1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
$VERSION = 0.7;
# pp_setversion $VERSION; # haven't worked out why it breaks my system (CS)
pp_beginwrap; # required for overload to work
# pp_def functions go into the PDL::Complex namespace
# to avoid clashing with PDL::FFTW funcs of the same name that go
# into the PDL namespace
# it should be of no effect to the user of the module but you
# never know....
pp_bless('PDL::Complex');
pp_addpm {At => Top}, <<'EOD';
=head1 NAME
PDL::Complex - handle complex numbers
=head1 SYNOPSIS
use PDL;
use PDL::Complex;
=head1 DESCRIPTION
This module features a growing number of functions manipulating complex
numbers. These are usually represented as a pair C<[ real imag ]> or
C<[ angle phase ]>. If not explicitly mentioned, the functions can work
inplace (not yet implemented!!!) and require rectangular form.
While there is a procedural interface available (C<$a/$b*$c <=> Cmul
(Cdiv $a, $b), $c)>), you can also opt to cast your pdl's into the
C<PDL::Complex> datatype, which works just like your normal piddles, but
with all the normal perl operators overloaded.
The latter means that C<sin($a) + $b/$c> will be evaluated using the
normal rules of complex numbers, while other pdl functions (like C<max>)
just treat the piddle as a real-valued piddle with a lowest dimension of
size 2, so C<max> will return the maximum of all real and imaginary parts,
not the "highest" (for some definition)
=head1 TIPS, TRICKS & CAVEATS
=over 4
=item *
C<i> is a constant exported by this module, which represents
C<-1**0.5>, i.e. the imaginary unit. it can be used to quickly and
conviniently write complex constants like this: C<4+3*i>.
=item *
Use C<r2C(real-values)> to convert from real to complex, as in C<$r
= Cpow $cplx, r2C 2>. The overloaded operators automatically do that for
you, all the other functions, do not. So C<Croots 1, 5> will return all
the fifths roots of 1+1*i (due to threading).
=item *
use C<cplx(real-valued-piddle)> to cast from normal piddles intot he
complex datatype. Use C<real(complex-valued-piddle)> to cast back. This
requires a copy, though.
=item *
This module has received some testing by Vanuxem Grgory
(g.vanuxem at wanadoo dot fr). Please report any other errors you
come across!
=back
=head1 EXAMPLE WALK-THROUGH
The complex constant five is equal to C<pdl(1,0)>:
perldl> p $x = r2C 5
[5 0]
Now calculate the three roots of of five:
perldl> p $r = Croots $x, 3
[
[ 1.7099759 0]
[-0.85498797 1.4808826]
[-0.85498797 -1.4808826]
]
Check that these really are the roots of unity:
perldl> p $r ** 3
[
[ 5 0]
[ 5 -3.4450524e-15]
[ 5 -9.8776239e-15]
]
Duh! Could be better. Now try by multiplying C<$r> three times with itself:
perldl> p $r*$r*$r
[
[ 5 0]
[ 5 -2.8052647e-15]
[ 5 -7.5369398e-15]
]
Well... maybe C<Cpow> (which is used by the C<**> operator) isn't as
bad as I thought. Now multiply by C<i> and negate, which is just a very
expensive way of swapping real and imaginary parts.
perldl> p -($r*i)
[
[ -0 1.7099759]
[ 1.4808826 -0.85498797]
[ -1.4808826 -0.85498797]
]
Now plot the magnitude of (part of) the complex sine. First generate the
coefficients:
perldl> $sin = i * zeroes(50)->xlinvals(2,4)
+ zeroes(50)->xlinvals(0,7)
Now plot the imaginary part, the real part and the magnitude of the sine
into the same diagram:
perldl> line im sin $sin; hold
perldl> line re sin $sin
perldl> line abs sin $sin
Sorry, but I didn't yet try to reproduce the diagram in this
text. Just run the commands yourself, making sure that you have loaded
C<PDL::Complex> (and C<PDL::Graphics::PGPLOT>).
