File: MatrixOps.pd

package info (click to toggle)
pdl 1%3A2.100-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,816 kB
  • sloc: perl: 22,587; ansic: 14,969; sh: 31; makefile: 30; sed: 6
file content (1386 lines) | stat: -rw-r--r-- 41,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
pp_addhdr('
#include <math.h>
');

use strict;
use warnings;
use PDL::Types qw(ppdefs_all);

{ no warnings 'once'; # pass info back to Makefile.PL
$PDL::Core::Dev::EXTRAS{$::PDLMOD}{OBJECT} .= join '', map " $::PDLBASE/$_\$(OBJ_EXT)", qw(eigens simq svd eigen matrix sslib);
$PDL::Core::Dev::EXTRAS{$::PDLMOD}{INC} .= qq{ "-I$::PDLBASE"};
}

pp_addpm({At=>'Top'},<<'EOD');
=encoding utf8

use strict;
use warnings;

=head1 NAME

PDL::MatrixOps -- Some Useful Matrix Operations

=head1 SYNOPSIS

    $inv = $x->inv;

    $det = $x->det;

    ($lu,$perm,$par) = $x->lu_decomp;
    $y = lu_backsub($lu,$perm,$z); # solve $x x $y = $z

=head1 DESCRIPTION

PDL::MatrixOps is PDL's built-in matrix manipulation code.  It
contains utilities for many common matrix operations: inversion,
determinant finding, eigenvalue/vector finding, singular value
decomposition, etc.  PDL::MatrixOps routines are written in a mixture
of Perl and C, so that they are reliably present even when there is no
external library available (e.g.
L<PDL::LinearAlgebra> or any of the PDL::GSL family of modules).

Matrix manipulation, particularly with large matrices, is a
challenging field and no one algorithm is suitable in all cases.  The
utilities here use general-purpose algorithms that work acceptably for
many cases but might not scale well to very large or pathological
(near-singular) matrices.

Except as noted, the matrices are PDLs whose 0th dimension ranges over
column and whose 1st dimension ranges over row.  The matrices appear
correctly when printed.

These routines should work OK with L<PDL::Matrix> objects
as well as with normal PDLs.

=head1 TIPS ON MATRIX OPERATIONS

Like most computer languages, PDL addresses matrices in (column,row)
order in most cases; this corresponds to (X,Y) coordinates in the
matrix itself, counting rightwards and downwards from the upper left
corner.  This means that if you print a PDL that contains a matrix,
the matrix appears correctly on the screen, but if you index a matrix
element, you use the indices in the reverse order that you would in a
math textbook.  If you prefer your matrices indexed in (row, column)
order, you can try using the L<PDL::Matrix> object, which
includes an implicit exchange of the first two dimensions but should
be compatible with most of these matrix operations.  TIMTOWDTI.)

Matrices, row vectors, and column vectors can be multiplied with the 'x'
operator (which is, of course, broadcastable):

    $m3 = $m1 x $m2;
    $col_vec2 = $m1 x $col_vec1;
    $row_vec2 = $row_vec1 x $m1;
    $scalar = $row_vec x $col_vec;

Because of the (column,row) addressing order, 1-D PDLs are treated as
_row_ vectors; if you want a _column_ vector you must add a dummy dimension:

    $rowvec  = pdl(1,2);             # row vector
    $colvec  = $rowvec->slice('*1'); # 1x2 column vector
    $matrix  = pdl([[3,4],[6,2]]);   # 2x2 matrix
    $rowvec2 = $rowvec x $matrix;    # right-multiplication by matrix
    $colvec  = $matrix x $colvec;    # left-multiplication by matrix
    $m2      = $matrix x $rowvec;    # Throws an error

Implicit broadcasting works correctly with most matrix operations, but
you must be extra careful that you understand the dimensionality.  In
particular, matrix multiplication and other matrix ops need nx1 PDLs
as row vectors and 1xn PDLs as column vectors.  In most cases you must
explicitly include the trailing 'x1' dimension in order to get the expected
results when you broadcast over multiple row vectors.

When broadcasting over matrices, it's very easy to get confused about
which dimension goes where. It is useful to include comments with
every expression, explaining what you think each dimension means:

	$x = xvals(360)*3.14159/180;        # (angle)
	$rot = cat(cat(cos($x),sin($x)),    # rotmat: (col,row,angle)
	           cat(-sin($x),cos($x)));

=head1 ACKNOWLEDGEMENTS

MatrixOps includes algorithms and pre-existing code from several
origins.  In particular, C<eigens_sym> is the work of Stephen Moshier,
C<svd> uses an SVD subroutine written by Bryant Marks, and C<eigens>
uses a subset of the Small Scientific Library by Kenneth Geisshirt.
They are free software, distributable under same terms as PDL itself.


=head1 NOTES

This is intended as a general-purpose linear algebra package for
small-to-mid sized matrices.  The algorithms may not scale well to
large matrices (hundreds by hundreds) or to near singular matrices.

If there is something you want that is not here, please add and
document it!

=cut

use Carp;
use strict;

EOD


######################################################################

pp_add_exported('','identity');
pp_addpm(<<'EOD');
=head2 identity

=for sig

  Signature: (n; [o]a(n,n))

=for ref

Return an identity matrix of the specified size.  If you hand in a
scalar, its value is the size of the identity matrix; if you hand in a
dimensioned PDL, the 0th dimension is the first two dimensions of the
matrix, with higher dimensions preserved.

=cut

sub identity {
  my $n = shift;
  my $out =
    !(my $was_pdl = UNIVERSAL::isa($n,'PDL')) ? zeroes($n,$n) :
    $n->getndims == 0 ? zeroes($n->type, $n->at(0),$n->at(0)) :
    undef;
  if (!defined $out) {
    my @dims = $n->dims;
    $out = zeroes($n->type, @dims[0, 0, 2..$#dims]);
  }
  $out->diagonal(0,1)++;
  $was_pdl ? bless $out, ref($n) : $out;
}
EOD

######################################################################
pp_add_exported('','stretcher');
pp_addpm(<<'EOD');

=head2 stretcher

=for sig

  Signature: (a(n); [o]b(n,n))

=for usage

  $mat = stretcher($eigenvalues);

=for ref

Return a diagonal matrix with the specified diagonal elements.
Preserves higher dimensions.
As of 2.096, it will also have the same datatype.

