File: tred2.f

package info (click to toggle)
pdl 1%3A2.4.11-4
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 11,152 kB
  • sloc: perl: 31,295; fortran: 13,113; ansic: 8,910; makefile: 76; sh: 28; sed: 6
file content (166 lines) | stat: -rw-r--r-- 4,996 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
*DECK TRED2
      SUBROUTINE TRED2 (NM, N, A, D, E, Z)
C***BEGIN PROLOGUE  TRED2
C***PURPOSE  Reduce a real symmetric matrix to a symmetric tridiagonal
C            matrix using and accumulating orthogonal transformations.
C***LIBRARY   SLATEC (EISPACK)
C***CATEGORY  D4C1B1
C***TYPE      SINGLE PRECISION (TRED2-S)
C***KEYWORDS  EIGENVALUES, EIGENVECTORS, EISPACK
C***AUTHOR  Smith, B. T., et al.
C***DESCRIPTION
C
C     This subroutine is a translation of the ALGOL procedure TRED2,
C     NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C     This subroutine reduces a REAL SYMMETRIC matrix to a
C     symmetric tridiagonal matrix using and accumulating
C     orthogonal similarity transformations.
C
C     On Input
C
C        NM must be set to the row dimension of the two-dimensional
C          array parameters, A and Z, as declared in the calling
C          program dimension statement.  NM is an INTEGER variable.
C
C        N is the order of the matrix A.  N is an INTEGER variable.
C          N must be less than or equal to NM.
C
C        A contains the real symmetric input matrix.  Only the lower
C          triangle of the matrix need be supplied.  A is a two-
C          dimensional REAL array, dimensioned A(NM,N).
C
C     On Output
C
C        D contains the diagonal elements of the symmetric tridiagonal
C          matrix.  D is a one-dimensional REAL array, dimensioned D(N).
C
C        E contains the subdiagonal elements of the symmetric
C          tridiagonal matrix in its last N-1 positions.  E(1) is set
C          to zero.  E is a one-dimensional REAL array, dimensioned
C          E(N).
C
C        Z contains the orthogonal transformation matrix produced in
C          the reduction.  Z is a two-dimensional REAL array,
C          dimensioned Z(NM,N).
C
C        A and Z may coincide.  If distinct, A is unaltered.
C
C     Questions and comments should be directed to B. S. Garbow,
C     APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C     ------------------------------------------------------------------
C
C***REFERENCES  B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C                 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C                 system Routines - EISPACK Guide, Springer-Verlag,
C                 1976.
C***ROUTINES CALLED  (NONE)
C***REVISION HISTORY  (YYMMDD)
C   760101  DATE WRITTEN
C   890831  Modified array declarations.  (WRB)
C   890831  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   920501  Reformatted the REFERENCES section.  (WRB)
C***END PROLOGUE  TRED2
C
      INTEGER I,J,K,L,N,II,NM,JP1
      REAL A(NM,*),D(*),E(*),Z(NM,*)
      REAL F,G,H,HH,SCALE
C
C***FIRST EXECUTABLE STATEMENT  TRED2
      DO 100 I = 1, N
C
         DO 100 J = 1, I
            Z(I,J) = A(I,J)
  100 CONTINUE
C
      IF (N .EQ. 1) GO TO 320
C     .......... FOR I=N STEP -1 UNTIL 2 DO -- ..........
      DO 300 II = 2, N
         I = N + 2 - II
         L = I - 1
         H = 0.0E0
         SCALE = 0.0E0
         IF (L .LT. 2) GO TO 130
C     .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
         DO 120 K = 1, L
  120    SCALE = SCALE + ABS(Z(I,K))
C
         IF (SCALE .NE. 0.0E0) GO TO 140
  130    E(I) = Z(I,L)
         GO TO 290
C
  140    DO 150 K = 1, L
            Z(I,K) = Z(I,K) / SCALE
            H = H + Z(I,K) * Z(I,K)
  150    CONTINUE
C
         F = Z(I,L)
         G = -SIGN(SQRT(H),F)
         E(I) = SCALE * G
         H = H - F * G
         Z(I,L) = F - G
         F = 0.0E0
C
         DO 240 J = 1, L
            Z(J,I) = Z(I,J) / H
            G = 0.0E0
C     .......... FORM ELEMENT OF A*U ..........
            DO 180 K = 1, J
  180       G = G + Z(J,K) * Z(I,K)
C
            JP1 = J + 1
            IF (L .LT. JP1) GO TO 220
C
            DO 200 K = JP1, L
  200       G = G + Z(K,J) * Z(I,K)
C     .......... FORM ELEMENT OF P ..........
  220       E(J) = G / H
            F = F + E(J) * Z(I,J)
  240    CONTINUE
C
         HH = F / (H + H)
C     .......... FORM REDUCED A ..........
         DO 260 J = 1, L
            F = Z(I,J)
            G = E(J) - HH * F
            E(J) = G
C
            DO 260 K = 1, J
               Z(J,K) = Z(J,K) - F * E(K) - G * Z(I,K)
  260    CONTINUE
C
  290    D(I) = H
  300 CONTINUE
C
  320 D(1) = 0.0E0
      E(1) = 0.0E0
C     .......... ACCUMULATION OF TRANSFORMATION MATRICES ..........
      DO 500 I = 1, N
         L = I - 1
         IF (D(I) .EQ. 0.0E0) GO TO 380
C
         DO 360 J = 1, L
            G = 0.0E0
C
            DO 340 K = 1, L
  340       G = G + Z(I,K) * Z(K,J)
C
            DO 360 K = 1, L
               Z(K,J) = Z(K,J) - G * Z(K,I)
  360    CONTINUE
C
  380    D(I) = Z(I,I)
         Z(I,I) = 1.0E0
         IF (L .LT. 1) GO TO 500
C
         DO 400 J = 1, L
            Z(I,J) = 0.0E0
            Z(J,I) = 0.0E0
  400    CONTINUE
C
  500 CONTINUE
C
      RETURN
      END