=cut
my $i;
BEGIN { $i = bless pdl 0,1 }
sub i () { $i->copy };
EOD
for (qw(Ctan Catan re im i cplx real)) {
pp_add_exported '', $_;
}
pp_addhdr <<'EOH';
#include <math.h>
#ifndef M_PI
# define M_PI 3.1415926535897932384626433832795029
#endif
#ifndef M_2PI
# define M_2PI (2. * M_PI)
#endif
#if __GLIBC__ > 1 && (defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC9X)
# define CABS(r,i) hypot (r, i)
#else
static double
CABS (double r, double i)
{
double t;
if (r < 0) r = - r;
if (i < 0) i = - i;
if (i > r)
{
t = r; r = i; i = t;
}
if (r + i == r)
return r;
t = i / r;
return r * sqrt (1 + t*t);
}
#endif
#if __GLIBC__ >= 2 && __GLIBC_MINOR__ >= 1 && defined __USE_GNU
# define SINCOS(x,s,c) sincos ((x), &(s), &(c))
#else
# define SINCOS(x,s,c) \
(s) = sin (x); \
(c) = cos (x);
#endif
#define CSQRT(type,ar,ai,cr,ci) \
type mag = CABS ((ar), (ai)); \
type t; \
\
if (mag == 0) \
(cr) = (ci) = 0; \
else if ((ar) > 0) \
{ \
t = sqrt (0.5 * (mag + (ar))); \
(cr) = t; \
(ci) = 0.5 * (ai) / t; \
} \
else \
{ \
t = sqrt (0.5 * (mag - (ar))); \
\
if ((ai) < 0) \
t = -t; \
\
(cr) = 0.5 * (ai) / t; \
(ci) = t; \
}
#define CLOG(ar,ai,cr,ci) \
(cr) = log (CABS ((ar), (ai))); \
(ci) = atan2 ((ai), (ar));
EOH
pp_addpm <<'EOP';
=head2 cplx real-valued-pdl
Cast a real-valued piddle to the complex datatype. The first dimension of
the piddle must be of size 2. After this the usual (complex) arithmetic
operators are applied to this pdl, rather than the normal elementwise pdl
operators. Dataflow to the complex parent works. Use C<sever> on the result
if you don't want this.
=head2 complex real-valued-pdl
Cast a real-valued piddle to the complex datatype I<without> dataflow
and I<inplace>. Achieved by merely reblessing a piddle. The first dimension of
the piddle must be of size 2.
=head2 real cplx-valued-pdl
Cast a complex valued pdl back to the "normal" pdl datatype. Afterwards
the normal elementwise pdl operators are used in operations. Dataflow
to the real parent works. Use C<sever> on the result if you don't want this.
=cut
use Carp;
sub cplx($) {
return $_[0] if UNIVERSAL::isa($_[0],'PDL::Complex'); # NOOP if just piddle
croak "first dimsize must be 2" unless $_[0]->dims > 0 && $_[0]->dim(0) == 2;
bless $_[0]->slice('');
}
sub complex($) {
return $_[0] if UNIVERSAL::isa($_[0],'PDL::Complex'); # NOOP if just piddle
croak "first dimsize must be 2" unless $_[0]->dims > 0 && $_[0]->dim(0) == 2;
bless $_[0];
}
*PDL::cplx = \&cplx;
*PDL::complex = \&complex;
sub real($) {
return $_[0] unless UNIVERSAL::isa($_[0],'PDL::Complex'); # NOOP unless complex
bless $_[0]->slice(''), 'PDL';
}
EOP
pp_def 'r2C',
Pars => 'r(); [o]c(m=2)',
Doc => 'convert real to complex, assuming an imaginary part of zero',
PMCode => << 'EOPM',
*PDL::r2C = \&PDL::Complex::r2C;
sub PDL::Complex::r2C($) {
return $_[0] if UNIVERSAL::isa($_[0],'PDL::Complex');
my $r = __PACKAGE__->initialize;
&PDL::Complex::_r2C_int($_[0], $r);
$r }
EOPM
Code => q!
$c(m=>0) = $r();
$c(m=>1) = 0;
!
;
pp_def 'i2C',
Pars => 'r(); [o]c(m=2)',
Doc => 'convert imaginary to complex, assuming a real part of zero',
PMCode => '*PDL::i2C = \&PDL::Complex::i2C; sub PDL::Complex::i2C($) { my $r = __PACKAGE__->initialize; &PDL::Complex::_i2C_int($_[0], $r); $r }',
Code => q!
$c(m=>0) = 0;
$c(m=>1) = $r();
!
;
pp_def 'Cr2p',
Pars => 'r(m=2); float+ [o]p(m=2)',
Doc => 'convert complex numbers in rectangular form to polar (mod,arg) form',
Code => q!
