1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
*DECK DPCHIM
SUBROUTINE DPCHIM (N, X, F, D, INCFD, IERR)
C***BEGIN PROLOGUE DPCHIM
C***PURPOSE Set derivatives needed to determine a monotone piecewise
C cubic Hermite interpolant to given data. Boundary values
C are provided which are compatible with monotonicity. The
C interpolant will have an extremum at each point where mono-
C tonicity switches direction. (See DPCHIC if user control
C is desired over boundary or switch conditions.)
C***LIBRARY SLATEC (PCHIP)
C***CATEGORY E1A
C***TYPE DOUBLE PRECISION (PCHIM-S, DPCHIM-D)
C***KEYWORDS CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
C PCHIP, PIECEWISE CUBIC INTERPOLATION
C***AUTHOR Fritsch, F. N., (LLNL)
C Lawrence Livermore National Laboratory
C P.O. Box 808 (L-316)
C Livermore, CA 94550
C FTS 532-4275, (510) 422-4275
C***DESCRIPTION
C
C DPCHIM: Piecewise Cubic Hermite Interpolation to
C Monotone data.
C
C Sets derivatives needed to determine a monotone piecewise cubic
C Hermite interpolant to the data given in X and F.
C
C Default boundary conditions are provided which are compatible
C with monotonicity. (See DPCHIC if user control of boundary con-
C ditions is desired.)
C
C If the data are only piecewise monotonic, the interpolant will
C have an extremum at each point where monotonicity switches direc-
C tion. (See DPCHIC if user control is desired in such cases.)
C
C To facilitate two-dimensional applications, includes an increment
C between successive values of the F- and D-arrays.
C
C The resulting piecewise cubic Hermite function may be evaluated
C by DPCHFE or DPCHFD.
C
C ----------------------------------------------------------------------
C
C Calling sequence:
C
C PARAMETER (INCFD = ...)
C INTEGER N, IERR
C DOUBLE PRECISION X(N), F(INCFD,N), D(INCFD,N)
C
C CALL DPCHIM (N, X, F, D, INCFD, IERR)
C
C Parameters:
C
C N -- (input) number of data points. (Error return if N.LT.2 .)
C If N=2, simply does linear interpolation.
C
C X -- (input) real*8 array of independent variable values. The
C elements of X must be strictly increasing:
C X(I-1) .LT. X(I), I = 2(1)N.
C (Error return if not.)
C
C F -- (input) real*8 array of dependent variable values to be
C interpolated. F(1+(I-1)*INCFD) is value corresponding to
C X(I). DPCHIM is designed for monotonic data, but it will
C work for any F-array. It will force extrema at points where
C monotonicity switches direction. If some other treatment of
C switch points is desired, DPCHIC should be used instead.
C -----
C D -- (output) real*8 array of derivative values at the data
C points. If the data are monotonic, these values will
C determine a monotone cubic Hermite function.
C The value corresponding to X(I) is stored in
C D(1+(I-1)*INCFD), I=1(1)N.
C No other entries in D are changed.
C
C INCFD -- (input) increment between successive values in F and D.
C This argument is provided primarily for 2-D applications.
C (Error return if INCFD.LT.1 .)
C
C IERR -- (output) error flag.
C Normal return:
C IERR = 0 (no errors).
C Warning error:
C IERR.GT.0 means that IERR switches in the direction
C of monotonicity were detected.
C "Recoverable" errors:
C IERR = -1 if N.LT.2 .
C IERR = -2 if INCFD.LT.1 .
C IERR = -3 if the X-array is not strictly increasing.
C (The D-array has not been changed in any of these cases.)
C NOTE: The above errors are checked in the order listed,
C and following arguments have **NOT** been validated.
C
C***REFERENCES 1. F. N. Fritsch and J. Butland, A method for construc-
C ting local monotone piecewise cubic interpolants, SIAM
C Journal on Scientific and Statistical Computing 5, 2
C (June 1984), pp. 300-304.
C 2. F. N. Fritsch and R. E. Carlson, Monotone piecewise
C cubic interpolation, SIAM Journal on Numerical Ana-
C lysis 17, 2 (April 1980), pp. 238-246.
C***ROUTINES CALLED DPCHST, XERMSG
C***REVISION HISTORY (YYMMDD)
C 811103 DATE WRITTEN
C 820201 1. Introduced DPCHST to reduce possible over/under-
C flow problems.
C 2. Rearranged derivative formula for same reason.
C 820602 1. Modified end conditions to be continuous functions
C of data when monotonicity switches in next interval.
C 2. Modified formulas so end conditions are less prone
C of over/underflow problems.
C 820803 Minor cosmetic changes for release 1.
C 870707 Corrected XERROR calls for d.p. name(s).
C 870813 Updated Reference 1.
C 890206 Corrected XERROR calls.
C 890411 Added SAVE statements (Vers. 3.2).
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890703 Corrected category record. (WRB)
C 890831 Modified array declarations. (WRB)
C 891006 Cosmetic changes to prologue. (WRB)
C 891006 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 920429 Revised format and order of references. (WRB,FNF)
C***END PROLOGUE DPCHIM
C Programming notes:
C
C 1. The function DPCHST(ARG1,ARG2) is assumed to return zero if
C either argument is zero, +1 if they are of the same sign, and
C -1 if they are of opposite sign.
