File: image2d.pd

package info (click to toggle)
pdl 2.005-4
  • links: PTS
  • area: main
  • in suites: potato
  • size: 4,200 kB
  • ctags: 3,301
  • sloc: perl: 14,876; ansic: 7,223; fortran: 3,417; makefile: 54; sh: 16
file content (752 lines) | stat: -rw-r--r-- 17,927 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
pp_addpm({At=>Top},<<'EOD');

=head1 NAME

PDL::Image2D - Miscellaneous 2D image processing functions


=head1 DESCRIPTION

  Miscellaneous 2D image processing functions - for want
  of anywhere else to put them

=head1 SYNOPSIS

 use PDL::Image2D;

=cut

EOD

pp_addhdr('

#define IsNaN(x) (x != x)

/* Fast Modulus with proper negative behaviour */

#define REALMOD(a,b) {while ((a)>=(b)) (a) -= (b); while ((a)<0) (a) += (b);}

/* Local quick-sort routine for doubles */

void pdl_lqsortD(double* xx, int a, int b) {

   int i,j;

   double t, median;

   i = a; j = b;
   median = xx[(i+j) / 2];
   do {
      while (xx[i] < median)
	 i++;
      while (median < xx[j])
	 j--;
      if (i <= j) {
	 t = xx[i]; xx[i] = xx[j]; xx[j] = t;
	 i++; j--;
      }
   } while (i <= j);

   if (a < j)
      pdl_lqsortD(xx,a,j);
   if (i < b)
      pdl_lqsortD(xx,i,b);
 }

');

pp_def('conv2d', Doc=><<'EOD',
=head2 conv2d

=for ref

2D convolution of an array with a kernel (smoothing)

=for usage

 $new = conv2d $old, $kernel, {OPTIONS}

=for example

  perldl> $smoothed = conv2d $image, ones(3,3), {Boundary => Reflect}

=for options

 Boundary - controls what values are assumed for the image when kernel
            crosses its edge:
 	    => Default  - periodic boundary conditions (i.e. wrap around axis)
 	    => Reflect  - reflect at boundary
 	    => Truncate - truncate at boundary

=cut

EOD
        Pars => 'a(m,n); kern(p,q); [o]b(m,n);',
        OtherPars => 'int opt;',
        PMCode => '

sub PDL::conv2d {
   my $opt; $opt = pop @_ if ref($_[$#_]) eq \'HASH\';
   die \'Usage: conv2d( a(m,n), kern(p,q), [o]b(m,n), {Options} )\'
      if $#_<1 || $#_>2;
   my($a,$kern) = @_;
   my $c = $#_ == 2 ? $_[2] : PDL->null;
   &PDL::_conv2d_int($a,$kern,$c,
	(!(defined $opt && exists $$opt{Boundary}))?0:
	(($$opt{Boundary} eq "Reflect") +
	2*($$opt{Boundary} eq "Truncate")));
   return $c;
}

',
        Code => '
           int i,j, i1,j1, i2,j2, poff, qoff;
           double tmp;
           int opt = $COMP(opt);
           int m_size = $COMP(__m_size);
           int n_size = $COMP(__n_size);
           int p_size = $COMP(__p_size);
           int q_size = $COMP(__q_size);
           int *mapi, *mapj;

           mapi = (int *) malloc((p_size+m_size)*sizeof(int));
           mapj = (int *) malloc((q_size+n_size)*sizeof(int));

           if ((mapi==NULL) || (mapj==NULL))
               barf("Out of Memory");

           poff = p_size/2; mapi += p_size-1;
           qoff = q_size/2; mapj += q_size-1;

