File: j0.c

package info (click to toggle)
pdl 2.005-4
  • links: PTS
  • area: main
  • in suites: potato
  • size: 4,200 kB
  • ctags: 3,301
  • sloc: perl: 14,876; ansic: 7,223; fortran: 3,417; makefile: 54; sh: 16
file content (261 lines) | stat: -rw-r--r-- 5,652 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*							j0.c
 *
 *	Bessel function of order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, j0();
 *
 * y = j0( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of order zero of the argument.
 *
 * The domain is divided into the intervals [0, 5] and
 * (5, infinity). In the first interval the following rational
 * approximation is used:
 *
 *
 *        2         2
 * (w - r  ) (w - r  ) P (w) / Q (w)
 *       1         2    3       8
 *
 *            2
 * where w = x  and the two r's are zeros of the function.
 *
 * In the second interval, the Hankel asymptotic expansion
 * is employed with two rational functions of degree 6/6
 * and 7/7.
 *
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0, 30       10000       4.4e-17     6.3e-18
 *    IEEE      0, 30       60000       4.2e-16     1.1e-16
 *
 */
/*							y0.c
 *
 *	Bessel function of the second kind, order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, y0();
 *
 * y = y0( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of the second kind, of order
 * zero, of the argument.
 *
 * The domain is divided into the intervals [0, 5] and
 * (5, infinity). In the first interval a rational approximation
 * R(x) is employed to compute
 *   y0(x)  = R(x)  +   2 * log(x) * j0(x) / PI.
 * Thus a call to j0() is required.
 *
 * In the second interval, the Hankel asymptotic expansion
 * is employed with two rational functions of degree 6/6
 * and 7/7.
 *
 *
 *
 * ACCURACY:
 *
 *  Absolute error, when y0(x) < 1; else relative error:
 *
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0, 30        9400       7.0e-17     7.9e-18
 *    IEEE      0, 30       30000       1.3e-15     1.6e-16
 *
 */

/*
Cephes Math Library Release 2.1:  January, 1989
Copyright 1984, 1987, 1989 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/

/* Note: all coefficients satisfy the relative error criterion
 * except YP, YQ which are designed for absolute error. */

#include "mconf.h"

static double PP[7] = {
  7.96936729297347051624E-4,
  8.28352392107440799803E-2,
  1.23953371646414299388E0,
  5.44725003058768775090E0,
  8.74716500199817011941E0,
  5.30324038235394892183E0,
  9.99999999999999997821E-1,
};
static double PQ[7] = {
  9.24408810558863637013E-4,
  8.56288474354474431428E-2,
  1.25352743901058953537E0,
  5.47097740330417105182E0,
  8.76190883237069594232E0,
  5.30605288235394617618E0,
  1.00000000000000000218E0,
};

static double QP[8] = {
-1.13663838898469149931E-2,
-1.28252718670509318512E0,
-1.95539544257735972385E1,
-9.32060152123768231369E1,
-1.77681167980488050595E2,
-1.47077505154951170175E2,
-5.14105326766599330220E1,
-6.05014350600728481186E0,
};
static double QQ[7] = {
/*  1.00000000000000000000E0,*/
  6.43178256118178023184E1,
  8.56430025976980587198E2,
  3.88240183605401609683E3,
  7.24046774195652478189E3,
  5.93072701187316984827E3,
  2.06209331660327847417E3,
  2.42005740240291393179E2,
};

static double YP[8] = {
 1.55924367855235737965E4,
-1.46639295903971606143E7,
 5.43526477051876500413E9,
-9.82136065717911466409E11,
 8.75906394395366999549E13,
-3.46628303384729719441E15,
 4.42733268572569800351E16,
-1.84950800436986690637E16,
};
static double YQ[7] = {
/* 1.00000000000000000000E0,*/
 1.04128353664259848412E3,
 6.26107330137134956842E5,
 2.68919633393814121987E8,
 8.64002487103935000337E10,
 2.02979612750105546709E13,
 3.17157752842975028269E15,
 2.50596256172653059228E17,
};

/*  5.783185962946784521175995758455807035071 */
static double DR1 = 5.78318596294678452118E0;
/* 30.47126234366208639907816317502275584842 */
static double DR2 = 3.04712623436620863991E1;

static double RP[4] = {
-4.79443220978201773821E9,
 1.95617491946556577543E12,
-2.49248344360967716204E14,
 9.70862251047306323952E15,
};
static double RQ[8] = {
/* 1.00000000000000000000E0,*/
 4.99563147152651017219E2,
 1.73785401676374683123E5,
 4.84409658339962045305E7,
 1.11855537045356834862E10,
 2.11277520115489217587E12,
 3.10518229857422583814E14,
 3.18121955943204943306E16,
 1.71086294081043136091E18,
};

double j0(x)
double x;
{
double polevl(), p1evl();
double w, z, p, q, xn;
double sin(), cos(), sqrt();
extern double PIO4, SQ2OPI;


if( x < 0 )
	x = -x;

if( x <= 5.0 )
	{
	z = x * x;
	if( x < 1.0e-5 )
		return( 1.0 - z/4.0 );

	p = (z - DR1) * (z - DR2);
	p = p * polevl( z, RP, 3)/p1evl( z, RQ, 8 );
	return( p );
	}

w = 5.0/x;
q = 25.0/(x*x);
p = polevl( q, PP, 6)/polevl( q, PQ, 6 );
q = polevl( q, QP, 7)/p1evl( q, QQ, 7 );
xn = x - PIO4;
p = p * cos(xn) - w * q * sin(xn);
return( p * SQ2OPI / sqrt(x) );
}

/*							y0() 2	*/
/* Bessel function of second kind, order zero	*/

/* Rational approximation coefficients YP[], YQ[] are used here.
 * The function computed is  y0(x)  -  2 * log(x) * j0(x) / PI,
 * whose value at x = 0 is  2 * ( log(0.5) + EUL ) / PI
 * = 0.073804295108687225.
 */

/*
#define PIO4 .78539816339744830962
#define SQ2OPI .79788456080286535588
*/
extern double MAXNUM;

#ifdef MY_FIXY0
double fixy0(x)
#else
double y0(x)
#endif
double x;
{
double polevl(), p1evl();
double w, z, p, q, xn;
double j0(), log(), sin(), cos(), sqrt();
extern double TWOOPI, SQ2OPI, PIO4;


if( x <= 5.0 )
	{
	if( x <= 0.0 )
		{
		mtherr( "y0", DOMAIN );
		return( -MAXNUM );
		}
	z = x * x;
	w = polevl( z, YP, 7) / p1evl( z, YQ, 7 );
	w += TWOOPI * log(x) * j0(x);
	return( w );
	}

w = 5.0/x;
z = 25.0 / (x * x);
p = polevl( z, PP, 6)/polevl( z, PQ, 6 );
q = polevl( z, QP, 7)/p1evl( z, QQ, 7 );
xn = x - PIO4;
p = p * sin(xn) + w * q * cos(xn);
return( p * SQ2OPI / sqrt(x) );
}