C 2. To produce a single precision version, simply:
C a. Change DPCHIM to PCHIM wherever it occurs,
C b. Change DPCHST to PCHST wherever it occurs,
C c. Change all references to the Fortran intrinsics to their
C single precision equivalents,
C d. Change the double precision declarations to real, and
C e. Change the constants ZERO and THREE to single precision.
C
C DECLARE ARGUMENTS.
C
INTEGER N, INCFD, IERR
DOUBLE PRECISION X(*), F(INCFD,*), D(INCFD,*)
C
C DECLARE LOCAL VARIABLES.
C
INTEGER I, NLESS1
DOUBLE PRECISION DEL1, DEL2, DMAX, DMIN, DRAT1, DRAT2, DSAVE,
* H1, H2, HSUM, HSUMT3, THREE, W1, W2, ZERO
SAVE ZERO, THREE
DOUBLE PRECISION DPCHST
DATA ZERO /0.D0/, THREE/3.D0/
C
C VALIDITY-CHECK ARGUMENTS.
C
C***FIRST EXECUTABLE STATEMENT DPCHIM
IF ( N.LT.2 ) GO TO 5001
IF ( INCFD.LT.1 ) GO TO 5002
DO 1 I = 2, N
IF ( X(I).LE.X(I-1) ) GO TO 5003
1 CONTINUE
C
C FUNCTION DEFINITION IS OK, GO ON.
C
IERR = 0
NLESS1 = N - 1
H1 = X(2) - X(1)
DEL1 = (F(1,2) - F(1,1))/H1
DSAVE = DEL1
C
C SPECIAL CASE N=2 -- USE LINEAR INTERPOLATION.
C
IF (NLESS1 .GT. 1) GO TO 10
D(1,1) = DEL1
D(1,N) = DEL1
GO TO 5000
C
C NORMAL CASE (N .GE. 3).
C
10 CONTINUE
H2 = X(3) - X(2)
DEL2 = (F(1,3) - F(1,2))/H2
C
C SET D(1) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
C SHAPE-PRESERVING.
C
HSUM = H1 + H2
W1 = (H1 + HSUM)/HSUM
W2 = -H1/HSUM
D(1,1) = W1*DEL1 + W2*DEL2
IF ( DPCHST(D(1,1),DEL1) .LE. ZERO) THEN
D(1,1) = ZERO
ELSE IF ( DPCHST(DEL1,DEL2) .LT. ZERO) THEN
C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
DMAX = THREE*DEL1
IF (ABS(D(1,1)) .GT. ABS(DMAX)) D(1,1) = DMAX
ENDIF
C
C LOOP THROUGH INTERIOR POINTS.
C
DO 50 I = 2, NLESS1
IF (I .EQ. 2) GO TO 40
C
H1 = H2
H2 = X(I+1) - X(I)
HSUM = H1 + H2
DEL1 = DEL2
DEL2 = (F(1,I+1) - F(1,I))/H2
40 CONTINUE
C
C SET D(I)=0 UNLESS DATA ARE STRICTLY MONOTONIC.
C
D(1,I) = ZERO
IF ( DPCHST(DEL1,DEL2) ) 42, 41, 45
C
C COUNT NUMBER OF CHANGES IN DIRECTION OF MONOTONICITY.
C
41 CONTINUE
IF (DEL2 .EQ. ZERO) GO TO 50
IF ( DPCHST(DSAVE,DEL2) .LT. ZERO) IERR = IERR + 1
DSAVE = DEL2
GO TO 50
C
42 CONTINUE
IERR = IERR + 1
DSAVE = DEL2
GO TO 50
C
C USE BRODLIE MODIFICATION OF BUTLAND FORMULA.
C
45 CONTINUE
HSUMT3 = HSUM+HSUM+HSUM
W1 = (HSUM + H1)/HSUMT3
W2 = (HSUM + H2)/HSUMT3
DMAX = MAX( ABS(DEL1), ABS(DEL2) )
DMIN = MIN( ABS(DEL1), ABS(DEL2) )
DRAT1 = DEL1/DMAX
DRAT2 = DEL2/DMAX
D(1,I) = DMIN/(W1*DRAT1 + W2*DRAT2)
C
50 CONTINUE
C
C SET D(N) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
C SHAPE-PRESERVING.
C
W1 = -H2/HSUM
W2 = (H2 + HSUM)/HSUM
D(1,N) = W1*DEL1 + W2*DEL2
IF ( DPCHST(D(1,N),DEL2) .LE. ZERO) THEN
D(1,N) = ZERO
ELSE IF ( DPCHST(DEL1,DEL2) .LT. ZERO) THEN
C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
DMAX = THREE*DEL2
IF (ABS(D(1,N)) .GT. ABS(DMAX)) D(1,N) = DMAX
ENDIF
C
C NORMAL RETURN.
C
5000 CONTINUE
RETURN
C
C ERROR RETURNS.
C
5001 CONTINUE
C N.LT.2 RETURN.
IERR = -1
CALL XERMSG ('SLATEC', 'DPCHIM',
+ 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
RETURN
C
5002 CONTINUE
C INCFD.LT.1 RETURN.
IERR = -2
CALL XERMSG ('SLATEC', 'DPCHIM', 'INCREMENT LESS THAN ONE', IERR,
+ 1)
RETURN
C
5003 CONTINUE
C X-ARRAY NOT STRICTLY INCREASING.
IERR = -3
CALL XERMSG ('SLATEC', 'DPCHIM',
+ 'X-ARRAY NOT STRICTLY INCREASING', IERR, 1)
RETURN
C------------- LAST LINE OF DPCHIM FOLLOWS -----------------------------
END
|