1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
|
pp_addhdr('
#include <math.h>
#include "protos.h"
/* Change names when fixing glibc-2.1 bug */
#ifdef MY_FIXY0
#define y0(a) fixy0(a)
extern double fixy0(double a);
#endif
#ifdef MY_FIXYN
#define yn(a,b) fixyn(a,b)
extern double fixyn(int a, double b);
#endif
');
## handle various cases of 'finite'
#
if ($^O =~ /MSWin/) {
# _finite in VC++ 4.0
pp_addhdr('
#define finite _finite
#include <float.h>
');
}
# patch from Albert Chin
if ($^O =~ /hpux/) {
pp_addhdr('
#ifdef isfinite
#define finite isfinite
#endif
');
}
use strict;
pp_addpm({At=>'Top'},<<'EOD');
=head1 NAME
PDL::MatrixOps -- Some Useful Matrix Operations
=head1 SYNOPSIS
$inv = $a->inv;
$det = $a->det;
($lu,$perm,$par) = $a->lu_decomp;
$x = lu_backsub($lu,$perm,$b); # solve $a x $x = $b
=head1 DESCRIPTION
PDL::MatrixOps is PDL's built-in matrix manipulation code. It
contains utilities for many common matrix operations: inversion,
determinant finding, eigenvalue/vector finding, singular value
decomposition, etc. PDL::MatrixOps routines are written in a mixture
of Perl and C, so that they are reliably present even when there no
FORTRAN compiler or external library available (e.g.
L<PDL::Slatec|/PDL::Slatec> or L<PDL::GSL>).
Matrix manipulation, particularly with large matrices, is a
challenging field and no one algorithm is suitable in all cases. The
utilities here use general-purpose algorithms that work acceptably for
many cases but might not scale well to very large or pathological
(near-singular) matrices.
Except as noted, the matrices are PDLs whose 0th dimension ranges over
column and whose 1st dimension ranges over row. The matrices appear
correctly when printed.
These routines should work OK with L<PDL::Matrix|PDL::Matrix> objects
as well as with normal PDLs.
=head1 TIPS ON MATRIX OPERATIONS
Like most computer languages, PDL addresses matrices in (column,row)
order in most cases; this corresponds to (X,Y) coordinates in the
matrix itself, counting rightwards and downwards from the upper left
corner. This means that if you print a PDL that contains a matrix,
the matrix appears correctly on the screen, but if you index a matrix
element, you use the indices in the reverse order that you would in a
math textbook. If you prefer your matrices indexed in (row, column)
order, you can try using the L<PDL::Matrix|PDL::Matrix> object, which
includes an implicit exchange of the first two dimensions but should
be compatible with most of these matrix operations. TIMTOWDTI.)
Matrices, row vectors, and column vectors can be multiplied with the 'x'
operator (which is, of course, threadable):
$m3 = $m1 x $m2;
$col_vec2 = $m1 x $col_vec1;
$row_vec2 = $row_vec1 x $m1;
$scalar = $row_vec x $col_vec;
Because of the (column,row) addressing order, 1-D PDLs are treated as
_row_ vectors; if you want a _column_ vector you must add a dummy dimension:
$rowvec = pdl(1,2); # row vector
$colvec = $rowvec->(*1); # 1x2 column vector
$matrix = pdl([[3,4],[6,2]]); # 2x2 matrix
$rowvec2 = $rowvec x $matrix; # right-multiplication by matrix
$colvec = $matrix x $colvec; # left-multiplication by matrix
$m2 = $matrix x $rowvec; # Throws an error
Implicit threading works correctly with most matrix operations, but
you must be extra careful that you understand the dimensionality. In
particular, matrix multiplication and other matrix ops need nx1 PDLs
as row vectors and 1xn PDLs as column vectors. In most cases you must
explicitly include the trailing 'x1' dimension in order to get the expected
results when you thread over multiple row vectors.
When threading over matrices, it's very easy to get confused about
which dimension goes where. It is useful to include comments with
every expression, explaining what you think each dimension means:
$a = xvals(360)*3.14159/180; # (angle)
$rot = cat(cat(cos($a),sin($a)), # rotmat: (col,row,angle)
cat(-sin($a),cos($a)));
=head1 ACKNOWLEDGEMENTS
MatrixOps includes algorithms and pre-existing code from several origins.
In particular, C<eigens_sym> is the work of Stephen Moshier, C<svd>
uses an SVD subroutine written by Bryant Marks, and C<eigens> uses a
subset of the Small Scientific Library by Kenneth Geisshirt. All are
free software, distributable under same terms as PDL itself.
=head1 NOTES
This is intended as a general-purpose linear algebra package for
small-to-mid sized matrices. The algorithms may not scale well to
large matrices (hundreds by hundreds) or to near singular matrices.
If there is something you want that is not here, please add and
document it!
=cut
use Carp;
use PDL::NiceSlice;
use strict;
EOD
######################################################################
pp_add_exported('','identity');
pp_addpm(<<'EOD');
=head2 identity
=for sig
Signature: (n; [o]a(n,n))
=for ref
Return an identity matrix of the specified size. If you hand in a
scalar, its value is the size of the identity matrix; if you hand in a
dimensioned PDL, the 0th dimension is the size of the matrix.
