File: slatec.pd

package info (click to toggle)
pdl 1:2.019-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 12,276 kB
  • sloc: perl: 47,799; fortran: 13,113; ansic: 9,365; sh: 41; makefile: 38; sed: 6
file content (1694 lines) | stat: -rw-r--r-- 42,974 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
pp_addpm({At=>Top},<<'EOD');

=head1 NAME

PDL::Slatec - PDL interface to the slatec numerical programming library

=head1 SYNOPSIS

 use PDL::Slatec;

 ($ndeg, $r, $ierr, $a) = polyfit($x, $y, $w, $maxdeg, $eps);

=head1 DESCRIPTION

This module serves the dual purpose of providing an interface to
parts of the slatec library and showing how to interface PDL
to an external library.
Using this library requires a fortran compiler; the source for the routines
is provided for convenience.

Currently available are routines to:
manipulate matrices; calculate FFT's; 
fit data using polynomials; 
and interpolate/integrate data using piecewise cubic Hermite interpolation.

=head2 Piecewise cubic Hermite interpolation (PCHIP)

PCHIP is the slatec package of routines to perform piecewise cubic
Hermite interpolation of data.
It features software to produce a monotone and "visually pleasing"
interpolant to monotone data.  
According to Fritsch & Carlson ("Monotone piecewise
cubic interpolation", SIAM Journal on Numerical Analysis 
17, 2 (April 1980), pp. 238-246),
such an interpolant may be more reasonable than a cubic spline if
the data contains both "steep" and "flat" sections.  
Interpolation of cumulative probability distribution functions is 
another application.
These routines are cryptically named (blame FORTRAN), 
beginning with 'ch', and accept either float or double piddles. 

Most of the routines require an integer parameter called C<check>;
if set to 0, then no checks on the validity of the input data are
made, otherwise these checks are made.
The value of C<check> can be set to 0 if a routine
such as L<chim|/chim> has already been successfully called.

=over 4

=item * 

If not known, estimate derivative values for the points
using the L<chim|/chim>, L<chic|/chic>, or L<chsp|/chsp> routines
(the following routines require both the function (C<f>)
and derivative (C<d>) values at a set of points (C<x>)). 

=item * 

Evaluate, integrate, or differentiate the resulting PCH
function using the routines:
L<chfd|/chfd>; L<chfe|/chfe>; L<chia|/chia>; L<chid|/chid>.

=item * 

If desired, you can check the monotonicity of your
data using L<chcm|/chcm>. 

=back
 
=cut

EOD
# ' un-confuse emacs

# if define chbs, then add something like the following to point 3:
#
# or use L<chbs|/chbs> to convert a PCH function into B-representation 
# for use with the B-spline routines of slatec 
# (although no interface to them currently exist).
#

# add function definitions after finishing the first pp_addpm(), since this
# adds a '=head1 FUNCTIONS' line at the end of the text

pp_addpm(<<'END');
=head2 eigsys

=for ref

Eigenvalues and eigenvectors of a real positive definite symmetric matrix.

=for usage

 ($eigvals,$eigvecs) = eigsys($mat)

Note: this function should be extended to calculate only eigenvalues if called 
in scalar context!

=head2 matinv

=for ref

Inverse of a square matrix

=for usage

 ($inv) = matinv($mat)

=head2 polyfit

Convenience wrapper routine about the C<polfit> C<slatec> function.
Separates supplied arguments and return values.

=for ref

Fit discrete data in a least squares sense by polynomials
in one variable.  Handles threading correctly--one can pass in a 2D PDL (as C<$y>)
and it will pass back a 2D PDL, the rows of which are the polynomial regression
results (in C<$r> corresponding to the rows of $y.

=for usage

 ($ndeg, $r, $ierr, $a, $coeffs, $rms) = polyfit($x, $y, $w, $maxdeg, [$eps]);

 $coeffs = polyfit($x,$y,$w,$maxdeg,[$eps]);

where on input:

C<$x> and C<$y> are the values to fit to a polynomial.
C<$w> are weighting factors
C<$maxdeg> is the maximum degree of polynomial to use and 
C<$eps> is the required degree of fit.

and the output switches on list/scalar context.  

In list context: 

C<$ndeg> is the degree of polynomial actually used
C<$r> is the values of the fitted polynomial 
C<$ierr> is a return status code, and
C<$a> is some working array or other (preserved for historical purposes)
C<$coeffs> is the polynomial coefficients of the best fit polynomial.
C<$rms> is the rms error of the fit.

In scalar context, only $coeffs is returned.

Historically, C<$eps> was modified in-place to be a return value of the
rms error.  This usage is deprecated, and C<$eps> is an optional parameter now.
It is still modified if present.
 
C<$a> is a working array accessible to Slatec - you can feed it to several
other Slatec routines to get nice things out.  It does not thread 
correctly and should probably be fixed by someone.  If you are 
reading this, that someone might be you.

=for bad

This version of polyfit handles bad values correctly.  Bad values in
$y are ignored for the fit and give computed values on the fitted
curve in the return.  Bad values in $x or $w are ignored for the fit and
result in bad elements in the output.

=head2 polycoef

Convenience wrapper routine around the C<pcoef> C<slatec> function.
Separates supplied arguments and return values.                               

=for ref

Convert the C<polyfit>/C<polfit> coefficients to Taylor series form.

=for usage

 $tc = polycoef($l, $c, $a);

=head2 polyvalue

Convenience wrapper routine around the C<pvalue> C<slatec> function.
Separates supplied arguments and return values.

For multiple input x positions, a corresponding y position is calculated.

The derivatives PDL is one dimensional (of size C<nder>) if a single x
position is supplied, two dimensional if more than one x position is
supplied.                                                                     

=for ref

Use the coefficients generated by C<polyfit> (or C<polfit>) to evaluate
the polynomial fit of degree C<l>, along with the first C<nder> of its
derivatives, at a specified point.

