1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
  
     | 
    
      *DECK SSVDC
      SUBROUTINE SSVDC (X, LDX, N, P, S, E, U, LDU, V, LDV, WORK, JOB,
     +   INFO)
C***BEGIN PROLOGUE  SSVDC
C***PURPOSE  Perform the singular value decomposition of a rectangular
C            matrix.
C***LIBRARY   SLATEC (LINPACK)
C***CATEGORY  D6
C***TYPE      SINGLE PRECISION (SSVDC-S, DSVDC-D, CSVDC-C)
C***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX,
C             SINGULAR VALUE DECOMPOSITION
C***AUTHOR  Stewart, G. W., (U. of Maryland)
C***DESCRIPTION
C
C     SSVDC is a subroutine to reduce a real NxP matrix X by orthogonal
C     transformations U and V to diagonal form.  The elements S(I) are
C     the singular values of X.  The columns of U are the corresponding
C     left singular vectors, and the columns of V the right singular
C     vectors.
C
C     On Entry
C
C         X         REAL(LDX,P), where LDX .GE. N.
C                   X contains the matrix whose singular value
C                   decomposition is to be computed.  X is
C                   destroyed by SSVDC.
C
C         LDX       INTEGER
C                   LDX is the leading dimension of the array X.
C
C         N         INTEGER
C                   N is the number of rows of the matrix X.
C
C         P         INTEGER
C                   P is the number of columns of the matrix X.
C
C         LDU       INTEGER
C                   LDU is the leading dimension of the array U.
C                   (See below).
C
C         LDV       INTEGER
C                   LDV is the leading dimension of the array V.
C                   (See below).
C
C         WORK      REAL(N)
C                   work is a scratch array.
C
C         JOB       INTEGER
C                   JOB controls the computation of the singular
C                   vectors.  It has the decimal expansion AB
C                   with the following meaning
C
C                        A .EQ. 0  Do not compute the left singular
C                                  vectors.
C                        A .EQ. 1  Return the N left singular vectors
C                                  in U.
C                        A .GE. 2  Return the first MIN(N,P) singular
C                                  vectors in U.
C                        B .EQ. 0  Do not compute the right singular
C                                  vectors.
C                        B .EQ. 1  Return the right singular vectors
C                                  in V.
C
C     On Return
C
C         S         REAL(MM), where MM=MIN(N+1,P).
C                   The first MIN(N,P) entries of S contain the
C                   singular values of X arranged in descending
C                   order of magnitude.
C
C         E         REAL(P).
C                   E ordinarily contains zeros.  However, see the
C                   discussion of INFO for exceptions.
C
C         U         REAL(LDU,K), where LDU .GE. N.  If JOBA .EQ. 1, then
C                                   K .EQ. N.  If JOBA .GE. 2 , then
C                                   K .EQ. MIN(N,P).
C                   U contains the matrix of right singular vectors.
C                   U is not referenced if JOBA .EQ. 0.  If N .LE. P
C                   or if JOBA .EQ. 2, then U may be identified with X
C                   in the subroutine call.
C
C         V         REAL(LDV,P), where LDV .GE. P.
C                   V contains the matrix of right singular vectors.
C                   V is not referenced if JOB .EQ. 0.  If P .LE. N,
C                   then V may be identified with X in the
C                   subroutine call.
C
C         INFO      INTEGER.
C                   the singular values (and their corresponding
C                   singular vectors) S(INFO+1),S(INFO+2),...,S(M)
C                   are correct (here M=MIN(N,P)).  Thus if
C                   INFO .EQ. 0, all the singular values and their
C                   vectors are correct.  In any event, the matrix
C                   B = TRANS(U)*X*V is the bidiagonal matrix
C                   with the elements of S on its diagonal and the
C                   elements of E on its super-diagonal (TRANS(U)
C                   is the transpose of U).  Thus the singular
C                   values of X and B are the same.