=cut
sub identity {
my $n = shift;
my $out = ((UNIVERSAL::isa($n,'PDL')) ?
( ($n->getndims > 0) ?
zeroes($n->dim(0),$n->dim(0)) :
zeroes($n->at(0),$n->at(0))
) :
zeroes($n,$n)
);
$out->diagonal(0,1)++;
$out;
}
EOD
######################################################################
pp_add_exported('','stretcher');
pp_addpm(<<'EOD');
=head2 stretcher
=for sig
Signature: (a(n); [o]b(n,n))
=for usage
$mat = stretcher($eigenvalues);
=for ref
Return a diagonal matrix with the specified diagonal elements
=cut
sub stretcher {
my $in = shift;
my $out = zeroes($in->dim(0),$in->dims);
$out->diagonal(0,1) += $in;
$out;
}
EOD
######################################################################
pp_add_exported('','inv');
pp_addpm(<<'EOD');
=head2 inv
=for sig
Signature: (a(m,m); sv opt )
=for usage
$a1 = inv($a, {$opt});
=for ref
Invert a square matrix.
You feed in an NxN matrix in $a, and get back its inverse (if it
exists). The code is inplace-aware, so you can get back the inverse
in $a itself if you want -- though temporary storage is used either
way. You can cache the LU decomposition in an output option variable.
C<inv> uses lu_decomp by default; that is a numerically stable
(pivoting) LU decomposition method. If you ask it to thread then a
numerically unstable (non-pivoting) method is used instead, so avoid
threading over collections of large (say, more than 4x4) or
near-singular matrices unless precision is not important.
OPTIONS:
=over 3
=item * s
Boolean value indicating whether to complain if the matrix is singular. If
this is false, singular matrices cause inverse to barf. If it is true, then
singular matrices cause inverse to return undef. In the threading case, no
checking for singularity is performed, if any of the matrices in your threaded
collection are singular, they receive NaN entries.
=item * lu (I/O)
This value contains a list ref with the LU decomposition, permutation,
and parity values for $a. If you do not mention the key, or if the
value is undef, then inverse calls lu_decomp. If the key exists with
an undef value, then the output of lu_decomp is stashed here (unless
the matrix is singular). If the value exists, then it is assumed to
hold the lu decomposition.
=item * det (Output)
If this key exists, then the determinant of C<$a> get stored here,
whether or not the matrix is singular.
=back
=cut
*PDL::inv = \&inv;
sub inv {
my $a = shift;
my $opt = shift;
$opt = {} unless defined($opt);
barf "inverse needs a square PDL as a matrix\n"
unless(UNIVERSAL::isa($a,'PDL') &&
$a->dims >= 2 &&
$a->dim(0) == $a->dim(1)
);
my ($lu,$perm,$par);
if(exists($opt->{lu}) &&
ref $opt->{lu} eq 'ARRAY' &&
ref $opt->{lu}->[0] eq 'PDL') {
($lu,$perm,$par) = @{$opt->{lu}};
} else {
($lu,$perm,$par) = lu_decomp($a);
@{$opt->{lu}} = ($lu,$perm,$par)
if(ref $opt->{lu} eq 'ARRAY');
}
my $det = (defined $lu) ? $lu->diagonal(0,1)->prodover * $par : pdl(0);
$opt->{det} = $det
if exists($opt->{det});
unless($det->nelem > 1 || $det) {
return undef
if $opt->{s};
barf("PDL::inv: got a singular matrix or LU decomposition\n");
}
my $out = lu_backsub($lu,$perm,$par,identity($a))->xchg(0,1)->sever;
return $out
unless($a->is_inplace);
$a .= $out;
$a;
}
EOD
######################################################################
pp_add_exported('','det');
pp_addpm(<<'EOD');
=head2 det
=for sig
Signature: (a(m,m); sv opt)
=for usage
$det = det($a,{opt});
=for ref
Determinant of a square matrix using LU decomposition (for large matrices)
You feed in a square matrix, you get back the determinant. Some
options exist that allow you to cache the LU decomposition of the
matrix (note that the LU decomposition is invalid if the determinant
is zero!). The LU decomposition is cacheable, in case you want to
re-use it. This method of determinant finding is more rapid than
recursive-descent on large matrices, and if you reuse the LU
decomposition it's essentially free.
If you ask det to thread (by giving it a 3-D or higher dim piddle)
then L<lu_decomp|lu_decomp> drops you through to
L<lu_decomp2|lu_decomp2>, which is numerically unstable (and hence not
useful for very large matrices) but quite fast.
If you want to use threading on a matrix that's less than, say, 10x10,
and might be near singular, then you might want to use
L<determinant|determinant>, which is a more robust (but slower)
determinant finder, instead.
OPTIONS:
=over 3
=item * lu (I/O)
Provides a cache for the LU decomposition of the matrix. If you
provide the key but leave the value undefined, then the LU decomposition
goes in here; if you put an LU decomposition here, it will be used and
the matrix will not be decomposed again.