=for usage

 ($yfit, $yp) = polyvalue($l, $nder, $x, $a);

=head2 detslatec

=for ref

compute the determinant of an invertible matrix

=for example

  $mat = zeroes(5,5); $mat->diagonal(0,1) .= 1; # unity matrix
  $det = detslatec $mat;

Usage:

=for usage

  $determinant = detslatec $matrix;

=for sig

  Signature: detslatec(mat(n,m); [o] det())

C<detslatec> computes the determinant of an invertible matrix and barfs if
the matrix argument provided is non-invertible. The matrix threads as usual.

This routine was previously known as C<det> which clashes now with
L<det|PDL::MatrixOps/det> which is provided by L<PDL::MatrixOps>.

=head2 fft

=for ref

Fast Fourier Transform

=for example

  $v_in = pdl(1,0,1,0);
  ($azero,$a,$b) = PDL::Slatec::fft($v_in);

C<PDL::Slatec::fft> is a convenience wrapper for L<ezfftf|ezfftf>, and
performs a Fast Fourier Transform on an input vector C<$v_in>. The
return values are the same as for L<ezfftf|ezfftf>.

=head2 rfft

=for ref

reverse Fast Fourier Transform

=for example

  $v_out = PDL::Slatec::rfft($azero,$a,$b);
  print $v_in, $vout
  [1 0 1 0] [1 0 1 0]

C<PDL::Slatec::rfft> is a convenience wrapper for L<ezfftb|ezfftb>,
and performs a reverse Fast Fourier Transform. The input is the same
as the output of L<PDL::Slatec::fft|/PDL::Slatec::fft>, and the output
of C<rfft> is a data vector, similar to what is input into
L<PDL::Slatec::fft|/PDL::Slatec::fft>.

=cut

END

use strict;

# for MDim, ld[str] is interpreted as "leading dimension of ..."

# Making the BAD BAD BAD assumption that PDL_Long == int 
# in fortran. BAD BAD BAD XXX (I'm going to regret this)

my %ftypes = (S => 'F', D => 'D');

sub firstpar {
	$_[0] =~ /^\(([^),]+)[),]/ or die "Can't find first par from $_[0]";
	$1
}

# whether or not to append undercores

my $uscore = (-e "f77_underscore" ? "_" : ""); 

# used in defslatec()
#my %ignore_ppar = ( Incfd => 1, CheckFlag => 1 );
my %ignore_ppar = ( Incfd => 1 );
my %prototype = ( F => "float", D => "double" );

# an alternative is to declare the function in the Code section
# of pp_def(), using something like:
#
#    my $codeproto = "\$T".(join '',map {$_->[0]} @talts)."(".
#      (join ',',map {$_->[1].$uscore} @talts).") ();";
#    if ( defined $fpar ) { 
#      $codeproto = "\$T".(join '',map {$_->[0]} @talts)."(float,double) $codeproto";
#    }
#    $codeproto = "extern $codeproto";
#
# and then add `$codeproto . "\n" .' to the beginning of the Code
# section.
#
# this then gets rid of the need of the prototype file. 
#
open( PROTOS, "> SlatecProtos.h" );

# defslatec( $pdlname, $funcnames, $argstr, $docstring, $funcref )
#
# $pdlname is the name of the PDL function to be created
# $funcnames is a reference to a hash array, whose keys define
# the single (S), and double precision (D) names of the
# SLATEC routines to be linked to.
#
# $argstr is a list of arguments expected by the SLATEC routine
# - some of the allowed type names are:
#   FuncRet
#     - specifies that this is a function, not a subroutine, and
#       that the output of the function should be stored in this
#       variable
#   Incfd
#     - used in the PCHIP functions to specify the INCFD argument
#       that we force to be 1, so the user never has to specify it
#       (this allows the PCHIP routines to use 2D data, but as it's
#        done in FORTRAN array order, and PDL has a much richer way
#        of accessing parts of an array we force the data to be 1D).
#   CheckFlag
#     - the PCHIP routined may change the value from 0 to 1 if an
#       error occurs but the checks were successful. As this complicates
#       things we copy the user value to a temporary variable,
#       so that the sent in value is not changed.
#   FortranIndex
#     - pchid()/dpchid() require FORTRAN array indices, so 
#       this type flags that we should add 1 onto the input values
#       before sending to the slatec function
#
# $docstring gives the text to be used as the function dicumentation
#
# $funcref gets placed within a '=for ref' pod statement at the
# start of the documentation - ie it is placed before the
# text within $docstring. This string gets printed out
# in the perldl or pdl2 shell after a '?? string' command
#
sub defslatec {

    my $debug = 0;  # print out calls to pp_def

    my($pname,$fnames,$argstr,$docstring,$funcref) = @_;
    my @args = map {/^\s*$/ ? () : $_} split ';', $argstr;
    my @args2 = map {
		/^\s*([a-zA-Z]+)\s+ 	# "Type name"
		  ((?:\[[^]]*\])?)\s* 	# Options
		  ([a-zA-Z]+)\s*      	# Par name
		  ((?:\([^)]*\))?)\s*$	# Dims
		 /x or die("Invalid slatec par $_");
		[$1,$2,$3,$4]} @args;

    # is this for a function (Type name eq "FuncRet")
    # or a subroutine?
    my $fpar;
    foreach ( @args2 ) { 
      next unless $_->[0] eq "FuncRet";
      die "Only one FuncRet allowed in pars list.\n" if defined $fpar;
      $fpar = "\$$_->[2]()";
    }

    my @ppars = map {
      if($_->[0] =~ /^M?Dim$/ or defined $ignore_ppar{$_->[0]} ) {
	  ()
      } else {
	  (($_->[0] eq "Mat" or $_->[0] eq "FuncRet")
           and join '',@{$_}[1,2,3]) or
	  (($_->[0] eq "IntFlag" or $_->[0] eq "FortranIndex" or $_->[0] eq "CheckFlag")
           and "longlong ".join '',@{$_}[1,2,3]) or
	  die "Invalid ppars ",(join ',',@$_),"\n";
      }
    } @args2;