=cut

sub stretcher {
  my $in = shift;
  my $out = zeroes($in->type, $in->dim(0), $in->dims);
  $out->diagonal(0,1) += $in;
  $out;
}

EOD

######################################################################

pp_add_exported('','inv');
pp_addpm(<<'EOD');

=head2 inv

=for sig

  Signature: (a(m,m); sv opt )

=for usage

  $a1 = inv($a, {$opt});

=for ref

Invert a square matrix.

You feed in an NxN matrix in $a, and get back its inverse (if it
exists).  The code is inplace-aware, so you can get back the inverse
in $a itself if you want -- though temporary storage is used either
way.  You can cache the LU decomposition in an output option variable.

C<inv> uses C<lu_decomp> by default; that is a numerically stable
(pivoting) LU decomposition method.


OPTIONS:

=over 3

=item * s

Boolean value indicating whether to complain if the matrix is singular.  If
this is false, singular matrices cause inverse to barf.  If it is true, then
singular matrices cause inverse to return undef.

=item * lu (I/O)

This value contains a list ref with the LU decomposition, permutation,
and parity values for C<$a>.  If you do not mention the key, or if the
value is undef, then inverse calls C<lu_decomp>.  If the key exists with
an undef value, then the output of C<lu_decomp> is stashed here (unless
the matrix is singular).  If the value exists, then it is assumed to
hold the LU decomposition.

=item * det (Output)

If this key exists, then the determinant of C<$a> get stored here,
whether or not the matrix is singular.

=back

=cut

*PDL::inv = \&inv;
sub inv {
  my $x = shift;
  my $opt = shift;
  $opt = {} unless defined($opt);

  barf "inverse needs a square PDL as a matrix\n"
    unless(UNIVERSAL::isa($x,'PDL') &&
	   $x->dims >= 2 &&
	   $x->dim(0) == $x->dim(1)
	   );

  my ($lu,$perm,$par);
  if(exists($opt->{lu}) &&
     ref $opt->{lu} eq 'ARRAY' &&
     ref $opt->{lu}->[0] eq 'PDL') {
	    ($lu,$perm,$par) = @{$opt->{lu}};
  } else {
    ($lu,$perm,$par) = lu_decomp($x);
    @{$opt->{lu}} = ($lu,$perm,$par)
     if(ref $opt->{lu} eq 'ARRAY');
  }

  my $det = (defined $lu) ? $lu->diagonal(0,1)->prodover * $par : pdl(0);
  $opt->{det} = $det
    if exists($opt->{det});

  unless($det->nelem > 1 || $det) {
    return undef
      if $opt->{s};
    barf("PDL::inv: got a singular matrix or LU decomposition\n");
  }

  my $out = lu_backsub($lu,$perm,$par,identity($x))->transpose->sever;

  return $out
    unless($x->is_inplace);

  $x .= $out;
  $x;
}

EOD

######################################################################

pp_add_exported('','det');
pp_addpm(<<'EOD');

=head2 det

=for sig

  Signature: (a(m,m); sv opt)

=for usage

  $det = det($a,{opt});

=for ref

Determinant of a square matrix using LU decomposition (for large matrices)

You feed in a square matrix, you get back the determinant.  Some
options exist that allow you to cache the LU decomposition of the
matrix (note that the LU decomposition is invalid if the determinant
is zero!).  The LU decomposition is cacheable, in case you want to
re-use it.  This method of determinant finding is more rapid than
recursive-descent on large matrices, and if you reuse the LU
decomposition it's essentially free.

OPTIONS:

=over 3

=item * lu (I/O)

Provides a cache for the LU decomposition of the matrix.  If you
provide the key but leave the value undefined, then the LU decomposition
goes in here; if you put an LU decomposition here, it will be used and
the matrix will not be decomposed again.

=back

=cut

*PDL::det = \&det;
sub det {
  my ($x, $opt) = @_;
  $opt = {} unless defined($opt);
  my($lu,$perm,$par);
  if(exists ($opt->{lu}) and (ref $opt->{lu} eq 'ARRAY')) {
    ($lu,$perm,$par) = @{$opt->{lu}};
  } else {
    ($lu,$perm,$par) = lu_decomp($x);
    $opt->{lu} = [$lu,$perm,$par]
      if(exists($opt->{lu}));
  }
  defined $lu ? $lu->diagonal(0,1)->prodover * $par : PDL->zeroes(sbyte,1);
}

EOD

######################################################################

pp_add_exported('','determinant');
pp_addpm(<<'EOD');

=head2 determinant

=for sig

  Signature: (a(m,m))

=for usage

  $det = determinant($x);

=for ref

Determinant of a square matrix, using recursive descent (broadcastable).

This is the traditional, robust recursive determinant method taught in
most linear algebra courses.  It scales like C<O(n!)> (and hence is
pitifully slow for large matrices) but is very robust because no
division is involved (hence no division-by-zero errors for singular
matrices).  It's also broadcastable, so you can find the determinants of
a large collection of matrices all at once if you want.

Matrices up to 3x3 are handled by direct multiplication; larger matrices
are handled by recursive descent to the 3x3 case.

The LU-decomposition method L</det> is faster in isolation for
single matrices larger than about 4x4, and is much faster if you end up
reusing the LU decomposition of C<$a> (NOTE: check performance and
broadcasting benchmarks with new code).

