1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
* ======================================================================
* NIST Guide to Available Math Software.
* Source for module DGESL from package SLATEC.
* Retrieved from CAMSUN on Sat Sep 25 04:27:36 1999.
* ======================================================================
*DECK DGESL
SUBROUTINE DGESL (A, LDA, N, IPVT, B, JOB)
C***BEGIN PROLOGUE DGESL
C***PURPOSE Solve the real system A*X=B or TRANS(A)*X=B using the
C factors computed by DGECO or DGEFA.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2A1
C***TYPE DOUBLE PRECISION (SGESL-S, DGESL-D, CGESL-C)
C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
C***AUTHOR Moler, C. B., (U. of New Mexico)
C***DESCRIPTION
C
C DGESL solves the double precision system
C A * X = B or TRANS(A) * X = B
C using the factors computed by DGECO or DGEFA.
C
C On Entry
C
C A DOUBLE PRECISION(LDA, N)
C the output from DGECO or DGEFA.
C
C LDA INTEGER
C the leading dimension of the array A .
C
C N INTEGER
C the order of the matrix A .
C
C IPVT INTEGER(N)
C the pivot vector from DGECO or DGEFA.
C
C B DOUBLE PRECISION(N)
C the right hand side vector.
C
C JOB INTEGER
C = 0 to solve A*X = B ,
C = nonzero to solve TRANS(A)*X = B where
C TRANS(A) is the transpose.
C
C On Return
C
C B the solution vector X .
C
C Error Condition
C
C A division by zero will occur if the input factor contains a
C zero on the diagonal. Technically this indicates singularity
C but it is often caused by improper arguments or improper
C setting of LDA . It will not occur if the subroutines are
C called correctly and if DGECO has set RCOND .GT. 0.0
C or DGEFA has set INFO .EQ. 0 .
C
C To compute INVERSE(A) * C where C is a matrix
C with P columns
C CALL DGECO(A,LDA,N,IPVT,RCOND,Z)
C IF (RCOND is too small) GO TO ...
C DO 10 J = 1, P
C CALL DGESL(A,LDA,N,IPVT,C(1,J),0)
C 10 CONTINUE
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED DAXPY, DDOT
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DGESL
INTEGER LDA,N,IPVT(*),JOB
DOUBLE PRECISION A(LDA,*),B(*)
C
DOUBLE PRECISION DDOT,T
INTEGER K,KB,L,NM1
C***FIRST EXECUTABLE STATEMENT DGESL
NM1 = N - 1
IF (JOB .NE. 0) GO TO 50
C
C JOB = 0 , SOLVE A * X = B
C FIRST SOLVE L*Y = B
C
IF (NM1 .LT. 1) GO TO 30
DO 20 K = 1, NM1
L = IPVT(K)
T = B(L)
IF (L .EQ. K) GO TO 10
B(L) = B(K)
B(K) = T
10 CONTINUE
CALL DAXPY(N-K,T,A(K+1,K),1,B(K+1),1)
20 CONTINUE
30 CONTINUE
C
C NOW SOLVE U*X = Y
C
DO 40 KB = 1, N
K = N + 1 - KB
B(K) = B(K)/A(K,K)
T = -B(K)
CALL DAXPY(K-1,T,A(1,K),1,B(1),1)
40 CONTINUE
GO TO 100
50 CONTINUE
C
C JOB = NONZERO, SOLVE TRANS(A) * X = B
C FIRST SOLVE TRANS(U)*Y = B
C
DO 60 K = 1, N
T = DDOT(K-1,A(1,K),1,B(1),1)
B(K) = (B(K) - T)/A(K,K)
60 CONTINUE
C
C NOW SOLVE TRANS(L)*X = Y
C
IF (NM1 .LT. 1) GO TO 90
DO 80 KB = 1, NM1
K = N - KB
B(K) = B(K) + DDOT(N-K,A(K+1,K),1,B(K+1),1)
L = IPVT(K)
IF (L .EQ. K) GO TO 70
T = B(L)
B(L) = B(K)
B(K) = T
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
RETURN
END
|