    # uncomment the following line to see what perl thinks the input pars are
    ##print "Pars: ",(join ';',@ppars),"\n";
	
    my @talts = map { 
          defined $ftypes{$_} or die "FTYPE $_ NOT THERE\n";
          [$ftypes{$_},$fnames->{$_}] 
    } sort keys %$fnames;

    my $func = "\$T".(join '',map {$_->[0]} @talts) . "(" . 
      (join ',',map {$_->[1].$uscore} @talts).")";
    if ( defined $fpar ) { $func = "$fpar = $func"; }

    my %lds = map {
          ($_->[0] eq "Mat" and $_->[3] ne "()") ? 
          ("ld".$_->[2] => "&\$PRIV(__".firstpar($_->[3])."_size)")
	  : ()
    } @args2;

    my @funcpars;
    foreach ( @args2 ) {
      next if $_->[0] eq "FuncRet";
      if ( $_->[0] eq "Mat" or $_->[0] eq "IntFlag" ) {
	  push @funcpars, "\$P($_->[2])";
      } elsif ( $_->[0] eq "Dim" ) {
	  push @funcpars, "&\$PRIV(__$_->[2]_size)";
      } elsif ( $_->[0] eq "MDim" ) {
	  push @funcpars, $lds{$_->[2]};
      } elsif ( $_->[0] eq "Incfd" or $_->[0] eq "CheckFlag" ) {
	  push @funcpars, "&_" . lc($_->[0]);
      } elsif ( $_->[0] eq "FortranIndex" ) {
	  push @funcpars, "&_$_->[2]"; 
      } else {
	  die "Invalid args2";
      }
    }

    # _incfd     = 1 makes sure PCHIP code treats piddle as 1D
    # _checkflag - copy input data to a temporary variable, in case
    #              the PCHIP routine decides to change it
    #
    my @ifincode;
    foreach ( @args2 ) {
      if ( $_->[0] eq "Incfd" ) {
	  push @ifincode, "long long _" . lc($_->[0]) . " = 1;";
      } elsif ( $_->[0] eq "CheckFlag" ) {
	  push @ifincode, "long long _" . lc($_->[0]) . " = \$$_->[2]();";
      } elsif ( $_->[0] eq "FortranIndex" ) {
	  # convert from C to F77 index
	  push @ifincode, "long long _$_->[2] = \$$_->[2]() + 1;"
      }
    }

    foreach ( @talts ) {
	my $codeproto = "extern ";
	if ( defined $fpar ) { $codeproto .= "$prototype{$_->[0]} "; }
	else { $codeproto .= "int "; }
	$codeproto .= "$_->[1]$uscore ();";
	print PROTOS $codeproto . "\n";
    }

    # add on the function reference, if supplied, to the start of
    # the doc string
    if ( defined $docstring ) {
      $docstring = "\n=for ref\n\n$funcref\n\n$docstring" if defined $funcref;
    } else {
      $docstring = '';
    }

    # If debug flag set, then print out pp_def call for each call to defslatec
    if ($debug) {
      my $pars = (join ';',@ppars);
      my $code = (join '',@ifincode) . "\n " . $func . "  (". (join ',',@funcpars) . ");\n";
      my $generictypes = "[" . join (", ", map {$_->[0]} @talts) . "],\n";
      print <<"ENDDBG";
pp_def($pname,
  Pars => $pars,
  OtherPars => '',
  Code => $code,
  GenericTypes => $generictypes,
  Doc => $docstring
);
ENDDBG
}

    pp_def($pname,
      Pars => (join ';',@ppars),
      OtherPars => '',
      Code => (join '',@ifincode) . "\n " .
               $func . "  (". (join ',',@funcpars) . ");\n",
#              . (join '',@ifoutcode),
      GenericTypes => [map {$_->[0]} @talts],
      Doc => $docstring
#      %$opts,
    );
} # sub: defslatec()

pp_addhdr(qq|
#include "SlatecProtos.h"

void MAIN__ () {                                                                
   /* Cheat to define MAIN__ symbol */                                          
   croak("This should never happen");                                           
}                                                                               
   
void slatecbarf$uscore() {
   croak("slatec called halt");
}

|);

pp_add_exported('',"eigsys matinv polyfit polycoef polyvalue");

pp_addpm(<<'END');

use PDL::Core;
use PDL::Basic;
use PDL::Primitive;
use PDL::Ufunc;
use strict;

# Note: handles only real symmetric positive-definite.

*eigsys = \&PDL::eigsys;

sub PDL::eigsys {
	my($h) = @_;
	$h = float($h);
	rs($h, 
		(my $eigval=PDL->null),
		(longlong (pdl (1))),(my $eigmat=PDL->null),
		(my $fvone = PDL->null),(my $fvtwo = PDL->null),
		(my $errflag=PDL->null)
	);
#	print $covar,$eigval,$eigmat,$fvone,$fvtwo,$errflag;
	if(sum($errflag) > 0) {
		barf("Non-positive-definite matrix given to eigsys: $h\n");
	}
	return ($eigval,$eigmat);
}

*matinv = \&PDL::matinv;

sub PDL::matinv {
	my($m) = @_;
	my(@dims) = $m->dims;

	# Keep from dumping core (FORTRAN does no error checking)
	barf("matinv requires a 2-D square matrix")
		unless( @dims >= 2 && $dims[0] == $dims[1] );
  
	$m = $m->copy(); # Make sure we don't overwrite :(
	gefa($m,(my $ipvt=null),(my $info=null));
	if(sum($info) > 0) {
		barf("Uninvertible matrix given to inv: $m\n");
	}
	gedi($m,$ipvt,(pdl 0,0),(null),(longlong( pdl (1))));
	$m;
}