	   for (i=1-p_size; i<m_size; i++) {
              i2 = i+poff;
              switch (opt) {
	case 1:      /* REFLECT */
                 if (i2<0)
                    i2 = -i2;
                 else if (i2 >= m_size)
                    i2 = 2*m_size-(i2+1);
                 break;
	case 2:      /* TRUNCATE */
                 if (i2<0 || i2 >= m_size)
                    i2 = -1;
                 break;
	default:
                 REALMOD(i2,m_size);
               }
               mapi[i] = i2;
	   }
	   for (j=1-q_size; j<n_size; j++) {
              j2 = j+qoff;
              switch (opt) {
	case 1:      /* REFLECT */
                 if (j2<0)
                    j2 = -j2;
                 else if (j2 >= n_size)
                    j2 = 2*n_size-(j2+1);
                 break;
	case 2:      /* TRUNCATE */
                 if (j2<0 || j2>=n_size)
                    j2 = -1;
                 break;
	default:
                 REALMOD(j2,n_size);
               }
               mapj[j] = j2;
	   }

           threadloop %{
           for(j=0; j<n_size; j++) { for(i=0; i<m_size; i++) {
              tmp = 0;
              for(j1=0; j1<q_size; j1++) {
                  j2 = mapj[j-j1];

                  if (j2 >= 0) {
                     for(i1=0; i1<p_size; i1++) {
                       i2 = mapi[i-i1];
                       if (i2 >= 0)
                          tmp += $a(m=>i2,n=>j2) * $kern(p=>i1,q=>j1);
                     }
                  }
              }
              $b(m=>i,n=>j) = tmp;
           }} %}
	   free(mapj+1-q_size); free(mapi+1-p_size);
');


pp_def('med2d', Doc=> <<'EOD',

=head2 med2d

=for ref

2D median-convolution of an array with a kernel (smoothing)

Note: only points in the kernel >0 are included in the median, other
points are weighted by the kernel value (medianing lots of zeroes
is rather pointless)

=for usage

 $new = med2d $old, $kernel, {OPTIONS}

=for example

  perldl> $smoothed = med2d $image, ones(3,3), {Boundary => Reflect}

=for options

 Boundary - controls what values are assumed for the image when kernel
            crosses its edge:
 	    => Default  - periodic boundary conditions (i.e. wrap around axis)
 	    => Reflect  - reflect at boundary
 	    => Truncate - truncate at boundary

=cut

EOD
        Pars => 'a(m,n); kern(p,q); [o]b(m,n);',
        OtherPars => 'int opt;',
        PMCode => '

sub PDL::med2d {
   my $opt; $opt = pop @_ if ref($_[$#_]) eq \'HASH\';
   die \'Usage: med2d( a(m,n), kern(p,q), [o]b(m,n), {Options} )\'
      if $#_<1 || $#_>2;
   my($a,$kern) = @_;
   my $c = $#_ == 2 ? $_[2] : PDL->null;
   &PDL::_med2d_int($a,$kern,$c,
	(!(defined $opt && exists $opt->{Boundary}))?0:
	(($$opt{Boundary} eq "Reflect") +
	2*($$opt{Boundary} eq "Truncate")));
   return $c;
}

',
        Code => '
           int i,j, i1,j1, i2,j2, poff, qoff,
           count;
           PDL_Double *tmp;
           PDL_Double kk;

           int opt = $COMP(opt);
           int m_size = $COMP(__m_size);
           int n_size = $COMP(__n_size);
           int p_size = $COMP(__p_size);
           int q_size = $COMP(__q_size);
           int *mapi, *mapj;

           poff = p_size/2; qoff = q_size/2;

           tmp = malloc(p_size*q_size*sizeof(PDL_Double));
           mapi = (int *) malloc((p_size+m_size)*sizeof(int));
           mapj = (int *) malloc((q_size+n_size)*sizeof(int));
           if ((tmp==NULL) || (mapi==NULL) || (mapj==NULL))
               barf("Out of Memory");

           poff = p_size/2; mapi += p_size-1;
           qoff = q_size/2; mapj += q_size-1;