C
C***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C                 Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED  SAXPY, SDOT, SNRM2, SROT, SROTG, SSCAL, SSWAP
C***REVISION HISTORY  (YYMMDD)
C   790319  DATE WRITTEN
C   890531  Changed all specific intrinsics to generic.  (WRB)
C   890531  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900326  Removed duplicate information from DESCRIPTION section.
C           (WRB)
C   920501  Reformatted the REFERENCES section.  (WRB)
C***END PROLOGUE  SSVDC
      INTEGER LDX,N,P,LDU,LDV,JOB,INFO
      REAL X(LDX,*),S(*),E(*),U(LDU,*),V(LDV,*),WORK(*)
C
C
      INTEGER I,ITER,J,JOBU,K,KASE,KK,L,LL,LLS,LM1,LP1,LS,LU,M,MAXIT,
     1        MM,MM1,MP1,NCT,NCTP1,NCU,NRT,NRTP1
      REAL SDOT,T
      REAL B,C,CS,EL,EMM1,F,G,SNRM2,SCALE,SHIFT,SL,SM,SN,SMM1,T1,TEST,
     1     ZTEST
      LOGICAL WANTU,WANTV
C***FIRST EXECUTABLE STATEMENT  SSVDC
C
C     SET THE MAXIMUM NUMBER OF ITERATIONS.
C
      MAXIT = 30
C
C     DETERMINE WHAT IS TO BE COMPUTED.
C
      WANTU = .FALSE.
      WANTV = .FALSE.
      JOBU = MOD(JOB,100)/10
      NCU = N
      IF (JOBU .GT. 1) NCU = MIN(N,P)
      IF (JOBU .NE. 0) WANTU = .TRUE.
      IF (MOD(JOB,10) .NE. 0) WANTV = .TRUE.
C
C     REDUCE X TO BIDIAGONAL FORM, STORING THE DIAGONAL ELEMENTS
C     IN S AND THE SUPER-DIAGONAL ELEMENTS IN E.
C
      INFO = 0
      NCT = MIN(N-1,P)
      NRT = MAX(0,MIN(P-2,N))
      LU = MAX(NCT,NRT)
      IF (LU .LT. 1) GO TO 170
      DO 160 L = 1, LU
         LP1 = L + 1
         IF (L .GT. NCT) GO TO 20
C
C           COMPUTE THE TRANSFORMATION FOR THE L-TH COLUMN AND
C           PLACE THE L-TH DIAGONAL IN S(L).
C
            S(L) = SNRM2(N-L+1,X(L,L),1)
            IF (S(L) .EQ. 0.0E0) GO TO 10
               IF (X(L,L) .NE. 0.0E0) S(L) = SIGN(S(L),X(L,L))
               CALL SSCAL(N-L+1,1.0E0/S(L),X(L,L),1)
               X(L,L) = 1.0E0 + X(L,L)
   10       CONTINUE
            S(L) = -S(L)
   20    CONTINUE
         IF (P .LT. LP1) GO TO 50
         DO 40 J = LP1, P
            IF (L .GT. NCT) GO TO 30
            IF (S(L) .EQ. 0.0E0) GO TO 30
C
C              APPLY THE TRANSFORMATION.
C
               T = -SDOT(N-L+1,X(L,L),1,X(L,J),1)/X(L,L)
               CALL SAXPY(N-L+1,T,X(L,L),1,X(L,J),1)
   30       CONTINUE
C
C           PLACE THE L-TH ROW OF X INTO  E FOR THE
C           SUBSEQUENT CALCULATION OF THE ROW TRANSFORMATION.
C
            E(J) = X(L,J)
   40    CONTINUE
   50    CONTINUE
         IF (.NOT.WANTU .OR. L .GT. NCT) GO TO 70
C
C           PLACE THE TRANSFORMATION IN U FOR SUBSEQUENT BACK
C           MULTIPLICATION.