=cut

*PDL::determinant = \&determinant;
sub determinant {
  my($x) = shift;
  my($n);
  return undef unless(
		      UNIVERSAL::isa($x,'PDL') &&
		      $x->getndims >= 2 &&
		      ($n = $x->dim(0)) == $x->dim(1)
		      );

  return $x->clump(2) if($n==1);
  if($n==2) {
    my($y) = $x->clump(2);
    return $y->index(0)*$y->index(3) - $y->index(1)*$y->index(2);
  }
  if($n==3) {
    my($y) = $x->clump(2);
    my $y3 = $y->index(3);
    my $y4 = $y->index(4);
    my $y5 = $y->index(5);
    my $y6 = $y->index(6);
    my $y7 = $y->index(7);
    my $y8 = $y->index(8);

    return (
	 $y->index(0) * ( $y4 * $y8 - $y5 * $y7 )
      +  $y->index(1) * ( $y5 * $y6 - $y3 * $y8 )
      +  $y->index(2) * ( $y3 * $y7 - $y4 * $y6 )
	     );
  }

  my($i);
  my($sum) = zeroes($x->slice('(0),(0)'));

  # Do middle submatrices
  for $i(1..$n-2) {
    my $el = $x->slice("($i),(0)");
    next if( ($el==0)->all );  # Optimize away unnecessary recursion
    $sum += $el * (1-2*($i%2)) *
      determinant($x->slice("0:".($i-1).",1:-1")->
		  append($x->slice(($i+1).":-1,1:-1")));
  }

  # Do beginning and end submatrices
  $sum += $x->slice("(0),(0)")  * determinant($x->slice('1:-1,1:-1'));
  $sum -= $x->slice("(-1),(0)") * determinant($x->slice('0:-2,1:-1')) * (1 - 2*($n % 2));

  return $sum;
}

EOD

my $TRIANGULAR_REDODIMS = <<'EOF';
float n = (sqrtf(1 + 8*$SIZE(m)) - 1)/2;
$SIZE(n) = roundf(n);
if (fabsf($SIZE(n) - n) > 0.0001)
  $CROAK("Non-triangular vector size=%"IND_FLAG, $SIZE(m));
EOF

pp_def("eigens_sym",
  HandleBad => 0,
  Pars => '[phys]a(m); [o,phys]ev(n,n); [o,phys]e(n)',
  RedoDimsCode => $TRIANGULAR_REDODIMS,
  GenericTypes => ['D'],
  Code => <<'EOF',
extern void eigens( double *A, double *EV, double *E, int N );
eigens($P(a), $P(ev), $P(e), $SIZE(n));
EOF
  PMCode => <<'EOF',
sub PDL::eigens_sym {
  my ($x) = @_;
  my @d = $x->dims;
  barf "Need real square matrix for eigens_sym"
        if @d < 2 or $d[0] != $d[1];
  my ($sym) = 0.5*($x + $x->transpose);
  my ($err) = PDL::max(abs($sym));
  barf "Need symmetric component non-zero for eigens_sym" if $err == 0;
  $err = PDL::max(abs($x-$sym))/$err;
  warn "Using symmetrized version of the matrix in eigens_sym"
    if $err > 1e-5 && $PDL::debug;
  PDL::_eigens_sym_int($sym->squaretotri, my $ev=PDL->null, my $e=PDL->null);
  return ($ev->transpose, $e) if wantarray;
  $e;                #just eigenvalues
}
EOF
  Doc => <<'EOF',
=for ref

Eigenvalues and -vectors of a symmetric square matrix.  If passed
an asymmetric matrix, the routine will warn and symmetrize it, by taking
the average value.  That is, it will solve for 0.5*($a+$a->transpose).

It's broadcastable, so if C<$a> is 3x3x100, it's treated as 100 separate 3x3
matrices, and both C<$ev> and C<$e> get extra dimensions accordingly.

If called in scalar context it hands back only the eigenvalues.  Ultimately,
it should switch to a faster algorithm in this case (as discarding the
eigenvectors is wasteful).

The algorithm used is due to J. von Neumann, which was a rediscovery of
L<Jacobi's Method|http://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm> .

The eigenvectors are returned in COLUMNS of the returned PDL.  That
makes it slightly easier to access individual eigenvectors, since the
0th dim of the output PDL runs across the eigenvectors and the 1st dim
runs across their components.

    ($ev,$e) = eigens_sym $x;  # Make eigenvector matrix
    $vector = $ev->slice($n);       # Select nth eigenvector as a column-vector
    $vector = $ev->slice("($n)");     # Select nth eigenvector as a row-vector

As of 2.096, the eigenvalues are returned in ascending order.

To compare with L<PDL::LinearAlgebra>:

  use PDL::LinearAlgebra;
  ($val, $rvec) = msymeigen($A = pdl([3,4], [4,-3]),1,1);
  print $val->slice(1) * $rvec->slice(1);
  #[
  # [        -4.472136]
  # [        -2.236068]
  #]
  print $A x $rvec->slice(1);
  #[
  # [        -4.472136]
  # [        -2.236068]
  #]
  ($rvec, $val) = eigens_sym($A); # note return values other way round
  # otherwise the same

=for usage

    ($ev, $e) = eigens_sym($x); # e-vects & e-values
    $e = eigens_sym($x);        # just eigenvalues
EOF
);

######################################################################
### eigens
###
pp_def("eigens",
  HandleBad => 0,
  Pars => '[phys]a(n,n); complex [o,phys]ev(n,n); complex [o,phys]e(n)',
  GenericTypes => ['D'],
  CHeader => '#include "eigen.h"',
  Code => <<'EOF',
char *ret = Eigen($SIZE(n), $P(a), 20*$SIZE(n), 1e-13, $P(e), $P(ev));
if (ret) $CROAK("%s", ret);
EOF
  PMCode => <<'EOF',
sub PDL::eigens {
  my ($x) = @_;
  my @d = $x->dims;
  barf "Need real square matrix for eigens"
        if @d < 2 or $d[0] != $d[1];
  my $deviation = PDL::max(abs($x - $x->transpose))/PDL::max(abs($x));
  if ( $deviation <= 1e-5 ) {
    PDL::_eigens_sym_int($x->squaretotri, my $ev=PDL->null, my $e=PDL->null);
    return $ev->transpose, $e   if wantarray;
    return $e;  #just eigenvalues
  } else {
    PDL::_eigens_int($x, my $ev=PDL->null, my $e=PDL->null);
    return $ev, $e if wantarray;
    return $e;  #just eigenvalues
  }
}
EOF
  Doc => <<'EOF',
=for ref

Complex eigenvalues and -vectors of a real square matrix.