*detslatec = \&PDL::detslatec;
sub PDL::detslatec {
	my($m) = @_;
	$m = $m->copy(); # Make sure we don't overwrite :(
	gefa($m,(my $ipvt=null),(my $info=null));
	if(sum($info) > 0) {
		barf("Uninvertible matrix given to inv: $m\n");
	}
	gedi($m,$ipvt,(my $det=null),(null),(longlong( pdl (10))));
	return $det->slice('(0)')*10**$det->slice('(1)');
}


sub prepfft {
	my($n) = @_;
	my $tmp = PDL->zeroes(float(),$n*3+15);
	$n = pdl $n;
	ezffti($n,$tmp);
	return $tmp;
}

sub fft (;@) {
	my($v) = @_;
	my $ws = prepfft($v->getdim(0));
	ezfftf($v,(my $az = PDL->null), (my $a = PDL->null),
		  (my $b = PDL->null), $ws);
	return ($az,$a,$b);
}

sub rfft {
	my($az,$a,$b) = @_;
	my $ws = prepfft($a->getdim(0));
	my $v = $a->copy();
	ezfftb($v,$az,$a,$b,$ws);
	return $v;
}

# polynomial fitting routines
# simple wrappers around the SLATEC implementations

*polyfit = \&PDL::polyfit;
sub PDL::polyfit {
  barf 'Usage: polyfit($x, $y, $w, $maxdeg, [$eps]);'
    unless (@_ == 5 || @_==4 );

  my ($x_in, $y_in, $w_in, $maxdeg_in, $eps_in) = @_;

  # if $w_in does not match the data vectors ($x_in, $y_in), then we can resize
  # it to match the size of $y_in :
  $w_in = $w_in + $y_in->zeros;

  # Create the output arrays
  my $r = PDL->null;

  # A array needs some work space
  my $sz = ((3 * $x_in->getdim(0)) + (3*$maxdeg_in) + 3); # Buffer size called for by Slatec
  my @otherdims = $_[0]->dims; shift @otherdims;          # Thread dims
  my $a =      PDL::new_from_specification('PDL',$x_in->type,$sz,@otherdims);
  my $coeffs = PDL::new_from_specification('PDL',$x_in->type, $maxdeg_in + 1, @otherdims);

  my $ierr = PDL->null;
  my $ndeg = PDL->null;

  # Now call polfit
  my $rms = pdl($eps_in);                                       
  polfit($x_in, $y_in, $w_in, $maxdeg_in, $ndeg, $rms, $r, $ierr, $a, $coeffs);
  # Preserve historic compatibility by flowing rms error back into the argument
  if( UNIVERSAL::isa($eps_in,'PDL') ){
      $eps_in .= $rms;
  }

  # Return the arrays
  if(wantarray) {
    return ($ndeg, $r, $ierr, $a, $coeffs, $rms );
  } else {
      return $coeffs;
  }
}


*polycoef = \&PDL::polycoef;
sub PDL::polycoef {
  barf 'Usage: polycoef($l, $c, $a);'
    unless @_ == 3;

  # Allocate memory for return PDL
  # Simply l + 1 but cant see how to get PP to do this - TJ
  # Not sure the return type since I do not know
  # where PP will get the information from
  my $tc = PDL->zeroes( abs($_[0]) + 1 );                                     

  # Run the slatec routine
  pcoef($_[0], $_[1], $tc, $_[2]);

  # Return results
  return $tc;

}

*polyvalue = \&PDL::polyvalue;
sub PDL::polyvalue {
  barf 'Usage: polyvalue($l, $nder, $x, $a);'
    unless @_ == 4;

  # Two output arrays
  my $yfit = PDL->null;

  # This one must be preallocated and must take into account
  # the size of $x if greater than 1
  my $yp;
  if ($_[2]->getdim(0) == 1) {
    $yp = $_[2]->zeroes($_[1]);
  } else {
    $yp = $_[2]->zeroes($_[1], $_[2]->getdim(0));
  }

  # Run the slatec function
  pvalue($_[0], $_[2], $yfit, $yp, $_[3]);

  # Returns
  return ($yfit, $yp);

}
                                                                              
END

defslatec(
	'svdc',{S => 'ssvdc'},
	'Mat 		x	(n,p);
	 MDim 		ldx;
	 Dim 		n;
	 Dim 		p;
	 Mat 	[o]	s	(p);
	 Mat 	[o]	e	(p);
	 Mat 	[o] 	u	(n,p);
	 MDim 		ldu;
	 Mat 	[o] 	v	(p,p);
	 MDim 		ldv;
	 Mat 	[o] 	work	(n);
	 IntFlag   	job	();
	 IntFlag [o]	info	();
	',
'singular value decomposition of a matrix'
);

defslatec(
	'poco',{S => 'spoco', D => 'dpoco'},
	'Mat		a	(n,n);
	 MDim		lda;
	 Dim		n;
	 Mat 		rcond	();
	 Mat	[o]	z	(n);
	 IntFlag [o]	info	();
	',
'Factor a real symmetric positive definite matrix
and estimate the condition number of the matrix.'
);

defslatec(
	'geco',{S => 'sgeco', D => 'dgeco'},
	'Mat		a	(n,n);
	 MDim		lda;
	 Dim		n;
	 IntFlag [o]	ipvt	(n);
	 Mat	 [o]	rcond	();
	 Mat	 [o]	z	(n);
	',
'Factor a matrix using Gaussian elimination and estimate
the condition number of the matrix.'
);

defslatec(
	'gefa',{S => 'sgefa', D => 'dgefa'},
	'Mat		a	(n,n);
	 MDim		lda;
	 Dim		n;
	 IntFlag [o]	ipvt	(n);
	 IntFlag [o]	info	();
	',
'Factor a matrix using Gaussian elimination.'
);

