File: Core.pm

package info (click to toggle)
pdl 1:2.019-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 12,276 kB
  • sloc: perl: 47,799; fortran: 13,113; ansic: 9,365; sh: 41; makefile: 38; sed: 6
file content (4063 lines) | stat: -rw-r--r-- 108,598 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
package PDL::Core;

# Core routines for PDL module

use strict;
use warnings;
use PDL::Exporter;
require PDL; # for $VERSION
use DynaLoader;
our @ISA    = qw( PDL::Exporter DynaLoader );
our $VERSION = '2.019';
bootstrap PDL::Core $VERSION;
use PDL::Types ':All';
use Config;

our @EXPORT = qw( piddle pdl null barf ); # Only stuff always exported!
my @convertfuncs = map PDL::Types::typefld($_,'convertfunc'), PDL::Types::typesrtkeys();
my @exports_internal = qw(howbig threadids topdl);
my @exports_normal   = (@EXPORT,
  @convertfuncs,
  qw(nelem dims shape null
      convert inplace zeroes zeros ones list listindices unpdl
      set at flows thread_define over reshape dog cat barf type diagonal
      dummy mslice approx flat sclr squeeze
      get_autopthread_targ set_autopthread_targ get_autopthread_actual
      get_autopthread_size set_autopthread_size) );
our @EXPORT_OK = (@exports_internal, @exports_normal);
our %EXPORT_TAGS = (
   Func     => [@exports_normal],
   Internal => [@exports_internal] );

our ($level, @dims, $sep, $sep2, $match);

# Important variables (place in PDL namespace)
# (twice to eat "used only once" warning)

$PDL::debug      =	     # Debugging info
$PDL::debug      = 0;
$PDL::verbose      =	     # Functions provide chatty information
$PDL::verbose      = 0;
$PDL::use_commas   = 0;        # Whether to insert commas when printing arrays
$PDL::floatformat  = "%7g";    # Default print format for long numbers
$PDL::doubleformat = "%10.8g";
$PDL::indxformat   = "%12d";   # Default print format for PDL_Indx values
$PDL::undefval     = 0;        # Value to use instead of undef when creating PDLs
$PDL::toolongtoprint = 10000;  # maximum pdl size to stringify for printing

################ Exportable functions of the Core ######################

# log10() is now defined in ops.pd

*howbig       = \&PDL::howbig;	  *unpdl	= \&PDL::unpdl;
*nelem        = \&PDL::nelem;	  *inplace	= \&PDL::inplace;
*dims	      = \&PDL::dims;	  *list 	= \&PDL::list;
*threadids    = \&PDL::threadids; *listindices  = \&PDL::listindices;
*null	      = \&PDL::null;	  *set  	= \&PDL::set;
*at		= \&PDL::at;	  *flows	= \&PDL::flows;
*sclr           = \&PDL::sclr;    *shape        = \&PDL::shape;

for (map {
  [ PDL::Types::typefld($_,'convertfunc'), PDL::Types::typefld($_,'numval') ]
} PDL::Types::typesrtkeys()) {
  my ($conv, $val) = @$_;
  no strict 'refs';
  *$conv = *{"PDL::$conv"} = sub {
    return bless [$val], "PDL::Type" unless @_;
    alltopdl('PDL', (scalar(@_)>1 ? [@_] : shift), PDL::Type->new($val));
  };
}

BEGIN {
    *thread_define = \&PDL::thread_define;
    *convert      = \&PDL::convert;   *over 	 = \&PDL::over;
    *dog          = \&PDL::dog;       *cat 	         = \&PDL::cat;
    *type         = \&PDL::type;      *approx        = \&PDL::approx;
    *diagonal     = \&PDL::diagonal;
    *dummy        = \&PDL::dummy;
    *mslice       = \&PDL::mslice;
    *isempty      = \&PDL::isempty;
    *string       = \&PDL::string;
}

=head1 NAME

PDL::Core - fundamental PDL functionality and vectorization/threading

=head1 DESCRIPTION

Methods and functions for type conversions, PDL creation,
type conversion, threading etc.

=head1 SYNOPSIS

 use PDL::Core;             # Normal routines
 use PDL::Core ':Internal'; # Hairy routines

=head1 VECTORIZATION/THREADING: METHOD AND NOMENCLATURE

PDL provides vectorized operations via a built-in engine.
Vectorization is called "threading" for historical reasons.
The threading engine implements simple rules for each operation.

Each PDL object has a "shape" that is a generalized N-dimensional
rectangle defined by a "dim list" of sizes in an arbitrary
set of dimensions.  A PDL with shape 2x3 has 6 elements and is
said to be two-dimensional, or may be referred to as a 2x3-PDL.
The dimensions are indexed numerically starting at 0, so a
2x3-PDL has a dimension 0 (or "dim 0") with size 2 and a 1 dimension
(or "dim 1") with size 3.

PDL generalizes *all* mathematical operations with the notion of
"active dims": each operator has zero or more active dims that are
used in carrying out the operation.  Simple scalar operations like
scalar multiplication ('*') have 0 active dims.  More complicated
operators can have more active dims.  For example, matrix
multiplication ('x') has 2 active dims.  Additional dims are
automatically vectorized across -- e.g. multiplying a 2x5-PDL with a
2x5-PDL requires 10 simple multiplication operations, and yields a
2x5-PDL result.

=head2 Threading rules

In any PDL expression, the active dims appropriate for each operator
are used starting at the 0 dim and working forward through the dim
list of each object.  All additional dims after the active dims are
"thread dims".  The thread dims do not have to agree exactly: they are
coerced to agree according to simple rules:

=over 3

=item * Null PDLs match any dim list (see below).

=item * Dims with sizes other than 1 must all agree in size.

=item * Dims of size 1 are expanded as necessary.

=item * Missing dims are expanded appropriately.

=back

The "size 1" rule implements "generalized scalar" operation, by
analogy to scalar multiplication.  The "missing dims" rule
acknowledges the ambiguity between a missing dim and a dim of size 1.

=head2 Null PDLs

PDLs on the left-hand side of assignment can have the special value
"Null".  A null PDL has no dim list and no set size; its shape is
determined by the computed shape of the expression being assigned to
it.   Null PDLs contain no values and can only be assigned to.  When
assigned to (e.g. via the C<.=> operator), they cease to be null PDLs.

To create a null PDL, use C<PDL-E<gt>null()>.

=head2 Empty PDLs

PDLs can represent the empty set using "structured Empty" variables.
An empty PDL is not a null PDL.

Any dim of a PDL can be set explicitly to size 0.  If so, the PDL
contains zero values (because the total number of values is the
product of all the sizes in the PDL's shape or dimlist).

Scalar PDLs are zero-dimensional and have no entries in the dim list,
so they cannot be empty.  1-D and higher PDLs can be empty.  Empty
PDLs are useful for set operations, and are most commonly encountered
in the output from selection operators such as L<which|PDL::Primitive>
and L<whichND|PDL::Primitive>.  Not all empty PDLs have the same
threading properties -- e.g. a 2x0-PDL represents a collection of
2-vectors that happens to contain no elements, while a simple 0-PDL
represents a collection of scalar values (that also happens to contain
no elements).

Note that 0 dims are not adjustable via the threading rules -- a dim
with size 0 can only match a corresponding dim of size 0 or 1.

=head2 Thread rules and assignments

Versions of PDL through 2.4.10 have some irregularity with threading and
assignments.  Currently the threading engine performs a full expansion of
both sides of the computed assignment operator C<.=> (which assigns values
to a pre-existing PDL).  This leads to counter-intuitive behavior in
some cases:

=over 3

=item * Generalized scalars and computed assignment

If the PDL on the left-hand side of C<.=> has a dim of size 1, it can be
treated as a generalized scalar, as in:

    $a = sequence(2,3);
    $b = zeroes(1,3);
    $b .= $a;

In this case, C<$b> is automatically treated as a 2x3-PDL during the
threading operation, but half of the values from C<$a> silently disappear.
The output is, as Kernighan and Ritchie would say, "undefined".

Further, if the value on the right of C<.=> is empty, then C<.=> becomes
a silent no-op:

    $a = zeroes(0);
    $b = zeroes(1);
    $b .= $a+1;
    print $b;

will print C<[0]>.  In this case, "$a+1" is empty, and "$b" is a generalized
scalar that is adjusted to be empty, so the assignment is carried out for
zero elements (a no-op).

Both of these behaviors are considered harmful and should not be relied upon:
they may be patched away in a future version of PDL.

=item * Empty PDLs and generalized scalars

Generalized scalars (PDLs with a dim of size 1) can match any size in the
corresponding dim, including 0.  Thus,

    $a = ones(2,0);
    $b = sequence(2,1);
    $c = $a * $b;
    print $c;

prints C<Empty[2,0]>.

This behavior is counterintuitive but desirable, and will be preserved
in future versions of PDL.

=back

=head1 VARIABLES

These are important variables of B<global> scope and are placed
in the PDL namespace.

=head3 C<$PDL::debug>

=over 4

When true, PDL debugging information is printed.

=back

=head3 C<$PDL::verbose>

=over 4

When true, PDL functions provide chatty information.

=back

=head3 C<$PDL::use_commas>

=over 4

Whether to insert commas when printing pdls

=back

=head3 C<$PDL::floatformat>, C<$PDL::doubleformat>, C<$PDL::indxformat>

=over 4

The default print format for floats, doubles, and indx values,
respectively.  The default default values are:

  $PDL::floatformat  = "%7g";
  $PDL::doubleformat = "%10.8g";
  $PDL::indxformat   = "%12d";

=back

=head3 C<$PDL::undefval>

=over 4

The value to use instead of C<undef> when creating pdls.

=back

=head3 C<$PDL::toolongtoprint>

=over 4

The maximal size pdls to print (defaults to 10000 elements)

=back

=head1 FUNCTIONS


=head2 barf

=for ref

Standard error reporting routine for PDL.

C<barf()> is the routine PDL modules should call to report errors. This
is because C<barf()> will report the error as coming from the correct
line in the module user's script rather than in the PDL module.

For now, barf just calls Carp::confess()

Remember C<barf()> is your friend. *Use* it!

=for example

At the perl level:

 barf("User has too low an IQ!");

In C or XS code:

 barf("You have made %d errors", count);

Note: this is one of the few functions ALWAYS exported
by PDL::Core

=cut

use Carp;
sub barf { goto &Carp::confess }
sub cluck { goto &Carp::cluck }
*PDL::barf  = \&barf;
*PDL::cluck = \&cluck;

########## Set Auto-PThread Based On Environment Vars ############
PDL::set_autopthread_targ( $ENV{PDL_AUTOPTHREAD_TARG} ) if( defined ( $ENV{PDL_AUTOPTHREAD_TARG} ) );
PDL::set_autopthread_size( $ENV{PDL_AUTOPTHREAD_SIZE} ) if( defined ( $ENV{PDL_AUTOPTHREAD_SIZE} ) );
##################################################################

=head2 pdl

=for ref

PDL constructor - creates new piddle from perl scalars/arrays, piddles, and strings

=for usage

 $double_pdl = pdl(SCALAR|ARRAY REFERENCE|ARRAY|STRING);  # default type
 $type_pdl   = pdl(PDL::Type,SCALAR|ARRAY REFERENCE|ARRAY|STRING);

=for example

 $a = pdl [1..10];                    # 1D array
 $a = pdl ([1..10]);                  # 1D array
 $a = pdl (1,2,3,4);                  # Ditto
 $b = pdl [[1,2,3],[4,5,6]];          # 2D 3x2 array
 $b = pdl "[[1,2,3],[4,5,6]]";        # Ditto (slower)
 $b = pdl "[1 2 3; 4 5 6]";           # Ditto
 $b = pdl q[1 2 3; 4 5 6];            # Ditto, using the q quote operator
 $b = pdl "1 2 3; 4 5 6";             # Ditto, less obvious, but still works
 $b = pdl 42                          # 0-dimensional scalar
 $c = pdl $a;                         # Make a new copy

 $u = pdl ushort(), 42                # 0-dimensional ushort scalar
 $b = pdl(byte(),[[1,2,3],[4,5,6]]);  # 2D byte piddle

 $n = pdl indx(), [1..5];             # 1D array of indx values
 $n = pdl indx, [1..5];               # ... can leave off parens
 $n = indx( [1..5] );                 # ... still the same!

 $a = pdl([1,2,3],[4,5,6]);           # 2D
 $a = pdl([1,2,3],[4,5,6]);           # 2D

Note the last two are equivalent - a list is automatically
converted to a list reference for syntactic convenience. i.e. you
can omit the outer C<[]>

You can mix and match arrays, array refs, and PDLs in your argument
list, and C<pdl> will sort them out.  You get back a PDL whose last
(slowest running) dim runs across the top level of the list you hand
in, and whose first (fastest running) dim runs across the deepest
level that you supply.

At the moment, you cannot mix and match those arguments with string
arguments, though we can't imagine a situation in which you would
really want to do that.

The string version of pdl also allows you to use the strings C<bad>, C<inf>,
and C<nan>, and it will insert the values that you mean (and set the bad flag
if you use C<bad>). You can mix and match case, though you shouldn't. Here are
some examples:

 $bad = pdl q[1 2 3 bad 5 6];  # Set fourth element to the bad value
 $bad = pdl q[1 2 3 BAD 5 6];  # ditto
 $bad = pdl q[1 2 inf bad 5];  # now third element is IEEE infinite value
 $bad = pdl q[nan 2 inf -inf]; # first value is IEEE nan value

The default constructor uses IEEE double-precision floating point numbers. You
can use other types, but you will get a warning if you try to use C<nan> with
integer types (it will be replaced with the C<bad> value) and you will get a
fatal error if you try to use C<inf>.

Throwing a PDL into the mix has the same effect as throwing in a list ref:

  pdl(pdl(1,2),[3,4])

is the same as

  pdl([1,2],[3,4]).

All of the dimensions in the list are "padded-out" with undefval to
meet the widest dim in the list, so (e.g.)

  $a = pdl([[1,2,3],[2]])

gives you the same answer as

  $a = pdl([[1,2,3],[2,undef,undef]]);

If your PDL module has bad values compiled into it (see L<PDL::Bad>), 
you can pass BAD values into the constructor within pre-existing PDLs.
The BAD values are automatically kept BAD and propagated correctly.

C<pdl()> is a functional synonym for the 'new' constructor,
e.g.:

 $x = new PDL [1..10];

In order to control how undefs are handled in converting from perl lists to
PDLs, one can set the variable C<$PDL::undefval>.
For example:

 $foo = [[1,2,undef],[undef,3,4]];
 $PDL::undefval = -999;
 $f = pdl $foo;
 print $f
 [
  [   1    2 -999]
  [-999    3    4]
 ]

C<$PDL::undefval> defaults to zero.

