File: Math.pd

package info (click to toggle)
pdl 1%3A2.100-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,816 kB
  • sloc: perl: 22,587; ansic: 14,969; sh: 31; makefile: 30; sed: 6
file content (545 lines) | stat: -rw-r--r-- 14,531 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
use strict;
use warnings;
use Config;
use PDL::Types qw(ppdefs ppdefs_complex types);
require PDL::Core::Dev;

{ # pass info back to Makefile.PL
# Files for each routine (.c assumed)
my %source = qw(
  j0 j0
  j1 j1
  jn jn
  y0 j0
  y1 j1
  yn yn
);
my @keys = sort keys %source;
my $libs = PDL::Core::Dev::get_maths_libs();
# Test for presence of besfuncs
require File::Spec::Functions;
my $include = qq{#include "}.File::Spec::Functions::rel2abs("$::PDLBASE/mconf.h").qq{"};
$source{$_} = 'system' for grep PDL::Core::Dev::trylink('', $include, "$_(1.);", $libs), qw(j0 j1 y0 y1);
$source{$_} = 'system' for grep PDL::Core::Dev::trylink('', $include, "$_(1,1.);", $libs), qw(jn yn);
my %seen; # Build object file list
foreach my $func (@keys) {
   my $file = $source{$func};
   next if $file eq 'system';
   die "File for function $func not found\n" if $file eq '';
   $PDL::Core::Dev::EXTRAS{$::PDLMOD}{OBJECT} .= " $::PDLBASE/$file\$(OBJ_EXT)" unless $seen{$file}++;
}
# Add support routines
$PDL::Core::Dev::EXTRAS{$::PDLMOD}{OBJECT} .= join '', map " $::PDLBASE/$_\$(OBJ_EXT)", qw(const mtherr polevl cpoly ndtri);
$PDL::Core::Dev::EXTRAS{$::PDLMOD}{INC} .= qq{ "-I$::PDLBASE"};
}

my $R = [ppdefs()];
my $F = [map $_->ppsym, grep $_->real && !$_->integer, types()];
my $C = [ppdefs_complex()];
my @Rtypes = grep $_->real, types();
my @Ctypes = grep !$_->real, types();
my $AF = [map $_->ppsym, grep !$_->integer, types];
$AF = [(grep $_ ne 'D', @$AF), 'D']; # so defaults to D if non-float given

pp_addpm({At=>'Top'},<<'EOD');
use strict;
use warnings;

=head1 NAME

PDL::Math - extended mathematical operations and special functions

=head1 SYNOPSIS

 use PDL::Math;

 use PDL::Graphics::TriD;
 imag3d [SURF2D,bessj0(rvals(zeroes(50,50))/2)];

=head1 DESCRIPTION

This module extends PDL with more advanced mathematical functions than
provided by standard Perl.

All the functions have one input pdl, and one output, unless otherwise
stated.

Many of the functions are linked from the system maths library or the
Cephes maths library (determined when PDL is compiled); a few are implemented
entirely in PDL.

=cut

### Kludge for backwards compatibility with older scripts
### This should be deleted at some point later than 21-Nov-2003.
BEGIN {use PDL::MatrixOps;}

EOD

# Internal doc util

my %doco;
sub doco {
  my @funcs = @_;
  my $doc = pop @funcs;
  for (@funcs) { $doco{$_} = $doc }
}

doco (qw/acos asin atan tan/, <<'EOF');
The usual trigonometric function.
EOF

doco (qw/cosh sinh tanh acosh asinh atanh/, <<'EOF');
The standard hyperbolic function.
EOF

doco (qw/ceil floor/,
'Round to integer values in floating-point format.');

doco ('rint',
q/=for ref

Round to integer values in floating-point format.

This is the C99 function; previous to 2.096, the doc referred to a
bespoke function that did banker's rounding, but this was not used
as a system version will have been detected and used.