# XXX Ensure two == 2!!
#
# pofa and sqrdc aren't (yet?) implemented
#
defslatec(
	'podi',{S => 'spodi', D => 'dpodi'},
	'Mat		a	(n,n);
	 MDim		lda;
	 Dim		n;
	 Mat	[o]	det	(two=2);
	 IntFlag	job	();
	',
'Compute the determinant and inverse of a certain real
symmetric positive definite matrix using the factors
computed by L<poco|/poco>.'
);

defslatec(
	'gedi',{S => 'sgedi', D => 'dgedi'},
	'Mat		a	(n,n);
	 MDim		lda;
	 Dim		n;
	 IntFlag [o]	ipvt	(n);
	 Mat	 [o]	det	(two=2);
	 Mat	 [o]	work	(n);
	 IntFlag	job	();
	',
'Compute the determinant and inverse of a matrix using the
factors computed by L<geco|/geco> or L<gefa|/gefa>.'
);
	

defslatec(
	'gesl',{S => 'sgesl', D => 'dgesl'},
	'Mat		a	(lda,n);
	 MDim		lda;
	 Dim		n;
	 IntFlag	ipvt	(n);
	 Mat		b	(n);
	 IntFlag	job	();
	',
'Solve the real system C<A*X=B> or C<TRANS(A)*X=B> using the
factors computed by L<geco|/geco> or L<gefa|/gefa>.'
);

defslatec(
	'rs', {S => 'rsfoo'},
	'MDim		lda;
	 Dim		n;
	 Mat		a	(n,n);
	 Mat	[o]	w	(n);
	 IntFlag	matz	();
	 Mat	[o]	z	(n,n);
	 Mat	[t]	fvone	(n);
	 Mat	[t]	fvtwo	(n);
	 IntFlag [o]	ierr	();
	',
'This subroutine calls the recommended sequence of
subroutines from the eigensystem subroutine package (EISPACK)
to find the eigenvalues and eigenvectors (if desired)
of a REAL SYMMETRIC matrix.'

);

# XXX wsave : at least 3n+15
defslatec(
	'ezffti', {S => 'ezffti'},
	'IntFlag	n	();
	 Mat [o]	wsave(foo);
	',
'Subroutine ezffti initializes the work array C<wsave()>
which is used in both L<ezfftf|/ezfftf> and 
L<ezfftb|/ezfftb>.  
The prime factorization
of C<n> together with a tabulation of the trigonometric functions
are computed and stored in C<wsave()>.'

);

# XXX Correct for azero, a and b
defslatec(
	'ezfftf', {S => 'ezfftf'},
	'Dim		n;
	 Mat		r(n);
	 Mat [o]	azero();
	 Mat [o]	a(n);
	 Mat [o]	b(n);
	 Mat 		wsave(foo);
	'
);

defslatec(
	'ezfftb', {S => 'ezfftb'},
	'Dim		n;
	 Mat  [o]	r(n);
	 Mat  		azero();
	 Mat		a(n);
	 Mat 		b(n);
	 Mat 		wsave(foo);
	'
);

##################################################################
##################################################################

defslatec(
      'pcoef', {S => 'pcoef', D => 'dpcoef'},
      '
      IntFlag  l ();
      Mat      c ();
      Mat [o]  tc (bar);
      Mat      a (foo);
      ',
'Convert the C<polfit> coefficients to Taylor series form.
C<c> and C<a()> must be of the same type.'
);                                                                            

defslatec(
      'pvalue', {S => 'pvalue', D => 'dp1vlu'},
      '
      IntFlag  l ();
      Dim      nder;
      Mat      x    ();
      Mat [o]  yfit ();
      Mat [o]  yp   (nder);
      Mat      a    (foo);
      ',
'Use the coefficients generated by C<polfit> to evaluate the
polynomial fit of degree C<l>, along with the first C<nder> of
its derivatives, at a specified point. C<x> and C<a> must be of the
same type.'
);                                                                            

##################################################################
##################################################################
#
# PCHIP library
#
defslatec(
	  'chim', {S => 'pchim', D => 'dpchim'},
	  'Dim          n;
           Mat          x       (n);
           Mat          f       (n);
           Mat     [o]  d       (n);
           Incfd        dummy;
           IntFlag [o]  ierr    ();
          ',
'Calculate the derivatives at the given set of points (C<$x,$f>,
where C<$x> is strictly increasing).
The resulting set of points - C<$x,$f,$d>, referred to
as the cubic Hermite representation - can then be used in
other functions, such as L<chfe|/chfe>, L<chfd|/chfd>,
and L<chia|/chia>.

The boundary conditions are compatible with monotonicity,
and if the data are only piecewise monotonic, the interpolant
will have an extremum at the switch points; for more control
over these issues use L<chic|/chic>. 

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

E<gt> 0 if there were C<ierr> switches in the direction of 
monotonicity (data still valid).

=item *

-1 if C<nelem($x) E<lt> 2>.

=item *

-3 if C<$x> is not strictly increasing.

=back

=cut

',
'Calculate the derivatives of (x,f(x)) using cubic Hermite interpolation.'
);	  

# switch has become mflag, since `switch' is a reserved word in
# C.
#
# can not say (nwk=2*n) --- the rhs has to equal a number
# -> could Basic/Gen/PP/Dims.pm be hacked to allow this?
#
# I didn't have much success with preceding wk by [t] 
#
defslatec(
	  'chic', {S => 'pchic', D => 'dpchic'},
	  'IntFlag      ic      (two=2);
           Mat          vc      (two=2);
           Mat          mflag   ();
           Dim          n;
           Mat          x       (n);
           Mat          f       (n);
           Mat     [o]  d       (n);
           Incfd        dummy;
           Mat          wk      (nwk);
           Dim          nwk;
           IntFlag [o]  ierr    ();
          ',
'Calculate the derivatives at the given points (C<$x,$f>,
where C<$x> is strictly increasing).
Control over the boundary conditions is given by the 
C<$ic> and C<$vc> piddles, and the value of C<$mflag> determines
the treatment of points where monotoncity switches
direction. A simpler, more restricted, interface is available 
using L<chim|/chim>.

The first and second elements of C<$ic> determine the boundary
conditions at the start and end of the data respectively.
If the value is 0, then the default condition, as used by
L<chim|/chim>, is adopted.
If greater than zero, no adjustment for monotonicity is made,
otherwise if less than zero the derivative will be adjusted.
The allowed magnitudes for C<ic(0)> are:

=over 4

=item *  

1 if first derivative at C<x(0)> is given in C<vc(0)>.

=item *

2 if second derivative at C<x(0)> is given in C<vc(0)>.