	   for (i=1-p_size; i<m_size; i++) {
              i2 = i+poff;
              switch (opt) {
	case 1:      /* REFLECT */
                 if (i2<0)
                    i2 = -i2;
                 else if (i2 >= m_size)
                    i2 = 2*m_size-(i2+1);
                 break;
	case 2:      /* TRUNCATE */
                 if (i2<0 || i2 >= m_size)
                    i2 = -1;
                 break;
	default:
                 REALMOD(i2,m_size);
               }
               mapi[i] = i2;
	   }
	   for (j=1-q_size; j<n_size; j++) {
              j2 = j+qoff;
              switch (opt) {
	case 1:      /* REFLECT */
                 if (j2<0)
                    j2 = -j2;
                 else if (j2 >= n_size)
                    j2 = 2*n_size-(j2+1);
                 break;
	case 2:      /* TRUNCATE */
                 if (j2<0 || j2>=n_size)
                    j2 = -1;
                 break;
	default:
                 REALMOD(j2,n_size);
               }
               mapj[j] = j2;
	   }

           threadloop %{
           for(j=0; j<n_size; j++) { for(i=0; i<m_size; i++) {
              count = 0;
              for(j1=0; j1<q_size; j1++) {
                  j2 = mapj[j-j1];

                  if (j2 >= 0)
                     for(i1=0; i1<p_size; i1++) {
                        i2 = mapi[i-i1];
                        if (i2 >= 0) {
                           kk = $kern(p=>i1,q=>j1);
                           if (kk>0) {
                              tmp[count++] = $a(m=>i2,n=>j2) * kk;
                           }
                        }
              }}
              pdl_lqsortD(tmp,0,count-1);

              $b(m=>i,n=>j) = tmp[(count-1)/2];
           }} %}
           free(mapj+1-q_size); free(mapi+1-p_size); free(tmp);
');

pp_def('patch2d', Doc=><<'EOD',
=head2 patch2d

=for ref

patch bad pixels out of 2D images,

=for usage

$patched = patch2d $data, $bad;

$bad is a 2D mask array where 1=bad pixel 0=good pixel. Pixels are replaced by the average
of their non-bad neighbours.

=cut

EOD
        Pars => 'a(m,n); int bad(m,n); [o]b(m,n);',
        Code => '
           int m_size, n_size,  i,j, i1,j1, i2,j2, norm;
           double tmp;

           m_size = $COMP(__m_size); n_size = $COMP(__n_size);

           for(j=0; j<n_size; j++) { for(i=0; i<m_size; i++) {
              $b(m=>i,n=>j) = $a(m=>i,n=>j);
              if ($bad(m=>i,n=>j)==1) {
                 tmp = 0; norm=0;
                 for(j1=-1; j1<=1; j1++) { for(i1=-1; i1<=1; i1++) {
                     i2 = i+i1; j2 = j+j1;
                     if (j2>0 && i2>0 && i2<m_size && j2<n_size &&
                        $bad(m=>i2,n=>j2)!=1)
                        tmp += $a(m=>i2,n=>j2); norm++;
                 }}
                 if (norm>0) {  /* Patch */
                    $b(m=>i,n=>j) = tmp/norm;
                 }

              } /* Next pixel */
           }}
');


pp_def('max2d_ind',Doc=><<'EOD',
=head2 max2d_ind

=for ref

Return value/position of maximum value in 2D image

Contributed by Tim Jeness

=cut

EOD

        Pars => 'a(m,n); [o]b(); int [o]c(); int[o]d();',
        Code => '
        double cur; int curind1; int curind2;
        curind1=0;
        curind2=0;
        loop(m) %{
           loop(n) %{
           if((!m && !n) || $a() > cur || IsNaN(cur)) {
                cur = $a(); curind1 = m; curind2 = n;
              }
           %}
        %}
        $b() = cur;
        $c() = curind1;
        $d() = curind2;
        ');