(See also L<"eigens_sym"|/eigens_sym>, for eigenvalues and -vectors
of a real, symmetric, square matrix).

The eigens function will attempt to compute the eigenvalues and
eigenvectors of a square matrix with real components.  If the matrix
is symmetric, the same underlying code as L<"eigens_sym"|/eigens_sym>
is used.  If asymmetric, the eigenvalues and eigenvectors are computed
with algorithms from the sslib library. These are a slightly modified
version of EISPACK's C<rg> code.

Not all square matrices are diagonalizable.  If you feed in a
non-diagonalizable matrix, then the algorithm may fail, in which case
an exception will be thrown.

C<eigens> is broadcastable, so you can solve 100 eigenproblems by
feeding in a 3x3x100 array. Both C<$ev> and C<$e> get extra dimensions accordingly.

If called in scalar context C<eigens> hands back only the eigenvalues.  This
is somewhat wasteful, as it calculates the eigenvectors anyway.

The eigenvectors are returned in COLUMNS of the returned PDL (ie the
the 0 dimension).  That makes it slightly easier to access individual
eigenvectors, since the 0th dim of the output PDL runs across the
eigenvectors and the 1st dim runs across their components.

	($ev,$e) = eigens $x;  # Make eigenvector matrix
	$vector = $ev->slice($n);   # Select nth eigenvector as a column-vector
	$vector = $ev->slice("($n)"); # Select nth eigenvector as a row-vector

To compare with L<PDL::LinearAlgebra>:

  use PDL::LinearAlgebra;
  ($val, $lvec, $rvec) = meigen($A = pdl([4,-1], [2,1]),1,1);
  print $val->slice(1) * $rvec->slice(1);
  #[
  # [0.894427190999916]
  # [ 1.78885438199983]
  #]
  print $A x $rvec->slice(1);
  #[
  # [0.894427190999916]
  # [ 1.78885438199983]
  #]
  ($rvec, $val) = eigens($A); # note return values other way round
  # otherwise the same

=for usage

  ($ev, $e) = eigens($x); # e'vects & e'vals
  $e = eigens($x);        # just eigenvalues
EOF
);

######################################################################
### svd
pp_def(
       "svd",
       HandleBad => 0,
       Pars => 'a(n,m); [t]w(wsize=CALC($SIZE(n) * ($SIZE(m) + $SIZE(n)))); [o]u(n,m); [o,phys]z(n); [o]v(n,n);',
       GenericTypes => ['D'],
       RedoDimsCode => '
        if ($SIZE(m)<$SIZE(n))
            $CROAK("svd requires input ndarrays to have m >= n; you have m=%td and n=%td. Try inputting the transpose.  See the docs for svd.",$SIZE(m),$SIZE(n));
       ',
       Code => '
              extern void SVD( double *W, double *Z, int nRow, int nCol );
              double *t = $P(w);
              loop (m,n) %{
                *t++ = $a();
              %}
              SVD($P(w), $P(z), $SIZE(m), $SIZE(n));
              loop (n) %{
                $z() = sqrt($z());
              %}
              t = $P(w);
              loop (m,n) %{
                $u() = *t++/$z();
              %}
              loop (n1,n0) %{
                $v() = *t++;
              %}
',
      , Doc => q{
=for ref

Singular value decomposition of a matrix.

C<svd> is broadcastable.

Given an m x n matrix C<$a> that has m rows and n columns (m >= n),
C<svd> computes matrices C<$u> and C<$v>, and a vector of the singular
values C<$s>. Like most implementations, C<svd> computes what is
commonly referred to as the "thin SVD" of C<$a>, such that C<$u> is m
x n, C<$v> is n x n, and there are <=n singular values. As long as m
>= n, the original matrix can be reconstructed as follows:

    ($u,$s,$v) = svd($x);
    $ess = zeroes($x->dim(0),$x->dim(0));
    $ess->slice("$_","$_").=$s->slice("$_") foreach (0..$x->dim(0)-1); #generic diagonal
    $a_copy = $u x $ess x $v->transpose;

If m==n, C<$u> and C<$v> can be thought of as rotation matrices that
convert from the original matrix's singular coordinates to final
coordinates, and from original coordinates to singular coordinates,
respectively, and $ess is a diagonal scaling matrix.

If n>m, C<svd> will barf. This can be avoided by passing in the
transpose of C<$a>, and reconstructing the original matrix like so:

    ($u,$s,$v) = svd($x->transpose);
    $ess = zeroes($x->dim(1),$x->dim(1));
    $ess->slice($_,$_).=$s->slice($_) foreach (0..$x->dim(1)-1); #generic diagonal
    $x_copy = $v x $ess x $u->transpose;

EXAMPLE

The computing literature has loads of examples of how to use SVD.
Here's a trivial example (used in L<PDL::Transform::map|PDL::Transform/map>)
of how to make a matrix less, er, singular, without changing the
orientation of the ellipsoid of transformation:

    { my($r1,$s,$r2) = svd $x;
      $s++;             # fatten all singular values
      $r2 *= $s;        # implicit broadcasting for cheap mult.
      $x .= $r2 x $r1;  # a gets r2 x ess x r1
    }
},);

######################################################################
pp_add_exported('','lu_decomp');
pp_addpm(<<'EOD');

=head2 lu_decomp

=for sig

  Signature: (a(m,m); [o]lu(m,m); [o]perm(m); [o]parity)

=for ref

LU decompose a matrix, with row permutation

=for usage

  ($lu, $perm, $parity) = lu_decomp($x);

  $lu = lu_decomp($x, $perm, $par);  # $perm and $par are outputs!

  lu_decomp($x->inplace,$perm,$par); # Everything in place.

