1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
*DECK PCHSP
SUBROUTINE PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
C***BEGIN PROLOGUE PCHSP
C***PURPOSE Set derivatives needed to determine the Hermite represen-
C tation of the cubic spline interpolant to given data, with
C specified boundary conditions.
C***LIBRARY SLATEC (PCHIP)
C***CATEGORY E1A
C***TYPE SINGLE PRECISION (PCHSP-S, DPCHSP-D)
C***KEYWORDS CUBIC HERMITE INTERPOLATION, PCHIP,
C PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION
C***AUTHOR Fritsch, F. N., (LLNL)
C Lawrence Livermore National Laboratory
C P.O. Box 808 (L-316)
C Livermore, CA 94550
C FTS 532-4275, (510) 422-4275
C***DESCRIPTION
C
C PCHSP: Piecewise Cubic Hermite Spline
C
C Computes the Hermite representation of the cubic spline inter-
C polant to the data given in X and F satisfying the boundary
C conditions specified by IC and VC.
C
C To facilitate two-dimensional applications, includes an increment
C between successive values of the F- and D-arrays.
C
C The resulting piecewise cubic Hermite function may be evaluated
C by PCHFE or PCHFD.
C
C NOTE: This is a modified version of C. de Boor's cubic spline
C routine CUBSPL.
C
C ----------------------------------------------------------------------
C
C Calling sequence:
C
C PARAMETER (INCFD = ...)
C INTEGER IC(2), N, NWK, IERR
C REAL VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK)
C
C CALL PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
C
C Parameters:
C
C IC -- (input) integer array of length 2 specifying desired
C boundary conditions:
C IC(1) = IBEG, desired condition at beginning of data.
C IC(2) = IEND, desired condition at end of data.
C
C IBEG = 0 to set D(1) so that the third derivative is con-
C tinuous at X(2). This is the "not a knot" condition
C provided by de Boor's cubic spline routine CUBSPL.
C < This is the default boundary condition. >
C IBEG = 1 if first derivative at X(1) is given in VC(1).
C IBEG = 2 if second derivative at X(1) is given in VC(1).
C IBEG = 3 to use the 3-point difference formula for D(1).
C (Reverts to the default b.c. if N.LT.3 .)
C IBEG = 4 to use the 4-point difference formula for D(1).
C (Reverts to the default b.c. if N.LT.4 .)
C NOTES:
C 1. An error return is taken if IBEG is out of range.
C 2. For the "natural" boundary condition, use IBEG=2 and
C VC(1)=0.
C
C IEND may take on the same values as IBEG, but applied to
C derivative at X(N). In case IEND = 1 or 2, the value is
C given in VC(2).
C
C NOTES:
C 1. An error return is taken if IEND is out of range.
C 2. For the "natural" boundary condition, use IEND=2 and
C VC(2)=0.
C
C VC -- (input) real array of length 2 specifying desired boundary
C values, as indicated above.
C VC(1) need be set only if IC(1) = 1 or 2 .
C VC(2) need be set only if IC(2) = 1 or 2 .
C
C N -- (input) number of data points. (Error return if N.LT.2 .)
C
C X -- (input) real array of independent variable values. The
C elements of X must be strictly increasing:
C X(I-1) .LT. X(I), I = 2(1)N.
C (Error return if not.)
C
C F -- (input) real array of dependent variable values to be inter-
C polated. F(1+(I-1)*INCFD) is value corresponding to X(I).
C
C D -- (output) real array of derivative values at the data points.
C These values will determine the cubic spline interpolant
C with the requested boundary conditions.
C The value corresponding to X(I) is stored in
C D(1+(I-1)*INCFD), I=1(1)N.
C No other entries in D are changed.
C
C INCFD -- (input) increment between successive values in F and D.
C This argument is provided primarily for 2-D applications.
C (Error return if INCFD.LT.1 .)
C
C WK -- (scratch) real array of working storage.
C
C NWK -- (input) length of work array.
C (Error return if NWK.LT.2*N .)
C
C IERR -- (output) error flag.
C Normal return:
C IERR = 0 (no errors).
C "Recoverable" errors:
C IERR = -1 if N.LT.2 .
C IERR = -2 if INCFD.LT.1 .
C IERR = -3 if the X-array is not strictly increasing.