=back
=cut
*PDL::det = \&det;
sub det {
my($a) = shift;
my($opt) = shift;
$opt = {} unless defined($opt);
my($lu,$perm,$par);
if(exists ($opt->{u}) and (ref $opt->{lu} eq 'ARRAY')) {
($lu,$perm,$par) = @{$opt->{lu}};
} else {
($lu,$perm,$par) = lu_decomp($a);
$opt->{lu} = [$lu,$perm,$par]
if(exists($opt->{lu}));
}
( (defined $lu) ? $lu->diagonal(0,1)->prodover * $par : 0 );
}
EOD
######################################################################
pp_add_exported('','determinant');
pp_addpm(<<'EOD');
=head2 determinant
=for sig
Signature: (a(m,m))
=for usage
$det = determinant($a);
=for ref
Determinant of a square matrix, using recursive descent (threadable).
This is the traditional, robust recursive determinant method taught in
most linear algebra courses. It scales like C<O(n!)> (and hence is
pitifully slow for large matrices) but is very robust because no
division is involved (hence no division-by-zero errors for singular
matrices). It's also threadable, so you can find the determinants of
a large collection of matrices all at once if you want.
Matrices up to 3x3 are handled by direct multiplication; larger matrices
are handled by recursive descent to the 3x3 case.
The LU-decomposition method L<det|det> is faster in isolation for
single matrices larger than about 4x4, and is much faster if you end up
reusing the LU decomposition of $a, but does not thread well.
=cut
*PDL::determinant = \&determinant;
sub determinant {
my($a) = shift;
my($n);
return undef unless(
UNIVERSAL::isa($a,'PDL') &&
$a->getndims >= 2 &&
($n = $a->dim(0)) == $a->dim(1)
);
return $a->clump(2) if($n==1);
if($n==2) {
my($b) = $a->clump(2);
return $b->index(0)*$b->index(3) - $b->index(1)*$b->index(2);
}
if($n==3) {
my($b) = $a->clump(2);
my $b3 = $b->index(3);
my $b4 = $b->index(4);
my $b5 = $b->index(5);
my $b6 = $b->index(6);
my $b7 = $b->index(7);
my $b8 = $b->index(8);
return (
$b->index(0) * ( $b4 * $b8 - $b5 * $b7 )
+ $b->index(1) * ( $b5 * $b6 - $b3 * $b8 )
+ $b->index(2) * ( $b3 * $b7 - $b4 * $b6 )
);
}
my($i);
my($sum) = zeroes($a->((0),(0)));
# Do middle submatrices
for $i(1..$n-2) {
my $el = $a->(($i),(0));
next if( ($el==0)->all ); # Optimize away unnecessary recursion
$sum += $el * (1-2*($i%2)) *
determinant( $a->(0:$i-1,1:-1)->
append($a->($i+1:-1,1:-1)));
}
# Do beginning and end submatrices
$sum += $a->((0),(0)) * determinant($a->(1:-1,1:-1));
$sum -= $a->((-1),(0)) * determinant($a->(0:-2,1:-1)) * (1 - 2*($n % 2));
return $sum;
}
EOD
######################################################################
### eigens_sym
###
pp_def("eigens_sym",
HandleBad => 0,
Pars => '[phys]a(m); [o,phys]ev(n,n); [o,phys]e(n)',
GenericTypes => ['D'],
Code => '
extern void eigens( double *A, double *RR, double *E, int N );
register int sn = $SIZE (n);
if($SIZE (m) != (sn * (sn + 1))/2) {
barf("Wrong sized args for eigens_sym");
}
eigens($P (a), $P (ev), $P (e), sn);
',
PMCode =>'
sub PDL::eigens_sym {
my ($a) = @_;
my (@d) = $a->dims;
barf "Need real square matrix for eigens_sym"
if $#d < 1 or $d[0] != $d[1];
my ($n) = $d[0];
my ($sym) = 0.5*($a + $a->mv(0,1));
my ($err) = PDL::max(abs($sym));
barf "Need symmetric component non-zero for eigens_sym"
if $err == 0;
$err = PDL::max(abs($a-$sym))/$err;
warn "Using symmetrized version of the matrix in eigens_sym"
if $err > 1e-5 && $PDL::debug;
## Get lower diagonal form
## Use whichND/indexND because whereND doesn\'t exist (yet?) and
## the combo is threadable (unlike where). Note that for historical
## reasons whichND needs a scalar() around it to give back a
## nice 2xn PDL index.
my $lt = PDL::indexND($sym,
scalar(PDL::whichND(PDL->xvals($n,$n) <=
PDL->yvals($n,$n)))
)->copy;
my $ev = PDL->zeroes($sym->dims);
my $e = PDL->zeroes($sym->index(0)->dims);
&PDL::_eigens_sym_int($lt, $ev, $e);
return $ev->xchg(0,1), $e
if(wantarray);
$e; #just eigenvalues
}
'
, Doc => '
=for ref
Eigenvalues and -vectors of a symmetric square matrix. If passed
an asymmetric matrix, the routine will warn and symmetrize it, by taking
the average value. That is, it will solve for 0.5*($a+$a->mv(0,1)).
It\'s threadable, so if $a is 3x3x100, it\'s treated as 100 separate 3x3
matrices, and both $ev and $e get extra dimensions accordingly.
If called in scalar context it hands back only the eigenvalues. Ultimately,
it should switch to a faster algorithm in this case (as discarding the
eigenvectors is wasteful).