=for description

C<lu_decomp> returns an LU decomposition of a square matrix,
using Crout's method with partial pivoting. It's ported
from I<Numerical Recipes>. The partial pivoting keeps it
numerically stable but means a little more overhead from
broadcasting.

C<lu_decomp> decomposes the input matrix into matrices L and
U such that LU = A, L is a subdiagonal matrix, and U is a
superdiagonal matrix. By convention, the diagonal of L is
all 1's.

The single output matrix contains all the variable elements
of both the L and U matrices, stacked together. Because the
method uses pivoting (rearranging the lower part of the
matrix for better numerical stability), you have to permute
input vectors before applying the L and U matrices. The
permutation is returned either in the second argument or, in
list context, as the second element of the list. You need
the permutation for the output to make any sense, so be sure
to get it one way or the other.

LU decomposition is the answer to a lot of matrix questions,
including inversion and determinant-finding, and C<lu_decomp>
is used by L</inv>.

If you pass in C<$perm> and C<$parity>, they either must be
predeclared PDLs of the correct size ($perm is an n-vector,
C<$parity> is a scalar) or scalars.

If the matrix is singular, then the LU decomposition might
not be defined; in those cases, C<lu_decomp> silently returns
undef. Some singular matrices LU-decompose just fine, and
those are handled OK but give a zero determinant (and hence
can't be inverted).

C<lu_decomp> uses pivoting, which rearranges the values in the
matrix for more numerical stability. This makes it really
good for large and even near-singular matrices. There is
a non-pivoting version C<lu_decomp2> available which is
from 5 to 60 percent faster for typical problems at
the expense of failing to compute a result in some cases.

Now that the C<lu_decomp> is broadcasted, it is the recommended
LU decomposition routine.  It no longer falls back to C<lu_decomp2>.

C<lu_decomp> is ported from I<Numerical Recipes> to PDL. It
should probably be implemented in C.

=cut

*PDL::lu_decomp = \&lu_decomp;

sub lu_decomp {
   my($in) = shift;
   my($permute) = shift;
   my($parity) = shift;
   my($sing_ok) = shift;

   my $TINY = 1e-30;

   barf("lu_decomp requires a square (2D) PDL\n")
   if(!UNIVERSAL::isa($in,'PDL') ||
      $in->ndims < 2 ||
      $in->dim(0) != $in->dim(1));

   my($n) = $in->dim(0);
   my($n1) = $n; $n1--;

   my($inplace) = $in->is_inplace;
   my($out) = ($inplace) ? $in : $in->copy;

   if(defined $permute) {
      barf('lu_decomp: permutation vector must match the matrix')
      if(!UNIVERSAL::isa($permute,'PDL') ||
         $permute->ndims != 1 ||
         $permute->dim(0) != $out->dim(0));
      $permute .= PDL->xvals($in->dim(0));
   } else {
      $permute = $in->slice("(0)")->xvals;
   }

   if(defined $parity) {
      barf('lu_decomp: parity must be a scalar PDL')
      if(!UNIVERSAL::isa($parity,'PDL') ||
         $parity->dim(0) != 1);
      $parity .= 1.0;
   } else {
      $parity = $in->slice('(0),(0)')->ones;
   }

   my($scales) = $in->copy->abs->maximum; # elementwise by rows

   if(($scales==0)->sum) {
      return undef;
   }

   # Some holding tanks
   my($tmprow) = $out->slice('(0)')->zeroes;
   $tmprow = $tmprow->double if $tmprow->type < double;
   my($tmpval) = $tmprow->slice('(0)')->sever;

   my($col,$row);
   for $col(0..$n1) {
      for $row(1..$n1) {
         my($klim) = $row<$col ? $row : $col;
         if($klim > 0) {
            $klim--;
            my($el) = $out->index2d($col,$row);
            $el -= ( $out->slice("($col),0:$klim") *
               $out->slice("0:$klim,($row)") )->sumover;
         }

      }

      # Figure a_ij, with pivoting

      if($col < $n1) {
         # Find the maximum value in the rest of the row
         my $sl = $out->slice("($col),$col:$n1");
         my $wh = $sl->abs->maximum_ind;
         my $big = $sl->index($wh)->sever;

         # Permute if necessary to make the diagonal the maximum
         # if($wh != 0)
         { # Permute rows to place maximum element on diagonal.
            my $whc = $wh+$col;

            my $sl1 = $out->mv(1,0)->index($whc->slice("*$n"));
            my $sl2 = $out->slice(":,($col)");
            $tmprow .= $sl1;  $sl1 .= $sl2;  $sl2 .= $tmprow;

            $sl1 = $permute->index($whc);
            $sl2 = $permute->index($col);
            $tmpval .= $sl1; $sl1 .= $sl2; $sl2 .= $tmpval;

            $parity->where($wh>0) *= -1.0;
         }

         # LAPACK cgetrf does not try fix singularity so nor do we, even though NR does
         my $notbig = $big->where(abs($big) < $TINY);
         return if !$notbig->isempty;

         # Divide by the diagonal element (which is now the largest element)
         my $tout;
         ($tout = $out->slice("($col),".($col+1).":$n1")) /= $big->slice('*1');
      } # end of pivoting part
   } # end of column loop

   wantarray ? ($out,$permute,$parity) : $out;
}

EOD

######################################################################
pp_add_exported('','lu_decomp2');
pp_addpm(<<'EOD');

=head2 lu_decomp2

=for sig

  Signature: (a(m,m); [o]lu(m,m))

=for ref

LU decompose a matrix, with no row permutation

=for usage

  ($lu, $perm, $parity) = lu_decomp2($x);

  $lu = lu_decomp2($x,$perm,$parity);   # or
  $lu = lu_decomp2($x);                 # $perm and $parity are optional

  lu_decomp($x->inplace,$perm,$parity); # or
  lu_decomp($x->inplace);               # $perm and $parity are optional

=for description

C<lu_decomp2> works just like L</lu_decomp>, but it does B<no>
pivoting at all.  For compatibility with L</lu_decomp>, it
will give you a permutation list and a parity scalar if you ask
for them -- but they are always trivial.

