1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
|
/*
* This file is part of PowerDNS or dnsdist.
* Copyright -- PowerDNS.COM B.V. and its contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* In addition, for the avoidance of any doubt, permission is granted to
* link this program with OpenSSL and to (re)distribute the binaries
* produced as the result of such linking.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef PDNS_IPUTILSHH
#define PDNS_IPUTILSHH
#include <string>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <iostream>
#include <stdio.h>
#include <functional>
#include <bitset>
#include "pdnsexception.hh"
#include "misc.hh"
#include <sys/socket.h>
#include <netdb.h>
#include <sstream>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_comparison.hpp>
#include "namespaces.hh"
#ifdef __APPLE__
#include <libkern/OSByteOrder.h>
#define htobe16(x) OSSwapHostToBigInt16(x)
#define htole16(x) OSSwapHostToLittleInt16(x)
#define be16toh(x) OSSwapBigToHostInt16(x)
#define le16toh(x) OSSwapLittleToHostInt16(x)
#define htobe32(x) OSSwapHostToBigInt32(x)
#define htole32(x) OSSwapHostToLittleInt32(x)
#define be32toh(x) OSSwapBigToHostInt32(x)
#define le32toh(x) OSSwapLittleToHostInt32(x)
#define htobe64(x) OSSwapHostToBigInt64(x)
#define htole64(x) OSSwapHostToLittleInt64(x)
#define be64toh(x) OSSwapBigToHostInt64(x)
#define le64toh(x) OSSwapLittleToHostInt64(x)
#endif
// for illumos
#ifdef BE_64
#define htobe16(x) BE_16(x)
#define htole16(x) LE_16(x)
#define be16toh(x) BE_IN16(x)
#define le16toh(x) LE_IN16(x)
#define htobe32(x) BE_32(x)
#define htole32(x) LE_32(x)
#define be32toh(x) BE_IN32(x)
#define le32toh(x) LE_IN32(x)
#define htobe64(x) BE_64(x)
#define htole64(x) LE_64(x)
#define be64toh(x) BE_IN64(x)
#define le64toh(x) LE_IN64(x)
#endif
#ifdef __FreeBSD__
#include <sys/endian.h>
#endif
union ComboAddress {
struct sockaddr_in sin4;
struct sockaddr_in6 sin6;
bool operator==(const ComboAddress& rhs) const
{
if(boost::tie(sin4.sin_family, sin4.sin_port) != boost::tie(rhs.sin4.sin_family, rhs.sin4.sin_port))
return false;
if(sin4.sin_family == AF_INET)
return sin4.sin_addr.s_addr == rhs.sin4.sin_addr.s_addr;
else
return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr))==0;
}
bool operator!=(const ComboAddress& rhs) const
{
return(!operator==(rhs));
}
bool operator<(const ComboAddress& rhs) const
{
if(sin4.sin_family == 0) {
return false;
}
if(boost::tie(sin4.sin_family, sin4.sin_port) < boost::tie(rhs.sin4.sin_family, rhs.sin4.sin_port))
return true;
if(boost::tie(sin4.sin_family, sin4.sin_port) > boost::tie(rhs.sin4.sin_family, rhs.sin4.sin_port))
return false;