The algorithm used is due to J. vonNeumann, which was a rediscovery of
Jacobi\'s method. http://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm
The eigenvectors are returned in COLUMNS of the returned PDL. That
makes it slightly easier to access individual eigenvectors, since the
0th dim of the output PDL runs across the eigenvectors and the 1st dim
runs across their components.
($ev,$e) = eigens_sym $a; # Make eigenvector matrix
$vector = $ev->($n); # Select nth eigenvector as a column-vector
$vector = $ev->(($n)); # Select nth eigenvector as a row-vector
=for usage
($ev, $e) = eigens_sym($a); # e\'vects & e\'vals
$e = eigens_sym($a); # just eigenvalues
',);
######################################################################
### eigens
###
pp_def("eigens",
HandleBad => 0,
Pars => '[phys]a(m); [o,phys]ev(l,n,n); [o,phys]e(l,n)',
GenericTypes => ['D'],
Code => '
#include "complex.h"
#include "eigen.h"
register int sn = $SIZE(n);
int i,j;
void **foo;
void **bar;
New(42, foo, sn, void*);
New(111, bar, sn, void*);
if($SIZE (l) != 2) {
barf("eigens internal error...");
}
if($SIZE (m) != (sn * sn )) {
fprintf(stderr,"m=%d, sn=%d\n",$SIZE(m),sn);
barf("Wrong sized args for eigens");
}
for( i=j=0; i<$SIZE(m); i += sn ) {
foo[j] = &( ($P(a))[ i ] );
bar[j] = &( ($P(ev))[ i+i ] );
j++;
}
Eigen( sn, 0, (double **) foo, 20*sn, 1e-13, 0,
(SSL_Complex *)( $P(e) ),
(SSL_Complex **) bar
);
Safefree(foo);
Safefree(bar);
/* Check for invalid values: convenience block */
{
int k;
char ok, flag;
PDL_Double eps = 0;
/* First: find maximum eigenvalue */
for(i=0; i< sn; i++ ) {
PDL_Double z = fabs ( ($P(e))[i*2] );
if( z > eps )
eps = z;
}
eps *= 1e-10;
/* Next: scan for non-real terms and parallel vectors */
for( i=0; i < sn; i++ ) {
ok = ( fabs( ($P(e))[i*2+1] ) < eps );
for( j=0; ok && j< sn; j++)
ok &= fabs( ($P(ev))[ 2* (i*sn + j) + 1] ) < eps;
for( k=0; ok && k < i; k++ ) {
if( finite( ($P(ev))[ 2 * (k*sn) ] ) ) {
for( flag=1, j=0; ok && flag && j< sn; j++)
flag &= ( fabs( ($P(ev))[ 2 * (i*sn + j) ] -
($P(ev))[ 2 * (k*sn + j) ]
)
< 1e-10 * (
fabs(($P(ev))[ 2 * (k*sn + j) ]) +
fabs(($P(ev))[ 2 * (i*sn + j) ]) )
);
ok &= !flag;
}
}
if (ok) {
for(j=0; ok && j<sn; j++) {
double ex = ($P(e))[i*2] * ($P(ev))[2 * (i*sn + j)];
double ac = 0.0; /*actual matrix product*/
for(k=0; k<sn; k++)
ac += ($P(a))[i*sn + k] * ($P(ev))[2 * (i*sn + k)];
ok &= fabs(ac-ex)<eps;
}
}
/* Set column to NaN if necessary */
if( !ok ) {
/* TODO: We should set the badval bit if in use. */
for(j=0; j< sn; j++)
($P(ev))[2 * (i*sn+j)] = PDL->NaN_double;
($P(e))[i*2] = PDL->NaN_double;
}
}
}
',
PMCode =>'
sub PDL::eigens {
my ($a) = @_;
my (@d) = $a->dims;
my $n = $d[0];
barf "Need real square matrix for eigens"
if $#d < 1 or $d[0] != $d[1];
my $deviation = PDL::max(abs($a - $a->mv(0,1)))/PDL::max(abs($a));
if ( $deviation <= 1e-5 ) {
#taken from eigens_sym code
my $lt = PDL::indexND($a,
scalar(PDL::whichND(PDL->xvals($n,$n) <=
PDL->yvals($n,$n)))
)->copy;
my $ev = PDL->zeroes($a->dims);
my $e = PDL->zeroes($a->index(0)->dims);
&PDL::_eigens_sym_int($lt, $ev, $e);
return $ev->xchg(0,1), $e if wantarray;
return $e; #just eigenvalues
}
else {
barf "eigens currently disabled for asymmatric matrices\n";
my $ev = PDL->zeroes(2, $a->dims);
my $e = PDL->zeroes(2, $a->index(0)->dims);
&PDL::_eigens_int($a->clump(0,1), $ev, $e);
return $ev->index(0)->xchg(0,1)->sever, $e->index(0)->sever
if(wantarray);
return $e->index(0)->sever; #just eigenvalues
}
}
'
, Doc => '
=for ref
Real eigenvalues and -vectors of a real square matrix.
(See also L<"eigens_sym"|/eigens_sym>, for eigenvalues and -vectors
of a real, symmetric, square matrix).