pp_def('centroid2d',Doc=><<'EOD',
=head2 centroid2d

=for ref

Refine a list of object positions in 2D image by centroiding in a box

$box is the full-width of the box, i.e. the window
is +/- $box/2

=cut

EOD
	Pars => 'im(m,n); x(); y(); box(); [o]xcen(); [o]ycen();',
	Code => '
   int i,j,i1,i2,j1,j2,m_size,n_size;
   double sum,data,sumx,sumy;

   m_size = $SIZE(m); n_size = $SIZE(n);

   i1 = $x() - $box()/2; i1 = i1<0 ? 0 : i1;
   i2 = $x() + $box()/2; i1 = i1>=m_size ? m_size-1 : i1;
   j1 = $y() - $box()/2; j1 = j1<0 ? 0 : j1;
   j2 = $y() + $box()/2; j1 = j1>=n_size ? n_size-1 : j1;

   sum = sumx = sumy = 0;
   for(j=j1; j<=j2; j++) { for(i=i1; i<=i2; i++) {
      data = $im(m=>i,n=>j);
      sum += data;
      sumx += data*i;
      sumy += data*j;
   }}
   $xcen() = sumx/sum;
   $ycen() = sumy/sum;
'
);

pp_addhdr('

/* Add an equivalence to a list - used by pdl_cc8compt */

void AddEquiv ( PDL_Long* equiv, PDL_Long i, PDL_Long j) {

   PDL_Long k, tmp;

   if (i==j)
      return;

    k = j;
    do {
      k = equiv[k];
    } while ( k != j && k != i );

    if ( k == j ) {
       tmp = equiv[i];
       equiv[i] = equiv[j];
       equiv[j] = tmp;
    }
}

');


pp_def('cc8compt',Doc=>'
=for ref

Connected 8-component labeling of a binary image.

Connected 8-component labeling of 0,1 image - i.e. find seperate
segmented objects and fill object pixels with object number

=for example

perldl> $segmented = cc8compt($image>$threshold);

=cut

',
        Pars => 'a(m,n); [o]b(m,n);',
        Code => '

      PDL_Long i,j,k;
      PDL_Long newlabel;
      PDL_Long neighbour[4];
      PDL_Long nfound;
      PDL_Long pass,count,next,this;
      PDL_Long *equiv;
      PDL_Long i1,j1,i2;
      PDL_Long nx = $SIZE(m);
      PDL_Long ny = $SIZE(n);

      loop(n) %{ loop(m) %{ /* Copy */
         $b() = $a();
      %} %}

      /* 1st pass counts max possible compts, 2nd records equivalences
*/

      for (pass = 0; pass<2; pass++) {

      if (pass==1) {
         equiv = (PDL_Long*) malloc((newlabel+1)*sizeof(PDL_Long));
         if (equiv==(PDL_Long*)0)
            barf("Out of memory");
         for(i=0;i<=newlabel;i++)
             equiv[i]=i;
      }

      newlabel = 1; /* Running label */

      for(j=0; j<ny; j++) { for(i=0; i<nx; i++) { /* Loop over image
pixels */

            nfound = 0; /* Number of neighbour >0 */

            i1 = i-1; j1 = j-1; i2 = i+1;

            if ($b(m=>i, n=>j) > 0) { /* Check 4 neighbour already seen
*/

               if (i>0 && $b(m=>i1, n=>j)>0)
                   neighbour[nfound++] = $b(m=>i1, n=>j); /* Store label
of it */
               if (j>0 && $b(m=>i, n=>j1)>0)
                   neighbour[nfound++] = $b(m=>i, n=>j1);
               if (j>0 && i>0  && $b(m=>i1, n=>j1)>0)
                   neighbour[nfound++] = $b(m=>i1, n=>j1);
               if (j>0 && i<(nx-1) && $b(m=>i2, n=>j1)>0)
                   neighbour[nfound++] = $b(m=>i2, n=>j1);