If you are looking to round half-integers up (regardless of sign), try
C<floor($x+0.5)>.  If you want to round half-integers away from zero,
try C<< ceil(abs($x)+0.5)*($x<=>0) >>./);

doco( 'pow',"Synonym for `**'.");

doco ('erf',"The error function.");
doco ('erfc',"The complement of the error function.");
doco ('erfi',"The inverse of the error function.");
doco ('ndtri',
"=for ref

The value for which the area under the
Gaussian probability density function (integrated from
minus infinity) is equal to the argument (cf L</erfi>).");

doco(qw/bessj0 bessj1/,
     "The regular Bessel function of the first kind, J_n" );

doco(qw/bessy0 bessy1/,
     "The regular Bessel function of the second kind, Y_n." );

doco( qw/bessjn/,
'=for ref

The regular Bessel function of the first kind, J_n
.
This takes a second int argument which gives the order
of the function required.
');

doco( qw/bessyn/,
'=for ref

The regular Bessel function of the first kind, Y_n
.
This takes a second int argument which gives the order
of the function required.
');

if ($^O !~ /win32/i || $Config{cc} =~ /\bgcc/i) {  # doesn't seem to be in the MS VC lib
doco( 'lgamma' ,<<'EOD');
=for ref

log gamma function

This returns 2 ndarrays -- the first set gives the log(gamma) values,
while the second set, of integer values, gives the sign of the gamma
function.  This is useful for determining factorials, amongst other
things.

EOD

} # if: $^O !~ win32

pp_addhdr('
#include <tgmath.h>
#include "protos.h"
#include "cpoly.h"
');

# Standard `-lm'
my (@ufuncs1) = qw(acos asin atan cosh sinh tan tanh); # F,D only
my (@ufuncs1g) = qw(ceil floor rint); # Any real type

# Note:
#  ops.pd has a power() function that does the same thing
#  (although it has OtherPars => 'int swap;' as well)
#  - left this in for now.
#
my (@bifuncs1) = qw(pow); # Any type

# Extended `-lm'
my (@ufuncs2) = qw(acosh asinh atanh erf erfc);  # F,D only
my (@besufuncs) = qw(j0 j1 y0 y1); # "
my (@besbifuncs) = qw(jn yn); # "
# Need igamma, ibeta, and a fall-back implementation of the above

sub code_ufunc {
<<EOF
PDL_IF_BAD(if ( \$ISBAD(a()) ) { \$SETBAD(b()); } else,)
  \$b() = $_[0](\$a());
EOF
}

sub code_bifunc {
    my $name = $_[0];
    my $x = $_[1] || 'a'; my $y = $_[2] || 'b'; my $c = $_[3] || 'c';
<<EOF
PDL_IF_BAD(if ( \$ISBAD($x()) || \$ISBAD($y()) ) { \$SETBAD($c()); } else,)
  \$$c() = $name(\$$x(),\$$y());
EOF
}

foreach my $func (@ufuncs1) {
    my $got_complex = PDL::Core::Dev::got_complex_version($func, 1);
    pp_def($func,
	   HandleBad => 1,
	   NoBadifNaN => 1,
	   GenericTypes => [($got_complex ? @$C : ()), @$F],
	   Pars => 'a(); [o]b();',
	   Inplace => 1,
	   Doc => $doco{$func},
	   Code => code_ufunc($func),
	   );
}
# real types
foreach my $func (@ufuncs1g) {
    pp_def($func,
	   HandleBad => 1,
	   NoBadifNaN => 1,
	   Pars => 'a(); [o]b();',
	   Inplace => 1,
	   Doc => $doco{$func},
	   Code => code_ufunc($func),
	   );
}

foreach my $func (@bifuncs1) {
    my $got_complex = PDL::Core::Dev::got_complex_version($func, 2);
    pp_def($func,
	   HandleBad => 1,
	   NoBadifNaN => 1,
	   Pars => 'a(); b(); [o]c();',
	   Inplace => [ 'a' ],
	   GenericTypes => [($got_complex ? @$C : ()), @$R],
	   Doc => $doco{$func},
	   Code => code_bifunc($func),
	   );
}