PLEASE NOTE: THE EIGENS FUNCTION HAS BEEN DISABLED FOR ASYMMETRIC MATRICES
PENDING FIX TO THE CODE.
The eigens function will attempt to compute the eigenvalues and eigenvectors
of a square matrix with real components. If the matrix is symmetric, the
same underlying code as L<"eigens_sym"|/eigens_sym> is used. If asymmetric,
the eigenvalues and eigenvectors are computed with algorithms from the
sslib library (anyone know what algorithm is used?). If any imaginary
components exist in the eigenvalues, the results are currently considered
to be invalid, and such eigenvalues are returned as "NaN"s. This is true
for eigenvectors also. That is if there are imaginary components to any
of the values in the eigenvector, the eigenvalue and corresponding eigenvectors
are all set to "NaN". Finally, if there are any repeated eigenvectors, they
are replaced with all "NaN"s.
Use of the eigens function on asymmetric matrices should be considered
experimental! For asymmetric matrices, nearly all observed matrices with real
eigenvalues produce incorrect results, due to errors of the sslib algorithm.
If your assymmetric matrix returns all NaNs, do not assume that the values
are complex. Also, problems with memory access is known in this library.
Not all square matrices are diagonalizable. If you feed in a
non-diagonalizable matrix, then one or more of the eigenvectors will
be set to NaN, along with the corresponding eigenvalues.
C<eigens> is threadable, so you can solve 100 eigenproblems by
feeding in a 3x3x100 array. Both $ev and $e get extra dimensions accordingly.
If called in scalar context C<eigens> hands back only the eigenvalues. This
is somewhat wasteful, as it calculates the eigenvectors anyway.
The eigenvectors are returned in COLUMNS of the returned PDL (ie the
the 0 dimension). That makes it slightly easier to access individual
eigenvectors, since the 0th dim of the output PDL runs across the
eigenvectors and the 1st dim runs across their components.
($ev,$e) = eigens $a; # Make eigenvector matrix
$vector = $ev->($n); # Select nth eigenvector as a column-vector
$vector = $ev->(($n)); # Select nth eigenvector as a row-vector
DEVEL NOTES:
For now, there is no distinction between a complex eigenvalue and an
invalid eigenvalue, although the underlying code generates complex
numbers. It might be useful to be able to return complex eigenvalues.
=for usage
($ev, $e) = eigens($a); # e\'vects & e\'vals
$e = eigens($a); # just eigenvalues
',);
######################################################################
### svd
pp_def(
"svd",
HandleBad => 0,
Pars => 'a(n,m); [o]u(n,m); [o,phys]z(n); [o]v(n,n);',
GenericTypes => ['D'],
Code => '
extern void SVD( double *W, double *Z, int nRow, int nCol );
int sm = $SIZE (m), sn = $SIZE (n), i;
double *w, *t, zv;
t = w = (double *) malloc(sn*(sm+sn)*sizeof(double));
loop (m) %{
loop(n) %{
*t++ = $a ();
%}
%}
SVD(w, $P (z), sm, sn);
t = w;
loop (n) %{
zv = sqrt($z ());
$z () = zv;
%}
loop (m) %{
loop (n) %{
$u () = *t++/$z ();
%}
%}
loop (n) %{
for (i=0;i<sn;i++) {
$v (n0=>i, n1=>n) = *t++;
}
%}
free(w);
',
, Doc => '
=for usage
($r1, $s, $r2) = svd($a);
=for ref
Singular value decomposition of a matrix.
C<svd> is threadable.
C<$r1> and C<$r2> are rotation matrices that convert from the original
matrix\'s singular coordinates to final coordinates, and from original
coordinates to singular coordinates, respectively. C<$s> is the
diagonal of the singular value matrix, so that, if C<$a> is square,
then you can make an expensive copy of C<$a> by saying:
$ess = zeroes($r1); $ess->diagonal(0,1) .= $s;
$a_copy .= $r2 x $ess x $r1;
EXAMPLE
The computing literature has loads of examples of how to use SVD.
Here\'s a trivial example (used in L<PDL::Transform::Map|PDL::Transform::map>)
of how to make a matrix less, er, singular, without changing the
orientation of the ellipsoid of transformation:
{ my($r1,$s,$r2) = svd $a;
$s++; # fatten all singular values
$r2 *= $s; # implicit threading for cheap mult.
$a .= $r2 x $r1; # a gets r2 x ess x r1
}
',);
######################################################################
pp_add_exported('','lu_decomp');
pp_addpm(<<'EOD');
=head2 lu_decomp
=for sig
Signature: (a(m,m); [o]b(n); [o]c; [o]lu)
=for ref
LU decompose a matrix, with row permutation
=for usage
($lu, $perm, $parity) = lu_decomp($a);
$lu = lu_decomp($a, $perm, $par); # $perm and $par are outputs!
lu_decomp($a->inplace,$perm,$par); # Everything in place.
=for description
lu_decomp returns an LU decomposition of a square matrix, using
Crout's method with partial pivoting. It's ported from I<Numerical
Recipes>. The partial pivoting keeps it numerically stable but
defeats efficient threading, so if you have a few matrices to
decompose accurately, you should use lu_decomp, but if you have a
million matrices to decompose and don't mind a higher error budget you
probably want to use L<lu_decomp2|lu_decomp2>, which doesn't do the
pivoting (and hence gives wrong answers for near-singular or large
matrices), but does do threading.
lu_decomp decomposes the input matrix into matrices L and U such that
LU = A, L is a subdiagonal matrix, and U is a superdiagonal matrix.