Because C<lu_decomp2> does not pivot, it is numerically B<unstable> --
that means it is less precise than L</lu_decomp>, particularly for
large or near-singular matrices.  There are also specific types of
non-singular matrices that confuse it (e.g. ([0,-1,0],[1,0,0],[0,0,1]),
which is a 90 degree rotation matrix but which confuses C<lu_decomp2>).

On the other hand, if you want to invert rapidly a few hundred thousand
small matrices and don't mind missing one or two, it could be the ticket.
It can be up to 60% faster at the expense of possible failure of the
decomposition for some of the input matrices.

The output is a single matrix that contains the LU decomposition of C<$a>;
you can even do it in-place, thereby destroying C<$a>, if you want.  See
L</lu_decomp> for more information about LU decomposition.

C<lu_decomp2> is ported from I<Numerical Recipes> into PDL.

=cut

*PDL::lu_decomp2 = \&lu_decomp2;

sub lu_decomp2 {
  my($in) = shift;
  my($perm) = shift;
  my($par) = shift;

  my($sing_ok) = shift;

  my $TINY = 1e-30;

  barf("lu_decomp2 requires a square (2D) PDL\n")
    if(!UNIVERSAL::isa($in,'PDL') ||
       $in->ndims < 2 ||
       $in->dim(0) != $in->dim(1));

  my($n) = $in->dim(0);
  my($n1) = $n; $n1--;

  my($inplace) = $in->is_inplace;
  my($out) = ($inplace) ? $in : $in->copy;


  if(defined $perm) {
    barf('lu_decomp2: permutation vector must match the matrix')
      if(!UNIVERSAL::isa($perm,'PDL') ||
	 $perm->ndims != 1 ||
	 $perm->dim(0) != $out->dim(0));
    $perm .= PDL->xvals($in->dim(0));
  } else {
    $perm = PDL->xvals($in->dim(0));
  }

  if(defined $par) {
    barf('lu_decomp: parity must be a scalar PDL')
      if(!UNIVERSAL::isa($par,'PDL') ||
	 $par->nelem != 1);
    $par .= 1.0;
  } else {
    $par = pdl(1.0);
  }

  my $diagonal = $out->diagonal(0,1);

  my($col,$row);
  for $col(0..$n1) {
    for $row(1..$n1) {
      my($klim) = $row<$col ? $row : $col;
      if($klim > 0) {
	$klim--;
	my($el) = $out->index2d($col,$row);

	$el -= ( $out->slice("($col),0:$klim") *
		 $out->slice("0:$klim,($row)") )->sumover;
      }

    }

    # Figure a_ij, with no pivoting
    if($col < $n1) {
      # Divide the rest of the column by the diagonal element
      $out->slice("($col),".($col+1).":$n1") /= $diagonal->index($col)->dummy(0,$n1-$col);
    }

  } # end of column loop

  wantarray ? ($out,$perm,$par) : $out;
}

EOD

######################################################################
pp_add_exported('','lu_backsub');
pp_addpm(<<'EOD');

=head2 lu_backsub

=for sig

  Signature: (lu(m,m); perm(m); b(m))

=for ref

Solve A x = B for matrix A, by back substitution into A's LU decomposition.

=for usage

  ($lu,$perm,$par) = lu_decomp($A);

  $x = lu_backsub($lu,$perm,$par,$A);  # or
  $x = lu_backsub($lu,$perm,$B);       # $par is not required for lu_backsub

  lu_backsub($lu,$perm,$B->inplace); # modify $B in-place

  $x = lu_backsub(lu_decomp($A),$B); # (ignores parity value from lu_decomp)

  # starting from square matrix A and columns matrix B, with mathematically
  # correct dimensions
  $A = identity(4) + ones(4, 4);
  $A->slice('2,0') .= 0; # break symmetry to see if need transpose
  $B = sequence(2, 4);
  # all these functions take B as rows, interpret as though notional columns
  # mathematically confusing but can't change as back-compat and also
  # familiar to Fortran users, so just transpose inputs and outputs

  # using lu_backsub
  ($lu,$perm,$par) = lu_decomp($A);
  $x = lu_backsub($lu,$perm,$par, $B->transpose)->transpose;

  # using simq
  # remove all active dims
  @A_dims = $A->dims; @B_dims = $B->transpose->dims;
  splice @A_dims, 0, 2; splice @B_dims, 0, 1;
  @broadcast = PDL::Core::dims_filled(\@A_dims, \@B_dims);
  # simq modifies A, so need 1 copy per broadcast else non-first run has wrong A
  ($x) = simq($A->dupN(1,1,map +($A_dims[$_]//1)==1?$broadcast[$_]:1, 0..$#broadcast)->copy, $B->transpose, 0);
  $x = $x->inplace->transpose;

  # or with PDL::LinearAlgebra wrappers of LAPACK
  $x = msolve($A, $B);

  # or with LAPACK
  use PDL::LinearAlgebra::Real;
  getrf($lu=$A->copy, $ipiv=null, $info=null);
  getrs($lu, 1, $x=$B->transpose->copy, $ipiv, $info=null); # again, need transpose
  $x=$x->inplace->transpose;

  # or with GSL
  use PDL::GSL::LINALG;
  LU_decomp(my $lu=$A->copy, my $p=null, my $signum=null);
  # $B and $x, first dim is because GSL treats as vector, higher dims broadcast
  # so we transpose in and back out
  LU_solve($lu, $p, $B->transpose, my $x=null);
  $x=$x->inplace->transpose;

  # proof of the pudding is in the eating:
  print $A x $x;

=for description

Given the LU decomposition of a square matrix (from L</lu_decomp>),
C<lu_backsub> does back substitution into the matrix to solve
C<a x = b> for given vector C<b>.  It is separated from the
C<lu_decomp> method so that you can call the cheap C<lu_backsub>
multiple times and not have to do the expensive LU decomposition
more than once.