As a final note, if you include an Empty PDL in the list of objects to
construct into a PDL, it is kept as a placeholder pane -- so if you feed
in (say) 7 objects, you get a size of 7 in the 0th dim of the output PDL.
The placeholder panes are completely padded out.  But if you feed in only
a single Empty PDL, you get back the Empty PDL (no padding).

=cut

sub pdl {PDL->pdl(@_)}

sub piddle {PDL->pdl(@_)}

=head2 null

=for ref

Returns a 'null' piddle.

=for usage

 $x = null;

C<null()> has a special meaning to L<PDL::PP|PDL::PP>. It is used to
flag a special kind of empty piddle, which can grow to
appropriate dimensions to store a result (as opposed to
storing a result in an existing piddle).

=for example

 pdl> sumover sequence(10,10), $ans=null;p $ans
 [45 145 245 345 445 545 645 745 845 945]

=cut

sub PDL::null{
	my $class = scalar(@_) ? shift : undef; # if this sub called with no
						#  class ( i.e. like 'null()', instead
						#  of '$obj->null' or 'CLASS->null', setup

	if( defined($class) ){
		$class = ref($class) || $class;  # get the class name
	}
	else{
		$class = 'PDL';  # set class to the current package name if null called
					# with no arguments
	}

	return $class->initialize();
}

=head2 nullcreate

=for ref

Returns a 'null' piddle.

=for usage

 $x = PDL->nullcreate($arg)

This is an routine used by many of the threading primitives
(i.e. L<sumover|PDL::Ufunc/sumover>,
L<minimum|PDL::Ufunc/minimum>, etc.) to generate a null piddle for the
function's output that will behave properly for derived (or
subclassed) PDL objects.

For the above usage:
If C<$arg> is a PDL, or a derived PDL, then C<$arg-E<gt>null> is returned.
If C<$arg> is a scalar (i.e. a zero-dimensional PDL) then C<PDL-E<gt>null>
is returned.

=for example

 PDL::Derived->nullcreate(10)
   returns PDL::Derived->null.
 PDL->nullcreate($pdlderived)
   returns $pdlderived->null.

=cut

sub PDL::nullcreate{
	my ($type,$arg) = @_;
        return ref($arg) ? $arg->null : $type->null ;
}

=head2 nelem

=for ref

Return the number of elements in a piddle

=for usage

 $n = nelem($piddle); $n = $piddle->nelem;

=for example

 $mean = sum($data)/nelem($data);

=head2 dims

=for ref

Return piddle dimensions as a perl list

=for usage

 @dims = $piddle->dims;  @dims = dims($piddle);

=for example

 pdl> p @tmp = dims zeroes 10,3,22
 10 3 22

See also L<shape|shape> which returns a piddle instead.

=head2 shape

=for ref

Return piddle dimensions as a piddle

=for usage

 $shape = $piddle->shape;  $shape = shape($piddle);

=for example

 pdl> p $shape = shape zeroes 10,3,22
 [10 3 22]

See also L<dims|dims> which returns a perl list.

=head2 ndims

=for ref

Returns the number of dimensions in a piddle. Alias
for L<getndims|PDL::Core/getndims>.

=head2 getndims

=for ref

Returns the number of dimensions in a piddle

=for usage

 $ndims = $piddle->getndims;

=for example

 pdl> p zeroes(10,3,22)->getndims
 3

=head2 dim

=for ref

Returns the size of the given dimension of a piddle. Alias
for L<getdim|PDL::Core/getdim>.

=head2 getdim

=for ref

Returns the size of the given dimension.

=for usage

 $dim0 = $piddle->getdim(0);

=for example

 pdl> p zeroes(10,3,22)->getdim(1)
 3

Negative indices count from the end of the dims array.
Indices beyond the end will return a size of 1. This
reflects the idea that any pdl is equivalent to an
infinitely dimensional array in which only a finite number of
dimensions have a size different from one. For example, in that sense a
3D piddle of shape [3,5,2] is equivalent to a [3,5,2,1,1,1,1,1,....]
piddle. Accordingly,

  print $a->getdim(10000);

will print 1 for most practically encountered piddles.

=head2 topdl

=for ref

alternate piddle constructor - ensures arg is a piddle

=for usage

 $a = topdl(SCALAR|ARRAY REFERENCE|ARRAY);

The difference between L<pdl()|/pdl> and C<topdl()> is that the
latter will just 'fall through' if the argument is
already a piddle. It will return a reference and I<NOT>
a new copy.

This is particularly useful if you are writing a function
which is doing some fiddling with internals and assumes
a piddle argument (e.g. for method calls). Using C<topdl()>
will ensure nothing breaks if passed with '2'.

Note that C<topdl()> is not exported by default (see example
below for usage).

=for example

 use PDL::Core ':Internal'; # use the internal routines of
                            # the Core module

 $a = topdl 43;             # $a is piddle with value '43'
 $b = topdl $piddle;        # fall through
 $a = topdl (1,2,3,4);      # Convert 1D array

=head2 get_datatype

=for ref

Internal: Return the numeric value identifying the piddle datatype

=for usage

 $x = $piddle->get_datatype;

Mainly used for internal routines.

NOTE: get_datatype returns 'just a number' not any special
type object, unlike L<type|/type>.

=head2 howbig

=for ref

Returns the sizeof a piddle datatype in bytes.

Note that C<howbig()> is not exported by default (see example
below for usage).

=for usage

 use PDL::Core ':Internal'; # use the internal routines of
                            # the Core module

 $size = howbig($piddle->get_datatype);

Mainly used for internal routines.

NOTE: NOT a method! This is because get_datatype returns
'just a number' not any special object.

=for example

 pdl> p howbig(ushort([1..10])->get_datatype)
 2


=head2 get_dataref

=for ref

Return the internal data for a piddle, as a perl SCALAR ref.

Most piddles hold their internal data in a packed perl string, to take
advantage of perl's memory management.  This gives you direct access
to the string, which is handy when you need to manipulate the binary
data directly (e.g. for file I/O).  If you modify the string, you'll
need to call L<upd_data|upd_data> afterward, to make sure that the
piddle points to the new location of the underlying perl variable.

Calling C<get_dataref> automatically physicalizes your piddle (see
L<make_physical|/PDL::make_physical>).  You definitely
don't want to do anything to the SV to truncate or deallocate the
string, unless you correspondingly call L<reshape|/reshape> to make the
PDL match its new data dimension.

You definitely don't want to use get_dataref unless you know what you
are doing (or are trying to find out): you can end up scrozzling
memory if you shrink or eliminate the string representation of the
variable.  Here be dragons.

=head2 upd_data

=for ref

Update the data pointer in a piddle to match its perl SV.

This is useful if you've been monkeying with the packed string
representation of the PDL, which you probably shouldn't be doing
anyway.  (see L<get_dataref|get_dataref>.)

=cut

sub topdl {PDL->topdl(@_)}

####################### Overloaded operators #######################

# This is to used warn if an operand is non-numeric or non-PDL.
sub warn_non_numeric_op_wrapper {
	my ($cb, $op_name) = @_;
	return sub {
		my ($op1, $op2) = @_;
		unless( Scalar::Util::looks_like_number($op2)
			|| ( Scalar::Util::blessed($op2) && $op2->isa('PDL') )
			) {
			warn "'$op2' is not numeric nor a PDL in operator $op_name";
		};
		$cb->(@_);
	}
}

{ package PDL;
  # use UNIVERSAL 'isa'; # need that later in info function
  use Carp;

  use overload (
		"+"     => \&PDL::plus,     # in1, in2
		"*"     => \&PDL::mult, # in1, in2
		"-"     => \&PDL::minus,    # in1, in2, swap if true
		"/"     => \&PDL::divide,   # in1, in2, swap if true

		"+="    => sub { PDL::plus     ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true
		"*="    => sub { PDL::mult ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true
		"-="    => sub { PDL::minus    ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true
		"/="    => sub { PDL::divide   ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true

		">"     => \&PDL::gt,       # in1, in2, swap if true
		"<"     => \&PDL::lt,       # in1, in2, swap if true
		"<="    => \&PDL::le,       # in1, in2, swap if true
		">="    => \&PDL::ge,       # in1, in2, swap if true
		"=="    => \&PDL::eq,       # in1, in2
		"eq"    => PDL::Core::warn_non_numeric_op_wrapper(\&PDL::eq, 'eq'),
		                            # in1, in2
		"!="    => \&PDL::ne,       # in1, in2

		"<<"    => \&PDL::shiftleft,  # in1, in2, swap if true
		">>"    => \&PDL::shiftright, # in1, in2, swap if true
		"|"     => \&PDL::or2,        # in1, in2
		"&"     => \&PDL::and2,       # in1, in2
		"^"     => \&PDL::xor,        # in1, in2

		"<<="   => sub { PDL::shiftleft ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true
		">>="   => sub { PDL::shiftright($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true
		"|="    => sub { PDL::or2      ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true
		"&="    => sub { PDL::and2     ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true
		"^="    => sub { PDL::xor       ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true
	        "**="   => sub { PDL::power     ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true
	        "%="    => sub { PDL::modulo    ($_[0], $_[1], $_[0], 0); $_[0]; }, # in1, in2, out, swap if true

		"sqrt"  => sub { PDL::sqrt ($_[0]); },
		"abs"   => sub { PDL::abs  ($_[0]); },
		"sin"   => sub { PDL::sin  ($_[0]); },
		"cos"   => sub { PDL::cos  ($_[0]); },

		"!"     => sub { PDL::not  ($_[0]); },
		"~"     => sub { PDL::bitnot ($_[0]); },

		"log"   => sub { PDL::log   ($_[0]); },
		"exp"   => sub { PDL::exp   ($_[0]); },

	        "**"    => \&PDL::power,          # in1, in2, swap if true

	        "atan2" => \&PDL::atan2,          # in1, in2, swap if true
	        "%"     => \&PDL::modulo,         # in1, in2, swap if true

	        "<=>"   => \&PDL::spaceship,      # in1, in2, swap if true

		"="     =>  sub {$_[0]},          # Don't deep copy, just copy reference

		".="    => sub {
						my @args = reverse &PDL::Core::rswap;
						PDL::Ops::assgn(@args);
						return $args[1];
					},

		'x'     =>  sub{my $foo = $_[0]->null();
				  PDL::Primitive::matmult(@_[0,1],$foo); $foo;},

		'bool'  => sub { return 0 if $_[0]->isnull;
				 croak("multielement piddle in conditional expression (see PDL::FAQ questions 6-10 and 6-11)")
				     unless $_[0]->nelem == 1;
				 $_[0]->clump(-1)->at(0); },
		"\"\""  =>  \&PDL::Core::string   );
}

sub rswap { if($_[2]) { return @_[1,0]; } else { return @_[0,1]; } }

##################### Data type/conversion stuff ########################


# XXX Optimize!

sub PDL::dims {  # Return dimensions as @list
   my $pdl = PDL->topdl (shift);
   my @dims = ();
   for(0..$pdl->getndims()-1) {push @dims,($pdl->getdim($_))}
   return @dims;
}

sub PDL::shape {  # Return dimensions as a pdl
   my $pdl = PDL->topdl (shift);
   my @dims = ();
   for(0..$pdl->getndims()-1) {push @dims,($pdl->getdim($_))}
   return indx(\@dims);
}

sub PDL::howbig {
	my $t = shift;
	if("PDL::Type" eq ref $t) {$t = $t->[0]}
	PDL::howbig_c($t);
}

=head2 threadids

=for ref

Returns the piddle thread IDs as a perl list

Note that C<threadids()> is not exported by default (see example
below for usage).

=for usage

 use PDL::Core ':Internal'; # use the internal routines of
                            # the Core module

 @ids = threadids $piddle;

=cut

sub PDL::threadids {  # Return dimensions as @list
   my $pdl = PDL->topdl (shift);
   my @dims = ();
   for(0..$pdl->getnthreadids()) {push @dims,($pdl->getthreadid($_))}
   return @dims;
}

################# Creation/copying functions #######################


sub PDL::pdl { my $x = shift; return $x->new(@_) }

=head2 doflow

=for ref

Turn on/off dataflow

=for usage

 $x->doflow;  doflow($x);

=cut

sub PDL::doflow {
	my $this = shift;
	$this->set_dataflow_f(1);
	$this->set_dataflow_b(1);
}

=head2 flows

=for ref

Whether or not a piddle is indulging in dataflow

=for usage

 something if $x->flows; $hmm = flows($x);

=cut

sub PDL::flows {
 	my $this = shift;
         return ($this->fflows || $this->bflows);
}

=head2 new

=for ref

new piddle constructor method

=for usage

 $x = PDL->new(SCALAR|ARRAY|ARRAY REF|STRING);

=for example

 $x = PDL->new(42);             # new from a Perl scalar
 $x = new PDL 42;               # ditto
 $y = PDL->new(@list_of_vals);  # new from Perl list
 $y = new PDL @list_of_vals;    # ditto
 $z = PDL->new(\@list_of_vals); # new from Perl list reference
 $w = PDL->new("[1 2 3]");      # new from Perl string, using
                                # Matlab constructor syntax

Constructs piddle from perl numbers and lists
and strings with Matlab/Octave style constructor
syntax.

The string input is fairly versatile though not
performance optimized. The goal is to make it
easy to copy and paste code from PDL output and
to offer a familiar Matlab syntax for piddle
construction. As of May, 2010, it is a new
feature, so feel free to report bugs or suggest
new features.  See documentation for L<pdl> for
more examples of usage.