By convention, the diagonal of L is all 1's.
The single output matrix contains all the variable elements of both
the L and U matrices, stacked together. Because the method uses
pivoting (rearranging the lower part of the matrix for better
numerical stability), you have to permute input vectors before applying
the L and U matrices. The permutation is returned either in the
second argument or, in list context, as the second element of the
list. You need the permutation for the output to make any sense, so
be sure to get it one way or the other.
LU decomposition is the answer to a lot of matrix questions, including
inversion and determinant-finding, and lu_decomp is used by
L<inverse|/inverse>.
If you pass in $perm and $parity, they either must be predeclared PDLs
of the correct size ($perm is an n-vector, $parity is a scalar) or
scalars.
If the matrix is singular, then the LU decomposition might not be
defined; in those cases, lu_decomp silently returns undef. Some
singular matrices LU-decompose just fine, and those are handled OK but
give a zero determinant (and hence can't be inverted).
lu_decomp uses pivoting, which rearranges the values in the matrix for
more numerical stability. This makes it really good for large and
even near-singular matrices, but makes it unable to properly vectorize
threaded operation. If you have a LOT of small matrices to
invert (like, say, a 3x3x1000000 PDL) you should use L<lu_decomp2>,
which doesn't pivot and is therefore threadable (and, of course, works
in-place).
If you ask lu_decomp to thread (by having a nontrivial third dimension
in the matrix) then it will call lu_decomp2 instead. That is a
numerically unstable (non-pivoting) method that is mainly useful for
smallish, not-so-singular matrices but is threadable.
lu_decomp is ported from _Numerical_Recipes to PDL. It should probably
be implemented in C.
=cut
*PDL::lu_decomp = \&lu_decomp;
sub lu_decomp {
my($in) = shift;
my($permute) = shift;
my($parity) = shift;
my($sing_ok) = shift;
my $TINY = 1e-30;
barf('lu_decomp requires a square (2D) PDL\n')
if(!UNIVERSAL::isa($in,'PDL') ||
$in->ndims < 2 ||
$in->dim(0) != $in->dim(1));
if(($in->ndims > 2) && !( (pdl($in->dims)->(2:-1) < 2)->all ) ) {
warn('lu_decomp: calling lu_decomp2 for threadability')
if($PDL::debug);
return lu_decomp2($in,$permute,$parity,$sing_ok);
}
my($n) = $in->dim(0);
my($n1) = $n; $n1--;
my($inplace) = $in->is_inplace;
my($out) = ($inplace) ? $in : $in->copy;
if(defined $permute) {
barf('lu_decomp: permutation vector must match the matrix')
if(!UNIVERSAL::isa($permute,'PDL') ||
$permute->ndims != 1 ||
$permute->dim(0) != $out->dim(0));
$permute .= PDL->xvals($in->dim(0));
} else {
$permute = PDL->xvals($in->dim(0));
}
if(defined $parity) {
barf('lu_decomp: parity must be a scalar PDL')
if(!UNIVERSAL::isa($parity,'PDL') ||
$parity->nelem != 1);
$parity .= 1.0;
} else {
$parity = pdl(1.0);
}
my($scales) = $in->abs->maximum; # elementwise by rows
if(($scales==0)->sum) {
return undef;
}
# Some holding tanks
my($tmprow) = zeroes(double(),$out->dim(0));
my($tmpval) = pdl(0.0);
my($out_diag) = $out->diagonal(0,1);
my($col,$row);
for $col(0..$n1) {
for $row(1..$n1) {
my($klim) = $row<$col ? $row : $col;
if($klim > 0) {
$klim--;
my($el) = $out->index2d($col,$row);
$el -= ( $out->(($col),0:$klim) *
$out->(0:$klim,($row)) )->sum;
}
}
# Figure a_ij, with pivoting
if($col < $n1) {
# Find the maximum value in the rest of the row
my $sl = $out->(($col),$col:$n1);
my $wh = $sl->abs->maximum_ind;
my $big = $sl->index($wh)->sever;
# Permute if necessary to make the diagonal the maximum
if($wh != 0) { # Permute rows to place maximum element on diagonal.
my $whc = $wh+$col;
my $sl1 = $out->(:,($whc));
my $sl2 = $out->(:,($col));
$tmprow .= $sl1; $sl1 .= $sl2; $sl2 .= $tmprow;
$sl1 = $permute->index($whc);
$sl2 = $permute->index($col);
$tmpval .= $sl1; $sl1 .= $sl2; $sl2 .= $tmpval;
$parity *= -1.0;
}
# Sidestep near-singularity (NR does this; not sure if it is helpful)
$big = $TINY * (1.0 - 2.0*($big < 0))
if(abs($big) < $TINY);
# Divide by the diagonal element (which is now the largest element)
$out->(($col),$col+1:$n1) /= $big;
} # end of pivoting part
} # end of column loop
if(wantarray) {
return ($out,$permute,$parity);
}
$out;
}
EOD
######################################################################
pp_add_exported('','lu_decomp2');
pp_addpm(<<'EOD');
=head2 lu_decomp2
=for sig
Signature: (a(m,m); [0]lu(n)
=for ref
LU decompose a matrix, with no row permutation (threadable!)