C<lu_backsub> acts on single vectors and broadcasts in the usual
way, which means that it treats C<$y> as the I<transpose>
of the input.  If you want to process a matrix, you must
hand in the I<transpose> of the matrix, and then transpose
the output when you get it back. that is because pdls are
indexed by (col,row), and matrices are (row,column) by
convention, so a 1-D pdl corresponds to a row vector, not a
column vector.

If C<$lu> is dense and you have more than a few points to
solve for, it is probably cheaper to find C<a^-1> with
L</inv>, and just multiply C<x = a^-1 b>.) in fact,
L</inv> works by calling C<lu_backsub> with the identity
matrix.

C<lu_backsub> is ported from section 2.3 of I<Numerical Recipes>.
It is written in PDL but should probably be implemented in C.

=cut

*PDL::lu_backsub = \&lu_backsub;

sub lu_backsub {
   my ($lu, $perm, $y, $par);
   print STDERR "lu_backsub: entering debug version...\n" if $PDL::debug;
   if(@_==3) {
      ($lu, $perm, $y) = @_;
   } elsif(@_==4) {
      ($lu, $perm, $par, $y) = @_;
   }

   barf("lu_backsub: LU decomposition is undef -- probably from a singular matrix.\n")
   unless defined($lu);

   barf("Usage: \$x = lu_backsub(\$lu,\$perm,\$y); all must be PDLs\n")
   unless(UNIVERSAL::isa($lu,'PDL') &&
      UNIVERSAL::isa($perm,'PDL') &&
      UNIVERSAL::isa($y,'PDL'));

   my $n = $y->dim(0);
   my $n1 = $n; $n1--;

   # Make sure broadcasting dimensions are compatible.
   # There are two possible sources of broadcast dims:
   #
   # (1) over multiple LU (i.e., $lu,$perm) instances
   # (2) over multiple  B (i.e., $y) column instances
   #
   # The full dimensions of the function call looks like
   #
   #   lu_backsub( lu(m,m,X), perm(m,X), b(m,Y) )
   #
   # where X is the list of extra LU dims and Y is
   # the list of extra B dims.  We have several possible
   # cases:
   #
   # (1) Check that m dims are compatible
   my $ludims = pdl($lu->dims);
   my $permdims = pdl($perm->dims);
   my $bdims = pdl($y->dims);

   print STDERR "lu_backsub: called with args:  \$lu$ludims, \$perm$permdims, \$y$bdims\n" if $PDL::debug;

   my $m = $ludims->slice("(0)");  # this is the sig dimension
   unless ( ($ludims->slice(0) == $m) and ($ludims->slice(1) == $m) and
      ($permdims->slice(0) == $m) and ($bdims->slice(0) == $m)) {
      barf "lu_backsub: mismatched sig dimensions";
   }

   my $lunumthr = $ludims->dim(0)-2;
   my $permnumthr = $permdims->dim(0)-1;
   my $bnumthr = $bdims->dim(0)-1;
   unless ( ($lunumthr == $permnumthr) and ($ludims->slice("1:-1") == $permdims)->all )  {
      barf "lu_backsub: \$lu and \$perm broadcast dims not equal! \n";
   }

   # (2) If X == Y then default broadcasting is ok
   if ( ($bnumthr==$permnumthr) and ($bdims==$permdims)->all) {
      print STDERR "lu_backsub: have explicit broadcast dims, goto BROADCAST_OK\n" if $PDL::debug;
      goto BROADCAST_OK;
   }

   # (3) If X == (x,Y) then add x dummy to lu,perm

   # (4) If ndims(X) > ndims(Y) then must have #3

   # (5) If ndims(X) < ndims(Y) then foreach
   #     non-trivial leading dim in X (x0,x1,..)
   #     insert dummy (x0,x1) into lu and perm

   # This means that broadcasting occurs over all
   # leading non-trivial (not length 1) dims of
   # B unless all the broadcast dims are explicitly
   # matched to the LU dims.

BROADCAST_OK:

   # Permute the vector and make a copy if necessary.
   my $out = $y->dummy(1,$y->dim(0))->index($perm->dummy(1));
   $out = $out->sever if !$y->is_inplace;
   print STDERR "lu_backsub: starting with \$out" . pdl($out->dims) . "\n" if $PDL::debug;

   # Make sure broadcasting over lu happens OK...

   if($out->ndims < $lu->ndims-1) {
      print STDERR "lu_backsub: adjusting dims for \$out" . pdl($out->dims) . "\n" if $PDL::debug;
      do {
         $out = $out->dummy(-1,$lu->dim($out->ndims+1));
      } while($out->ndims < $lu->ndims-1);
   }

   ## Do forward substitution into L
   my $row; my $r1;

   for $row(1..$n1) {
      $r1 = $row-1;
      $out->index($row) -= ($lu->slice("0:$r1,$row") *
         $out->slice("0:$r1")
      )->sumover;
   }

   ## Do backward substitution into U, and normalize by the diagonal
   my $ludiag = $lu->diagonal(0,1);
   $out->index($n1) /= $ludiag->index($n1)->dummy(0); # TODO: check broadcasting

   for ($row=$n1; $row>0; $row--) {
      $r1 = $row-1;
      $out->index($r1) -= ($lu->slice("$row:$n1,$r1") * # TODO: check broadcast dims
         $out->slice("$row:$n1")
      )->sumover;
      $out->index($r1) /= $ludiag->index($r1)->dummy(0); # TODO: check broadcast dims
   }

   if ($y->is_inplace) {
     $y->setdims([$out->dims]) if !PDL::all($y->shape == $out->shape); # assgn needs same shape
     $y .= $out;
   }
   $out;
}
EOD

# XXX Destroys a!!!
# To use the new a again, must store both a and ips.
pp_def("simq",
	HandleBad => 0,
	Pars => '[io,phys]a(n,n); [phys]b(n); [o,phys]x(n); int [o,phys]ips(n)',
	OtherPars => 'int flag;',
	GenericTypes => ['D'],
	Code => '
		extern int simq( double *A, double *B, double *X,
			int n, int flag, int *IPS );
		simq($P(a), $P(b), $P(x), $SIZE(n), $COMP(flag), $P(ips));
',
      Doc => '
=for ref

Solution of simultaneous linear equations, C<a x = b>.
B<NB does not broadcast well>.