$GENERIC() x = $r(m=>0);
$GENERIC() y = $r(m=>1);
$p(m=>0) = CABS (x, y);
$p(m=>1) = atan2 (y, x);
!
;
pp_def 'Cp2r',
Pars => 'r(m=2); [o]p(m=2)',
GenericTypes => [F,D],
Doc => 'convert complex numbers in polar (mod,arg) form to rectangular form',
Code => q!
$GENERIC() m = $r(m=>0);
$GENERIC() a = $r(m=>1);
double s, c;
SINCOS (a, s, c);
$p(m=>0) = c * m;
$p(m=>1) = s * m;
!
;
pp_def 'Cadd', # this is here for a) completeness and b) not having to mess with PDL::Ops
Pars => 'a(m=2); b(m=2); [o]c(m=2)',
Doc => undef,
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() br = $b(m=>0), bi = $b(m=>1);
$c(m=>0) = ar + br;
$c(m=>1) = ai + bi;
^
;
pp_def 'Csub', # this is here for a) completeness and b) not having to mess with PDL::Ops
Pars => 'a(m=2); b(m=2); [o]c(m=2)',
Doc => undef,
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() br = $b(m=>0), bi = $b(m=>1);
$c(m=>0) = ar - br;
$c(m=>1) = ai - bi;
^
;
pp_def 'Cmul',
Pars => 'a(m=2); b(m=2); [o]c(m=2)',
Doc => 'complex multiplication',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() br = $b(m=>0), bi = $b(m=>1);
$c(m=>0) = ar*br - ai*bi;
$c(m=>1) = ar*bi + ai*br;
^
;
pp_def 'Cprodover',
Pars => 'a(m=2,n); [o]c(m=2)',
Doc => 'Project via product to N-1 dimension',
Code => q^
int iter;
$GENERIC() br, bi, cr, ci,tmp;
cr = $a(m=>0,n=>0);
ci = $a(m=>1,n=>0);
for (iter=1; iter < $SIZE(n);iter++)
{
br = $a(m=>0,n=>iter);
bi = $a(m=>1,n=>iter);
tmp = cr*bi + ci*br;
cr = cr*br - ci*bi;
ci = tmp;
}
$c(m=>0) = cr;
$c(m=>1) = ci;
^
;
pp_def 'Cscale',
Pars => 'a(m=2); b(); [o]c(m=2)',
Doc => 'mixed complex/real multiplication',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$c(m=>0) = ar * $b();
$c(m=>1) = ai * $b();
^
;
pp_def 'Cdiv',
Pars => 'a(m=2); b(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => 'complex division',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() br = $b(m=>0), bi = $b(m=>1);
if (fabs (br) > fabs (bi))
{
$GENERIC() tt = bi / br;
$GENERIC() dn = br + tt * bi;
$c(m=>0) = (ar + tt * ai) / dn;
$c(m=>1) = (ai - tt * ar) / dn;
}
else
{
$GENERIC() tt = br / bi;
$GENERIC() dn = br * tt + bi;
$c(m=>0) = (ar * tt + ai) / dn;
$c(m=>1) = (ai * tt - ar) / dn;
}
^
;
pp_def 'Ccmp',
Pars => 'a(m=2); b(m=2); [o]c()',
GenericTypes => [F,D],
Doc => 'Complex comparison oeprator (spaceship). It orders by real first, then by imaginary. Hm, but it is mathematical nonsense! Complex numbers cannot be ordered.',
Code => q^
$GENERIC() a, b;
a = $a(m=>0), b = $b(m=>0);
if (a != b)
$c() = (a > b) * 2 - 1;
else
{
a = $a(m=>1), b = $b(m=>1);
$c() = a == b ? 0
: (a > b) * 2 - 1;
}
^
;
pp_def 'Cconj',
Pars => 'a(m=2); [o]c(m=2)',
Doc => 'complex conjugation',
Code => q^
$c(m=>0) = $a(m=>0);
$c(m=>1) = -$a(m=>1);
^
;
pp_def 'Cabs',
Pars => 'a(m=2); [o]c()',
GenericTypes => [F,D],
Doc => 'complex C<abs()> (also known as I<modulus>)',
PMCode => q^sub PDL::Complex::Cabs($) {
my $pdl= shift;
my $abs = PDL->null;
&PDL::Complex::_Cabs_int($pdl, $abs);
$abs;
}^,
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$c() = CABS (ar, ai);
^
;
pp_def 'Cabs2',
Pars => 'a(m=2); [o]c()',
Doc => 'complex squared C<abs()> (also known I<squared modulus>)',
PMCode => q^sub PDL::Complex::Cabs2($) {
my $pdl= shift;
my $abs2 = PDL->null;