=item *

3 to use the 3-point difference formula for C<d(0)>.
(Reverts to the default b.c. if C<n E<lt> 3>)

=item *

4 to use the 4-point difference formula for C<d(0)>.
(Reverts to the default b.c. if C<n E<lt> 4>)

=item *

5 to set C<d(0)> so that the second derivative is 
continuous at C<x(1)>.
(Reverts to the default b.c. if C<n E<lt> 4>) 

=back

The values for C<ic(1)> are the same as above, except that
the first-derivative value is stored in C<vc(1)> for cases 1 and 2.
The values of C<$vc> need only be set if options 1 or 2 are chosen
for C<$ic>.

Set C<$mflag = 0> if interpolant is required to be monotonic in
each interval, regardless of the data. This causes C<$d> to be
set to 0 at all switch points. Set C<$mflag> to be non-zero to
use a formula based on the 3-point difference formula at switch
points. If C<$mflag E<gt> 0>, then the interpolant at swich points
is forced to not deviate from the data by more than C<$mflag*dfloc>, 
where C<dfloc> is the maximum of the change of C<$f> on this interval
and its two immediate neighbours.
If C<$mflag E<lt> 0>, no such control is to be imposed.            

The piddle C<$wk> is only needed for work space. However, I could
not get it to work as a temporary variable, so you must supply
it; it is a 1D piddle with C<2*n> elements.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

1 if C<ic(0) E<lt> 0> and C<d(0)> had to be adjusted for
monotonicity.

=item *

2 if C<ic(1) E<lt> 0> and C<d(n-1)> had to be adjusted
for monotonicity.

=item * 

3 if both 1 and 2 are true.

=item *

-1 if C<n E<lt> 2>.

=item *

-3 if C<$x> is not strictly increasing.

=item *

-4 if C<abs(ic(0)) E<gt> 5>.

=item *

-5 if C<abs(ic(1)) E<gt> 5>.

=item *

-6 if both -4 and -5  are true.

=item *

-7 if C<nwk E<lt> 2*(n-1)>.

=back

=cut

',
'Calculate the derivatives of (x,f(x)) using cubic Hermite interpolation.'
);	  

# as above, have made wk an actual piddle, rather than a [t]
defslatec(
	  'chsp', {S => 'pchsp', D => 'dpchsp'},
	  'IntFlag      ic      (two=2);
           Mat          vc      (two=2);
           Dim          n;
           Mat          x       (n);
           Mat          f       (n);
           Mat     [o]  d       (n);
           Incfd        dummy;
           Mat          wk      (nwk);
           Dim          nwk;
           IntFlag [o]  ierr    ();
          ',
'Calculate the derivatives, using cubic spline interpolation,
at the given points (C<$x,$f>), with the specified
boundary conditions. 
Control over the boundary conditions is given by the 
C<$ic> and C<$vc> piddles.
The resulting values - C<$x,$f,$d> - can
be used in all the functions which expect a cubic
Hermite function.

The first and second elements of C<$ic> determine the boundary
conditions at the start and end of the data respectively.
The allowed values for C<ic(0)> are:

=over 4

=item *

0 to set C<d(0)> so that the third derivative is 
continuous at C<x(1)>.

=item *

1 if first derivative at C<x(0)> is given in C<vc(0>).

=item *

2 if second derivative at C<x(0>) is given in C<vc(0)>.

=item *

3 to use the 3-point difference formula for C<d(0)>.
(Reverts to the default b.c. if C<n E<lt> 3>.)

=item *

4 to use the 4-point difference formula for C<d(0)>.
(Reverts to the default b.c. if C<n E<lt> 4>.)                 

=back

The values for C<ic(1)> are the same as above, except that
the first-derivative value is stored in C<vc(1)> for cases 1 and 2.
The values of C<$vc> need only be set if options 1 or 2 are chosen
for C<$ic>.

The piddle C<$wk> is only needed for work space. However, I could
not get it to work as a temporary variable, so you must supply
it; it is a 1D piddle with C<2*n> elements.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

-1  if C<nelem($x) E<lt> 2>.

=item *

-3  if C<$x> is not strictly increasing.

=item *

-4  if C<ic(0) E<lt> 0> or C<ic(0) E<gt> 4>.

=item *

-5  if C<ic(1) E<lt> 0> or C<ic(1) E<gt> 4>.

=item *

-6  if both of the above are true.

=item *

-7  if C<nwk E<lt> 2*n>.

=item *

-8  in case of trouble solving the linear system
for the interior derivative values.

=back

=cut

',
'Calculate the derivatives of (x,f(x)) using cubic spline interpolation.'
);	  

defslatec(
	  'chfd', {S => 'pchfd', D => 'dpchfd'},
	  'Dim          n;
           Mat          x       (n);
           Mat          f       (n);
           Mat          d       (n);
           Incfd        dummy;
           CheckFlag    check   ();
           Dim          ne;
           Mat          xe      (ne);
           Mat     [o]  fe      (ne);
           Mat     [o]  de      (ne);
           IntFlag [o]  ierr    ();
          ',
'Given a piecewise cubic Hermite function - such as from
L<chim|/chim> - evaluate the function (C<$fe>) and 
derivative (C<$de>) at a set of points (C<$xe>).
If function values alone are required, use L<chfe|/chfe>.
Set C<check> to 0 to skip checks on the input data.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

E<gt>0 if extrapolation was performed at C<ierr> points
(data still valid).

=item *

-1 if C<nelem($x) E<lt> 2>

=item *

-3 if C<$x> is not strictly increasing.

=item *

-4 if C<nelem($xe) E<lt> 1>.

=item *

-5 if an error has occurred in a lower-level routine,
which should never happen.

=back

=cut

',
'Interpolate function and derivative values.'
);	  

defslatec(
	  'chfe', {S => 'pchfe', D => 'dpchfe'},
	  'Dim          n;
           Mat          x       (n);
           Mat          f       (n);
           Mat          d       (n);
           Incfd        dummy;
           CheckFlag    check    ();
           Dim          ne;
           Mat          xe      (ne);
           Mat     [o]  fe      (ne);
           IntFlag [o]  ierr    ();
          ',
'Given a piecewise cubic Hermite function - such as from
L<chim|/chim> - evaluate the function (C<$fe>) at
a set of points (C<$xe>).
If derivative values are also required, use L<chfd|/chfd>.
Set C<check> to 0 to skip checks on the input data.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

E<gt>0 if extrapolation was performed at C<ierr> points
(data still valid).

