1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
/* j0.c
*
* Bessel function of order zero
*
*
*
* SYNOPSIS:
*
* double x, y, j0();
*
* y = j0( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of order zero of the argument.
*
* The domain is divided into the intervals [0, 5] and
* (5, infinity). In the first interval the following rational
* approximation is used:
*
*
* 2 2
* (w - r ) (w - r ) P (w) / Q (w)
* 1 2 3 8
*
* 2
* where w = x and the two r's are zeros of the function.
*
* In the second interval, the Hankel asymptotic expansion
* is employed with two rational functions of degree 6/6
* and 7/7.
*
*
*
* ACCURACY:
*
* Absolute error:
* arithmetic domain # trials peak rms
* DEC 0, 30 10000 4.4e-17 6.3e-18
* IEEE 0, 30 60000 4.2e-16 1.1e-16
*
*/
/* y0.c
*
* Bessel function of the second kind, order zero
*
*
*
* SYNOPSIS:
*
* double x, y, y0();
*
* y = y0( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of the second kind, of order
* zero, of the argument.
*
* The domain is divided into the intervals [0, 5] and
* (5, infinity). In the first interval a rational approximation
* R(x) is employed to compute
* y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
* Thus a call to j0() is required.
*
* In the second interval, the Hankel asymptotic expansion
* is employed with two rational functions of degree 6/6
* and 7/7.
*
*
*
* ACCURACY:
*
* Absolute error, when y0(x) < 1; else relative error:
*
* arithmetic domain # trials peak rms
* DEC 0, 30 9400 7.0e-17 7.9e-18
* IEEE 0, 30 30000 1.3e-15 1.6e-16
*
*/
/*
Cephes Math Library Release 2.1: January, 1989
Copyright 1984, 1987, 1989 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/* Note: all coefficients satisfy the relative error criterion
* except YP, YQ which are designed for absolute error. */
#include "mconf.h"
static double PP[7] = {
7.96936729297347051624E-4,
8.28352392107440799803E-2,
1.23953371646414299388E0,
5.44725003058768775090E0,
8.74716500199817011941E0,
5.30324038235394892183E0,
9.99999999999999997821E-1,
};
static double PQ[7] = {
9.24408810558863637013E-4,
8.56288474354474431428E-2,
1.25352743901058953537E0,
5.47097740330417105182E0,
8.76190883237069594232E0,
5.30605288235394617618E0,
1.00000000000000000218E0,
};
static double QP[8] = {
-1.13663838898469149931E-2,
-1.28252718670509318512E0,
-1.95539544257735972385E1,
-9.32060152123768231369E1,
-1.77681167980488050595E2,
-1.47077505154951170175E2,
-5.14105326766599330220E1,
-6.05014350600728481186E0,
};
static double QQ[7] = {
/* 1.00000000000000000000E0,*/
6.43178256118178023184E1,
8.56430025976980587198E2,
3.88240183605401609683E3,
7.24046774195652478189E3,
5.93072701187316984827E3,
2.06209331660327847417E3,
2.42005740240291393179E2,
};
static double YP[8] = {
1.55924367855235737965E4,
-1.46639295903971606143E7,
5.43526477051876500413E9,
-9.82136065717911466409E11,
8.75906394395366999549E13,
-3.46628303384729719441E15,
4.42733268572569800351E16,
-1.84950800436986690637E16,
};
static double YQ[7] = {
/* 1.00000000000000000000E0,*/
1.04128353664259848412E3,
6.26107330137134956842E5,
2.68919633393814121987E8,
8.64002487103935000337E10,
2.02979612750105546709E13,
3.17157752842975028269E15,
2.50596256172653059228E17,
};
/* 5.783185962946784521175995758455807035071 */
static double DR1 = 5.78318596294678452118E0;
/* 30.47126234366208639907816317502275584842 */
static double DR2 = 3.04712623436620863991E1;
static double RP[4] = {
-4.79443220978201773821E9,
1.95617491946556577543E12,
-2.49248344360967716204E14,
9.70862251047306323952E15,
};
static double RQ[8] = {
/* 1.00000000000000000000E0,*/
4.99563147152651017219E2,
1.73785401676374683123E5,
4.84409658339962045305E7,
1.11855537045356834862E10,
2.11277520115489217587E12,
3.10518229857422583814E14,
3.18121955943204943306E16,
1.71086294081043136091E18,
};
double j0(x)
double x;
{
double polevl(), p1evl();
double w, z, p, q, xn;
double sin(), cos(), sqrt();
extern double PIO4, SQ2OPI;
if( x < 0 )
x = -x;
if( x <= 5.0 )
{
z = x * x;
if( x < 1.0e-5 )
return( 1.0 - z/4.0 );
p = (z - DR1) * (z - DR2);
p = p * polevl( z, RP, 3)/p1evl( z, RQ, 8 );
return( p );
}
w = 5.0/x;
q = 25.0/(x*x);
p = polevl( q, PP, 6)/polevl( q, PQ, 6 );
q = polevl( q, QP, 7)/p1evl( q, QQ, 7 );
xn = x - PIO4;
p = p * cos(xn) - w * q * sin(xn);
return( p * SQ2OPI / sqrt(x) );
}
/* y0() 2 */
/* Bessel function of second kind, order zero */
/* Rational approximation coefficients YP[], YQ[] are used here.
* The function computed is y0(x) - 2 * log(x) * j0(x) / PI,
* whose value at x = 0 is 2 * ( log(0.5) + EUL ) / PI
* = 0.073804295108687225.
*/
/*
#define PIO4 .78539816339744830962
#define SQ2OPI .79788456080286535588
*/
extern double MAXNUM;
#ifdef MY_FIXY0
double fixy0(x)
#else
double y0(x)
#endif
double x;
{
double polevl(), p1evl();
double w, z, p, q, xn;
double j0(), log(), sin(), cos(), sqrt();
extern double TWOOPI, SQ2OPI, PIO4;
if( x <= 5.0 )
{
if( x <= 0.0 )
{
mtherr( "y0", DOMAIN );
return( -MAXNUM );
}
z = x * x;
w = polevl( z, YP, 7) / p1evl( z, YQ, 7 );
w += TWOOPI * log(x) * j0(x);
return( w );
}
w = 5.0/x;
z = 25.0 / (x * x);
p = polevl( z, PP, 6)/polevl( z, PQ, 6 );
q = polevl( z, QP, 7)/p1evl( z, QQ, 7 );
xn = x - PIO4;
p = p * sin(xn) + w * q * cos(xn);
return( p * SQ2OPI / sqrt(x) );
}
|