&PDL::Complex::_Cabs2_int($pdl, $abs2);
$abs2;
}^,
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$c() = ar*ar + ai*ai;
^
;
pp_def 'Carg',
Pars => 'a(m=2); [o]c()',
GenericTypes => [F,D],
Doc => 'complex argument function ("angle")',
PMCode => q^sub PDL::Complex::Carg($) {
my $pdl= shift;
my $arg = PDL->null;
&PDL::Complex::_Carg_int($pdl, $arg);
$arg;
}^,
Code => q^
$c() = atan2 ($a(m=>1), $a(m=>0));
^
;
pp_def 'Csin',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => ' sin (a) = 1/(2*i) * (exp (a*i) - exp (-a*i))',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
double s, c;
SINCOS (ar, s, c);
$c(m=>0) = s * cosh (ai);
$c(m=>1) = c * sinh (ai);
^
;
pp_def 'Ccos',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => ' cos (a) = 1/2 * (exp (a*i) + exp (-a*i))',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
double s, c;
SINCOS (ar, s, c);
$c(m=>0) = c * cosh (ai);
$c(m=>1) = - s * sinh (ai);
^
;
pp_addpm <<'EOD';
=head2 Ctan a [not inplace]
tan (a) = -i * (exp (a*i) - exp (-a*i)) / (exp (a*i) + exp (-a*i))
=cut
sub Ctan($) { Csin($_[0]) / Ccos($_[0]) }
EOD
pp_def 'Cexp',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => 'exp (a) = exp (real (a)) * (cos (imag (a)) + i * sin (imag (a)))',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() ex = exp (ar);
double s, c;
SINCOS (ai, s, c);
$c(m=>0) = ex * c;
$c(m=>1) = ex * s;
^
;
pp_def 'Clog',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => 'log (a) = log (cabs (a)) + i * carg (a)',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
CLOG (ar, ai, $c(m=>0), $c(m=>1));
^
;
pp_def 'Cpow',
Pars => 'a(m=2); b(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => 'complex C<pow()> (C<**>-operator)',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() br = $b(m=>0), bi = $b(m=>1);
double logr, logi, x, y;
double s, c;
CLOG (ar, ai, logr, logi);
x = exp (logr*br - logi*bi);
y = logr*bi + logi*br;
SINCOS (y, s, c);
$c(m=>0) = x * c;
$c(m=>1) = x * s;
^
;
pp_def 'Csqrt',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => '',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
CSQRT ($GENERIC(), ar, ai, $c(m=>0), $c(m=>1));
^
;
pp_def 'Casin',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => '',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() t1 = sqrt ((ar+1)*(ar+1) + ai*ai);
$GENERIC() t2 = sqrt ((ar-1)*(ar-1) + ai*ai);
$GENERIC() alpha = (t1+t2)*0.5;
$GENERIC() beta = (t1-t2)*0.5;
if (alpha < 1) alpha = 1;
if (beta > 1) beta = 1;
else if (beta < -1) beta = -1;
$c(m=>0) = atan2 (beta, sqrt (1-beta*beta));
$c(m=>1) = - log (alpha + sqrt (alpha*alpha-1));
if (ai > 0 || (ai == 0 && ar < -1))
$c(m=>1) = - $c(m=>1);
^
;
pp_def 'Cacos',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => '',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() t1 = sqrt ((ar+1)*(ar+1) + ai*ai);
$GENERIC() t2 = sqrt ((ar-1)*(ar-1) + ai*ai);
$GENERIC() alpha = (t1+t2)*0.5;
$GENERIC() beta = (t1-t2)*0.5;
if (alpha < 1) alpha = 1;
if (beta > 1) beta = 1;
else if (beta < -1) beta = -1;
$c(m=>0) = atan2 (sqrt (1-beta*beta), beta);
$c(m=>1) = log (alpha + sqrt (alpha*alpha-1));
if (ai > 0 || (ai == 0 && ar < -1))
$c(m=>1) = - $c(m=>1);
^
;
pp_addpm <<'EOD';
=head2 Catan cplx [not inplace]
Return the complex C<atan()>.