=cut

use Scalar::Util;       # for looks_like_number test
use Carp 'carp';        # for carping (warnings in caller's context)

# This is the code that handles string arguments. It has now gotten quite large,
# so here's the basic explanation. I want to allow expressions like 2, 1e3, +4,
# bad, nan, inf, and more. Checking this can get tricky. This croaks when it
# finds:
# 1) strings of e or E that are longer than 1 character long (like eeee)
# 2) non-supported characters or strings
# 3) expressions that are syntactically erroneous, like '1 2 3 ]', which has an
#    extra bracket
# 4) use of inf when the data type does not support inf (i.e. the integers)

sub PDL::Core::new_pdl_from_string {
   my ($new, $original_value, $this, $type) = @_;
   my $value = $original_value;

   # Check for input that would generate empty piddles as output:
   my @types = PDL::Types::types;
   return zeroes($types[$type], 1)->where(zeroes(1) < 0)
      if ($value eq '' or $value eq '[]');

   # I check for invalid characters later, but arbitrary strings of e will
   # pass that check, so I'll check for that here, first.
#   croak("PDL::Core::new_pdl_from_string: I found consecutive copies of e but\n"
#      . "  I'm not sure what you mean. You gave me $original_value")
#      if ($value =~ /ee/i);
   croak("PDL::Core::new_pdl_from_string: found 'e' as part of a larger word in $original_value")
      if $value =~ /e\p{IsAlpha}/ or $value =~ /\p{IsAlpha}e/;

   # Only a few characters are allowed in the expression, but we want to allow
   # expressions like 'inf' and 'bad'. As such, convert those values to internal
   # representations that will pass the invalid-character check. We'll replace
   # them with Perl-evalute-able strings in a little bit. Here, I represent
   #  bad => EE
   #  nan => ee
   #  inf => Ee
   #  pi  => eE
   # --( Bad )--
   croak("PDL::Core::new_pdl_from_string: found 'bad' as part of a larger word in $original_value")
      if $value =~ /bad\B/ or $value =~ /\Bbad/;
   my ($has_bad) = ($value =~ s/\bbad\b/EE/gi);
   # --( nan )--
   my ($has_nan) = 0;
   croak("PDL::Core::new_pdl_from_string: found 'nan' as part of a larger word in $original_value")
      if $value =~ /\Bnan/ or $value =~ /nan\B/;
   $has_nan++ if ($value =~ s/\bnan\b/ee/gi);
   # Strawberry Perl compatibility:
   croak("PDL::Core::new_pdl_from_string: found '1.#IND' as part of a larger word in $original_value")
      if $value =~ /IND\B/i;
   $has_nan++ if ($value =~ s/1\.\#IND/ee/gi);
   # --( inf )--
   my ($has_inf) = 0;
   # Strawberry Perl compatibility:
   croak("PDL::Core::new_pdl_from_string: found '1.#INF' as part of a larger word in $original_value")
      if $value =~ /INF\B/i;
   $has_inf++ if ($value =~ s/1\.\#INF/Ee/gi);
   # Other platforms:
   croak("PDL::Core::new_pdl_from_string: found 'inf' as part of a larger word in $original_value")
      if $value =~ /inf\B/ or $value =~ /\Binf/;
   $has_inf++ if ($value =~ s/\binf\b/Ee/gi);
   # --( pi )--
   croak("PDL::Core::new_pdl_from_string: found 'pi' as part of a larger word in $original_value")
      if $value =~ /pi\B/ or $value =~ /\Bpi/;
   $value =~ s/\bpi\b/eE/gi;

   # Some data types do not support nan and inf, so check for and warn or croak,
   # as appropriate:
   if ($has_nan and not $types[$type]->usenan) {
      carp("PDL::Core::new_pdl_from_string: no nan for type $types[$type]; converting to bad value");
      $value =~ s/ee/EE/g;
      $has_bad += $has_nan;
      $has_nan = 0;
   }
   croak("PDL::Core::new_pdl_from_string: type $types[$type] does not support inf")
      if ($has_inf and not $types[$type]->usenan);

   # Make the white-space uniform and see if any not-allowed characters are
   # present:
   $value =~ s/\s+/ /g;
   if (my ($disallowed) = ($value =~ /([^\[\]\+\-0-9;,.eE ]+)/)) {
      croak("PDL::Core::new_pdl_from_string: found disallowed character(s) '$disallowed' in $original_value");
   }

   # Wrap the string in brackets [], so that the following works:
   # $a = new PDL q[1 2 3];
   # We'll have to check for dimensions of size one after we've parsed
   # the string and built a PDL from the resulting array.
   $value = '[' . $value . ']';

   # Make sure that each closing bracket followed by an opening bracket
   # has a comma in between them:
   $value =~ s/\]\s*\[/],[/g;

   # Semicolons indicate 'start a new row' and require special handling:
   if ($value =~ /;/) {
      $value =~ s/(\[[^\]]+;[^\]]+\])/[$1]/g;
      $value =~ s/;/],[/g;
   }

   # Remove ending decimal points and insert zeroes in front of starting
   # decimal points. This makes the white-space-to-comma replacement
   # in the next few lines much simpler.
   $value =~ s/(\d\.)(z|[^\d])/${1}0$2/g;
   $value =~ s/(\A|[^\d])\./${1}0./g;

   # Remove whitspace between signs and the numbers that follow them:
   $value =~ s/([+\-])\s+/$1/g;

#   # make unambiguous addition/subtraction (white-space on both sides
#   # of operator) by removing white-space from both sides
#   $value =~ s/([\dEe])\s+([+\-])\s+(?=[Ee\d])/$1$2/g;

   # Replace white-space separators with commas:
   $value =~ s/([.\deE])\s+(?=[+\-eE\d])/$1,/g;

   # Remove all other white space:
   $value =~ s/\s+//g;

   # Croak on operations with bad values. It might be nice to simply replace
   # these with bad values, but that is more difficult that I like, so I'm just
   # going to disallow that here:
   croak("PDL::Core::new_pdl_from_string: Operations with bad values are not supported")
      if($value =~ /EE[+\-]/ or $value =~ /[+\-]EE/);

   # Check for things that will evaluate as functions and croak if found
   if (my ($disallowed) = ($value =~ /((\D+|\A)[eE]\d+)/)) {
      croak("PDL::Core::new_pdl_from_string: syntax error, looks like an improper exponentiation: $disallowed\n"
         . "You originally gave me $original_value\n");
   }

   # Replace the place-holder strings with strings that will evaluate to their
   # correct numerical values when we run the eval:
   $value =~ s/\bEE\b/bad/g;
   my $bad = $types[$type]->badvalue;
   $value =~ s/\bee\b/nan/g;
   my $inf = -pdl(0)->log;
   $value =~ s/\bEe\b/inf/g;
   my $nnan = $inf - $inf;
   my $nan= $this->initialize();
   $nan->set_datatype($nnan->get_datatype);
   $nan->setdims([]);

   # pack("d*", "nan") will work here only on perls that numify the string "nan" to a NaN.
   # pack( "d*", (-1.0) ** 0.5 ) will hopefully work in more places, though it seems both
   # pack("d*", "nan") and pack( "d*", (-1.0) ** 0.5 ) fail on *old* MS Compilers (MSVC++ 6.0 and earlier).
   # sisyphus 4 Jan 2013.
   ${$nan->get_dataref}     = pack( "d*", (-1.0) ** 0.5 );

   $nan->upd_data();
   $value =~ s/\beE\b/pi/g;

   my $val = eval {
      # Install the warnings handler:
      my $old_warn_handler = $SIG{__WARN__};
      local $SIG{__WARN__} = sub {
         if ($_[0] =~ /(Argument ".*" isn't numeric)/) {
            # Send the error through die. This is *always* get caught, so keep
            # it simple.
            die "Incorrectly formatted input: $1\n";
         }
         elsif ($old_warn_handler) {
            $old_warn_handler->(@_);
         }
         else {
            warn @_;
         }
      };

      # Let's see if we can parse it as an array-of-arrays:
      local $_ = $value;
      return PDL::Core::parse_basic_string ($inf, $nan, $nnan, $bad);
   };

   # Respect BADVAL_USENAN
   require PDL::Config;
   $has_bad += $has_inf + $has_nan if $PDL::Config{BADVAL_USENAN};

   if (ref $val eq 'ARRAY') {
      my $to_return = PDL::Core::pdl_avref($val,$this,$type);
      if( $to_return->dim(-1) == 1 ) {
	      if( $to_return->dims > 1 ) {
		      # remove potentially spurious last dimension
		      $to_return = $to_return->mv(-1,1)->clump(2)->sever;
	      } elsif( $to_return->dims == 1 ) {
		      # fix scalar values
		      $to_return->setdims([]);
	      }
      }
      # Mark bad if appropriate
      $to_return->badflag($has_bad > 0);
      return $to_return;
   }
   else {
      my @message = ("PDL::Core::new_pdl_from_string: string input='$original_value', string output='$value'" );
      if ($@) {
         push @message, $@;
      } else {
         push @message, "Internal error: unexpected output type ->$val<- is not ARRAY ref";
      }
      croak join("\n  ", @message);
   }
}

sub PDL::Core::parse_basic_string {
	# Assumes $_ holds the string of interest, and modifies that value
	# in-place.

	use warnings;

	# Takes a string with proper bracketing, etc, and returns an array-of-arrays
	# filled with numbers, suitable for use with pdl_avref. It uses recursive
	# descent to handle the nested nature of the data. The string should have
	# no whitespace and should be something that would evaluate into a Perl
	# array-of-arrays (except that strings like 'inf', etc, are allowed).

	my ($inf, $nan, $nnan, $bad) = @_;

	# First character should be a bracket:
	die "Internal error: input string -->$_<-- did not start with an opening bracket\n"
		unless s/^\[//;

	my @to_return;
	# Loop until we run into our closing bracket:
	my $sign = 1;
	my $expects_number = 0;
	SYMBOL: until (s/^\]//) {
		# If we have a bracket, then go recursive:
		if (/^\[/) {
			die "Expected a number but found a bracket at ... ", substr ($_, 0, 10), "...\n"
				if $expects_number;
			push @to_return, PDL::Core::parse_basic_string(@_);
			next SYMBOL;
		}
		elsif (s/^\+//) {
			die "Expected number but found a plus sign at ... ", substr ($_, 0, 10), "...\n"
				if $expects_number;
			$expects_number = 1;
			redo SYMBOL;
		}
		elsif (s/^\-//) {
			die "Expected number but found a minus sign at ... ", substr ($_, 0, 10), "...\n"
				if $expects_number;
			$sign = -1;
			$expects_number = 1;
			redo SYMBOL;
		}
		elsif (s/^bad//i) {
			push @to_return, $bad;
		}
		elsif (s/^inf//i or s/1\.\#INF//i) {
			push @to_return, $sign * $inf;
		}
		elsif (s/^nan//i or s/^1\.\#IND//i) {
                        if ($sign == -1) {
                          push @to_return, $nnan;
                        } else {
                          push @to_return, $nan;
                        }
		}
		elsif (s/^pi//i) {
			push @to_return, $sign * 4 * atan2(1, 1);
		}
		elsif (s/^e//i) {
			push @to_return, $sign * exp(1);
		}
		elsif (s/^([\d+\-e.]+)//i) {
			# Note that improper numbers are handled by the warning signal
			# handler
                        my $val = $1;
                        my $nval = $val + 0x0;
                        push @to_return, ($sign>0x0) ? $nval : -$nval;
		}
		else {
			die "Incorrectly formatted input at:\n  ", substr ($_, 0, 10), "...\n";
		}
	}
	# Strip off any commas
	continue {
		$sign = 1;
		$expects_number = 0;
		s/^,//;
	}

	return \@to_return;
}

sub PDL::new {
   # print "in PDL::new\n";
   my $this = shift;
   return $this->copy if ref($this);
   my $type = ref($_[0]) eq 'PDL::Type' ? ${shift @_}[0]  : $PDL_D;
   my $value = (@_ >1 ? [@_] : shift);  # ref thyself

   unless(defined $value) {
       if($PDL::debug && $PDL::undefval) {
	   print STDERR "Warning: PDL::new converted undef to $PDL::undefval ($PDL::undefval)\n";
       }
       $value = $PDL::undefval+0
   }

   return pdl_avref($value,$this,$type) if ref($value) eq "ARRAY";
   my $new = $this->initialize();
   $new->set_datatype($type);


   if (ref(\$value) eq "SCALAR") {
      # The string processing is extremely slow. Benchmarks indicated that it
      # takes 10x longer to process a scalar number compared with normal Perl
      # conversion of a string to a number. So, only use the string processing
      # if the input looks like a real string, i.e. it doesn't look like a plain
      # number. Note that for our purposes, looks_like_number incorrectly
      # handles the strings 'inf' and 'nan' on Windows machines. We want to send
      # those to the string processing, so this checks for them in a way that
      # short-circuits the looks_like_number check.
      if (PDL::Core::is_scalar_SvPOK($value)
            and ($value =~ /inf/i or $value =~ /nan/i
               or !Scalar::Util::looks_like_number($value))) {
         # new was passed a string argument that doesn't look like a number
         # so we can process as a Matlab-style data entry format.
		return PDL::Core::new_pdl_from_string($new,$value,$this,$type);
      } elsif ($Config{ivsize} < 8 && $pack[$new->get_datatype] eq 'q*') {
         # special case when running on a perl without 64bit int support
         # we have to avoid pack("q", ...) in this case
         # because it dies with error: "Invalid type 'q' in pack"
         $new->setdims([]);
         set_c($new, [0], $value);
      } else {
         $new->setdims([]);
         ${$new->get_dataref}     = pack( $pack[$new->get_datatype], $value );
         $new->upd_data();
      }
   }
   elsif (blessed($value)) { # Object
       $new = $value->copy;
   }
   else {
       barf("Can not interpret argument $value of type ".ref($value) );
   }
   return $new;
}


=head2 copy

=for ref

Make a physical copy of a piddle

=for usage

 $new = $old->copy;

Since C<$new = $old> just makes a new reference, the
C<copy> method is provided to allow real independent
copies to be made.

=cut

# Inheritable copy method
#
# XXX Must be fixed
# Inplace is handled by the op currently.

sub PDL::copy {
    my $value = shift;
    barf("Argument is an ".ref($value)." not an object") unless blessed($value);
    my $option  = shift;
    $option = "" if !defined $option;
    if ($value->is_inplace) {   # Copy protection
       $value->set_inplace(0);
       return $value;
    }
    # threadI(-1,[]) is just an identity vafftrans with threadId copying ;)
    my $new = $value->threadI(-1,[])->sever;
    return $new;
}

=head2 hdr_copy

=for ref

Return an explicit copy of the header of a PDL.

hdr_copy is just a wrapper for the internal routine _hdr_copy, which
takes the hash ref itself.  That is the routine which is used to make
copies of the header during normal operations if the hdrcpy() flag of
a PDL is set.

General-purpose deep copies are expensive in perl, so some simple
optimization happens:

If the header is a tied array or a blessed hash ref with an associated
method called C<copy>, then that ->copy method is called.  Otherwise, all
elements of the hash are explicitly copied.  References are recursively
deep copied.

This routine seems to leak memory.