C IERR = -4 if IBEG.LT.0 or IBEG.GT.4 .
C IERR = -5 if IEND.LT.0 of IEND.GT.4 .
C IERR = -6 if both of the above are true.
C IERR = -7 if NWK is too small.
C NOTE: The above errors are checked in the order listed,
C and following arguments have **NOT** been validated.
C (The D-array has not been changed in any of these cases.)
C IERR = -8 in case of trouble solving the linear system
C for the interior derivative values.
C (The D-array may have been changed in this case.)
C ( Do **NOT** use it! )
C
C***REFERENCES Carl de Boor, A Practical Guide to Splines, Springer-
C Verlag, New York, 1978, pp. 53-59.
C***ROUTINES CALLED PCHDF, XERMSG
C***REVISION HISTORY (YYMMDD)
C 820503 DATE WRITTEN
C 820804 Converted to SLATEC library version.
C 870707 Minor cosmetic changes to prologue.
C 890411 Added SAVE statements (Vers. 3.2).
C 890703 Corrected category record. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 920429 Revised format and order of references. (WRB,FNF)
C***END PROLOGUE PCHSP
C Programming notes:
C
C To produce a double precision version, simply:
C a. Change PCHSP to DPCHSP wherever it occurs,
C b. Change the real declarations to double precision, and
C c. Change the constants ZERO, HALF, ... to double precision.
C
C DECLARE ARGUMENTS.
C
INTEGER IC(2), N, INCFD, NWK, IERR
REAL VC(2), X(*), F(INCFD,*), D(INCFD,*), WK(2,*)
C
C DECLARE LOCAL VARIABLES.
C
INTEGER IBEG, IEND, INDEX, J, NM1
REAL G, HALF, ONE, STEMP(3), THREE, TWO, XTEMP(4), ZERO
SAVE ZERO, HALF, ONE, TWO, THREE
REAL PCHDF
C
DATA ZERO /0./, HALF /0.5/, ONE /1./, TWO /2./, THREE /3./
C
C VALIDITY-CHECK ARGUMENTS.
C
C***FIRST EXECUTABLE STATEMENT PCHSP
IF ( N.LT.2 ) GO TO 5001
IF ( INCFD.LT.1 ) GO TO 5002
DO 1 J = 2, N
IF ( X(J).LE.X(J-1) ) GO TO 5003
1 CONTINUE
C
IBEG = IC(1)
IEND = IC(2)
IERR = 0
IF ( (IBEG.LT.0).OR.(IBEG.GT.4) ) IERR = IERR - 1
IF ( (IEND.LT.0).OR.(IEND.GT.4) ) IERR = IERR - 2
IF ( IERR.LT.0 ) GO TO 5004
C
C FUNCTION DEFINITION IS OK -- GO ON.
C
IF ( NWK .LT. 2*N ) GO TO 5007
C
C COMPUTE FIRST DIFFERENCES OF X SEQUENCE AND STORE IN WK(1,.). ALSO,
C COMPUTE FIRST DIVIDED DIFFERENCE OF DATA AND STORE IN WK(2,.).
DO 5 J=2,N
WK(1,J) = X(J) - X(J-1)
WK(2,J) = (F(1,J) - F(1,J-1))/WK(1,J)
5 CONTINUE
C
C SET TO DEFAULT BOUNDARY CONDITIONS IF N IS TOO SMALL.
C
IF ( IBEG.GT.N ) IBEG = 0
IF ( IEND.GT.N ) IEND = 0
C
C SET UP FOR BOUNDARY CONDITIONS.
C
IF ( (IBEG.EQ.1).OR.(IBEG.EQ.2) ) THEN
D(1,1) = VC(1)
ELSE IF (IBEG .GT. 2) THEN
C PICK UP FIRST IBEG POINTS, IN REVERSE ORDER.
DO 10 J = 1, IBEG
INDEX = IBEG-J+1
C INDEX RUNS FROM IBEG DOWN TO 1.
XTEMP(J) = X(INDEX)
IF (J .LT. IBEG) STEMP(J) = WK(2,INDEX)
10 CONTINUE
C --------------------------------
D(1,1) = PCHDF (IBEG, XTEMP, STEMP, IERR)
C --------------------------------
IF (IERR .NE. 0) GO TO 5009
IBEG = 1
ENDIF
C
IF ( (IEND.EQ.1).OR.(IEND.EQ.2) ) THEN
D(1,N) = VC(2)
ELSE IF (IEND .GT. 2) THEN
C PICK UP LAST IEND POINTS.