# Functions provided by extended -lm
foreach my $func (@ufuncs2) {
    pp_def($func,
	   HandleBad => 1,
	   NoBadifNaN => 1,
	   GenericTypes => $F,
	   Pars => 'a(); [o]b();',
	   Inplace => 1,
	   Doc => $doco{$func},
	   Code => code_ufunc($func),
	   );
}

foreach my $func (@besufuncs) {
    my $fname = "bess$func";
    pp_def($fname,
	   HandleBad => 1,
	   NoBadifNaN => 1,
	   GenericTypes => $F,
	   Pars => 'a(); [o]b();',
	   Inplace => 1,
	   Doc => $doco{$fname},
	   Code => code_ufunc($func),
	   );
}

foreach my $func (@besbifuncs) {
    my $fname = "bess$func";
    pp_def($fname,
	   HandleBad => 1,
	   NoBadifNaN => 1,
	   GenericTypes => $F,
	   Pars => 'a(); int n(); [o]b();',
	   Inplace => [ 'a' ],
	   Doc => $doco{$fname},
	   Code => code_bifunc($func,'n','a','b'),
	   );
}

if ($^O !~ /win32/i) {
    pp_def("lgamma",
	   HandleBad => 1,
	   Pars => 'a(); [o]b(); int[o]s()',
	   Doc => $doco{"lgamma"},
	   Code => '
	    extern int signgam;
	    PDL_IF_BAD(if ( $ISBAD(a()) ) { $SETBAD(b()); $SETBAD(s()); } else,) {
	      $b() = lgamma($a());
	      $s() = signgam;
	    }
	   ',     # what happens to signgam if $a() is bad?
	   );
} # if: os !~ win32

elsif ($Config{cc} =~ /\bgcc/i) {
    pp_def("lgamma",
	   HandleBad => 1,
	   Pars => 'a(); [o]b(); int[o]s()',
	   Doc => $doco{"lgamma"},
	   Code => '
	    PDL_IF_BAD(if ( $ISBAD(a()) ) { $SETBAD(b()); $SETBAD(s()); } else,) {
	    $b() = lgamma($a());
	    $s() = tgamma($a()) < 0 ? -1 : 1;
	    }
	    ',     # what happens to signgam if $a() is bad?
	   );
} # elsif: cc =~ /\bgcc/i

pp_def('isfinite',
  Pars => 'a(); int [o]mask();',
  HandleBad => 1,
  Code => <<'EOF',
broadcastloop %{
  $mask() = isfinite((double) $a()) != 0 PDL_IF_BAD(&& $ISGOOD($a()),);
%}
$PDLSTATESETGOOD(mask);
EOF
  Doc =>
'Sets C<$mask> true if C<$a> is not a C<NaN> or C<inf> (either positive or negative).',
  BadDoc =>
'Bad values are treated as C<NaN> or C<inf>.',
);

# Extra functions from cephes
pp_def("erfi",
       HandleBad => 1,
       NoBadifNaN => 1,
       GenericTypes => $F,
       Pars => 'a(); [o]b()',
       Inplace => 1,
       Doc => "erfi",
       Code =>
       'extern double SQRTH;
        PDL_IF_BAD(if ( $ISBAD(a()) ) { $SETBAD(b()); }
        else,) { $b() = SQRTH*ndtri((1+(double)$a())/2); }',
       );

pp_def("ndtri",
       HandleBad => 1,
       NoBadifNaN => 1,
       GenericTypes => $F,
       Pars => 'a(); [o]b()',
       Inplace => 1,
       Doc => "ndtri",
       Code =>
       'PDL_IF_BAD(if ( $ISBAD(a()) ) { $SETBAD(b()); }
	else,) { $b() = ndtri((double)$a()); }',
       );