=cut

sub PDL::hdr_copy {
  my $pdl = shift;
  my $hdr = $pdl->gethdr;
  return PDL::_hdr_copy($hdr);
}

# Same as hdr_copy but takes a hash ref instead of a PDL.
sub PDL::_hdr_copy {
  my $hdr = shift;
  my $tobj;

  print "called _hdr_copy\n" if($PDL::debug);

  unless( (ref $hdr)=~m/HASH/ ) {
    print"returning undef\n" if($PDL::debug);
    return undef ;
  }

  if($tobj = tied %$hdr) { #
    print "tied..."if($PDL::debug);
    if(UNIVERSAL::can($tobj,"copy")) {
      my %rhdr;
      tie(%rhdr, ref $tobj, $tobj->copy);
      print "returning\n" if($PDL::debug);
      return \%rhdr;
    }

    # Astro::FITS::Header is special for now -- no copy method yet
    # but it is recognized.  Once it gets a copy method this will become
    # vestigial:

    if(UNIVERSAL::isa($tobj,"Astro::FITS::Header")) {
      print "Astro::FITS::Header..." if($PDL::debug);
      my @cards = $tobj->cards;
      my %rhdr;
      tie(%rhdr,"Astro::FITS::Header", new Astro::FITS::Header(Cards=>\@cards));
      print "returning\n" if($PDL::debug);
      return \%rhdr;
    }
  }
  elsif(UNIVERSAL::can($hdr,"copy")) {
    print "found a copy method\n" if($PDL::debug);
    return $hdr->copy;
  }

  # We got here if it's an unrecognized tie or if it's a vanilla hash.
  print "Making a hash copy..." if($PDL::debug);

  return PDL::_deep_hdr_copy($hdr);

}

#
# Sleazy deep-copier that gets most cases
# --CED 14-April-2003
#

sub PDL::_deep_hdr_copy {
  my $val = shift;

  if(ref $val eq 'HASH') {
    my (%a,$key);
    for $key(keys %$val) {
      my $value = $val->{$key};
      $a{$key} = (ref $value) ? PDL::_deep_hdr_copy($value) : $value;
    }
    return \%a;
  }

  if(ref $val eq 'ARRAY') {
    my (@a,$z);
    for $z(@$val) {
      push(@a,(ref $z) ? PDL::_deep_hdr_copy($z) : $z);
    }
    return \@a;
  }

  if(ref $val eq 'SCALAR') {
    my $a = $$val;
    return \$a;
  }

  if(ref $val eq 'REF') {
    my $a = PDL::_deep_hdr_copy($$val);
    return \$a;
  }

  # Special case for PDLs avoids potential nasty header recursion...
  if(UNIVERSAL::isa($val,'PDL')) {
    my $h;
    $val->hdrcpy(0) if($h = $val->hdrcpy); # assignment
    my $out = $val->copy;
    $val->hdrcpy($h) if($h);
    return $out;
  }

  if(UNIVERSAL::can($val,'copy')) {
    return $val->copy;
  }

  $val;
}


=head2 unwind

=for ref

Return a piddle which is the same as the argument except
that all threadids have been removed.

=for usage

 $y = $x->unwind;

=head2 make_physical

=for ref

Make sure the data portion of a piddle can be accessed from XS code.

=for example

 $a->make_physical;
 $a->call_my_xs_method;

Ensures that a piddle gets its own allocated copy of data. This obviously
implies that there are certain piddles which do not have their own data.
These are so called I<virtual> piddles that make use of the I<vaffine>
optimisation (see L<PDL::Indexing|PDL::Indexing>).
They do not have their own copy of
data but instead store only access information to some (or all) of another
piddle's data.

Note: this function should not be used unless absolutely necessary
since otherwise memory requirements might be severely increased. Instead
of writing your own XS code with the need to call C<make_physical> you
might want to consider using the PDL preprocessor
(see L<PDL::PP|PDL::PP>)
which can be used to transparently access virtual piddles without the
need to physicalise them (though there are exceptions).

=cut

sub PDL::unwind {
	my $value = shift;
	my $foo = $value->null();
	$foo .= $value->unthread();
	return $foo;
}

=head2 dummy

=for ref

Insert a 'dummy dimension' of given length (defaults to 1)

No relation to the 'Dungeon Dimensions' in Discworld!

Negative positions specify relative to last dimension,
i.e. C<dummy(-1)> appends one dimension at end,
C<dummy(-2)> inserts a dummy dimension in front of the
last dim, etc.

If you specify a dimension position larger than the existing
dimension list of your PDL, the PDL gets automagically padded with extra
dummy dimensions so that you get the dim you asked for, in the slot you
asked for.  This could cause you trouble if, for example,
you ask for $a->dummy(5000,1) because $a will get 5,000 dimensions,
each of rank 1.

Because padding at the beginning of the dimension list moves existing
dimensions from slot to slot, it's considered unsafe, so automagic
padding doesn't work for large negative indices -- only for large
positive indices.

=for usage

 $y = $x->dummy($position[,$dimsize]);

=for example

 pdl> p sequence(3)->dummy(0,3)
 [
  [0 0 0]
  [1 1 1]
  [2 2 2]
 ]

 pdl> p sequence(3)->dummy(3,2)
 [
  [
   [0 1 2]
  ]
  [
   [0 1 2]
  ]
 ]

 pdl> p sequence(3)->dummy(-3,2)
 Runtime error: PDL: For safety, <pos> < -(dims+1) forbidden in dummy.  min=-2, pos=-3

=cut

sub PDL::dummy($$;$) {
   my ($pdl,$dim,$size) = @_;
   barf("Missing position argument to dummy()") unless defined $dim;  # required argument
   $dim = $pdl->getndims+1+$dim if $dim < 0;
   $size = defined($size) ? (1 * $size) : 1;  # make $size a number (sf feature # 3479009)

   barf("For safety, <pos> < -(dims+1) forbidden in dummy.  min="
	 . -($pdl->getndims+1).", pos=". ($dim-1-$pdl->getndims) ) if($dim<0);

   # Avoid negative repeat count warning that came with 5.21 and later.
   my $dim_diff = $dim - $pdl->getndims;
   my($s) = ',' x ( $dim_diff > 0 ? $pdl->getndims : $dim );
   $s .= '*1,'  x ( $dim_diff > 0 ? $dim_diff : 0 );
   $s .= "*$size";

   $pdl->slice($s);
}


## Cheesy, slow way
#   while ($dim>$pdl->getndims){
#     print STDERR "."; flush STDERR;
#     $pdl = $pdl->dummy($pdl->getndims,1);
#   }
#
#   barf ("too high/low dimension in call to dummy, allowed min/max=0/"
# 	 . $_[0]->getndims)
#     if $dim>$pdl->getndims || $dim < 0;
#
#   $_[2] = 1 if ($#_ < 2);
#   $pdl->slice((','x$dim)."*$_[2]");

=head2 clump

=for ref

"clumps" several dimensions into one large dimension

If called with one argument C<$n> clumps the first C<$n>
dimensions into one. For example, if C<$a> has dimensions
C<(5,3,4)> then after

=for example

 $b = $a->clump(2);   # Clump 2 first dimensions

the variable C<$b> will have dimensions C<(15,4)>
and the element C<$b-E<gt>at(7,3)> refers to the element
C<$a-E<gt>at(1,2,3)>.

Use C<clump(-1)> to flatten a piddle. The method L<flat|PDL::Core/flat>
is provided as a convenient alias.

Clumping with a negative dimension in general leaves that many
dimensions behind -- e.g. clump(-2) clumps all of the first few
dimensions into a single one, leaving a 2-D piddle.

If C<clump> is called with an index list with more than one element
it is treated as a list of dimensions that should be clumped together
into one. The resulting
clumped dim is placed at the position of the lowest index in the list.
This convention ensures that C<clump> does the expected thing in
the usual cases. The following example demonstrates typical usage:

  $a = sequence 2,3,3,3,5; # 5D piddle
  $c = $a->clump(1..3);    # clump all the dims 1 to 3 into one
  print $c->info;          # resulting 3D piddle has clumped dim at pos 1
 PDL: Double D [2,27,5]

=cut

sub PDL::clump {
  my $ndims = $_[0]->getndims;
  if ($#_ < 2) {
    return &PDL::_clump_int(@_);
  } else {
    my ($this,@dims) = @_;
    my $targd = $ndims-1;
    my @dimmark = (0..$ndims-1);
    barf "too many dimensions" if @dims > $ndims;
    for my $dim (@dims) {
      barf "dimension index $dim larger than greatest dimension"
	if $dim > $ndims-1 ;
      $targd = $dim if $targd > $dim;
      barf "duplicate dimension $dim" if $dimmark[$dim]++ > $dim;
    }
    my $clumped = $this->thread(@dims)->unthread(0)->clump(scalar @dims);
    $clumped = $clumped->mv(0,$targd) if $targd > 0;
    return $clumped;
  }
}

=head2 thread_define

=for ref

define functions that support threading at the perl level

=for example

 thread_define 'tline(a(n);b(n))', over {
  line $_[0], $_[1]; # make line compliant with threading
 };


C<thread_define> provides some support for threading (see
L<PDL::Indexing>) at the perl level. It allows you to do things for
which you normally would have resorted to PDL::PP (see L<PDL::PP>);
however, it is most useful to wrap existing perl functions so that the
new routine supports PDL threading.

C<thread_define> is used to define new I<threading aware>
functions. Its first argument is a symbolic repesentation of the new
function to be defined. The string is composed of the name of the new
function followed by its signature (see L<PDL::Indexing> and L<PDL::PP>)
in parentheses. The second argument is a subroutine that will be
called with the slices of the actual runtime arguments as specified by
its signature. Correct dimension sizes and minimal number of
dimensions for all arguments will be checked (assuming the rules of
PDL threading, see L<PDL::Indexing>).

The actual work is done by the C<signature> class which parses the signature
string, does runtime dimension checks and the routine C<threadover> that
generates the loop over all appropriate slices of pdl arguments and creates
pdls as needed.

Similar to C<pp_def> and its C<OtherPars> option it is possible to
define the new function so that it accepts normal perl args as well as
piddles. You do this by using the C<NOtherPars> parameter in the
signature. The number of C<NOtherPars> specified will be passed
unaltered into the subroutine given as the second argument of
C<thread_define>. Let's illustrate this with an example:

 PDL::thread_define 'triangles(inda();indb();indc()), NOtherPars => 2',
  PDL::over {
    ${$_[3]} .= $_[4].join(',',map {$_->at} @_[0..2]).",-1,\n";
  };

This defines a function C<triangles> that takes 3 piddles as input
plus 2 arguments which are passed into the routine unaltered. This routine
is used to collect lists of indices into a perl scalar that is passed by
reference. Each line is preceded by a prefix passed as C<$_[4]>. Here is
typical usage:

 $txt = '';
 triangles(pdl(1,2,3),pdl(1),pdl(0),\$txt," "x10);
 print $txt;

resulting in the following output

 1,1,0,-1,
 2,1,0,-1,
 3,1,0,-1,

which is used in
L<PDL::Graphics::TriD::VRML|PDL::Graphics::TriD::VRML>
to generate VRML output.

Currently, this is probably not much more than a POP (proof of principle)
but is hoped to be useful enough for some real life work.

Check L<PDL::PP|PDL::PP> for the format of the signature. Currently, the
C<[t]> qualifier and all type qualifiers are ignored.

=cut

sub PDL::over (&) { $_[0] }
sub PDL::thread_define ($$) {
  require PDL::PP::Signature;
  my ($str,$sub) = @_;
  my $others = 0;
  if ($str =~ s/[,]*\s*NOtherPars\s*=>\s*([0-9]+)\s*[,]*//) {$others = $1}
  barf "invalid string $str" unless $str =~ /\s*([^(]+)\((.+)\)\s*$/x;
  my ($name,$sigstr) = ($1,$2);
  print "defining '$name' with signature '$sigstr' and $others extra args\n"
						  if $PDL::debug;
  my $sig = new PDL::PP::Signature($sigstr);
  my $args = @{$sig->names}; # number of piddle arguments
  barf "no piddle args" if $args == 0;
  $args--;
  # TODO: $sig->dimcheck(@_) + proper creating generation
  my $def = "\@_[0..$args] = map {PDL::Core::topdl(\$_)} \@_[0..$args];\n".
            '$sig->checkdims(@_);
	     PDL::threadover($others,@_,$sig->realdims,$sig->creating,$sub)';
  my $package = caller;
  local $^W = 0; # supress the 'not shared' warnings
  print "defining...\nsub $name { $def }\n" if $PDL::debug;
  eval ("package $package; sub $name { $def }");
  barf "error defining $name: $@\n" if $@;
}

=head2 thread

=for ref

Use explicit threading over specified dimensions (see also L<PDL::Indexing>)

=for usage

 $b = $a->thread($dim,[$dim1,...])

=for example

 $a = zeroes 3,4,5;
 $b = $a->thread(2,0);

Same as L<PDL::thread1|/PDL::thread1>, i.e. uses thread id 1.

=cut

sub PDL::thread {
	my $var = shift;
	$var->threadI(1,\@_);
}

=head2 diagonal

=for ref

Returns the multidimensional diagonal over the specified dimensions.

=for usage

 $d = $x->diagonal(dim1, dim2,...)

=for example

 pdl> $a = zeroes(3,3,3);
 pdl> ($b = $a->diagonal(0,1))++;
 pdl> p $a
 [
  [
   [1 0 0]
   [0 1 0]
   [0 0 1]
  ]
  [
   [1 0 0]
   [0 1 0]
   [0 0 1]
  ]
  [
   [1 0 0]
   [0 1 0]
   [0 0 1]
  ]
 ]

=cut

sub PDL::diagonal {
	my $var = shift;
	$var->diagonalI(\@_);
}

=head2 thread1

=for ref

Explicit threading over specified dims using thread id 1.

=for usage

 $xx = $x->thread1(3,1)

=for example

 Wibble

Convenience function interfacing to
L<PDL::Slices::threadI|PDL::Slices/threadI>.

=cut

sub PDL::thread1 {
	my $var = shift;
	$var->threadI(1,\@_);
}

=head2 thread2

=for ref

Explicit threading over specified dims using thread id 2.

=for usage

 $xx = $x->thread2(3,1)

=for example

 Wibble

Convenience function interfacing to
L<PDL::Slices::threadI|PDL::Slices/threadI>.

=cut

sub PDL::thread2 {
	my $var = shift;
	$var->threadI(2,\@_);
}

=head2 thread3

=for ref

Explicit threading over specified dims using thread id 3.

=for usage

 $xx = $x->thread3(3,1)

=for example

 Wibble

Convenience function interfacing to
L<PDL::Slices::threadI|PDL::Slices/threadI>.