DO 15 J = 1, IEND
INDEX = N-IEND+J
C INDEX RUNS FROM N+1-IEND UP TO N.
XTEMP(J) = X(INDEX)
IF (J .LT. IEND) STEMP(J) = WK(2,INDEX+1)
15 CONTINUE
C --------------------------------
D(1,N) = PCHDF (IEND, XTEMP, STEMP, IERR)
C --------------------------------
IF (IERR .NE. 0) GO TO 5009
IEND = 1
ENDIF
C
C --------------------( BEGIN CODING FROM CUBSPL )--------------------
C
C **** A TRIDIAGONAL LINEAR SYSTEM FOR THE UNKNOWN SLOPES S(J) OF
C F AT X(J), J=1,...,N, IS GENERATED AND THEN SOLVED BY GAUSS ELIM-
C INATION, WITH S(J) ENDING UP IN D(1,J), ALL J.
C WK(1,.) AND WK(2,.) ARE USED FOR TEMPORARY STORAGE.
C
C CONSTRUCT FIRST EQUATION FROM FIRST BOUNDARY CONDITION, OF THE FORM
C WK(2,1)*S(1) + WK(1,1)*S(2) = D(1,1)
C
IF (IBEG .EQ. 0) THEN
IF (N .EQ. 2) THEN
C NO CONDITION AT LEFT END AND N = 2.
WK(2,1) = ONE
WK(1,1) = ONE
D(1,1) = TWO*WK(2,2)
ELSE
C NOT-A-KNOT CONDITION AT LEFT END AND N .GT. 2.
WK(2,1) = WK(1,3)
WK(1,1) = WK(1,2) + WK(1,3)
D(1,1) =((WK(1,2) + TWO*WK(1,1))*WK(2,2)*WK(1,3)
* + WK(1,2)**2*WK(2,3)) / WK(1,1)
ENDIF
ELSE IF (IBEG .EQ. 1) THEN
C SLOPE PRESCRIBED AT LEFT END.
WK(2,1) = ONE
WK(1,1) = ZERO
ELSE
C SECOND DERIVATIVE PRESCRIBED AT LEFT END.
WK(2,1) = TWO
WK(1,1) = ONE
D(1,1) = THREE*WK(2,2) - HALF*WK(1,2)*D(1,1)
ENDIF
C
C IF THERE ARE INTERIOR KNOTS, GENERATE THE CORRESPONDING EQUATIONS AND
C CARRY OUT THE FORWARD PASS OF GAUSS ELIMINATION, AFTER WHICH THE J-TH
C EQUATION READS WK(2,J)*S(J) + WK(1,J)*S(J+1) = D(1,J).
C
NM1 = N-1
IF (NM1 .GT. 1) THEN
DO 20 J=2,NM1
IF (WK(2,J-1) .EQ. ZERO) GO TO 5008
G = -WK(1,J+1)/WK(2,J-1)
D(1,J) = G*D(1,J-1)
* + THREE*(WK(1,J)*WK(2,J+1) + WK(1,J+1)*WK(2,J))
WK(2,J) = G*WK(1,J-1) + TWO*(WK(1,J) + WK(1,J+1))
20 CONTINUE
ENDIF
C
C CONSTRUCT LAST EQUATION FROM SECOND BOUNDARY CONDITION, OF THE FORM
C (-G*WK(2,N-1))*S(N-1) + WK(2,N)*S(N) = D(1,N)
C
C IF SLOPE IS PRESCRIBED AT RIGHT END, ONE CAN GO DIRECTLY TO BACK-
C SUBSTITUTION, SINCE ARRAYS HAPPEN TO BE SET UP JUST RIGHT FOR IT
C AT THIS POINT.
IF (IEND .EQ. 1) GO TO 30
C
IF (IEND .EQ. 0) THEN
IF (N.EQ.2 .AND. IBEG.EQ.0) THEN
C NOT-A-KNOT AT RIGHT ENDPOINT AND AT LEFT ENDPOINT AND N = 2.
