1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
/* atanh.c
*
* Inverse hyperbolic tangent
*
*
*
* SYNOPSIS:
*
* double x, y, atanh();
*
* y = atanh( x );
*
*
*
* DESCRIPTION:
*
* Returns inverse hyperbolic tangent of argument in the range
* MINLOG to MAXLOG.
*
* If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is
* employed. Otherwise,
* atanh(x) = 0.5 * log( (1+x)/(1-x) ).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC -1,1 50000 2.4e-17 6.4e-18
* IEEE -1,1 30000 1.9e-16 5.2e-17
*
*/
/* atanh.c */
/*
Cephes Math Library Release 2.3: March, 1995
Copyright (C) 1987, 1995 by Stephen L. Moshier
*/
#include "mconf.h"
#ifdef UNK
static double P[] = {
-8.54074331929669305196E-1,
1.20426861384072379242E1,
-4.61252884198732692637E1,
6.54566728676544377376E1,
-3.09092539379866942570E1
};
static double Q[] = {
/* 1.00000000000000000000E0,*/
-1.95638849376911654834E1,
1.08938092147140262656E2,
-2.49839401325893582852E2,
2.52006675691344555838E2,
-9.27277618139601130017E1
};
#endif
#ifdef DEC
static unsigned short P[] = {
0140132,0122235,0105775,0130300,
0041100,0127327,0124407,0034722,
0141470,0100113,0115607,0130535,
0041602,0164721,0003257,0013673,
0141367,0043046,0166673,0045750
};
static unsigned short Q[] = {
/*0040200,0000000,0000000,0000000,*/
0141234,0101326,0015460,0134564,
0041731,0160115,0116451,0032045,
0142171,0153343,0000532,0167226,
0042174,0000665,0077604,0000310,
0141671,0072235,0031114,0074377
};
#endif
#ifdef IBMPC
static unsigned short P[] = {
0xb618,0xb17f,0x5493,0xbfeb,
0xe73a,0xf520,0x15da,0x4028,
0xf62c,0x7370,0x1009,0xc047,
0xe2f7,0x20d5,0x5d3a,0x4050,
0x697d,0xddb7,0xe8c4,0xc03e
};
static unsigned short Q[] = {
/*0x0000,0x0000,0x0000,0x3ff0,*/
0x172f,0xc366,0x905a,0xc033,
0x2685,0xb3a5,0x3c09,0x405b,
0x5dd3,0x602b,0x3adc,0xc06f,
0x8019,0xaff0,0x8036,0x406f,
0x8f20,0xa649,0x2e93,0xc057
};
#endif
#ifdef MIEEE
static unsigned short P[] = {
0xbfeb,0x5493,0xb17f,0xb618,
0x4028,0x15da,0xf520,0xe73a,
0xc047,0x1009,0x7370,0xf62c,
0x4050,0x5d3a,0x20d5,0xe2f7,
0xc03e,0xe8c4,0xddb7,0x697d
};
static unsigned short Q[] = {
0xc033,0x905a,0xc366,0x172f,
0x405b,0x3c09,0xb3a5,0x2685,
0xc06f,0x3adc,0x602b,0x5dd3,
0x406f,0x8036,0xaff0,0x8019,
0xc057,0x2e93,0xa649,0x8f20
};
#endif
#ifndef ANSIPROT
double fabs(), log(), polevl(), p1evl();
#endif
extern double INFINITY, NAN;
double atanh(x)
double x;
{
double s, z;
#ifdef MINUSZERO
if( x == 0.0 )
return(x);
#endif
z = fabs(x);
if( z >= 1.0 )
{
if( x == 1.0 )
return( INFINITY );
if( x == -1.0 )
return( -INFINITY );
mtherr( "atanh", DOMAIN );
return( NAN );
}
if( z < 1.0e-7 )
return(x);
if( z < 0.5 )
{
z = x * x;
s = x + x * z * (polevl(z, P, 4) / p1evl(z, Q, 5));
return(s);
}
return( 0.5 * log((1.0+x)/(1.0-x)) );
}
|