=cut
sub Catan($) {
my $z = shift;
Cmul Clog(Cdiv (PDL::Complex::i+$z, PDL::Complex::i-$z)), pdl(0, 0.5);
}
EOD
pp_def 'Csinh',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => ' sinh (a) = (exp (a) - exp (-a)) / 2',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
double s, c;
SINCOS (ai, s, c);
$c(m=>0) = sinh (ar) * c;
$c(m=>1) = cosh (ar) * s;
^
;
pp_def 'Ccosh',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => ' cosh (a) = (exp (a) + exp (-a)) / 2',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
double s, c;
SINCOS (ai, s, c);
$c(m=>0) = cosh (ar) * c;
$c(m=>1) = sinh (ar) * s;
^
;
pp_def 'Ctanh',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => '',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
double den;
double s, c;
SINCOS (2*ai, s, c);
den = cosh (2*ar) + c;
$c(m=>0) = sinh (2*ar) / den;
$c(m=>1) = s / den;
^
;
pp_def 'Casinh',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => '',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() yr = (ar-ai) * (ar+ai) + 1;
$GENERIC() yi = 2*ar*ai;
CSQRT ($GENERIC(), yr, yi, yr, yi)
yr += ar;
yi += ai;
CLOG (yr, yi, $c(m=>0), $c(m=>1));
^
;
pp_def 'Cacosh',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => '',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
$GENERIC() yr = (ar-ai) * (ar+ai) - 1;
$GENERIC() yi = 2*ar*ai;
CSQRT ($GENERIC(), yr, yi, yr, yi)
yr += ar;
yi += ai;
CLOG (yr, yi, $c(m=>0), $c(m=>1));
^
;
pp_def 'Catanh',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => '',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
double i2 = ai*ai;
double num = i2 + (1+ar) * (1+ar);
double den = i2 + (1-ar) * (1-ar);
$c(m=>0) = 0.25 * (log(num) - log(den));
$c(m=>1) = 0.5 * atan2 (2*ai, 1 - ar*ar - i2);
^
;
pp_def 'Cproj',
Pars => 'a(m=2); [o]c(m=2)',
GenericTypes => [F,D],
Doc => 'compute the projection of a complex number to the riemann sphere',
Code => q^
$GENERIC() ar = $a(m=>0), ai = $a(m=>1);
double den = ar*ar + ai*ai + 1;
$c(m=>0) = 2*ar / den;
$c(m=>1) = 2*ai / den;
^
;
pp_def 'Croots',
Pars => 'a(m=2); [o]c(m=2,n)',
OtherPars => 'int n => n',
GenericTypes => [F,D],
Doc => 'Compute the C<n> roots of C<a>. C<n> must be a positive integer. The result will always be a complex type!',
PMCode => q^sub PDL::Complex::Croots($$) {
my ($pdl, $n) = @_;
my $r = PDL->null;
&PDL::Complex::_Croots_int($pdl, $r, $n);
bless $r;
}^,
Code => q^
double s, c;
double ar = $a(m=>0), ai = $a(m=>1),
n1 = 1 / (double)$COMP(n),
rr = pow (CABS (ar, ai), n1), /* do not optimize the sqrt out of this expr! */
at = atan2 (ai, ar) * n1,
ti = M_2PI * n1;
loop(n) %{
SINCOS (at, s, c);
$c(m=>0) = rr * c;
$c(m=>1) = rr * s;
at += ti;
%}
^
;
pp_addpm <<'EOD';
=head2 re cplx, im cplx
Return the real or imaginary part of the complex number(s) given. These
are slicing operators, so data flow works. The real and imaginary parts
are returned as piddles (ref eq PDL).
=cut
sub re($) { bless $_[0]->slice("(0)"), 'PDL'; }
sub im($) { bless $_[0]->slice("(1)"), 'PDL'; }
*PDL::Complex::re = \&re;
*PDL::Complex::im = \&im;
EOD
pp_def 'rCpolynomial',
Pars => 'coeffs(n); x(c=2,m); [o]out(c=2,m)',
Doc => 'evaluate the polynomial with (real) coefficients C<coeffs> at the (complex) position(s) C<x>. C<coeffs[0]> is the constant term.',
GenericTypes => [F,D],
Code => q!
loop(m) %{
double xr = 1;
double xi = 0;
double or = 0;
double oi = 0;
double Xr;
loop(n) %{
or += $coeffs() * xr;
oi += $coeffs() * xi;
Xr = xr;
xr = Xr * $x(c=>0) - xi * $x(c=>1);
xi = xi * $x(c=>0) + Xr * $x(c=>1);
%}
$out(c=>0) = or;
$out(c=>1) = oi;
%}
!