=for usage

  # remove all active dims
  @A_dims = $A->dims; @B_dims = $B->transpose->dims;
  splice @A_dims, 0, 2; splice @B_dims, 0, 1;
  @broadcast = PDL::Core::dims_filled(\@A_dims, \@B_dims);
  # simq modifies A, so need 1 copy per broadcast else non-first run has wrong A
  ($x) = simq($A->dupN(1,1,map +($A_dims[$_]//1)==1?$broadcast[$_]:1, 0..$#broadcast)->copy, $B->transpose, 0);
  $x = $x->inplace->transpose;

C<$a> is an C<n x n> matrix (i.e., a vector of length C<n*n>), stored row-wise:
that is, C<a(i,j) = a[ij]>, where C<ij = i*n + j>.

While this is the transpose of the normal column-wise storage, this
corresponds to normal PDL usage.  The contents of matrix a may be
altered (but may be required for subsequent calls with flag = -1).

C<$y>, C<$x>, C<$ips> are vectors of length C<n>.

Set C<flag=0> to solve.
Set C<flag=-1> to do a new back substitution for
different C<$y> vector using the same a matrix previously reduced when
C<flag=0> (the C<$ips> vector generated in the previous solution is also
required).

For this function to work well with broadcasting, it will need the LU
decomposition part split out, so that for solving C<A x = B> only C<x>
would be written to.

See also L</lu_backsub>, which does the same thing with a slightly
less opaque interface.

=cut


');

######################################################################
### squaretotri
###
# this doesn't need to be changed to support bad values
# I could put 'HandleBad => 1', but it would just cause an
# unnecessary increase (admittedly small) in the amount of
# code
#
pp_def("squaretotri",
	Pars => 'a(n,n); [o]b(m=CALC(($SIZE(n) * ($SIZE(n)+1))/2))',
	GenericTypes => [ppdefs_all],
	Code => '
            register PDL_Indx mna=0, nb=0;
            loop(m) %{
                  $b() = $a(n0 => mna, n1 => nb);
                  mna++; if(mna > nb) {mna = 0; nb ++;}
            %}
	',
	Doc => '=for ref

Convert a lower-triangular square matrix to triangular vector storage.
Ignores upper half of input.
',
);

pp_def("tritosquare",
	Pars => 'a(m); [o]b(n,n)',
	GenericTypes => [ppdefs_all],
	RedoDimsCode => $TRIANGULAR_REDODIMS,
	Code => '
            register PDL_Indx mna=0, nb=0;
            loop(m) %{
                  $b(n0 => mna, n1 => nb) = $a();
                  mna++; if(mna > nb) {mna = 0; nb ++;}
            %}
	',
	Doc => '=for ref

Convert a triangular vector to lower-triangular square matrix storage.
Does not touch upper half of output.
',
);

pp_def('tricpy',
  Pars => 'A(m,n);[o] C(m,n)',
  OtherPars => 'int uplo',
  OtherParsDefaults => {uplo => 0},
  ArgOrder => [qw(A uplo C)],
  GenericTypes => [ppdefs_all()],
  Code => '
if ($COMP(uplo)) { /* lower */
  broadcastloop %{ loop(n,m=:n+1) %{ $C() = $A(); %} %}
} else {
  broadcastloop %{ loop(n,m=n) %{ $C() = $A(); %} %}
}
',
  Doc => <<'EOT',
=for ref

Copy triangular part to another matrix. If uplo == 0 copy upper triangular
part.

Originally by Grégory Vanuxem.
EOT
);

pp_def('mstack',
  DefaultFlow => 1,
  TwoWay => 1,
  Pars => 'x(n,m);y(n,p);[o]out(n,q=CALC($SIZE(m)+$SIZE(p)));',
  GenericTypes => [ppdefs_all()],
  Code => '
loop (m,n) %{ $out(q=>m) = $x(); %}
loop (q=$SIZE(m),n) %{ $out() = $y(p=>q-$SIZE(m)); %}
',
  BackCode => '
loop (m,n) %{ $x() = $out(q=>m); %}
loop (q=$SIZE(m),n) %{ $y(p=>q-$SIZE(m)) = $out(); %}
',
  Doc => <<EOT
=for ref

Combine two 2D ndarrays into a single ndarray, along the second
("vertical") dim.
This routine does backward and forward dataflow automatically.

Originally by Grégory Vanuxem.
EOT
);

pp_def('augment',
  DefaultFlow => 1,
  TwoWay => 1,
  Pars => 'x(n); y(p);[o]out(q=CALC($SIZE(n)+$SIZE(p)))',
  GenericTypes => [ppdefs_all()],
  Code => '
loop (q=:$SIZE(n)) %{ $out() = $x(n=>q); %}
loop (q=$SIZE(n))  %{ $out() = $y(p=>q-$SIZE(n)); %}
',
  BackCode => '
loop (q=:$SIZE(n)) %{ $x(n=>q)          = $out(); %}
loop (q=$SIZE(n))  %{ $y(p=>q-$SIZE(n)) = $out(); %}
',
  Doc => <<EOT
=for ref

Combine two ndarrays into a single ndarray along the 0-th ("horizontal") dim.
This routine does backward and forward dataflow automatically.

Originally by Grégory Vanuxem.
EOT
);

pp_addpm({At=>'Bot'},<<'EOD');

=head1 AUTHOR

Copyright (C) 2002 Craig DeForest (deforest@boulder.swri.edu),
R.J.R. Williams (rjrw@ast.leeds.ac.uk), Karl Glazebrook
(kgb@aaoepp.aao.gov.au).  There is no warranty.  You are allowed to
redistribute and/or modify this work under the same conditions as PDL
itself.  If this file is separated from the PDL distribution, then the
PDL copyright notice should be included in this file.

=cut

EOD

pp_done();