=item *

-1 if C<nelem($x) E<lt> 2>

=item *

-3 if C<$x> is not strictly increasing.

=item *

-4 if C<nelem($xe) E<lt> 1>.

=back

=cut

',
'Interpolate function values.'
);	  

defslatec(
	  'chia', {S => 'pchia', D => 'dpchia'},
	  'Dim          n;
           Mat          x       (n);
           Mat          f       (n);
           Mat          d       (n);
           Incfd        dummy;
           CheckFlag    check    ();
           Mat          a       ();
           Mat          b       ();
           FuncRet [o]  ans     ();
           IntFlag [o]  ierr    ();
          ',
'Evaluate the definite integral of a a piecewise
cubic Hermite function over an arbitrary interval,
given by C<[$a,$b]>.
See L<chid|/chid> if the integration limits are
data points.
Set C<check> to 0 to skip checks on the input data.

The values of C<$a> and C<$b> do not have
to lie within C<$x>, although the resulting integral
value will be highly suspect if they are not.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

1 if C<$a> lies outside C<$x>.

=item *

2 if C<$b> lies outside C<$x>.

=item *

3 if both 1 and 2 are true.

=item *

-1 if C<nelem($x) E<lt> 2>

=item *

-3 if C<$x> is not strictly increasing.

=item *

-4 if an error has occurred in a lower-level routine,
which should never happen.

=back

=cut

',
'Integrate (x,f(x)) over arbitrary limits.'
);

defslatec(
	  'chid', {S => 'pchid', D => 'dpchid'},
	  'Dim          n;
           Mat          x       (n);
           Mat          f       (n);
           Mat          d       (n);
           Incfd        dummy;
           CheckFlag    check    ();
           FortranIndex ia      ();
           FortranIndex ib      ();
           FuncRet [o]  ans     ();
           IntFlag [o]  ierr    ();
          ',
'Evaluate the definite integral of a a piecewise
cubic Hermite function between C<x($ia)> and
C<x($ib)>. 

See L<chia|/chia> for integration between arbitrary
limits.

Although using a fortran routine, the values of
C<$ia> and C<$ib> are zero offset.
Set C<check> to 0 to skip checks on the input data.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

-1 if C<nelem($x) E<lt> 2>.

=item *

-3 if C<$x> is not strictly increasing.

=item *

-4 if C<$ia> or C<$ib> is out of range.

=back

=cut

',
'Integrate (x,f(x)) between data points.'
);

defslatec(
	  'chcm', {S => 'pchcm', D => 'dpchcm'},
	  'Dim          n;
           Mat          x       (n);
           Mat          f       (n);
           Mat          d       (n);
           Incfd        dummy;
           CheckFlag    check    ();
           IntFlag [o]  ismon   (n);
           IntFlag [o]  ierr    ();
          ',
'The outout piddle C<$ismon> indicates over
which intervals the function is monotonic.
Set C<check> to 0 to skip checks on the input data.

For the data interval C<[x(i),x(i+1)]>, the
values of C<ismon(i)> can be:

=over 4

=item *

-3 if function is probably decreasing

=item *

-1 if function is strictly decreasing

=item *

0  if function is constant

=item *

1  if function is strictly increasing

=item *

2  if function is non-monotonic

=item *

3  if function is probably increasing

=back

If C<abs(ismon(i)) == 3>, the derivative values are
near the boundary of the monotonicity region. A small
increase produces non-monotonicity, whereas a decrease
produces strict monotonicity.

The above applies to C<i = 0 .. nelem($x)-1>. The last element of
C<$ismon> indicates whether
the entire function is monotonic over $x.

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

-1 if C<n E<lt> 2>.

=item *

-3 if C<$x> is not strictly increasing.

=back

=cut

',
'Check the given piecewise cubic Hermite function for monotonicity.'
);	  

=pod

ignore function for now although code is in slatec/ directory

=cut

# XXX tsize = 2*n+4
#     bsize = 2*n
#
# ndim gets set to 2*n
#
# Changed by routine:
#   nknots
#   t
defslatec(
	  'chbs', {S => 'pchbs', D => 'dpchbs'},
	  'Dim          n;
           Mat          x       (n);
           Mat          f       (n);
           Mat          d       (n);
           Incfd        dummy;
           IntFlag      knotyp  ();
           IntFlag      nknots  ();
           Mat          t       (tsize);
           Mat     [o]  bcoef   (bsize);
           IntFlag [o]  ndim    ();
           IntFlag [o]  kord    ();
           IntFlag [o]  ierr    ();
          ',
'The resulting B-spline representation of the data
(i.e. C<nknots>, C<t>, C<bcoeff>, C<ndim>, and
C<kord>) can be evaluated by C<bvalu> (which is 
currently not available).

Array sizes: C<tsize = 2*n + 4>, C<bsize = 2*n>,
and C<ndim = 2*n>.

C<knotyp> is a flag which controls the knot sequence.
The knot sequence C<t> is normally computed from C<$x> 
by putting a double knot at each C<x> and setting the end knot pairs
according to the value of C<knotyp> (where C<m = ndim = 2*n>):

=over

=item *

0 -   Quadruple knots at the first and last points.

=item *

1 -   Replicate lengths of extreme subintervals:
C<t( 0 ) = t( 1 ) = x(0) - (x(1)-x(0))> and
C<t(m+3) = t(m+2) = x(n-1) + (x(n-1)-x(n-2))>

=item *

2 -   Periodic placement of boundary knots:
C<t( 0 ) = t( 1 ) = x(0) - (x(n-1)-x(n-2))> and
C<t(m+3) = t(m+2) = x(n) + (x(1)-x(0))>

=item *

E<lt>0 - Assume the C<nknots> and C<t> were set in a previous call.