;
pp_add_isa 'PDL';
pp_addpm {At => Bot}, <<'EOD';
# overload must be here, so that all the functions can be seen
# undocumented compatibility functions
sub Catan2($$) { Catan Cdiv $_[1], $_[0] }
sub atan2($$) { Catan Cdiv $_[1], $_[0] }
sub _gen_biop {
local $_ = shift;
my $sub;
if (/(\S+)\+(\w+)/) {
$sub = eval 'sub { '.$2.' $_[0], ref $_[1] eq __PACKAGE__ ? $_[1] : r2C $_[1] }';
} elsif (/(\S+)\-(\w+)/) {
$sub = eval 'sub { my $b = ref $_[1] eq __PACKAGE__ ? $_[1] : r2C $_[1];
$_[2] ? '.$2.' $b, $_[0] : '.$2.' $_[0], $b }';
} else {
die;
}
return ($1, $sub) if $1 eq "atan2";
($1, $sub, "$1=", $sub);
}
sub _gen_unop {
my ($op, $func) = ($_[0] =~ /(.+)@(\w+)/);
*$op = \&$func if $op =~ /\w+/; # create an alias
($op, eval 'sub { '.$func.' $_[0] }');
}
sub _gen_cpop {
($_[0], eval 'sub { my $b = ref $_[1] eq __PACKAGE__ ? $_[1] : r2C $_[1];
($_[2] ? $b <=> $_[0] : $_[0] <=> $b) '.$_[0].' 0 }');
}
sub initialize {
bless PDL->null, $_[0];
}
use overload
(map _gen_biop($_), qw(++Cadd --Csub *+Cmul /-Cdiv **-Cpow atan2-Catan2 <=>-Ccmp)),
(map _gen_unop($_), qw(sin@Csin cos@Ccos exp@Cexp abs@Cabs log@Clog sqrt@Csqrt abs@Cabs)),
(map _gen_cpop($_), qw(< <= == != => >)),
'++' => sub { $_[0] += 1 },
'--' => sub { $_[0] -= 1 },
;
# overwrite PDL's overloading to honour subclass methods in + - * /
{ package PDL;
my $warningFlag;
# This strange usage of BEGINs is to ensure the
# warning messages get disabled and enabled in the
# proper order. Without the BEGIN's the 'use overload'
# would be called first.
BEGIN {$warningFlag = $^W; # Temporarily disable warnings caused by
$^W = 0; # redefining PDL's subs
}
sub cp(;@) {
my $foo;
if (ref $_[1]
&& (ref $_[1] ne 'PDL')
&& defined ($foo = overload::Method($_[1],'+')))
{ &$foo($_[1], $_[0], !$_[2])}
else { PDL::plus (@_)}
}
sub cm(;@) {
my $foo;
if (ref $_[1]
&& (ref $_[1] ne 'PDL')
&& defined ($foo = overload::Method($_[1],'*')))
{ &$foo($_[1], $_[0], !$_[2])}
else { PDL::mult (@_)}
}
sub cmi(;@) {
my $foo;
if (ref $_[1]
&& (ref $_[1] ne 'PDL')
&& defined ($foo = overload::Method($_[1],'-')))
{ &$foo($_[1], $_[0], !$_[2])}
else { PDL::minus (@_)}
}
sub cd(;@) {
my $foo;
if (ref $_[1]
&& (ref $_[1] ne 'PDL')
&& defined ($foo = overload::Method($_[1],'/')))
{ &$foo($_[1], $_[0], !$_[2])}
else { PDL::divide (@_)}
}
# Used in overriding standard PDL +, -, *, / ops in the complex subclass.
use overload (
'+' => \&cp,
'*' => \&cm,
'-' => \&cmi,
'/' => \&cd,
);
BEGIN{ $^W = $warningFlag;} # Put Back Warnings
};
=head1 AUTHOR
Copyright (C) 2000 Marc Lehmann <pcg@goof.com>.
All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation as described
in the file COPYING in the PDL distribution.
=head1 SEE ALSO
perl(1), L<PDL>.
=cut
EOD
pp_done;
|