               if (nfound==0)  { /* Assign new label */
                  $b(m=>i, n=>j) = newlabel++;
               }
               else {
                  $b(m=>i, n=>j) =  neighbour[0];
                  if (nfound>1 && pass == 1) {  /* Assign equivalents */
                      for(k=1; k<nfound; k++)
                         AddEquiv( equiv, (PDL_Long)$b(m=>i, n=>j),
neighbour[k] );
                  }
               }
            }

            else {  /* No label */

               $b(m=>i, n=>j) = 0;
            }

      }} /* End of image loop */

      } /* Passes */

      /* Replace each cycle by single label */

       count = 0;
       for (i = 1; i <= newlabel; i++)
         if ( i <= equiv[i] ) {
             count++;
             this = i;
             while ( equiv[this] != i ) {
               next = equiv[this];
               equiv[this] = count;
               this = next;
             }
          equiv[this] = count;
         }


      /* Now remove equivalences */

      for(j=0; j<ny; j++) { for(i=0; i<nx; i++) { /* Loop over image
pixels */
           $b(m=>i, n=>j)   = equiv[ (PDL_Long) $b(m=>i, n=>j)  ] ;
      }}

      free(equiv); /* Tidy */
');

pp_def('bilin2d',
    Pars => 'I(n,m); O(q,p)',
    Doc=><<'EOD',
=head2 bilin2d

=for ref

Bilineary maps the first piddle in the second. The
interpolated values are actually added to the second
piddle which is supposed to be larger than the first one.

=cut

EOD
,
    Code =>'
  int i,j,ii,jj,ii1,jj1,num;
  double x,y,dx,dy,y1,y2,y3,y4,t,u,sum;

  if ($SIZE(q)>=$SIZE(n) && $SIZE(p)>=$SIZE(m)) {
    threadloop %{
      dx = ((double) ($SIZE(n)-1)) / ($SIZE(q)-1);
      dy = ((double) ($SIZE(m)-1)) / ($SIZE(p)-1);
      for(i=0,x=0;i<$SIZE(q);i++,x+=dx) {
	for(j=0,y=0;j<$SIZE(p);j++,y+=dy) {
	  ii = (int) floor(x);
	  if (ii>=($SIZE(n)-1)) ii = $SIZE(n)-2;
	  jj = (int) floor(y);
	  if (jj>=($SIZE(m)-1)) jj = $SIZE(m)-2;
	  ii1 = ii+1;
	  jj1 = jj+1;
	  y1 = $I(n=>ii,m=>jj);
	  y2 = $I(n=>ii1,m=>jj);
	  y3 = $I(n=>ii1,m=>jj1);
	  y4 = $I(n=>ii,m=>jj1);
	  t = x-ii;
	  u = y-jj;
	  $O(q=>i,p=>j) += (1-t)*(1-u)*y1 + t*(1-u)*y2 + t*u*y3 + (1-t)*u*y4;
	}
      }
      %}
  }
  else { 
    barf("the second matrix must be greater than first! (bilin2d)");
  }
');

pp_def('rescale2d',
    Pars => 'I(n,m); O(q,p)',
    Doc=><<'EOD',
=head2 rescale2d

=for ref

The first piddle is rescaled to the dimensions of the second
(expandind or meaning values as needed) and then added to it.

=cut

EOD
,
    Code =>'
int ix,iy,ox,oy,i,j,lx,ly,cx,cy,xx,yy,num;
double kx,ky,temp;

ix = $SIZE(n);   
iy = $SIZE(m);   
ox = $SIZE(p);   
oy = $SIZE(q);   