=for usage
($lu, $perm, $parity) = lu_decomp2($a);
$lu = lu_decomp2($a,[$perm,$par]);
lu_decomp($a->inplace,[$perm,$par]);
=for description
C<lu_decomp2> works just like L<lu_decomp|lu_decomp>, but it does no
pivoting at all and hence can be usefully threaded. For compatibility
with L<lu_decomp|lu_decomp>, it will give you a permutation list and a parity
scalar if you ask for them -- but they are always trivial.
Because C<lu_decomp2> does not pivot, it is numerically unstable --
that means it is less precise than L<lu_decomp>, particularly for
large or near-singular matrices. There are also specific types of
non-singular matrices that confuse it (e.g. ([0,-1,0],[1,0,0],[0,0,1]),
which is a 90 degree rotation matrix but which confuses lu_decomp2).
On the other hand, if you want to invert rapidly a few hundred thousand
small matrices and don't mind missing one or two, it's just the ticket.
The output is a single matrix that contains the LU decomposition of $a;
you can even do it in-place, thereby destroying $a, if you want. See
L<lu_decomp> for more information about LU decomposition.
lu_decomp2 is ported from _Numerical_Recipes_ into PDL. If lu_decomp
were implemented in C, then lu_decomp2 might become unnecessary.
=cut
*PDL::lu_decomp2 = \&lu_decomp2;
sub lu_decomp2 {
my($in) = shift;
my($perm) = shift;
my($par) = shift;
my($sing_ok) = shift;
my $TINY = 1e-30;
barf('lu_decomp2 requires a square (2D) PDL\n')
if(!UNIVERSAL::isa($in,'PDL') ||
$in->ndims < 2 ||
$in->dim(0) != $in->dim(1));
my($n) = $in->dim(0);
my($n1) = $n; $n1--;
my($inplace) = $in->is_inplace;
my($out) = ($inplace) ? $in : $in->copy;
if(defined $perm) {
barf('lu_decomp2: permutation vector must match the matrix')
if(!UNIVERSAL::isa($perm,'PDL') ||
$perm->ndims != 1 ||
$perm->dim(0) != $out->dim(0));
$perm .= PDL->xvals($in->dim(0));
} else {
$perm = PDL->xvals($in->dim(0));
}
if(defined $par) {
barf('lu_decomp: parity must be a scalar PDL')
if(!UNIVERSAL::isa($par,'PDL') ||
$par->nelem != 1);
$par .= 1.0;
} else {
$par = pdl(1.0);
}
my $diagonal = $out->diagonal(0,1);
my($col,$row);
for $col(0..$n1) {
for $row(1..$n1) {
my($klim) = $row<$col ? $row : $col;
if($klim > 0) {
$klim--;
my($el) = $out->index2d($col,$row);
$el -= ( $out->(($col),0:$klim) *
$out->(0:$klim,($row)) )->sumover;
}
}
# Figure a_ij, with no pivoting
if($col < $n1) {
# Divide the rest of the column by the diagonal element
$out->(($col),$col+1:$n1) /= $diagonal->index($col)->dummy(0,$n1-$col);
}
} # end of column loop
if(wantarray) {
return ($out,$perm,$par);
}
$out;
}
EOD
######################################################################
pp_add_exported('','lu_backsub');
pp_addpm(<<'EOD');
=head2 lu_backsub
=for sig
Signature: (lu(m,m); perm(m); b(m))
=for ref
Solve A X = B for matrix A, by back substitution into A's LU decomposition.
=for usage
($lu,$perm) = lu_decomp($a);
$x = lu_backsub($lu,$perm,$par,$b);
lu_backsub($lu,$perm,$b->inplace); # modify $b in-place
$x = lu_backsub(lu_decomp($a),$b); # (ignores parity value from lu_decomp)
=for description
Given the LU decomposition of a square matrix (from L<lu_decomp|lu_decomp>),
lu_backsub does back substitution into the matrix to solve C<A X = B> for
given vector C<B>. It is separated from the lu_decomp method so that you can
call the cheap lu_backsub multiple times and not have to do the expensive
LU decomposition more than once.
lu_backsub acts on single vectors and threads in the usual way, which
means that it treats C<$b> as the I<transpose> of the input. If you
want to process a matrix, you must hand in the I<transpose> of the
matrix, and then transpose the output when you get it back. That is
because PDLs are indexed by (col,row), and matrices are (row,column)
by convention, so a 1-D PDL corresponds to a row vector, not a column
vector.
If C<$lu> is dense and you have more than a few points to solve for,
it is probably cheaper to find C<A^-1> with L<inverse|/inverse>, and
just multiply C<X = A^-1 B>.) In fact, L<inverse|/inverse> works by
calling lu_backsub with the identity matrix.
lu_backsub is ported from Section 2.3 of I<Numerical Recipes>. It is
written in PDL but should probably be implemented in C.