C
            DO 60 I = L, N
               U(I,L) = X(I,L)
   60       CONTINUE
   70    CONTINUE
         IF (L .GT. NRT) GO TO 150
C
C           COMPUTE THE L-TH ROW TRANSFORMATION AND PLACE THE
C           L-TH SUPER-DIAGONAL IN E(L).
C
            E(L) = SNRM2(P-L,E(LP1),1)
            IF (E(L) .EQ. 0.0E0) GO TO 80
               IF (E(LP1) .NE. 0.0E0) E(L) = SIGN(E(L),E(LP1))
               CALL SSCAL(P-L,1.0E0/E(L),E(LP1),1)
               E(LP1) = 1.0E0 + E(LP1)
   80       CONTINUE
            E(L) = -E(L)
            IF (LP1 .GT. N .OR. E(L) .EQ. 0.0E0) GO TO 120
C
C              APPLY THE TRANSFORMATION.
C
               DO 90 I = LP1, N
                  WORK(I) = 0.0E0
   90          CONTINUE
               DO 100 J = LP1, P
                  CALL SAXPY(N-L,E(J),X(LP1,J),1,WORK(LP1),1)
  100          CONTINUE
               DO 110 J = LP1, P
                  CALL SAXPY(N-L,-E(J)/E(LP1),WORK(LP1),1,X(LP1,J),1)
  110          CONTINUE
  120       CONTINUE
            IF (.NOT.WANTV) GO TO 140
C
C              PLACE THE TRANSFORMATION IN V FOR SUBSEQUENT
C              BACK MULTIPLICATION.
C
               DO 130 I = LP1, P
                  V(I,L) = E(I)
  130          CONTINUE
  140       CONTINUE
  150    CONTINUE
  160 CONTINUE
  170 CONTINUE
C
C     SET UP THE FINAL BIDIAGONAL MATRIX OR ORDER M.
C
      M = MIN(P,N+1)
      NCTP1 = NCT + 1
      NRTP1 = NRT + 1
      IF (NCT .LT. P) S(NCTP1) = X(NCTP1,NCTP1)
      IF (N .LT. M) S(M) = 0.0E0
      IF (NRTP1 .LT. M) E(NRTP1) = X(NRTP1,M)
      E(M) = 0.0E0
C
C     IF REQUIRED, GENERATE U.
C
      IF (.NOT.WANTU) GO TO 300
         IF (NCU .LT. NCTP1) GO TO 200
         DO 190 J = NCTP1, NCU
            DO 180 I = 1, N
               U(I,J) = 0.0E0
  180       CONTINUE
            U(J,J) = 1.0E0
  190    CONTINUE
  200    CONTINUE
         IF (NCT .LT. 1) GO TO 290
         DO 280 LL = 1, NCT
            L = NCT - LL + 1
            IF (S(L) .EQ. 0.0E0) GO TO 250
               LP1 = L + 1
               IF (NCU .LT. LP1) GO TO 220
               DO 210 J = LP1, NCU
                  T = -SDOT(N-L+1,U(L,L),1,U(L,J),1)/U(L,L)
                  CALL SAXPY(N-L+1,T,U(L,L),1,U(L,J),1)
  210          CONTINUE
  220          CONTINUE
               CALL SSCAL(N-L+1,-1.0E0,U(L,L),1)
               U(L,L) = 1.0E0 + U(L,L)
               LM1 = L - 1
               IF (LM1 .LT. 1) GO TO 240
               DO 230 I = 1, LM1
                  U(I,L) = 0.0E0
  230          CONTINUE
  240          CONTINUE
            GO TO 270
  250       CONTINUE
               DO 260 I = 1, N
                  U(I,L) = 0.0E0
  260          CONTINUE
               U(L,L) = 1.0E0
  270       CONTINUE
  280    CONTINUE
  290    CONTINUE
  300 CONTINUE
C
C     IF IT IS REQUIRED, GENERATE V.