=cut

sub PDL::thread3 {
	my $var = shift;
	$var->threadI(3,\@_);
}

my %info = (
	    D => {
		  Name => 'Dimension',
		  Sub => \&PDL::Core::dimstr,
		 },
	    T => {
		  Name => 'Type',
		  Sub => sub { return $_[0]->type->shortctype; },
		 },
	    S => {
		  Name => 'State',
		  Sub => sub { my $state = '';
			       $state .= 'P' if $_[0]->allocated;
			       $state .= 'V' if $_[0]->vaffine &&
				 !$_[0]->allocated; # apparently can be both?
			       $state .= '-' if $state eq '';   # lazy eval
			       $state .= 'C' if $_[0]->anychgd;
 			       $state .= 'B' if $_[0]->badflag;
			       $state;
			     },
		 },
	    F => {
		  Name => 'Flow',
		  Sub => sub { my $flows = '';
			       $flows = ($_[0]->bflows ? 'b':'') .
				 '~' . ($_[0]->fflows ? 'f':'')
				   if ($_[0]->flows);
			       $flows;
			     },
		 },
	    M => {
		  Name => 'Mem',
		  Sub => sub { my ($size,$unit) = ($_[0]->allocated ?
						   $_[0]->nelem*
                      PDL::howbig($_[0]->get_datatype)/1024 : 0, 'KB');
			       if ($size > 0.01*1024) { $size /= 1024;
							$unit = 'MB' };
			       return sprintf "%6.2f%s",$size,$unit;
			     },
		 },
	    C => {
		  Name => 'Class',
		  Sub => sub { ref $_[0] }
		 },
	    A => {
		  Name => 'Address',
		  Sub => sub { use Config;
                               my $ivdformat = $Config{ivdformat};
                               $ivdformat =~ s/"//g;
                               sprintf "%$ivdformat", $_[0]->address }
		 },
	   );

my $allowed = join '',keys %info;

# print the dimension information about a pdl in some appropriate form
sub dimstr {
  my $this = shift;

  my @dims = $this->dims;
  my @ids  = $this->threadids;
  my ($nids,$i) = ($#ids - 1,0);
  my $dstr = 'D ['. join(',',@dims[0..($ids[0]-1)]) .']';
  if ($nids > 0) {
    for $i (1..$nids) {
      $dstr .= " T$i [". join(',',@dims[$ids[$i]..$ids[$i+1]-1]) .']';
    }
  }
  return $dstr;
}

=head2 sever

=for ref

sever any links of this piddle to parent piddles

In PDL it is possible for a piddle to be just another
view into another piddle's data. In that case we call
this piddle a I<virtual piddle> and the original piddle owning
the data its parent. In other languages these alternate views
sometimes run by names such as I<alias> or I<smart reference>.

Typical functions that return such piddles are C<slice>, C<xchg>,
C<index>, etc. Sometimes, however, you would like to separate the
I<virtual piddle> from its parent's data and just give it a life of
its own (so that manipulation of its data doesn't change the parent).
This is simply achieved by using C<sever>. For example,

=for example

   $a = $pdl->index(pdl(0,3,7))->sever;
   $a++;       # important: $pdl is not modified!

In many (but not all) circumstances it acts therefore similar to
L<copy|PDL::Core/copy>.
However, in general performance is better with C<sever> and secondly,
C<sever> doesn't lead to futile copying when used on piddles that
already have their own data. On the other hand, if you really want to make
sure to work on a copy of a piddle use L<copy|PDL::Core/copy>.

   $a = zeroes(20);
   $a->sever;   # NOOP since $a is already its own boss!

Again note: C<sever> I<is not> the same as L<copy|PDL::Core/copy>!
For example,

   $a = zeroes(1); # $a does not have a parent, i.e. it is not a slice etc
   $b = $a->sever; # $b is now pointing to the same piddle as $a
   $b++;
   print $a;
 [1]

but

   $a = zeroes(1);
   $b = $a->copy; # $b is now pointing to a new piddle
   $b++;
   print $a;
 [0]


=head2 info

=for ref

Return formatted information about a piddle.

=for usage

 $x->info($format_string);

=for example

 print $x->info("Type: %T Dim: %-15D State: %S");

Returns a string with info about a piddle. Takes an optional
argument to specify the format of information a la sprintf.
Format specifiers are in the form C<%E<lt>widthE<gt>E<lt>letterE<gt>>
where the width is optional and the letter is one of

=over 7

=item T

Type

=item D

Formatted Dimensions

=item F

Dataflow status

=item S

Some internal flags (P=physical,V=Vaffine,C=changed,B=may contain bad data)

=item C

Class of this piddle, i.e. C<ref $pdl>

=item A

Address of the piddle struct as a unique identifier

=item M

Calculated memory consumption of this piddle's data area

=back

=cut

sub PDL::info {
    my ($this,$str) = @_;
    $str = "%C: %T %D" unless defined $str;
    return ref($this)."->null" if $this->isnull;
    my @hash = split /(%[-,0-9]*[.]?[0-9]*\w)/, $str;
    my @args = ();
    my $nstr = '';
    for my $form (@hash) {
	if ($form =~ s/^%([-,0-9]*[.]?[0-9]*)(\w)$/%$1s/) {
	    barf "unknown format specifier $2" unless defined $info{$2};
	    push @args, &{$info{$2}->{Sub}}($this);
	}
	$nstr .= $form;
    }
    return sprintf $nstr, @args;
}

=head2 approx

=for ref

test for approximately equal values (relaxed C<==>)

=for example

  # ok if all corresponding values in
  # piddles are within 1e-8 of each other
  print "ok\n" if all approx $a, $b, 1e-8;

C<approx> is a relaxed form of the C<==> operator and
often more appropriate for floating point types (C<float>
and C<double>).

Usage:

=for usage

  $res = approx $a, $b [, $eps]

The optional parameter C<$eps> is remembered across invocations
and initially set to 1e-6, e.g.

  approx $a, $b;         # last $eps used (1e-6 initially)
  approx $a, $b, 1e-10;  # 1e-10
  approx $a, $b;         # also 1e-10

=cut

my $approx = 1e-6;  # a reasonable init value
sub PDL::approx {
  my ($a,$b,$eps) = @_;
  $eps = $approx unless defined $eps;  # the default eps
  $approx = $eps;    # remember last eps
  # NOTE: ($a-$b)->abs breaks for non-piddle inputs
  return abs($a-$b) < $eps;
}

=head2 mslice

=for ref

Convenience interface to L<slice|PDL::Slices/slice>,
allowing easier inclusion of dimensions in perl code.

=for usage

 $a = $x->mslice(...);

=for example

 # below is the same as $x->slice("5:7,:,3:4:2")
 $a = $x->mslice([5,7],X,[3,4,2]);

=cut

# called for colon-less args
# preserves parens if present
sub intpars { $_[0] =~ /\(.*\)/ ? '('.int($_[0]).')' : int $_[0] }

sub PDL::mslice {
        my($pdl) = shift;
        return $pdl->slice(join ',',(map {
                        !ref $_ && $_ eq "X" ? ":" :
			   ref $_ eq "ARRAY" ? $#$_ > 1 && @$_[2] == 0 ?
			   "(".int(@$_[0]).")" : join ':', map {int $_} @$_ :
                        !ref $_ ? intpars $_ :
                        die "INVALID SLICE DEF $_"
                } @_));
}

=head2 nslice_if_pdl

=for ref

If C<$self> is a PDL, then calls C<slice> with all but the last
argument, otherwise $self->($_[-1]) is called where $_[-1} is the
original argument string found during PDL::NiceSlice filtering.

DEVELOPER'S NOTE: this routine is found in Core.pm.PL but would be
better placed in Slices/slices.pd.  It is likely to be moved there
and/or changed to "slice_if_pdl" for PDL 3.0.

=for usage

 $a = $x->nslice_if_pdl(...,'(args)');

=cut

sub PDL::nslice_if_pdl {
   my ($pdl) = shift;
   my ($orig_args) = pop;

   # warn "PDL::nslice_if_pdl called with (@_) args, originally ($orig_args)\n";

   if (ref($pdl) eq 'CODE') {
      # barf('PDL::nslice_if_pdl tried to process a sub ref, please use &$subref() syntax')
      @_ = eval $orig_args;
      goto &$pdl;
   }

   unshift @_, $pdl;
   goto &PDL::slice;
}

=head2 nslice

=for ref

c<nslice> was an internally used interface for L<PDL::NiceSlice|PDL::NiceSlice>,
but is now merely a springboard to L<PDL::Slice|PDL::Slice>.  It is deprecated
and likely to disappear in PDL 3.0.

=cut
sub PDL::nslice {
    unless($PDL::nslice_warning_issued) {
	$PDL::nslice_warning_issued = 1;
	warn "WARNING: deprecated call to PDL::nslice detected.  Use PDL::slice instead.\n (Warning will be issued only once per session)\n";
    }
    goto &PDL::slice;
}

sub blessed {
    my $ref = ref(shift);
    return $ref =~ /^(REF|SCALAR|ARRAY|HASH|CODE|GLOB||)$/ ? 0 : 1;
}

# Convert numbers to PDL if not already

sub PDL::topdl {
    return $_[0]->new(@_[1..$#_]) if($#_ > 1); # PDLify an ARRAY
    return $_[1] if blessed($_[1]); # Fall through
    return $_[0]->new($_[1]) if ref(\$_[1]) eq  'SCALAR' or
           ref($_[1]) eq 'ARRAY';
    barf("Can not convert a ".ref($_[1])." to a ".$_[0]);
0;}

# Convert everything to PDL if not blessed

sub alltopdl {
    if (ref $_[2] eq 'PDL::Type') {
      return convert($_[1], $_[2]) if blessed($_[1]);
      return $_[0]->new($_[2], $_[1]) if $_[0] eq 'PDL';
    }
    return $_[1] if blessed($_[1]); # Fall through
    return $_[0]->new($_[1]);
0;}


=head2 inplace

=for ref

Flag a piddle so that the next operation is done 'in place'

=for usage

 somefunc($x->inplace); somefunc(inplace $x);

In most cases one likes to use the syntax C<$y = f($x)>, however
in many case the operation C<f()> can be done correctly
'in place', i.e. without making a new copy of the data for
output. To make it easy to use this, we write C<f()> in such
a way that it operates in-place, and use C<inplace> to hint
that a new copy should be disabled. This also makes for
clear syntax.

Obviously this will not work for all functions, and if in
doubt see the function's documentation. However one
can assume this is
true for all elemental functions (i.e. those which just
operate array element by array element like C<log10>).

=for example

 pdl> $x = xvals zeroes 10;
 pdl> log10(inplace $x)
 pdl> p $x
 [-inf 0    0.30103 0.47712125 0.60205999    0.69897 0.77815125 0.84509804 0.90308999 0.95424251]

=cut

# Flag pdl for in-place operations

sub PDL::inplace {
    my $pdl = PDL->topdl(shift); $pdl->set_inplace(1); return $pdl;
}

# Copy if not inplace


=head2 is_inplace

=for ref

Test the in-place flag on a piddle

=for usage

  $out = ($in->is_inplace) ? $in : zeroes($in);
  $in->set_inplace(0)

Provides access to the L<inplace|/inplace> hint flag, within the perl millieu.
That way functions you write can be inplace aware... If given an
argument the inplace flag will be set or unset depending on the value
at the same time. Can be used for shortcut tests that delete the
inplace flag while testing:

  $out = ($in->is_inplace(0)) ? $in : zeroes($in); # test & unset!

=head2 set_inplace

=for ref

Set the in-place flag on a piddle

=for usage

  $out = ($in->is_inplace) ? $in : zeroes($in);
  $in->set_inplace(0);

Provides access to the L<inplace|/inplace> hint flag, within the perl millieu.
Useful mainly for turning it OFF, as L<inplace|/inplace> turns it ON more
conveniently.

=head2 new_or_inplace

=for usage

    $a = new_or_inplace(shift());
    $a = new_or_inplace(shift(),$preferred_type);

=for ref

Return back either the argument pdl or a copy of it depending on whether
it be flagged in-place or no.  Handy for building inplace-aware functions.

If you specify a preferred type (must be one of the usual PDL type strings,
a list ref containing several of them, or a string containing several of them),
then the copy is coerced into the first preferred type listed if it is not
already one of the preferred types.

Note that if the inplace flag is set, no coersion happens even if you specify
a preferred type.

=cut

sub new_or_inplace {
	my $pdl = shift;
	my $preferred = shift;
	my $force = shift;
	if($pdl->is_inplace) {
		$pdl->set_inplace(0);
		return $pdl;
	} else {
	    unless(defined($preferred)) {
		return $pdl->copy;
	    } else {
		$preferred = join(",",@$preferred) if(ref($preferred) eq 'ARRAY');
		my $s = "".$pdl->type;
		if($preferred =~ m/(^|\,)$s(\,|$)/i) {
		    # Got a match - the PDL is one of the preferred types.
		    return $pdl->copy();
		} else {
		    # No match - promote it to the first in the list.
		    $preferred =~ s/\,.*//;
		    my $out = PDL::new_from_specification('PDL',new PDL::Type($preferred),$pdl->dims);
		    $out .= $pdl;
		    return $out;
		}
	    }
	}
	barf "PDL::Core::new_or_inplace - This can never happen!";
}
*PDL::new_or_inplace = \&new_or_inplace;

# Allow specifications like zeroes(10,10) or zeroes($x)
# or zeroes(inplace $x) or zeroes(float,4,3)

=head2 new_from_specification

=for ref

Internal method: create piddle by specification

This is the argument processing method called by L<zeroes|/zeroes>
and some other functions
which constructs piddles from argument lists of the form:

 [type], $nx, $ny, $nz,...

For C<$nx>, C<$ny>, etc. 0 and 1D piddles are allowed.
Giving those has the same effect as if saying C<$arg-E<gt>list>,
e.g.

   1, pdl(5,2), 4

is equivalent to

   1, 5, 2, 4

Note, however, that in all functions using C<new_from_specification>
calling C<func $piddle> will probably not do what you want. So to play safe
use (e.g. with zeroes)

  $pdl = zeroes $dimpdl->list;

Calling

  $pdl = zeroes $dimpdl;

will rather be equivalent to

  $pdl = zeroes $dimpdl->dims;

However,

  $pdl = zeroes ushort, $dimpdl;

will again do what you intended since it is interpreted
as if you had said

  $pdl = zeroes ushort, $dimpdl->list;

This is unfortunate and confusing but no good solution seems
obvious that would not break existing scripts.

=cut

sub PDL::new_from_specification{
    my $class = shift;
    my $type = ref($_[0]) eq 'PDL::Type' ? ${shift @_}[0]  : $PDL_D;
    my $nelems = 1; my @dims;
    for (@_) {
       if (ref $_) {
         barf "Trying to use non-piddle as dimensions?" unless $_->isa('PDL');
         barf "Trying to use multi-dim piddle as dimensions?"
              if $_->getndims > 1;
         warn "creating > 10 dim piddle (piddle arg)!"
              if $_->nelem > 10;
         for my $dim ($_->list) {$nelems *= $dim; push @dims, $dim}
       } else {
          if ($_) {  # quiet warnings when $_ is the empty string
             barf "Dimensions must be non-negative" if $_<0;
             $nelems *= $_; push @dims, $_
          } else {
             $nelems *= 0; push @dims, 0;
          }
       }
    }
    my $pdl = $class->initialize();
    $pdl->set_datatype($type);
    $pdl->setdims([@dims]);
    print "Dims: ",(join ',',@dims)," DLen: ",(length $ {$pdl->get_dataref}),"\n" if $PDL::debug;
    return $pdl;
}

=head2 isnull

=for ref

Test whether a piddle is null

=for usage

 croak("Input piddle mustn't be null!")
     if $input_piddle->isnull;

This function returns 1 if the piddle is null, zero if it is not. The purpose
of null piddles is to "tell" any PDL::PP methods to allocate new memory for
an output piddle, but only when that PDL::PP method is called in full-arg
form. Of course, there's no reason you couldn't commandeer the special value
for your own purposes, for which this test function would prove most helpful.
But in general, you shouldn't need to test for a piddle's nullness.