pp_def("polyroots",
      Pars => 'cr(n); ci(n); [o]rr(m=CALC($SIZE(n)-1)); [o]ri(m);',
      GenericTypes => ['D'],
      Code => <<'EOF',
  char *fail = cpoly($P(cr), $P(ci), $SIZE(m), $P(rr), $P(ri));
  if (fail)
     $CROAK("cpoly: %s", fail);
EOF
      PMCode => pp_line_numbers(__LINE__, <<'EOF'),
sub PDL::polyroots {
  my @args = map PDL->topdl($_), @_;
  my $natcplx = !$args[0]->type->real;
  barf "need array context if give real data and no outputs"
    if !$natcplx and @_ < 3 and !(wantarray//1);
  splice @args, 0, 1, map $args[0]->$_, qw(re im) if $natcplx;
  my @ins = splice @args, 0, 2;
  my $explicit_out = my @outs = @args;
  if ($natcplx) {
    $_ //= PDL->null for $outs[0];
  } else {
    $_ //= PDL->null for @outs[0,1];
  }
  my @args_out = $natcplx ? (map PDL->null, 1..2) : @outs; # opposite from polyfromroots
  PDL::_polyroots_int(@ins, @args_out);
  return @args_out if !$natcplx;
  $outs[0] .= PDL::czip(@args_out[0,1]);
}
EOF
      Doc => '
=for ref

Complex roots of a complex polynomial, given coefficients in order
of decreasing powers. Only works for degree >= 1.
Uses the Jenkins-Traub algorithm (see
L<https://en.wikipedia.org/wiki/Jenkins%E2%80%93Traub_algorithm>).
As of 2.086, works with native-complex data.

=for usage

 $roots = polyroots($coeffs); # native complex
 polyroots($coeffs, $roots=null); # native complex
 ($rr, $ri) = polyroots($cr, $ci);
 polyroots($cr, $ci, $rr, $ri);
',);

pp_def("polyfromroots",
      Pars => 'r(m); [o]c(n=CALC($SIZE(m)+1));',
      GenericTypes => ['CD'],
      Code => <<'EOF',
$c(n=>0) = 1.0;
loop(m) %{ $c(n=>m+1) = 0.0; %}
PDL_Indx k;
loop(m) %{
  for (k = m; k >= 0; k--) /* count down to use data before we mutate */
    $c(n=>k+1) -= $r() * $c(n=>k);
%}
EOF
      PMCode => pp_line_numbers(__LINE__, <<'EOF'),
sub PDL::polyfromroots {
  my @args = map PDL->topdl($_), @_;
  my $natcplx = !$args[0]->type->real;
  barf "need array context" if !$natcplx and !(wantarray//1);
  if (!$natcplx) {
    splice @args, 0, 2, $args[0]->czip($args[1]); # r
  }
  my @ins = splice @args, 0, 1;
  my $explicit_out = my @outs = @args;
  if ($natcplx) {
    $_ //= PDL->null for $outs[0];
  } else {
    $_ //= PDL->null for @outs[0,1];
  }
  my @args_out = $natcplx ? @outs : PDL->null;
  PDL::_polyfromroots_int(@ins, @args_out);
  if (!$natcplx) {
    $outs[0] .= $args_out[0]->re;
    $outs[1] .= $args_out[0]->im;
  }
  $natcplx ? $outs[0] : @outs;
}
EOF
      Doc => '
=for ref

Calculates the complex coefficients of a polynomial from its complex
roots, in order of decreasing powers. Added in 2.086, works with
native-complex data.

Algorithm is from Octave poly.m, O(n^2), per
L<https://cs.stackexchange.com/questions/116643/what-is-the-most-efficient-algorithm-to-compute-polynomial-coefficients-from-its>;
using an FFT would allow O(n*log(n)^2).