C
      IF (.NOT.WANTV) GO TO 350
         DO 340 LL = 1, P
            L = P - LL + 1
            LP1 = L + 1
            IF (L .GT. NRT) GO TO 320
            IF (E(L) .EQ. 0.0E0) GO TO 320
               DO 310 J = LP1, P
                  T = -SDOT(P-L,V(LP1,L),1,V(LP1,J),1)/V(LP1,L)
                  CALL SAXPY(P-L,T,V(LP1,L),1,V(LP1,J),1)
  310          CONTINUE
  320       CONTINUE
            DO 330 I = 1, P
               V(I,L) = 0.0E0
  330       CONTINUE
            V(L,L) = 1.0E0
  340    CONTINUE
  350 CONTINUE
C
C     MAIN ITERATION LOOP FOR THE SINGULAR VALUES.
C
      MM = M
      ITER = 0
  360 CONTINUE
C
C        QUIT IF ALL THE SINGULAR VALUES HAVE BEEN FOUND.
C
         IF (M .EQ. 0) GO TO 620
C
C        IF TOO MANY ITERATIONS HAVE BEEN PERFORMED, SET
C        FLAG AND RETURN.
C
         IF (ITER .LT. MAXIT) GO TO 370
            INFO = M
            GO TO 620
  370    CONTINUE
C
C        THIS SECTION OF THE PROGRAM INSPECTS FOR
C        NEGLIGIBLE ELEMENTS IN THE S AND E ARRAYS.  ON
C        COMPLETION THE VARIABLES KASE AND L ARE SET AS FOLLOWS.
C
C           KASE = 1     IF S(M) AND E(L-1) ARE NEGLIGIBLE AND L.LT.M
C           KASE = 2     IF S(L) IS NEGLIGIBLE AND L.LT.M
C           KASE = 3     IF E(L-1) IS NEGLIGIBLE, L.LT.M, AND
C                        S(L), ..., S(M) ARE NOT NEGLIGIBLE (QR STEP).
C           KASE = 4     IF E(M-1) IS NEGLIGIBLE (CONVERGENCE).
C
         DO 390 LL = 1, M
            L = M - LL
            IF (L .EQ. 0) GO TO 400
            TEST = ABS(S(L)) + ABS(S(L+1))
            ZTEST = TEST + ABS(E(L))
            IF (ZTEST .NE. TEST) GO TO 380
               E(L) = 0.0E0
               GO TO 400
  380       CONTINUE
  390    CONTINUE
  400    CONTINUE
         IF (L .NE. M - 1) GO TO 410
            KASE = 4
         GO TO 480
  410    CONTINUE
            LP1 = L + 1
            MP1 = M + 1
            DO 430 LLS = LP1, MP1
               LS = M - LLS + LP1
               IF (LS .EQ. L) GO TO 440
               TEST = 0.0E0
               IF (LS .NE. M) TEST = TEST + ABS(E(LS))
               IF (LS .NE. L + 1) TEST = TEST + ABS(E(LS-1))
               ZTEST = TEST + ABS(S(LS))
               IF (ZTEST .NE. TEST) GO TO 420
                  S(LS) = 0.0E0
                  GO TO 440
  420          CONTINUE
  430       CONTINUE
  440       CONTINUE
            IF (LS .NE. L) GO TO 450
               KASE = 3
            GO TO 470
  450       CONTINUE
            IF (LS .NE. M) GO TO 460
               KASE = 1
            GO TO 470
  460       CONTINUE
               KASE = 2
               L = LS
  470       CONTINUE
  480    CONTINUE
         L = L + 1
C
C        PERFORM THE TASK INDICATED BY KASE.
C
         GO TO (490,520,540,570), KASE
C
C        DEFLATE NEGLIGIBLE S(M).
