)  IS THE TRANSPOSE OF A .  THE COMPONENTS OF  E  ARE
C     CHOSEN TO CAUSE MAXIMUM LOCAL GROWTH IN THE ELEMENTS OF W  WHERE
C     TRANS(U)*W = E .  THE VECTORS ARE FREQUENTLY RESCALED TO AVOID
C     OVERFLOW.
C
C     SOLVE TRANS(U)*W = E
C
      EK = 1.0E0
      DO 20 J = 1, N
         Z(J) = 0.0E0
   20 CONTINUE
      DO 100 K = 1, N
         IF (Z(K) .NE. 0.0E0) EK = SIGN(EK,-Z(K))
         IF (ABS(EK-Z(K)) .LE. ABS(A(K,K))) GO TO 30
            S = ABS(A(K,K))/ABS(EK-Z(K))
            CALL SSCAL(N,S,Z,1)
            EK = S*EK
   30    CONTINUE
         WK = EK - Z(K)
         WKM = -EK - Z(K)
         S = ABS(WK)
         SM = ABS(WKM)
         IF (A(K,K) .EQ. 0.0E0) GO TO 40
            WK = WK/A(K,K)
            WKM = WKM/A(K,K)
         GO TO 50
   40    CONTINUE
            WK = 1.0E0
            WKM = 1.0E0
   50    CONTINUE
         KP1 = K + 1
         IF (KP1 .GT. N) GO TO 90
            DO 60 J = KP1, N
               SM = SM + ABS(Z(J)+WKM*A(K,J))
               Z(J) = Z(J) + WK*A(K,J)
               S = S + ABS(Z(J))
   60       CONTINUE
            IF (S .GE. SM) GO TO 80
               T = WKM - WK
               WK = WKM
               DO 70 J = KP1, N
                  Z(J) = Z(J) + T*A(K,J)
   70          CONTINUE
   80       CONTINUE
   90    CONTINUE
         Z(K) = WK
  100 CONTINUE
      S = 1.0E0/SASUM(N,Z,1)
      CALL SSCAL(N,S,Z,1)
C
C     SOLVE TRANS(L)*Y = W
C
      DO 120 KB = 1, N
         K = N + 1 - KB
         IF (K .LT. N) Z(K) = Z(K) + SDOT(N-K,A(K+1,K),1,Z(K+1),1)
         IF (ABS(Z(K)) .LE. 1.0E0) GO TO 110
            S = 1.0E0/ABS(Z(K))
            CALL SSCAL(N,S,Z,1)
  110    CONTINUE
         L = IPVT(K)
         T = Z(L)
         Z(L) = Z(K)
         Z(K) = T
  120 CONTINUE
      S = 1.0E0/SASUM(N,Z,1)
      CALL SSCAL(N,S,Z,1)
C
      YNORM = 1.0E0
C
C     SOLVE L*V = Y
C
      DO 140 K = 1, N
         L = IPVT(K)
         T = Z(L)
         Z(L) = Z(K)
         Z(K) = T
         IF (K .LT. N) CALL SAXPY(N-K,T,A(K+1,K),1,Z(K+1),1)
         IF (ABS(Z(K)) .LE. 1.0E0) GO TO 130
            S = 1.0E0/ABS(Z(K))
            CALL SSCAL(N,S,Z,1)
            YNORM = S*YNORM
  130    CONTINUE
  140 CONTINUE
      S = 1.0E0/SASUM(N,Z,1)
      CALL SSCAL(N,S,Z,1)
      YNORM = S*YNORM
C
C     SOLVE  U*Z = V
C
      DO 160 KB = 1, N
         K = N + 1 - KB
         IF (ABS(Z(K)) .LE. ABS(A(K,K))) GO TO 150
            S = ABS(A(K,K))/ABS(Z(K))
            CALL SSCAL(N,S,Z,1)
            YNORM = S*YNORM
  150    CONTINUE
         IF (A(K,K) .NE. 0.0E0) Z(K) = Z(K)/A(K,K)
         IF (A(K,K) .EQ. 0.0E0) Z(K) = 1.0E0
         T = -Z(K)
         CALL SAXPY(K-1,T,A(1,K),1,Z(1),1)
  160 CONTINUE
C     MAKE ZNORM = 1.0
      S = 1.0E0/SASUM(N,Z,1)
      CALL SSCAL(N,S,Z,1)
      YNORM = S*YNORM
C
      IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
      IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
      RETURN
      END