=cut
*PDL::lu_backsub = \&lu_backsub;
sub lu_backsub {
my ($lu, $perm, $b, $par);
if(@_==3) {
($lu, $perm, $b) = @_;
} elsif(@_==4) {
($lu, $perm, $par, $b) = @_;
}
barf("lu_backsub: LU decomposition is undef -- probably from a singular matrix.\n")
unless defined($lu);
barf("Usage: \$x = lu_backsub(\$lu,\$perm,\$b); all must be PDLs\n")
unless(UNIVERSAL::isa($lu,'PDL') &&
UNIVERSAL::isa($perm,'PDL') &&
UNIVERSAL::isa($b,'PDL'));
my $n = $b->dim(0);
my $n1 = $n; $n1--;
# Permute the vector and make a copy if necessary.
my $out;
my $nontrivial = !(($perm==(PDL->xvals($perm->dims)))->all);
if($nontrivial) {
if($b->is_inplace) {
$b .= $b->dummy(1,$b->dim(0))->index($perm)->sever;
$out = $b;
} else {
$out = $b->dummy(1,$b->dim(0))->index($perm)->sever;
}
} else {
$out = ($b->is_inplace ? $b : $b->copy);
}
# Make sure threading over lu happens OK...
if($out->ndims < $lu->ndims) {
do {
$out = $out->dummy(-1,$lu->dim($out->ndims));
} while($out->ndims < $lu->ndims);
$out = $out->sever;
}
## Do forward substitution into L
my $row; my $r1;
for $row(1..$n1) {
$r1 = $row-1;
$out->index($row) -= ($lu->(0:$r1,$row) *
$out->(0:$r1)
)->sumover;
}
## Do backward substitution into U, and normalize by the diagonal
my $ludiag = $lu->diagonal(0,1)->dummy(1,$n);
$out->index($n1) /= $ludiag->index($n1);
for ($row=$n1; $row>0; $row--) {
$r1 = $row-1;
$out->index($r1) -= ($lu->($row:$n1,$r1) *
$out->($row:$n1)
)->sumover;
$out->index($r1) /= $ludiag->index($r1);
}
$out;
}
EOD
######################################################################
### simq
###
# XXX Destroys a!!!
# To use the new a again, must store both a and ips.
pp_def("simq",
HandleBad => 0,
Pars => '[phys]a(n,n); [phys]b(n); [o,phys]x(n); int [o,phys]ips(n)',
OtherPars => 'int flag;',
GenericTypes => ['D'],
Code => '
extern int simq( double *A, double *B, double *X,
int n, int flag, int *IPS );
simq($P (a),$P (b),$P (x),$SIZE (n),$COMP (flag),$P (ips));
',
Doc => '
=for ref
Solution of simultaneous linear equations, C<a x = b>.
C<$a> is an C<n x n> matrix (i.e., a vector of length C<n*n>), stored row-wise:
that is, C<a(i,j) = a[ij]>, where C<ij = i*n + j>.
While this is the transpose of the normal column-wise storage, this
corresponds to normal PDL usage. The contents of matrix a may be
altered (but may be required for subsequent calls with flag = -1).
C<$b>, C<$x>, C<$ips> are vectors of length C<n>.
Set C<flag=0> to solve.
Set C<flag=-1> to do a new back substitution for
different C<$b> vector using the same a matrix previously reduced when
C<flag=0> (the C<$ips> vector generated in the previous solution is also
required).
See also L<lu_backsub|lu_backsub>, which does the same thing with a slightly
less opaque interface.
');
######################################################################
### squaretotri
###
# this doesn't need to be changed to support bad values
# I could put 'HandleBad => 1', but it would just cause an
# unnecessary increase (admittedly small) in the amount of
# code
#
pp_def("squaretotri",
Pars => 'a(n,n); b(m)',
Code => '
register int mna=0, nb=0, ns = $SIZE (n);
#if (PERL_VERSION >= 5) && (PERL_SUBVERSION >= 57)
dXSARGS;
#endif
if($SIZE (m) != (ns * (ns+1))/2) {
barf("Wrong sized args for squaretotri");
}
threadloop %{
loop(m) %{
$b () = $a (n0 => mna, n1 => nb);
mna++; if(mna > nb) {mna = 0; nb ++;}
%}
%}
',
Doc => '
=for ref
Convert a symmetric square matrix to triangular vector storage.
',
);
pp_addpm({At=>'Bot'},<<'EOD');
sub eigen_c {
print STDERR "eigen_c is no longer part of PDL::MatrixOps or PDL::Math; use eigens instead.\n";
## my($mat) = @_;
## my $s = $mat->getdim(0);
## my $z = zeroes($s * ($s+1) / 2);
## my $ev = zeroes($s);
## squaretotri($mat,$z);
## my $k = 0 * $mat;
## PDL::eigens($z, $k, $ev);
## return ($ev, $k);
}
=head1 AUTHOR
Copyright (C) 2002 Craig DeForest (deforest@boulder.swri.edu),
R.J.R. Williams (rjrw@ast.leeds.ac.uk), Karl Glazebrook
(kgb@aaoepp.aao.gov.au). There is no warranty. You are allowed to
redistribute and/or modify this work under the same conditions as PDL
itself. If this file is separated from the PDL distribution, then the
PDL copyright notice should be included in this file.
=cut
EOD
pp_done();
|