File: sgedi.f

package info (click to toggle)
pdl 1%3A2.4.11-4
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 11,152 kB
  • sloc: perl: 31,295; fortran: 13,113; ansic: 8,910; makefile: 76; sh: 28; sed: 6
file content (140 lines) | stat: -rw-r--r-- 4,246 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
*DECK SGEDI
      SUBROUTINE SGEDI (A, LDA, N, IPVT, DET, WORK, JOB)
C***BEGIN PROLOGUE  SGEDI
C***PURPOSE  Compute the determinant and inverse of a matrix using the
C            factors computed by SGECO or SGEFA.
C***LIBRARY   SLATEC (LINPACK)
C***CATEGORY  D2A1, D3A1
C***TYPE      SINGLE PRECISION (SGEDI-S, DGEDI-D, CGEDI-C)
C***KEYWORDS  DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX
C***AUTHOR  Moler, C. B., (U. of New Mexico)
C***DESCRIPTION
C
C     SGEDI computes the determinant and inverse of a matrix
C     using the factors computed by SGECO or SGEFA.
C
C     On Entry
C
C        A       REAL(LDA, N)
C                the output from SGECO or SGEFA.
C
C        LDA     INTEGER
C                the leading dimension of the array  A .
C
C        N       INTEGER
C                the order of the matrix  A .
C
C        IPVT    INTEGER(N)
C                the pivot vector from SGECO or SGEFA.
C
C        WORK    REAL(N)
C                work vector.  Contents destroyed.
C
C        JOB     INTEGER
C                = 11   both determinant and inverse.
C                = 01   inverse only.
C                = 10   determinant only.
C
C     On Return
C
C        A       inverse of original matrix if requested.
C                Otherwise unchanged.
C
C        DET     REAL(2)
C                determinant of original matrix if requested.
C                Otherwise not referenced.
C                Determinant = DET(1) * 10.0**DET(2)
C                with  1.0 .LE. ABS(DET(1)) .LT. 10.0
C                or  DET(1) .EQ. 0.0 .
C
C     Error Condition
C
C        A division by zero will occur if the input factor contains
C        a zero on the diagonal and the inverse is requested.
C        It will not occur if the subroutines are called correctly
C        and if SGECO has set RCOND .GT. 0.0 or SGEFA has set
C        INFO .EQ. 0 .
C
C***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C                 Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED  SAXPY, SSCAL, SSWAP
C***REVISION HISTORY  (YYMMDD)
C   780814  DATE WRITTEN
C   890831  Modified array declarations.  (WRB)
C   890831  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900326  Removed duplicate information from DESCRIPTION section.
C           (WRB)
C   920501  Reformatted the REFERENCES section.  (WRB)
C***END PROLOGUE  SGEDI
      INTEGER LDA,N,IPVT(*),JOB
      REAL A(LDA,*),DET(2),WORK(*)
C
      REAL T
      REAL TEN
      INTEGER I,J,K,KB,KP1,L,NM1
C***FIRST EXECUTABLE STATEMENT  SGEDI
C
C     COMPUTE DETERMINANT
C
      IF (JOB/10 .EQ. 0) GO TO 70
         DET(1) = 1.0E0
         DET(2) = 0.0E0
         TEN = 10.0E0
         DO 50 I = 1, N
            IF (IPVT(I) .NE. I) DET(1) = -DET(1)
            DET(1) = A(I,I)*DET(1)
            IF (DET(1) .EQ. 0.0E0) GO TO 60
   10       IF (ABS(DET(1)) .GE. 1.0E0) GO TO 20
               DET(1) = TEN*DET(1)
               DET(2) = DET(2) - 1.0E0
            GO TO 10
   20       CONTINUE
   30       IF (ABS(DET(1)) .LT. TEN) GO TO 40
               DET(1) = DET(1)/TEN
               DET(2) = DET(2) + 1.0E0
            GO TO 30
   40       CONTINUE
   50    CONTINUE
   60    CONTINUE
   70 CONTINUE
C
C     COMPUTE INVERSE(U)
C
      IF (MOD(JOB,10) .EQ. 0) GO TO 150
         DO 100 K = 1, N
            A(K,K) = 1.0E0/A(K,K)
            T = -A(K,K)
            CALL SSCAL(K-1,T,A(1,K),1)
            KP1 = K + 1
            IF (N .LT. KP1) GO TO 90
            DO 80 J = KP1, N
               T = A(K,J)
               A(K,J) = 0.0E0
               CALL SAXPY(K,T,A(1,K),1,A(1,J),1)
   80       CONTINUE
   90       CONTINUE
  100    CONTINUE
C
C        FORM INVERSE(U)*INVERSE(L)
C
         NM1 = N - 1
         IF (NM1 .LT. 1) GO TO 140
         DO 130 KB = 1, NM1
            K = N - KB
            KP1 = K + 1
            DO 110 I = KP1, N
               WORK(I) = A(I,K)
               A(I,K) = 0.0E0
  110       CONTINUE
            DO 120 J = KP1, N
               T = WORK(J)
               CALL SAXPY(N,T,A(1,J),1,A(1,K),1)
  120       CONTINUE
            L = IPVT(K)
            IF (L .NE. K) CALL SSWAP(N,A(1,K),1,A(1,L),1)
  130    CONTINUE
  140    CONTINUE
  150 CONTINUE
      RETURN
      END