C
  490    CONTINUE
            MM1 = M - 1
            F = E(M-1)
            E(M-1) = 0.0E0
            DO 510 KK = L, MM1
               K = MM1 - KK + L
               T1 = S(K)
               CALL SROTG(T1,F,CS,SN)
               S(K) = T1
               IF (K .EQ. L) GO TO 500
                  F = -SN*E(K-1)
                  E(K-1) = CS*E(K-1)
  500          CONTINUE
               IF (WANTV) CALL SROT(P,V(1,K),1,V(1,M),1,CS,SN)
  510       CONTINUE
         GO TO 610
C
C        SPLIT AT NEGLIGIBLE S(L).
C
  520    CONTINUE
            F = E(L-1)
            E(L-1) = 0.0E0
            DO 530 K = L, M
               T1 = S(K)
               CALL SROTG(T1,F,CS,SN)
               S(K) = T1
               F = -SN*E(K)
               E(K) = CS*E(K)
               IF (WANTU) CALL SROT(N,U(1,K),1,U(1,L-1),1,CS,SN)
  530       CONTINUE
         GO TO 610
C
C        PERFORM ONE QR STEP.
C
  540    CONTINUE
C
C           CALCULATE THE SHIFT.
C
            SCALE = MAX(ABS(S(M)),ABS(S(M-1)),ABS(E(M-1)),ABS(S(L)),
     1                    ABS(E(L)))
            SM = S(M)/SCALE
            SMM1 = S(M-1)/SCALE
            EMM1 = E(M-1)/SCALE
            SL = S(L)/SCALE
            EL = E(L)/SCALE
            B = ((SMM1 + SM)*(SMM1 - SM) + EMM1**2)/2.0E0
            C = (SM*EMM1)**2
            SHIFT = 0.0E0
            IF (B .EQ. 0.0E0 .AND. C .EQ. 0.0E0) GO TO 550
               SHIFT = SQRT(B**2+C)
               IF (B .LT. 0.0E0) SHIFT = -SHIFT
               SHIFT = C/(B + SHIFT)
  550       CONTINUE
            F = (SL + SM)*(SL - SM) - SHIFT
            G = SL*EL
C
C           CHASE ZEROS.
C
            MM1 = M - 1
            DO 560 K = L, MM1
               CALL SROTG(F,G,CS,SN)
               IF (K .NE. L) E(K-1) = F
               F = CS*S(K) + SN*E(K)
               E(K) = CS*E(K) - SN*S(K)
               G = SN*S(K+1)
               S(K+1) = CS*S(K+1)
               IF (WANTV) CALL SROT(P,V(1,K),1,V(1,K+1),1,CS,SN)
               CALL SROTG(F,G,CS,SN)
               S(K) = F
               F = CS*E(K) + SN*S(K+1)
               S(K+1) = -SN*E(K) + CS*S(K+1)
               G = SN*E(K+1)
               E(K+1) = CS*E(K+1)
               IF (WANTU .AND. K .LT. N)
     1            CALL SROT(N,U(1,K),1,U(1,K+1),1,CS,SN)
  560       CONTINUE
            E(M-1) = F
            ITER = ITER + 1
         GO TO 610
C
C        CONVERGENCE.
C
  570    CONTINUE
C
C           MAKE THE SINGULAR VALUE  POSITIVE.
C
            IF (S(L) .GE. 0.0E0) GO TO 580
               S(L) = -S(L)
               IF (WANTV) CALL SSCAL(P,-1.0E0,V(1,L),1)
  580       CONTINUE
C
C           ORDER THE SINGULAR VALUE.
C
  590       IF (L .EQ. MM) GO TO 600
               IF (S(L) .GE. S(L+1)) GO TO 600
               T = S(L)
               S(L) = S(L+1)
               S(L+1) = T
               IF (WANTV .AND. L .LT. P)
     1            CALL SSWAP(P,V(1,L),1,V(1,L+1),1)
               IF (WANTU .AND. L .LT. N)
     1            CALL SSWAP(N,U(1,L),1,U(1,L+1),1)
               L = L + 1
            GO TO 590
  600       CONTINUE
            ITER = 0
            M = M - 1
  610    CONTINUE
      GO TO 360
  620 CONTINUE
      RETURN
      END
 
     |