See L</Null PDLs> for more information.

=head2 isempty

=for ref

Test whether a piddle is empty

=for usage

 print "The piddle has zero dimension\n" if $pdl->isempty;

This function returns 1 if the piddle has zero elements. This is
useful in particular when using the indexing function which. In the
case of no match to a specified criterion, the returned piddle has
zero dimension.

 pdl> $a=sequence(10)
 pdl> $i=which($a < -1)
 pdl> print "I found no matches!\n" if ($i->isempty);
 I found no matches!

Note that having zero elements is rather different from the concept
of being a null piddle, see the L<PDL::FAQ|PDL::FAQ> and
L<PDL::Indexing|PDL::Indexing>
manpages for discussions of this.

=cut

sub PDL::isempty {
    my $pdl=shift;
    return ($pdl->nelem == 0);
}

=head2 zeroes

=for ref

construct a zero filled piddle from dimension list or template piddle.

Various forms of usage,

(i) by specification or (ii) by template piddle:

=for usage

 # usage type (i):
 $a = zeroes([type], $nx, $ny, $nz,...);
 $a = PDL->zeroes([type], $nx, $ny, $nz,...);
 $a = $pdl->zeroes([type], $nx, $ny, $nz,...);
 # usage type (ii):
 $a = zeroes $b;
 $a = $b->zeroes
 zeroes inplace $a;     # Equivalent to   $a .= 0;
 $a->inplace->zeroes;   #  ""

=for example

 pdl> $z = zeroes 4,3
 pdl> p $z
 [
  [0 0 0 0]
  [0 0 0 0]
  [0 0 0 0]
 ]
 pdl> $z = zeroes ushort, 3,2 # Create ushort array
 [ushort() etc. with no arg returns a PDL::Types token]

See also L<new_from_specification|/PDL::new_from_specification>
for details on using piddles in the dimensions list.

=cut

sub zeroes { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? PDL::zeroes($_[0]) : PDL->zeroes(@_) }
sub PDL::zeroes {
    my $class = shift;
    my $pdl = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
    $pdl.=0;
    return $pdl;
}

# Create convenience aliases for zeroes

=head2 zeros

=for ref

construct a zero filled piddle (see zeroes for usage)

=cut

*zeros = \&zeroes;
*PDL::zeros = \&PDL::zeroes;

=head2 ones

=for ref

construct a one filled piddle

=for usage

 $a = ones([type], $nx, $ny, $nz,...);
 etc. (see 'zeroes')

=for example

 see zeroes() and add one

See also L<new_from_specification|/PDL::new_from_specification>
for details on using piddles in the dimensions list.

=cut

sub ones { ref($_[0]) && ref($_[0]) ne 'PDL::Type' ? PDL::ones($_[0]) : PDL->ones(@_) }
sub PDL::ones {
    my $class = shift;
    my $pdl = scalar(@_)? $class->new_from_specification(@_) : $class->new_or_inplace;
    $pdl.=1;
    return $pdl;
}

=head2 reshape

=for ref

Change the shape (i.e. dimensions) of a piddle, preserving contents.

=for usage

 $x->reshape(NEWDIMS); reshape($x, NEWDIMS);

The data elements are preserved, obviously they will wrap
differently and get truncated if the new array is shorter.
If the new array is longer it will be zero-padded.

***Potential incompatibility with earlier versions of PDL****
If the list of C<NEWDIMS> is empty C<reshape> will just drop
all dimensions of size 1 (preserving the number of elements):

  $a = sequence(3,4,5);
  $b = $a(1,3);
  $b->reshape();
  print $b->info;
 PDL: Double D [5]

Dimensions of size 1 will also be dropped if C<reshape> is
invoked with the argument -1:

  $b = $a->reshape(-1);

As opposed to C<reshape> without arguments, C<reshape(-1)>
preserves dataflow:

  $a = ones(2,1,2);
  $b = $a(0)->reshape(-1);
  $b++;
  print $a;
 [
  [
   [2 1]
  ]
  [
   [2 1]
  ]
 ]

Important: Piddles are changed inplace!  

Note: If C<$x> is connected to any other PDL (e.g. if it is a slice)
then the connection is first severed.

=for example

 pdl> $x = sequence(10)
 pdl> reshape $x,3,4; p $x
 [
  [0 1 2]
  [3 4 5]
  [6 7 8]
  [9 0 0]
 ]
 pdl> reshape $x,5; p $x
 [0 1 2 3 4]

=cut

*reshape = \&PDL::reshape;
sub PDL::reshape{
    if (@_ == 2 && $_[1] == -1) {  # a slicing reshape that drops 1-dims
	return $_[0]->slice( map { $_==1 ? [0,0,0] : [] } $_[0]->dims);
    }
    my $pdl = topdl($_[0]);
    $pdl->sever;
    my $nelem = $pdl->nelem;
    my @dims = grep defined, @_[1..$#_];
    for my $dim(@dims) { barf "reshape: invalid dim size '$dim'" if $dim < 0 }
    @dims = grep($_ != 1, $pdl->dims) if @dims == 0; # get rid of dims of size 1
    $pdl->setdims([@dims]);
    $pdl->upd_data;
    if ($pdl->nelem > $nelem) {
	my $tmp=$pdl->clump(-1)->slice("$nelem:-1");
	$tmp .= 0;
    }
    $_[0] = $pdl;
    return $pdl;
}

=head2 squeeze

=for ref

eliminate all singleton dimensions (dims of size 1)

=for example

 $b = $a(0,0)->squeeze;

Alias for C<reshape(-1)>. Removes all singleton dimensions
and preserves dataflow. A more concise interface is
provided by L<PDL::NiceSlice|PDL::NiceSlice> via modifiers:

 use PDL::NiceSlice;
 $b = $a(0,0;-); # same as $a(0,0)->squeeze

=cut

*squeeze = \&PDL::squeeze;
sub PDL::squeeze { return $_[0]->reshape(-1) }

=head2 flat

=for ref

flatten a piddle (alias for C<< $pdl->clump(-1) >>)

=for example

  $srt = $pdl->flat->qsort;

Useful method to make a 1D piddle from an
arbitrarily sized input piddle. Data flows
back and forth as usual with slicing routines.
Falls through if argument already E<lt>= 1D.

=cut

*flat = \&PDL::flat;
sub PDL::flat { # fall through if < 2D
  return my $dummy = $_[0]->getndims != 1 ? $_[0]->clump(-1) : $_[0];
}

=head2 convert

=for ref

Generic datatype conversion function

=for usage

 $y = convert($x, $newtypenum);

=for example

 $y = convert $x, long
 $y = convert $x, ushort

C<$newtype> is a type B<number>, for convenience they are
returned by C<long()> etc when called without arguments.

=cut

# type to type conversion functions (with automatic conversion to pdl vars)

sub PDL::convert {
  # we don't allow inplace conversion at the moment
  # (not sure what needs to be changed)
  barf 'Usage: $y = convert($x, $newtypenum)'."\n" if $#_!=1;
  my ($pdl,$type)= @_;
  $pdl = pdl($pdl) unless ref $pdl; # Allow normal numbers
  $type = $type->enum if ref($type) eq 'PDL::Type';
  barf 'Usage: $y = convert($x, $newtypenum)'."\n" unless Scalar::Util::looks_like_number($type);
  return $pdl if $pdl->get_datatype == $type;
  # make_physical-call: temporary stopgap to work around core bug
  my $conv = $pdl->flowconvert($type)->make_physical->sever;
  return $conv;
}

=head2 Datatype_conversions

=for ref

byte|short|ushort|long|indx|longlong|float|double (shorthands to convert datatypes)

=for usage

 $y = double $x; $y = ushort [1..10];
 # all of the above listed shorthands behave similarly

When called with a piddle argument, they convert to the specific
datatype.

When called with a numeric, list, listref, or string argument they
construct a new piddle. This is a convenience to avoid having to be
long-winded and say C<$x = long(pdl(42))>

Thus one can say:

 $a = float(1,2,3,4);           # 1D
 $a = float q[1 2 3; 4 5 6];    # 2D
 $a = float([1,2,3],[4,5,6]);   # 2D
 $a = float([[1,2,3],[4,5,6]]); # 2D

Note the last three give identical results, and the last two are exactly
equivalent - a list is automatically converted to a list reference for
syntactic convenience. i.e. you can omit the outer C<[]>

When called with no arguments, these functions return a special type token.
This allows syntactical sugar like:

 $x = ones byte, 1000,1000;

This example creates a large piddle directly as byte datatype in
order to save memory.

In order to control how undefs are handled in converting from perl lists to
PDLs, one can set the variable C<$PDL::undefval>;
see the function L<pdl()|/pdl> for more details.

=for example

 pdl> p $x=sqrt float [1..10]
 [1 1.41421 1.73205 2 2.23607 2.44949 2.64575 2.82843 3 3.16228]
 pdl> p byte $x
 [1 1 1 2 2 2 2 2 3 3]

=head2 byte

Convert to byte datatype

=head2 short

Convert to short datatype

=head2 ushort

Convert to ushort datatype

=head2 long

Convert to long datatype

=head2 indx

Convert to indx datatype

=head2 longlong

Convert to longlong datatype

=head2 float

Convert to float datatype

=head2 double

Convert to double datatype

=head2 type

=for ref

return the type of a piddle as a blessed type object

A convenience function for use with the piddle constructors, e.g.

=for example

 $b = PDL->zeroes($a->type,$a->dims,3);
 die "must be float" unless $a->type == float;

See also the discussion of the C<PDL::Type> class in L<PDL::Types>.
Note that the C<PDL::Type> objects have overloaded comparison and
stringify operators so that you can compare and print types:

 $a = $a->float if $a->type < float;
 $t = $a->type; print "Type is $t\";

=cut

sub PDL::type { return PDL::Type->new($_[0]->get_datatype); }

##################### Printing ####################

# New string routine

$PDL::_STRINGIZING = 0;

sub PDL::string {
    my($self,$format)=@_;
    my $to_return = eval {
		if($PDL::_STRINGIZING) {
			return "ALREADY_STRINGIZING_NO_LOOPS";
		}
		local $PDL::_STRINGIZING = 1;
		my $ndims = $self->getndims;
		if($self->nelem > $PDL::toolongtoprint) {
			return "TOO LONG TO PRINT";
		}
		if ($ndims==0) {
		if ( $self->badflag() and $self->isbad() ) {
			return "BAD";
		} else {
			my @x = $self->at();
			return ($format ? sprintf($format, $x[0]) : "$x[0]");
		}
		}
		return "Null" if $self->isnull;
		return "Empty[".join("x",$self->dims)."]" if $self->isempty; # Empty piddle
		local $sep  = $PDL::use_commas ? "," : " ";
		local $sep2 = $PDL::use_commas ? "," : "";
		if ($ndims==1) {
		   return str1D($self,$format);
		}
		else{
		   return strND($self,$format,0);
		}
	};
	if ($@) {
		# Remove reference to this line:
		$@ =~ s/\s*at .* line \d+\s*\.\n*/./;
		PDL::Core::barf("Stringizing problem: $@");
	}
	return $to_return;
}

############## Section/subsection functions ###################

=head2 list

=for ref

Convert piddle to perl list

=for usage

 @tmp = list $x;

Obviously this is grossly inefficient for the large datasets PDL is designed to
handle. This was provided as a get out while PDL matured. It  should now be mostly
superseded by superior constructs, such as PP/threading. However it is still
occasionally useful and is provied for backwards compatibility.

=for example

 for (list $x) {
   # Do something on each value...
 }

If you compile PDL with bad value support (the default), your machine's
docs will also say this:

=for bad

list converts any bad values into the string 'BAD'.

=cut

# No threading, just the ordinary dims.
sub PDL::list{ # pdl -> @list
     barf 'Usage: list($pdl)' if $#_!=0;
     my $pdl = PDL->topdl(shift);
     return () if nelem($pdl)==0;
     @{listref_c($pdl)};
}

=head2 unpdl

=for ref

Convert piddle to nested Perl array references

=for usage

 $arrayref = unpdl $x;

This function returns a reference to a Perl list-of-lists structure
equivalent to the input piddle (within the limitation that while values
of elements should be preserved, the detailed datatypes will not as
perl itself basically has "number" data rather than byte, short, int...
E.g., C<< sum($x - pdl( $x->unpdl )) >> should equal 0.

Obviously this is grossly inefficient in memory and processing for the
large datasets PDL is designed to handle. Sometimes, however, you really
want to move your data back to Perl, and with proper dimensionality,
unlike C<list>.

=for example

 use JSON;
 my $json = encode_json unpdl $pdl;

If you compile PDL with bad value support (the default), your machine's
docs will also say this:

=cut

=for bad

unpdl converts any bad values into the string 'BAD'.

=cut

sub PDL::unpdl {
    barf 'Usage: unpdl($pdl)' if $#_ != 0;
    my $pdl = PDL->topdl(shift);
    return [] if $pdl->nelem == 0;
    return _unpdl_int($pdl);
}

sub _unpdl_int {
    my $pdl = shift;
    if ($pdl->ndims > 1) {
        return [ map { _unpdl_int($_) } dog $pdl ];
    } else {
        return listref_c($pdl);
    }
}

=head2 listindices

=for ref

Convert piddle indices to perl list

=for usage

 @tmp = listindices $x;

C<@tmp> now contains the values C<0..nelem($x)>.

Obviously this is grossly inefficient for the large datasets PDL is designed to
handle. This was provided as a get out while PDL matured. It  should now be mostly
superseded by superior constructs, such as PP/threading. However it is still
occasionally useful and is provied for backwards compatibility.

=for example

 for $i (listindices $x) {
   # Do something on each value...
 }

=cut

sub PDL::listindices{ # Return list of index values for 1D pdl
     barf 'Usage: list($pdl)' if $#_!=0;
     my $pdl = shift;
     return () if nelem($pdl)==0;
     barf 'Not 1D' if scalar(dims($pdl)) != 1;
     return (0..nelem($pdl)-1);
}

=head2 set

=for ref

Set a single value inside a piddle

=for usage

 set $piddle, @position, $value

C<@position> is a coordinate list, of size equal to the
number of dimensions in the piddle. Occasionally useful,
mainly provided for backwards compatibility as superseded
by use of L<slice|PDL::Slices/slice> and assignment operator C<.=>.

=for example

 pdl> $x = sequence 3,4
 pdl> set $x, 2,1,99
 pdl> p $x
 [
  [ 0  1  2]
  [ 3  4 99]
  [ 6  7  8]
  [ 9 10 11]
 ]

=cut

sub PDL::set{    # Sets a particular single value
    barf 'Usage: set($pdl, $x, $y,.., $value)' if $#_<2;
    my $self  = shift; my $value = pop @_;
    set_c ($self, [@_], $value);
    return $self;
}

=head2 at

=for ref

Returns a single value inside a piddle as perl scalar.