if(ox >= ix && oy >= iy) {
  threadloop %{
    kx = ((double) (ox)) / (ix);
    ky = ((double) (oy)) / (iy);
    lx = 0;
    for(i=0;i<ix;i++) {
      ly = 0;
      for(j=0;j<iy;j++) {
	cx = rint((i+1)*kx)-1;
	cy = rint((j+1)*ky)-1;
	for(xx=lx;xx<=cx;xx++)
	  for(yy=ly;yy<=cy;yy++) {
/*	    fprintf(stderr,"i: %d, j: %d, xx: %d, yy: %d\n",i,j,xx,yy); */
	    $O(p=>xx,q=>yy) += $I(n=>j,m=>i);
	  }
	ly = cy + 1;
      }
      lx = cx + 1;
    }
  %}
}
else if(ox < ix && oy < iy) {
  threadloop %{
    kx = ((double) (ix)) / (ox);
    ky = ((double) (iy)) / (oy);
    lx = 0;
    for(i=0;i<ox;i++) {
      ly = 0;
      for(j=0;j<oy;j++) {
	cx = rint((i+1)*kx)-1;
	cy = rint((j+1)*ky)-1;
	temp = 0.0;
	num = 0;
	for(xx=lx;xx<=cx;xx++)
	  for(yy=ly;yy<=cy;yy++) {
/*	    fprintf(stderr,"i: %d, j: %d, xx: %d, yy: %d\n",i,j,xx,yy); */
	    temp += $I(n=>yy,m=>xx);
	    num++;
	  }
	$O(p=>i,q=>j) += temp/num;
	ly = cy + 1;
      }
      lx = cx + 1;
    }
  %}
}
else if(ox >= ix && oy < iy) {
  threadloop %{
    kx = ((double) (ox)) / (ix);
    ky = ((double) (iy)) / (oy);
    lx = 0;
    for(i=0;i<ix;i++) {
      ly = 0;
      for(j=0;j<oy;j++) {
	cx = rint((i+1)*kx)-1;
	cy = rint((j+1)*ky)-1;
	temp = 0.0;
	num = 0;
	for(yy=ly;yy<=cy;yy++) {
/*	  fprintf(stderr,"1 i: %d, j: %d, xx: %d, yy: %d\n",i,j,xx,yy); */
	    temp += $I(n=>yy,m=>i);
	  num++;
	}
	for(xx=lx;xx<=cx;xx++) {
/*	  fprintf(stderr,"2 i: %d, j: %d, xx: %d, yy: %d\n",i,j,xx,yy); */
	  $O(p=>xx,q=>j) += temp/num;
	}
	ly = cy + 1;
      }
      lx = cx + 1;
    }
  %}
}
else if(ox < ix && oy >= iy) {
  threadloop %{
    kx = ((double) (ix)) / (ox);
    ky = ((double) (oy)) / (iy);
    lx = 0;
    for(i=0;i<ox;i++) {
      ly = 0;
      for(j=0;j<iy;j++) {
	cx = rint((i+1)*kx)-1;
	cy = rint((j+1)*ky)-1;
	temp = 0.0;
	num = 0;
	for(xx=lx;xx<=cx;xx++) {
/*	  fprintf(stderr,"1 i: %d, j: %d, xx: %d, yy: %d\n",i,j,xx,yy); */
	    temp += $I(n=>j,m=>xx);
	  num++;
	}
	for(yy=ly;yy<=cy;yy++) {
/*	  fprintf(stderr,"2 i: %d, j: %d, xx: %d, yy: %d\n",i,j,xx,yy); */
	  $O(p=>i,q=>yy) += temp/num;
	}
	ly = cy + 1;
      }
      lx = cx + 1;
    }
  %}
}
else barf("I am not supposed to be here, please report the bug to <chri@infis.univ.ts.it>"); 
  ');

pp_addpm({At=>Bot},<<'EOD');

=head1 AUTHORS

Copyright (C) Karl Glazebrook 1997 with additions by Robin Williams
(rjrw@ast.leeds.ac.uk) and Tim Jeness (timj@jach.hawaii.edu).
All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation under certain
conditions. For details, see the file COPYING in the PDL
distribution. If this file is separated from the PDL distribution,
the copyright notice should be included in the file.


=cut

EOD

pp_done();