D(1,2) = WK(2,2)
GO TO 30
ELSE IF ((N.EQ.2) .OR. (N.EQ.3 .AND. IBEG.EQ.0)) THEN
C EITHER (N=3 AND NOT-A-KNOT ALSO AT LEFT) OR (N=2 AND *NOT*
C NOT-A-KNOT AT LEFT END POINT).
D(1,N) = TWO*WK(2,N)
WK(2,N) = ONE
IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
G = -ONE/WK(2,N-1)
ELSE
C NOT-A-KNOT AND N .GE. 3, AND EITHER N.GT.3 OR ALSO NOT-A-
C KNOT AT LEFT END POINT.
G = WK(1,N-1) + WK(1,N)
C DO NOT NEED TO CHECK FOLLOWING DENOMINATORS (X-DIFFERENCES).
D(1,N) = ((WK(1,N)+TWO*G)*WK(2,N)*WK(1,N-1)
* + WK(1,N)**2*(F(1,N-1)-F(1,N-2))/WK(1,N-1))/G
IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
G = -G/WK(2,N-1)
WK(2,N) = WK(1,N-1)
ENDIF
ELSE
C SECOND DERIVATIVE PRESCRIBED AT RIGHT ENDPOINT.
D(1,N) = THREE*WK(2,N) + HALF*WK(1,N)*D(1,N)
WK(2,N) = TWO
IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
G = -ONE/WK(2,N-1)
ENDIF
C
C COMPLETE FORWARD PASS OF GAUSS ELIMINATION.
C
WK(2,N) = G*WK(1,N-1) + WK(2,N)
IF (WK(2,N) .EQ. ZERO) GO TO 5008
D(1,N) = (G*D(1,N-1) + D(1,N))/WK(2,N)
C
C CARRY OUT BACK SUBSTITUTION
C
30 CONTINUE
DO 40 J=NM1,1,-1
IF (WK(2,J) .EQ. ZERO) GO TO 5008
D(1,J) = (D(1,J) - WK(1,J)*D(1,J+1))/WK(2,J)
40 CONTINUE
C --------------------( END CODING FROM CUBSPL )--------------------
C
C NORMAL RETURN.
C
RETURN
C
C ERROR RETURNS.
C
5001 CONTINUE
C N.LT.2 RETURN.
IERR = -1
CALL XERMSG ('SLATEC', 'PCHSP',
+ 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
RETURN
C
5002 CONTINUE
C INCFD.LT.1 RETURN.
IERR = -2
CALL XERMSG ('SLATEC', 'PCHSP', 'INCREMENT LESS THAN ONE', IERR,
+ 1)
RETURN
C
5003 CONTINUE
C X-ARRAY NOT STRICTLY INCREASING.
IERR = -3
CALL XERMSG ('SLATEC', 'PCHSP', 'X-ARRAY NOT STRICTLY INCREASING'
+ , IERR, 1)
RETURN
C
5004 CONTINUE
C IC OUT OF RANGE RETURN.
IERR = IERR - 3
CALL XERMSG ('SLATEC', 'PCHSP', 'IC OUT OF RANGE', IERR, 1)
RETURN
C
5007 CONTINUE
C NWK TOO SMALL RETURN.
IERR = -7
CALL XERMSG ('SLATEC', 'PCHSP', 'WORK ARRAY TOO SMALL', IERR, 1)
RETURN
C
5008 CONTINUE
C SINGULAR SYSTEM.
C *** THEORETICALLY, THIS CAN ONLY OCCUR IF SUCCESSIVE X-VALUES ***
C *** ARE EQUAL, WHICH SHOULD ALREADY HAVE BEEN CAUGHT (IERR=-3). ***
IERR = -8
CALL XERMSG ('SLATEC', 'PCHSP', 'SINGULAR LINEAR SYSTEM', IERR,
+ 1)
RETURN
C
5009 CONTINUE
C ERROR RETURN FROM PCHDF.
C *** THIS CASE SHOULD NEVER OCCUR ***
IERR = -9
CALL XERMSG ('SLATEC', 'PCHSP', 'ERROR RETURN FROM PCHDF', IERR,
+ 1)
RETURN
C------------- LAST LINE OF PCHSP FOLLOWS ------------------------------
END
|