=back

C<nknots> is the number of knots and may be changed by the routine. 
If C<knotyp E<gt>= 0>, C<nknots> will be set to C<ndim+4>,
otherwise it is an input variable, and an error will occur if its
value is not equal to C<ndim+4>.

C<t> is the array of C<2*n+4> knots for the B-representation
and may be changed by the routine.
If C<knotyp E<gt>= 0>, C<t> will be changed so that the
interior double knots are equal to the x-values and the
boundary knots set as indicated above,
otherwise it is assumed that C<t> was set by a
previous call (no check is made to verify that the data
forms a legitimate knot sequence). 

Error status returned by C<$ierr>:

=over 4

=item *

0 if successful.

=item *

-4 if C<knotyp E<gt> 2>.

=item *

-5 if C<knotyp E<lt> 0> and C<nknots != 2*n + 4>.

=back

=cut

',
'Piecewise Cubic Hermite function to B-Spline converter.'
);	  

##################################################################
##################################################################

#
# This version of polfit accepts bad values and also allows threading
#

#
# indices: 
#  n   runs across input points; 
#  foo runs across wacky Slatec buffer size;
#  bar runs across polynomial coefficients.
#
pp_def('polfit',
  Pars => 'x(n); y(n); w(n); longlong maxdeg(); longlong [o]ndeg(); [o]eps(); [o]r(n); longlong [o]ierr(); [o]a(foo); [o]coeffs(bar);[t]xtmp(n);[t]ytmp(n);[t]wtmp(n);[t]rtmp(n)',
  OtherPars => '',
  Code => '
           long long maxord;
           long long ord;
           long long k;
           $GENERIC() zero = 0;

           $TFD(polfit'.$uscore.',dpolft'.$uscore.')  (&$PRIV(__n_size),$P(x),$P(y),$P(w),$P(maxdeg),$P(ndeg),$P(eps),$P(r),$P(ierr),$P(a)); 
	   maxord = ($P(a))[0]+0.5;
	   ord = ($P(a))[maxord * 3  +  2];
	   if(ord >= $maxdeg()) {
	     ord = $maxdeg();
	   }
           $TFD(pcoef'.$uscore.',dpcoef'.$uscore.') ( &(ord), &(zero), $P(coeffs), $P(a));
           for(k=ord+1; k<=$maxdeg(); k++)
              ($P(coeffs))[k] = 0;
',
  GenericTypes => ['F','D'],
  HandleBad => 1, 
  NoBadifNaN => 1,
  BadCode => 'long long ns = $SIZE(n);
              long long i;
	      long long j = 0;
              if($SIZE(n)<$maxdeg()) {
                barf("polfit: Must have at least <n> points to fit <n> coefficients");
              }

              for (i=0;i<ns;i++) {   /* get rid of bad values.  Call polfit with [xyw]tmp instead of [xyz]. */
                if ($ISGOOD(y(n=>i)) && $ISGOOD(x(n=>i)) && $ISGOOD(w(n=>i))) {
                  $xtmp(n=>j) = $x(n=>i);
                  $ytmp(n=>j) = $y(n=>i);
                  $wtmp(n=>j) = $w(n=>i);
                  j++;
                }
              }
	      if (j <= $maxdeg()) {
		/* Not enough good datapoints -- set this whole row to BAD. */
                for (i=0;i<ns;i++) {
                  $SETBAD(r(n=>i));
                }
                $ierr() = 2;
              } else {
                  /* Found enough good datapoints for a fit -- do the fit */
		  long long k;
		  long long ord;
		  long long maxord;
                  $GENERIC() zero = 0;

                /* Do the fit */
                $TFD(polfit'.$uscore.',dpolft'.$uscore.')  
                    (&j,$P(xtmp),$P(ytmp),$P(wtmp),$P(maxdeg),$P(ndeg),$P(eps),$P(rtmp),$P(ierr),$P(a));

		maxord = ($P(a))[0]+0.5;
		ord = ($P(a))[maxord * 3  +  2];
		if(ord >= $maxdeg()) {
		  ord = $maxdeg();
		}
		/* Extract the polynomial coefficients into coeffs -- used for bad values */
                $TFD(pcoef'.$uscore.',dpcoef'.$uscore.') ( &(ord), &(zero), $P(coeffs), $P(a));
                for(k=ord+1; k<=$maxdeg(); k++)
                   ($P(coeffs))[k] = 0;
                j=0;
                for (i=0;i<ns;i++) {  /* replace bad values */
                  if ($ISGOOD(y(n=>i))) {
                    $r(n=>i) = $rtmp(n=>j);
                    j++;
                  } else if($ISGOOD(x(n=>i))) {
		     /* Bad values are omitted from the call to polfit, so we must reconstitute them on return */
	             /* (just because a value is bad in y, does not mean the fit itself is bad there) */
                     /* */
                     /* The number in ord is not the number of coefficients in the polynomial, it is the highest */
                     /* order coefficient -- so 3 for a cubic, which has 4 coefficients. */
	             /* --CED */
		     int ii;
                     $GENERIC() acc = 0;
                     for( ii=ord; ii>0; ii-- ) {
                        acc += $coeffs(bar=>ii);
                        acc *= $x(n=>i);
                     }

                     acc += $coeffs(bar=>0);
                     $r(n=>i) = acc;
                  } else {
                    /* x and y are bad here... */
		    $SETBAD(r(n=>i));
                  }
                }
              }',

  Doc => 'Fit discrete data in a least squares sense by polynomials
          in one variable. C<x()>, C<y()> and C<w()> must be of the same type.
	  This version handles bad values appropriately',
);

#these two need to be done manually because we don't use defslatec for them
print PROTOS "extern int polfit_ ();\nextern int dpolft_ ();\n";

close( PROTOS );

##################################################################
##################################################################

pp_addpm(<<'EOD');

=head1 AUTHOR

Copyright (C) 1997 Tuomas J. Lukka. 
Copyright (C) 2000 Tim Jenness, Doug Burke.            
All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation under certain
conditions. For details, see the file COPYING in the PDL 
distribution. If this file is separated from the PDL distribution, 
the copyright notice should be included in the file.

=cut


EOD

pp_done();