File: pvalue.f

package info (click to toggle)
pdl 1%3A2.4.11-4
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 11,152 kB
  • sloc: perl: 31,295; fortran: 13,113; ansic: 8,910; makefile: 76; sh: 28; sed: 6
file content (148 lines) | stat: -rw-r--r-- 4,788 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
*DECK PVALUE
      SUBROUTINE PVALUE (L, NDER, X, YFIT, YP, A)
C***BEGIN PROLOGUE  PVALUE
C***PURPOSE  Use the coefficients generated by POLFIT to evaluate the
C            polynomial fit of degree L, along with the first NDER of
C            its derivatives, at a specified point.
C***LIBRARY   SLATEC
C***CATEGORY  K6
C***TYPE      SINGLE PRECISION (PVALUE-S, DP1VLU-D)
C***KEYWORDS  CURVE FITTING, LEAST SQUARES, POLYNOMIAL APPROXIMATION
C***AUTHOR  Shampine, L. F., (SNLA)
C           Davenport, S. M., (SNLA)
C***DESCRIPTION
C
C     Written by L. F. Shampine and S. M. Davenport.
C
C     Abstract
C
C     The subroutine  PVALUE  uses the coefficients generated by  POLFIT
C     to evaluate the polynomial fit of degree  L , along with the first
C     NDER  of its derivatives, at a specified point.  Computationally
C     stable recurrence relations are used to perform this task.
C
C     The parameters for  PVALUE  are
C
C     Input --
C         L -      the degree of polynomial to be evaluated.  L  may be
C                  any non-negative integer which is less than or equal
C                  to  NDEG , the highest degree polynomial provided
C                  by  POLFIT .
C         NDER -   the number of derivatives to be evaluated.  NDER
C                  may be 0 or any positive value.  If NDER is less
C                  than 0, it will be treated as 0.
C         X -      the argument at which the polynomial and its
C                  derivatives are to be evaluated.
C         A -      work and output array containing values from last
C                  call to  POLFIT .
C
C     Output --
C         YFIT -   value of the fitting polynomial of degree  L  at  X
C         YP -     array containing the first through  NDER  derivatives
C                  of the polynomial of degree  L .  YP  must be
C                  dimensioned at least  NDER  in the calling program.
C
C***REFERENCES  L. F. Shampine, S. M. Davenport and R. E. Huddleston,
C                 Curve fitting by polynomials in one variable, Report
C                 SLA-74-0270, Sandia Laboratories, June 1974.
C***ROUTINES CALLED  XERMSG
C***REVISION HISTORY  (YYMMDD)
C   740601  DATE WRITTEN
C   890531  Changed all specific intrinsics to generic.  (WRB)
C   890531  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ)
C   900510  Convert XERRWV calls to XERMSG calls.  (RWC)
C   920501  Reformatted the REFERENCES section.  (WRB)
C***END PROLOGUE  PVALUE
      DIMENSION YP(*),A(*)
      CHARACTER*8 XERN1, XERN2
C***FIRST EXECUTABLE STATEMENT  PVALUE
      IF (L .LT. 0) GO TO 12
      NDO = MAX(NDER,0)
      NDO = MIN(NDO,L)
      MAXORD = A(1) + 0.5
      K1 = MAXORD + 1
      K2 = K1 + MAXORD
      K3 = K2 + MAXORD + 2
      NORD = A(K3) + 0.5
      IF (L .GT. NORD) GO TO 11
      K4 = K3 + L + 1
      IF (NDER .LT. 1) GO TO 2
      DO 1 I = 1,NDER
 1      YP(I) = 0.0
 2    IF (L .GE. 2) GO TO 4
      IF (L .EQ. 1) GO TO 3
C
C L IS 0
C
      VAL = A(K2+1)
      GO TO 10
C
C L IS 1
C
 3    CC = A(K2+2)
      VAL = A(K2+1) + (X-A(2))*CC
      IF (NDER .GE. 1) YP(1) = CC
      GO TO 10
C
C L IS GREATER THAN 1
C
 4    NDP1 = NDO + 1
      K3P1 = K3 + 1
      K4P1 = K4 + 1
      LP1 = L + 1
      LM1 = L - 1
      ILO = K3 + 3
      IUP = K4 + NDP1
      DO 5 I = ILO,IUP
 5      A(I) = 0.0
      DIF = X - A(LP1)
      KC = K2 + LP1
      A(K4P1) = A(KC)
      A(K3P1) = A(KC-1) + DIF*A(K4P1)
      A(K3+2) = A(K4P1)
C
C EVALUATE RECURRENCE RELATIONS FOR FUNCTION VALUE AND DERIVATIVES
C
      DO 9 I = 1,LM1
        IN = L - I
        INP1 = IN + 1
        K1I = K1 + INP1
        IC = K2 + IN
        DIF = X - A(INP1)
        VAL = A(IC) + DIF*A(K3P1) - A(K1I)*A(K4P1)
        IF (NDO .LE. 0) GO TO 8
        DO 6 N = 1,NDO
          K3PN = K3P1 + N
          K4PN = K4P1 + N
 6        YP(N) = DIF*A(K3PN) + N*A(K3PN-1) - A(K1I)*A(K4PN)
C
C SAVE VALUES NEEDED FOR NEXT EVALUATION OF RECURRENCE RELATIONS
C
        DO 7 N = 1,NDO
          K3PN = K3P1 + N
          K4PN = K4P1 + N
          A(K4PN) = A(K3PN)
 7        A(K3PN) = YP(N)
 8      A(K4P1) = A(K3P1)
 9      A(K3P1) = VAL
C
C NORMAL RETURN OR ABORT DUE TO ERROR
C
 10   YFIT = VAL
      RETURN
C
   11 WRITE (XERN1, '(I8)') L
      WRITE (XERN2, '(I8)') NORD
      CALL XERMSG ('SLATEC', 'PVALUE',
     *   'THE ORDER OF POLYNOMIAL EVALUATION, L = ' // XERN1 //
     *   ' REQUESTED EXCEEDS THE HIGHEST ORDER FIT, NORD = ' // XERN2 //
     *   ', COMPUTED BY POLFIT -- EXECUTION TERMINATED.', 8, 2)
      RETURN
C
   12 CALL XERMSG ('SLATEC', 'PVALUE',
     +   'INVALID INPUT PARAMETER.  ORDER OF POLYNOMIAL EVALUATION ' //
     +   'REQUESTED IS NEGATIVE -- EXECUTION TERMINATED.', 2, 2)
      RETURN
      END