if(sin4.sin_family == AF_INET)
return sin4.sin_addr.s_addr < rhs.sin4.sin_addr.s_addr;
else
return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr)) < 0;
}
bool operator>(const ComboAddress& rhs) const
{
return rhs.operator<(*this);
}
struct addressOnlyHash
{
uint32_t operator()(const ComboAddress& ca) const
{
const unsigned char* start;
int len;
if(ca.sin4.sin_family == AF_INET) {
start =(const unsigned char*)&ca.sin4.sin_addr.s_addr;
len=4;
}
else {
start =(const unsigned char*)&ca.sin6.sin6_addr.s6_addr;
len=16;
}
return burtle(start, len, 0);
}
};
struct addressOnlyLessThan: public std::binary_function<ComboAddress, ComboAddress, bool>
{
bool operator()(const ComboAddress& a, const ComboAddress& b) const
{
if(a.sin4.sin_family < b.sin4.sin_family)
return true;
if(a.sin4.sin_family > b.sin4.sin_family)
return false;
if(a.sin4.sin_family == AF_INET)
return a.sin4.sin_addr.s_addr < b.sin4.sin_addr.s_addr;
else
return memcmp(&a.sin6.sin6_addr.s6_addr, &b.sin6.sin6_addr.s6_addr, sizeof(a.sin6.sin6_addr.s6_addr)) < 0;
}
};
struct addressOnlyEqual: public std::binary_function<ComboAddress, ComboAddress, bool>
{
bool operator()(const ComboAddress& a, const ComboAddress& b) const
{
if(a.sin4.sin_family != b.sin4.sin_family)
return false;
if(a.sin4.sin_family == AF_INET)
return a.sin4.sin_addr.s_addr == b.sin4.sin_addr.s_addr;
else
return !memcmp(&a.sin6.sin6_addr.s6_addr, &b.sin6.sin6_addr.s6_addr, sizeof(a.sin6.sin6_addr.s6_addr));
}
};
socklen_t getSocklen() const
{
if(sin4.sin_family == AF_INET)
return sizeof(sin4);
else
return sizeof(sin6);
}
ComboAddress()
{
sin4.sin_family=AF_INET;
sin4.sin_addr.s_addr=0;
sin4.sin_port=0;
}
ComboAddress(const struct sockaddr *sa, socklen_t salen) {
setSockaddr(sa, salen);
};
ComboAddress(const struct sockaddr_in6 *sa) {
setSockaddr((const struct sockaddr*)sa, sizeof(struct sockaddr_in6));
};
ComboAddress(const struct sockaddr_in *sa) {
setSockaddr((const struct sockaddr*)sa, sizeof(struct sockaddr_in));
};
void setSockaddr(const struct sockaddr *sa, socklen_t salen) {
if (salen > sizeof(struct sockaddr_in6)) throw PDNSException("ComboAddress can't handle other than sockaddr_in or sockaddr_in6");
memcpy(this, sa, salen);
}
// 'port' sets a default value in case 'str' does not set a port
explicit ComboAddress(const string& str, uint16_t port=0)
{
memset(&sin6, 0, sizeof(sin6));
sin4.sin_family = AF_INET;
sin4.sin_port = 0;
if(makeIPv4sockaddr(str, &sin4)) {
sin6.sin6_family = AF_INET6;
if(makeIPv6sockaddr(str, &sin6) < 0)
throw PDNSException("Unable to convert presentation address '"+ str +"'");
}
if(!sin4.sin_port) // 'str' overrides port!