=for usage

 $z = at($piddle, @position); $z=$piddle->at(@position);

C<@position> is a coordinate list, of size equal to the
number of dimensions in the piddle. Occasionally useful
in a general context, quite useful too inside PDL internals.

=for example

 pdl> $x = sequence 3,4
 pdl> p $x->at(1,2)
 7

If you compile PDL with bad value support (the default), your machine's
docs will also say this:

=for bad

at converts any bad values into the string 'BAD'.

=cut

sub PDL::at {     # Return value at ($x,$y,$z...)
    barf 'Usage: at($pdl, $x, $y, ...)' if $#_<0;
    my $self = shift;
    at_bad_c ($self, [@_]);
}

=head2 sclr

=for ref

return a single value from a piddle as a scalar

=for example

  $val = $a(10)->sclr;
  $val = sclr inner($a,$b);

The C<sclr> method is useful to turn a piddle into a normal Perl
scalar. Its main advantage over using C<at> for this purpose is the fact
that you do not need to worry if the piddle is 0D, 1D or higher dimensional.
Using C<at> you have to supply the correct number of zeroes, e.g.

  $a = sequence(10);
  $b = $a->slice('4');
  print $b->sclr; # no problem
  print $b->at(); # error: needs at least one zero

C<sclr> is generally used when a Perl scalar is required instead
of a one-element piddle. If the input is a multielement piddle
the first value is returned as a Perl scalar. You can optionally
switch on checks to ensure that the input piddle has only one element:

  PDL->sclr({Check => 'warn'}); # carp if called with multi-el pdls
  PDL->sclr({Check => 'barf'}); # croak if called with multi-el pdls

are the commands to switch on warnings or raise an error if
a multielement piddle is passed as input. Note that these options
can only be set when C<sclr> is called as a class method (see
example above). Use

  PDL->sclr({Check=>0});

to switch these checks off again (default setting);
When called as a class method the resulting check mode is returned
(0: no checking, 1: warn, 2: barf).

=cut

my $chkmode = 0; # default mode no checks
use PDL::Options;
sub PDL::sclr {
  my $this = shift;
  if (ref $this) { # instance method
    carp "multielement piddle in 'sclr' call"
      if ($chkmode == 1 && $this->nelem > 1);
    croak "multielement piddle in 'sclr' call"
      if ($chkmode == 2 && $this->nelem > 1);
    return sclr_c($this);
  } else {  # class method
    my $check = (iparse({Check=>0},ifhref($_[0])))[1];
    if (lc($check) eq 'warn') {$chkmode = 1}
    elsif (lc($check) eq 'barf') {$chkmode = 2}
    else {$chkmode = $check != 0 ? 1 : 0}
    return $chkmode;
  }
}

=head2 cat

=for ref

concatenate piddles to N+1 dimensional piddle

Takes a list of N piddles of same shape as argument,
returns a single piddle of dimension N+1.

=for example

 pdl> $x = cat ones(3,3),zeroes(3,3),rvals(3,3); p $x
 [
  [
   [1 1 1]
   [1 1 1]
   [1 1 1]
  ]
  [
   [0 0 0]
   [0 0 0]
   [0 0 0]
  ]
  [
   [1 1 1]
   [1 0 1]
   [1 1 1]
  ]
 ]

If you compile PDL with bad value support (the default), your machine's
docs will also say this:

=for bad

The output piddle is set bad if any input piddles have their bad flag set.

Similar functions include L<append|PDL::Primitive/append>, which
appends only two piddles along their first dimension, and
L<glue|PDL::Primitive/glue>, which can append more than two piddles
along an arbitrary dimension.

Also consider the generic constructor L<pdl|pdl>, which can handle
piddles of different sizes (with zero-padding), and will return a
piddle of type 'double' by default, but may be considerably faster (up
to 10x) than cat.

=cut

sub PDL::cat {
	my $res;
	my $old_err = $@;
	$@ = '';
	eval {
		$res = $_[0]->initialize;
		$res->set_datatype((sort {$b<=>$a} map{$_->get_datatype} @_)[0] );

		my @resdims = $_[0]->dims;
		for my $i(0..$#_){
		    my @d = $_[$i]->dims;
		    for my $j(0..$#d) {
			$resdims[$j] = $d[$j] if( !defined($resdims[$j]) or $resdims[$j]==1 );
			die "mismatched dims\n" if($d[$j] != 1 and $resdims[$j] != $d[$j]);
		    }
		}
		$res->setdims( [@resdims,scalar(@_) ]);
		my ($i,$t); my $s = ":,"x@resdims;
		for (@_) { $t = $res->slice($s."(".$i++.")"); $t .= $_}

		# propagate any bad flags
		for (@_) { if ( $_->badflag() ) { $res->badflag(1); last; } }
	};
	if ($@ eq '') {
		# Restore the old error and return
		$@ = $old_err;
		return $res;
	}

	# If we've gotten here, then there's been an error, so check things
	# and barf out a meaningful message.

	if  ($@ =~ /PDL::Ops::assgn|mismatched/
	  or $@ =~ /"badflag"/
	  or $@ =~ /"initialize"/) {
		my (@mismatched_dims, @not_a_piddle);
		my $i = 0;

		# non-piddles and/or dimension mismatch.  The first argument is
		# ok unless we have the "initialize" error:
		if ($@ =~ /"initialize"/) {
			# Handle the special case that there are *no* args passed:
			barf("Called PDL::cat without any arguments") unless @_;

			while ($i < @_ and not eval{ $_[$i]->isa('PDL')}) {
				push (@not_a_piddle, $i);
				$i++;
			}
		}

		# Get the dimensions of the first actual piddle in the argument
		# list:
		my $first_piddle_argument = $i;
		my @dims = $_[$i]->dims if ref($_[$i]) =~ /PDL/;

		# Figure out all the ways that the caller screwed up:
		while ($i < @_) {
			my $arg = $_[$i];
			# Check if not a piddle
			if (not eval{$arg->isa('PDL')}) {
				push @not_a_piddle, $i;
			}
			# Check if different number of dimensions
			elsif (@dims != $arg->ndims) {
				push @mismatched_dims, $i;
			}
			# Check if size of dimensions agree
			else {
				DIMENSION: for (my $j = 0; $j < @dims; $j++) {
					if ($dims[$j] != $arg->dim($j)) {
						push @mismatched_dims, $i;
						last DIMENSION;
					}
				}
			}
			$i++;
		}

		# Construct a message detailing the results
		my $message = "bad arguments passed to function PDL::cat\n";
		if (@mismatched_dims > 1) {
			# Many dimension mismatches
			$message .= "The dimensions of arguments "
						. join(', ', @mismatched_dims[0 .. $#mismatched_dims-1])
						. " and $mismatched_dims[-1] do not match the\n"
						. "   dimensions of the first piddle argument (argument $first_piddle_argument).\n";
		}
		elsif (@mismatched_dims) {
			# One dimension mismatch
			$message .= "The dimensions of argument $mismatched_dims[0] do not match the\n"
						. "   dimensions of the first piddle argument (argument $first_piddle_argument).\n";
		}
		if (@not_a_piddle > 1) {
			# many non-piddles
			$message .= "Arguments " . join(', ', @not_a_piddle[0 .. $#not_a_piddle-1])
						. " and $not_a_piddle[-1] are not piddles.\n";
		}
		elsif (@not_a_piddle) {
			# one non-piddle
			$message .= "Argument $not_a_piddle[0] is not a piddle.\n";
		}

		# Handle the edge case that something else happened:
		if (@not_a_piddle == 0 and @mismatched_dims == 0) {
			barf("cat: unknown error from the internals:\n$@");
		}

		$message .= "(Argument counting starts from zero.)";
		croak($message);
	}
	else {
		croak("cat: unknown error from the internals:\n$@");
	}
}

=head2 dog

=for ref

Opposite of 'cat' :). Split N dim piddle to list of N-1 dim piddles

Takes a single N-dimensional piddle and splits it into a list of N-1 dimensional
piddles. The breakup is done along the last dimension.
Note the dataflown connection is still preserved by default,
e.g.:

=for example

 pdl> $p = ones 3,3,3
 pdl> ($a,$b,$c) = dog $p
 pdl> $b++; p $p
 [
  [
   [1 1 1]
   [1 1 1]
   [1 1 1]
  ]
  [
   [2 2 2]
   [2 2 2]
   [2 2 2]
  ]
  [
   [1 1 1]
   [1 1 1]
   [1 1 1]
  ]
 ]

=for options

 Break => 1   Break dataflow connection (new copy)

If you compile PDL with bad value support (the default), your machine's
docs will also say this:

=for bad

The output piddles are set bad if the original piddle has its bad flag set.

=cut

sub PDL::dog {
  my $opt = pop @_ if ref($_[-1]) eq 'HASH';
  my $p = shift;
  my @res; my $s = ":,"x($p->getndims-1);
  for my $i (0..$p->getdim($p->getndims-1)-1) {
     $res[$i] = $p->slice($s."(".$i.")");
     $res[$i] = $res[$i]->copy if $$opt{Break};
     $i++;
  }
  return @res;
}

###################### Misc internal routines ####################

# Recursively pack an N-D array ref in format [[1,1,2],[2,2,3],[2,2,2]] etc
# package vars $level and @dims must be initialised first.

sub rpack {
    my ($ptype,$a) = @_;  my ($ret,$type);

    $ret = "";
    if (ref($a) eq "ARRAY") {

       if (defined($dims[$level])) {
           barf 'Array is not rectangular' unless $dims[$level] == scalar(@$a);
       }else{
          $dims[$level] = scalar(@$a);
       }

       $type = ref($$a[0]);
        if ($type) {
        $level++;
        for(@$a) {
            barf 'Array is not rectangular' unless $type eq ref($_); # Equal types
            $ret .= rpack($ptype,$_);
        }
        $level--;
        } else {
        # These are leaf nodes
        $ret = pack $ptype, map {defined($_) ? $_ : $PDL::undefval} @$a;
      }
    } elsif (ref($a) eq "PDL") {
	barf 'Cannot make a new piddle from two or more piddles, try "cat"';
    } else {
        barf "Don't know how to make a PDL object from passed argument";
    }
    return $ret;
}

sub rcopyitem {        # Return a deep copy of an item - recursively
    my $x = shift;
    my ($y, $key, $value);
    if (ref(\$x) eq "SCALAR") {
       return $x;
    }elsif (ref($x) eq "SCALAR") {
       $y = $$x; return \$y;
    }elsif (ref($x) eq "ARRAY") {
       $y = [];
       for (@$x) {
           push @$y, rcopyitem($_);
       }
       return $y;
    }elsif (ref($x) eq "HASH") {
       $y={};
       while (($key,$value) = each %$x) {
          $$y{$key} = rcopyitem($value);
       }
       return $y;
    }elsif (blessed($x)) {
       return $x->copy;
    }else{
       barf ('Deep copy of object failed - unknown component with type '.ref($x));
    }
0;}

# N-D array stringifier

sub strND {
    my($self,$format,$level)=@_;
#    $self->make_physical();
    my @dims = $self->dims;
    # print "STRND, $#dims\n";

    if ($#dims==1) { # Return 2D string
       return str2D($self,$format,$level);
    }
    else { # Return list of (N-1)D strings
       my $secbas = join '',map {":,"} @dims[0..$#dims-1];
       my $ret="\n"." "x$level ."["; my $j;
       for ($j=0; $j<$dims[$#dims]; $j++) {
       	   my $sec = $secbas . "($j)";
#	   print "SLICE: $sec\n";

           $ret .= strND($self->slice($sec),$format, $level+1);
	   chop $ret; $ret .= $sep2;
       }
       chop $ret if $PDL::use_commas;
       $ret .= "\n" ." "x$level ."]\n";
       return $ret;
    }
}


# String 1D array in nice format

sub str1D {
    my($self,$format)=@_;
    barf "Not 1D" if $self->getndims()!=1;
    my $x = listref_c($self);
    my ($ret,$dformat,$t);
    $ret = "[";
    my $dtype = $self->get_datatype();
    $dformat = $PDL::floatformat  if $dtype == $PDL_F;
    $dformat = $PDL::doubleformat if $dtype == $PDL_D;
    $dformat = $PDL::indxformat if $dtype == $PDL_IND;

    my $badflag = $self->badflag();
    for $t (@$x) {
	if ( $badflag and $t eq "BAD" ) {
	    # do nothing
        } elsif ($format) {
	  $t = sprintf $format,$t;
	} else{ # Default
	    if ($dformat && length($t)>7) { # Try smaller
		$t = sprintf $dformat,$t;
	    }
	}
       $ret .= $t.$sep;
    }

    chop $ret; $ret.="]";
    return $ret;
}

# String 2D array in nice uniform format

sub str2D{
    my($self,$format,$level)=@_;
#    print "STR2D:\n"; $self->printdims();
    my @dims = $self->dims();
    barf "Not 2D" if scalar(@dims)!=2;
    my $x = listref_c($self);
    my ($i, $f, $t, $len, $ret);

    my $dtype = $self->get_datatype();
    my $badflag = $self->badflag();

    my $findmax = 1;
    if (!defined $format || $format eq "") {
	# Format not given? - find max length of default
	$len=0;

	if ( $badflag ) {
	    for (@$x) {
		if ( $_ eq "BAD" ) { $i = 3; }
		else               { $i = length($_); }
		$len = $i>$len ? $i : $len;
	    }
	} else {
	    for (@$x) {$i = length($_); $len = $i>$len ? $i : $len };
	}

	$format = "%".$len."s";

	if ($len>7) { # Too long? - perhaps try smaller format
	    if ($dtype == $PDL_F) {
		$format = $PDL::floatformat;
	    } elsif ($dtype == $PDL_D) {
		$format = $PDL::doubleformat;
	    } elsif ($dtype == $PDL_IND) {
		$format = $PDL::indxformat;
	    } else {
		# Stick with default
		$findmax = 0;
	    }
	}
	else {
	    # Default ok
	    $findmax = 0;
	}
    }

    if($findmax) {
	# Find max length of strings in final format
	$len=0;

	if ( $badflag ) {
	    for (@$x) {
		if ( $_ eq "BAD" ) { $i = 3; }
		else               { $i = length(sprintf $format,$_); }
		$len = $i>$len ? $i : $len;
	    }
	} else {
	    for (@$x) {
		$i = length(sprintf $format,$_); $len = $i>$len ? $i : $len;
	    }
	}
    } # if: $findmax

    $ret = "\n" . " "x$level . "[\n";
    {
	my $level = $level+1;
	$ret .= " "x$level ."[";
	for ($i=0; $i<=$#$x; $i++) {

	    if ( $badflag and $$x[$i] eq "BAD" ) {
		$f = "BAD";
	    } else {
		$f = sprintf $format,$$x[$i];
	    }

	    $t = $len-length($f); $f = " "x$t .$f if $t>0;
	    $ret .= $f;
	    if (($i+1)%$dims[0]) {
		$ret.=$sep;
	    }
	    else{ # End of output line
		$ret.="]";
		if ($i==$#$x) { # very last number
		    $ret.="\n";
		}
		else{
		    $ret.= $sep2."\n" . " "x$level ."[";
		}
	    }
	}
    }
    $ret .= " "x$level."]\n";
    return $ret;
}

#
# Sleazy hcpy saves me time typing
#
sub PDL::hcpy {
  $_[0]->hdrcpy($_[1]);
  $_[0];
}

########## Docs for functions in Core.xs ##################
# Pod docs for functions that are imported from Core.xs and are
#  not documented elsewhere. Currently this is not a complete
#  list. There are others.