=for usage

 $coeffs = polyfromroots($roots); # native complex
 ($cr, $ci) = polyfromroots($rr, $ri);
',);

pp_def("polyval",
      Pars => 'c(n); x(); [o]y();',
      GenericTypes => ['CD'],
      Code => <<'EOF',
$GENERIC(y) vc = $c(n=>0), sc = $x();
loop(n=1) %{ vc = vc*sc + $c(); %}
$y() = vc;
EOF
      PMCode => pp_line_numbers(__LINE__, <<'EOF'),
sub PDL::polyval {
  my @args = map PDL->topdl($_), @_;
  my $natcplx = !$args[0]->type->real;
  barf "need array context" if !$natcplx and !(wantarray//1);
  if (!$natcplx) {
    splice @args, 0, 2, $args[0]->czip($args[1]); # c
    splice @args, 1, 2, $args[1]->czip($args[2]); # x
  }
  my @ins = splice @args, 0, 2;
  my $explicit_out = my @outs = @args;
  if ($natcplx) {
    $_ //= PDL->null for $outs[0];
  } else {
    $_ //= PDL->null for @outs[0,1];
  }
  my @args_out = $natcplx ? @outs : PDL->null;
  PDL::_polyval_int(@ins, @args_out);
  if (!$natcplx) {
    $outs[0] .= $args_out[0]->re;
    $outs[1] .= $args_out[0]->im;
  }
  $natcplx ? $outs[0] : @outs;
}
EOF
      Doc => '
=for ref

Complex value of a complex polynomial at given point, given coefficients
in order of decreasing powers. Uses Horner recurrence. Added in 2.086,
works with native-complex data.

=for usage

 $y = polyval($coeffs, $x); # native complex
 ($yr, $yi) = polyval($cr, $ci, $xr, $xi);
',);

sub cequiv {
  my ($func, $ref) = @_;
  pp_def("c$func",
      GenericTypes => $AF,
      Pars => 'i(); complex [o] o()',
      Doc => <<EOF,
=for ref\n
Takes real or complex data, returns the complex C<$func>.\n
Added in 2.099.
EOF
      Code => pp_line_numbers(__LINE__, <<EOF),
\$TFDEGCH(PDL_CFloat,PDL_CDouble,PDL_CLDouble,PDL_CFloat,PDL_CDouble,PDL_CLDouble) tmp = \$i();
tmp = c$func(tmp);
\$o() = tmp;
EOF
  );
}

cequiv($_) for qw(sqrt log acos asin acosh atanh);

pp_def('csqrt_up',
    GenericTypes => $AF,
    Pars => 'i(); complex [o] o()',
    Doc => <<'EOF',
Take the complex square root of a number choosing that whose imaginary
part is not negative, i.e., it is a square root with a branch cut
'infinitesimally' below the positive real axis.
EOF
    Code => pp_line_numbers(__LINE__, <<'EOF'),
        $TFDEGCH(PDL_CFloat,PDL_CDouble,PDL_CLDouble,PDL_CFloat,PDL_CDouble,PDL_CLDouble) tmp = $i();
tmp = csqrt(tmp);
if (cimag(tmp)<0)
  tmp = -tmp;
$o() = tmp;
EOF
);

pp_addpm({At=>'Bot'},<<'EOD');
=head1 AUTHOR

Copyright (C) R.J.R. Williams 1997 (rjrw@ast.leeds.ac.uk), Karl Glazebrook
(kgb@aaoepp.aao.gov.au) and Tuomas J. Lukka (Tuomas.Lukka@helsinki.fi).
Portions (C) Craig DeForest 2002 (deforest@boulder.swri.edu).

All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation under certain
conditions. For details, see the file COPYING in the PDL
distribution. If this file is separated from the PDL distribution,
the PDL copyright notice should be included in the file.

=cut

EOD
pp_done();