=head2 gethdr

=for ref

Retrieve header information from a piddle

=for example

 $pdl=rfits('file.fits');
 $h=$pdl->gethdr;
 print "Number of pixels in the X-direction=$$h{NAXIS1}\n";

The C<gethdr> function retrieves whatever header information is contained
within a piddle. The header can be set with L<sethdr|/sethdr> and is always a
hash reference or undef.

C<gethdr> returns undef if the piddle has not yet had a header
defined; compare with C<hdr> and C<fhdr>, which are guaranteed to return a
defined value.

Note that gethdr() works by B<reference>: you can modify the header
in-place once it has been retrieved:

  $a  = rfits($filename);
  $ah = $a->gethdr();
  $ah->{FILENAME} = $filename;

It is also important to realise that in most cases the header is not
automatically copied when you copy the piddle.  See L<hdrcpy|/hdrcpy>
to enable automatic header copying.

Here's another example: a wrapper around rcols that allows your piddle
to remember the file it was read from and the columns could be easily
written (here assuming that no regexp is needed, extensions are left
as an exercise for the reader)

 sub ext_rcols {
    my ($file, @columns)=@_;
    my $header={};
    $$header{File}=$file;
    $$header{Columns}=\@columns;

    @piddles=rcols $file, @columns;
    foreach (@piddles) { $_->sethdr($header); }
    return @piddles;
 }

=head2 hdr

=for ref

Retrieve or set header information from a piddle

=for example

 $pdl->hdr->{CDELT1} = 1;

The C<hdr> function allows convenient access to the header of a
piddle.  Unlike C<gethdr> it is guaranteed to return a defined value,
so you can use it in a hash dereference as in the example.  If the
header does not yet exist, it gets autogenerated as an empty hash.

Note that this is usually -- but not always -- What You Want.  If you
want to use a tied L<Astro::FITS::Header|Astro::FITS::Header> hash,
for example, you should either construct it yourself and use C<sethdr>
to put it into the piddle, or use L<fhdr|fhdr> instead.  (Note that
you should be able to write out the FITS file successfully regardless
of whether your PDL has a tied FITS header object or a vanilla hash).

=head2 fhdr

=for ref

Retrieve or set FITS header information from a piddle

=for example

 $pdl->fhdr->{CDELT1} = 1;

The C<fhdr> function allows convenient access to the header of a
piddle.  Unlike C<gethdr> it is guaranteed to return a defined value,
so you can use it in a hash dereference as in the example.  If the
header does not yet exist, it gets autogenerated as a tied
L<Astro::FITS::Header|Astro::FITS::Header> hash.

Astro::FITS::Header tied hashes are better at matching the behavior of
FITS headers than are regular hashes.  In particular, the hash keys
are CAsE INsEnSItiVE, unlike normal hash keys.  See
L<Astro::FITS::Header> for details.

If you do not have Astro::FITS::Header installed, you get back a
normal hash instead of a tied object.

=head2 sethdr

=for ref

Set header information of a piddle

=for example

 $pdl = zeroes(100,100);
 $h = {NAXIS=>2, NAXIS1=>100, NAXIS=>100, COMMENT=>"Sample FITS-style header"};
 # add a FILENAME field to the header
 $$h{FILENAME} = 'file.fits';
 $pdl->sethdr( $h );

The C<sethdr> function sets the header information for a piddle.
You must feed in a hash ref or undef, and the header field of the PDL is
set to be a new ref to the same hash (or undefined).

The hash ref requirement is a speed bump put in place since the normal
use of headers is to store fits header information and the like.  Of course,
if you want you can hang whatever ugly old data structure you want off
of the header, but that makes life more complex.

Remember that the hash is not copied -- the header is made into a ref
that points to the same underlying data.  To get a real copy without
making any assumptions about the underlying data structure, you
can use one of the following:

  use PDL::IO::Dumper;
  $pdl->sethdr( deep_copy($h) );

(which is slow but general), or

  $pdl->sethdr( PDL::_hdr_copy($h) )

(which uses the built-in sleazy deep copier), or (if you know that all
the elements happen to be scalars):

  { my %a = %$h;
    $pdl->sethdr(\%a);
  }

which is considerably faster but just copies the top level.

The C<sethdr> function must be given a hash reference or undef.  For
further information on the header, see L<gethdr|/gethdr>, L<hdr|/hdr>,
L<fhdr|/fhdr> and L<hdrcpy|/hdrcpy>.

=head2 hdrcpy

=for ref

switch on/off/examine automatic header copying

=for example

 print "hdrs will be copied" if $a->hdrcpy;
 $a->hdrcpy(1);       # switch on automatic header copying
 $b = $a->sumover;    # and $b will inherit $a's hdr
 $a->hdrcpy(0);       # and now make $a non-infectious again

C<hdrcpy> without an argument just returns the current setting of the
flag.  See also "hcpy" which returns its PDL argument (and so is useful
in method-call pipelines).

Normally, the optional header of a piddle is not copied automatically
in pdl operations. Switching on the hdrcpy flag using the C<hdrcpy>
method will enable automatic hdr copying. Note that an actual deep
copy gets made, which is rather processor-inefficient -- so avoid
using header copying in tight loops!

Most PDLs have the C<hdrcpy> flag cleared by default; however, some
routines (notably L<rfits|PDL::IO::FITS/rfits()>) set it by default
where that makes more sense.

The C<hdrcpy> flag is viral: if you set it for a PDL, then derived
PDLs will get copies of the header and will also have their C<hdrcpy>
flags set.  For example:

  $a = xvals(50,50);
  $a->hdrcpy(1);
  $a->hdr->{FOO} = "bar";
  $b = $a++;
  $c = $b++;
  print $b->hdr->{FOO}, " - ", $c->hdr->{FOO}, "\n";
  $b->hdr->{FOO} = "baz";
  print $a->hdr->{FOO}, " - ", $b->hdr->{FOO}, " - ", $c->hdr->{FOO}, "\n";

will print:

  bar - bar
  bar - baz - bar

Performing an operation in which more than one PDL has its hdrcpy flag
causes the resulting PDL to take the header of the first PDL:

  ($a,$b) = sequence(5,2)->dog;
  $a->hdrcpy(1); $b->hdrcpy(1);
  $a->hdr->{foo} = 'a';
  $b->hdr->{foo} = 'b';
  print (($a+$b)->hdr->{foo} , ($b+$a)->hdr->{foo});

will print:

  a b

=head2 hcpy

=for ref

Switch on/off automatic header copying, with PDL pass-through

=for example

  $a = rfits('foo.fits')->hcpy(0);
  $a = rfits('foo.fits')->hcpy(1);

C<hcpy> sets or clears the hdrcpy flag of a PDL, and returns the PDL
itself.  That makes it convenient for inline use in expressions.

=head2 set_autopthread_targ

=for ref

Set the target number of processor threads (pthreads) for multi-threaded processing.

=for usage

 set_autopthread_targ($num_pthreads);

C<$num_pthreads> is the target number of pthreads the auto-pthread process will try to achieve.

See L<PDL::ParallelCPU> for an overview of the auto-pthread process.

=for example

  # Example turning on auto-pthreading for a target of 2 pthreads and for functions involving
  #   PDLs with greater than 1M elements
  set_autopthread_targ(2);
  set_autopthread_size(1);

  # Execute a pdl function, processing will split into two pthreads as long as
  #  one of the pdl-threaded dimensions is divisible by 2.
  $a = minimum($b);

  # Get the actual number of pthreads that were run.
  $actual_pthread = get_autopthread_actual();

=cut

*set_autopthread_targ       = \&PDL::set_autopthread_targ;

=head2 get_autopthread_targ

=for ref

Get the current target number of processor threads (pthreads) for multi-threaded processing.

=for usage

 $num_pthreads = get_autopthread_targ();

C<$num_pthreads> is the target number of pthreads the auto-pthread process will try to achieve.

See L<PDL::ParallelCPU> for an overview of the auto-pthread process.

=cut

*get_autopthread_targ       = \&PDL::get_autopthread_targ;

=head2 get_autopthread_actual

=for ref

Get the actual number of pthreads executed for the last pdl processing function.

=for usage

 $autopthread_actual = get_autopthread_actual();

C<$autopthread_actual> is the actual number of pthreads executed for the last pdl processing function.

See L<PDL::ParallelCPU> for an overview of the auto-pthread process.

=cut

*get_autopthread_actual      = \&PDL::get_autopthread_actual;

=head2 set_autopthread_size

=for ref

Set the minimum size (in M-elements or 2^20 elements) of the largest PDL involved in a function where auto-pthreading will
be performed. For small PDLs, it probably isn't worth starting multiple pthreads, so this function
is used to define a minimum threshold where auto-pthreading won't be attempted.

=for usage

 set_autopthread_size($size);

C<$size> is the mimumum size, in M-elements or 2^20 elements (approx 1e6 elements) for the largest PDL involved in a function.

See L<PDL::ParallelCPU> for an overview of the auto-pthread process.

=for example

  # Example turning on auto-pthreading for a target of 2 pthreads and for functions involving
  #   PDLs with greater than 1M elements
  set_autopthread_targ(2);
  set_autopthread_size(1);

  # Execute a pdl function, processing will split into two pthreads as long as
  #  one of the pdl-threaded dimensions is divisible by 2.
  $a = minimum($b);

  # Get the actual number of pthreads that were run.
  $actual_pthread = get_autopthread_actual();

=cut

*set_autopthread_size       = \&PDL::set_autopthread_size;

=head2 get_autopthread_size

=for ref

Get the current autopthread_size setting.

=for usage

 $autopthread_size = get_autopthread_size();

C<$autopthread_size> is the mimumum size limit for auto_pthreading to occur, in M-elements or 2^20 elements (approx 1e6 elements) for the largest PDL involved in a function

See L<PDL::ParallelCPU> for an overview of the auto-pthread process.

=cut

*get_autopthread_size       = \&PDL::get_autopthread_size;

=head1 AUTHOR

Copyright (C) Karl Glazebrook (kgb@aaoepp.aao.gov.au),
Tuomas J. Lukka, (lukka@husc.harvard.edu) and Christian
Soeller (c.soeller@auckland.ac.nz) 1997.
Modified, Craig DeForest (deforest@boulder.swri.edu) 2002.
All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation under certain
conditions. For details, see the file COPYING in the PDL
distribution. If this file is separated from the PDL distribution,
the copyright notice should be included in the file.

=cut

#
# Easier to implement in perl than in XS...
#   -- CED
#

sub PDL::fhdr {
    my $pdl = shift;

    return $pdl->hdr
	if( (defined $pdl->gethdr) ||
	!defined $Astro::FITS::Header::VERSION
	    );

    # Avoid bug in 1.15 and earlier Astro::FITS::Header
    my @hdr = ("SIMPLE  =                    T");
    my $hdr = new Astro::FITS::Header(Cards=>\@hdr);
    tie my %hdr, "Astro::FITS::Header", $hdr;
    $pdl->sethdr(\%hdr);
    return \%hdr;
}

use Fcntl;

BEGIN {
   eval 'use File::Map 0.47 qw(:all)';
   if ($@) {
      carp "No File::Map found, using legacy mmap (if available)\n" if $PDL::verbose;
      sub sys_map;
      sub PROT_READ();
      sub PROT_WRITE();
      sub MAP_SHARED();
      sub MAP_PRIVATE();
   }
}

# Implement File::Map::sys_map bug fix.  Also, might be possible
# to implement without so many external (non-Core perl) modules.
#
# sub pdl_do_sys_map {
#         my (undef, $length, $protection, $flags, $fh, $offset) = @_;
#         my $utf8 = File::Map::_check_layers($fh);
#         my $fd = ($flags & MAP_ANONYMOUS) ? (-1) : fileno($fh);
#         $offset ||= 0;
#         File::Map::_mmap_impl($_[0], $length, $protection, $flags, $fd, $offset, $utf8);
#         return;
# }

sub PDL::set_data_by_file_map {
   my ($pdl,$name,$len,$shared,$writable,$creat,$mode,$trunc) = @_;
   my $pdl_dataref = $pdl->get_dataref();

   # Assume we have no data to free for now
   # pdl_freedata($pdl);

   sysopen(my $fh, $name, ($writable && $shared ? O_RDWR : O_RDONLY) | ($creat ? O_CREAT : 0), $mode)
      or die "Error opening file '$name'\n";

   binmode $fh;

   if ($trunc) {
      truncate($fh,0) or die "set_data_by_mmap: truncate('$name',0) failed, $!";
      truncate($fh,$len) or die "set_data_by_mmap: truncate('$name',$len) failed, $!";
   }

   if ($len) {

      #eval {
      # pdl_do_sys_map(  # will croak if the mapping fails
      if ($PDL::debug) {
         printf STDERR
         "set_data_by_file_map: calling sys_map(%s,%d,%d,%d,%s,%d)\n",
         $pdl_dataref,
         $len,
         PROT_READ | ($writable ?  PROT_WRITE : 0),
         ($shared ? MAP_SHARED : MAP_PRIVATE),
         $fh,
         0;
      }

      sys_map(  # will croak if the mapping fails
         ${$pdl_dataref},
         $len,
         PROT_READ | ($writable ?  PROT_WRITE : 0),
         ($shared ? MAP_SHARED : MAP_PRIVATE),
         $fh,
         0
      );
      #};

         #if ($@) {
         #die("Error mmapping!, '$@'\n");
         #}

      $pdl->upd_data;

      if ($PDL::debug) {
         printf STDERR "set_data_by_file_map: length \${\$pdl_dataref} is %d.\n", length ${$pdl_dataref};
      }
      $pdl->set_state_and_add_deletedata_magic( length ${$pdl_dataref} );

   } else {

      #  Special case: zero-length file
      $_[0] = undef;
   }

   # PDLDEBUG_f(printf("PDL::MMap: mapped to %p\n",$pdl->data));
   close $fh ;
}

1;