sin4.sin_port=htons(port);
}
bool isIPv6() const
{
return sin4.sin_family == AF_INET6;
}
bool isIPv4() const
{
return sin4.sin_family == AF_INET;
}
bool isMappedIPv4() const
{
if(sin4.sin_family!=AF_INET6)
return false;
int n=0;
const unsigned char*ptr = (unsigned char*) &sin6.sin6_addr.s6_addr;
for(n=0; n < 10; ++n)
if(ptr[n])
return false;
for(; n < 12; ++n)
if(ptr[n]!=0xff)
return false;
return true;
}
ComboAddress mapToIPv4() const
{
if(!isMappedIPv4())
throw PDNSException("ComboAddress can't map non-mapped IPv6 address back to IPv4");
ComboAddress ret;
ret.sin4.sin_family=AF_INET;
ret.sin4.sin_port=sin4.sin_port;
const unsigned char*ptr = (unsigned char*) &sin6.sin6_addr.s6_addr;
ptr+=(sizeof(sin6.sin6_addr.s6_addr) - sizeof(ret.sin4.sin_addr.s_addr));
memcpy(&ret.sin4.sin_addr.s_addr, ptr, sizeof(ret.sin4.sin_addr.s_addr));
return ret;
}
string toString() const
{
char host[1024];
if(sin4.sin_family && !getnameinfo((struct sockaddr*) this, getSocklen(), host, sizeof(host),0, 0, NI_NUMERICHOST))
return host;
else
return "invalid";
}
string toStringWithPort() const
{
if(sin4.sin_family==AF_INET)
return toString() + ":" + std::to_string(ntohs(sin4.sin_port));
else
return "["+toString() + "]:" + std::to_string(ntohs(sin4.sin_port));
}
void truncate(unsigned int bits);
};
/** This exception is thrown by the Netmask class and by extension by the NetmaskGroup class */
class NetmaskException: public PDNSException
{
public:
NetmaskException(const string &a) : PDNSException(a) {}
};
inline ComboAddress makeComboAddress(const string& str)
{
ComboAddress address;
address.sin4.sin_family=AF_INET;
if(inet_pton(AF_INET, str.c_str(), &address.sin4.sin_addr) <= 0) {
address.sin4.sin_family=AF_INET6;
if(makeIPv6sockaddr(str, &address.sin6) < 0)
throw NetmaskException("Unable to convert '"+str+"' to a netmask");
}
return address;
}
/** This class represents a netmask and can be queried to see if a certain
IP address is matched by this mask */
class Netmask
{
public:
Netmask()
{
d_network.sin4.sin_family=0; // disable this doing anything useful
d_network.sin4.sin_port = 0; // this guarantees d_network compares identical
d_mask=0;
d_bits=0;
}
Netmask(const ComboAddress& network, uint8_t bits=0xff)
{
d_network = network;
if(bits > 128)
bits = (network.sin4.sin_family == AF_INET) ? 32 : 128;
d_bits = bits;
if(d_bits<32)
d_mask=~(0xFFFFFFFF>>d_bits);
else
d_mask=0xFFFFFFFF; // not actually used for IPv6
}
//! Constructor supplies the mask, which cannot be changed
Netmask(const string &mask)
{
pair<string,string> split=splitField(mask,'/');
d_network=makeComboAddress(split.first);
if(!split.second.empty()) {
d_bits = (uint8_t)pdns_stou(split.second);
if(d_bits<32)
d_mask=~(0xFFFFFFFF>>d_bits);
else
d_mask=0xFFFFFFFF;
}
else if(d_network.sin4.sin_family==AF_INET) {
d_bits = 32;
d_mask = 0xFFFFFFFF;
}
else {
d_bits=128;
d_mask=0; // silence silly warning - d_mask is unused for IPv6
}
}
bool match(const ComboAddress& ip) const
{
return match(&ip);
}
//! If this IP address in socket address matches
bool match(const ComboAddress *ip) const
{
if(d_network.sin4.sin_family != ip->sin4.sin_family) {
return false;
}
if(d_network.sin4.sin_family == AF_INET) {
return match4(htonl((unsigned int)ip->sin4.sin_addr.s_addr));
}
if(d_network.sin6.sin6_family == AF_INET6) {
uint8_t bytes=d_bits/8, n;
const uint8_t *us=(const uint8_t*) &d_network.sin6.sin6_addr.s6_addr;
const uint8_t *them=(const uint8_t*) &ip->sin6.sin6_addr.s6_addr;
for(n=0; n < bytes; ++n) {
if(us[n]!=them[n]) {
return false;
}
}
// still here, now match remaining bits
uint8_t bits= d_bits % 8;
uint8_t mask= (uint8_t) ~(0xFF>>bits);
return((us[n] & mask) == (them[n] & mask));
}
return false;
}
//! If this ASCII IP address matches
bool match(const string &ip) const
{
ComboAddress address=makeComboAddress(ip);
return match(&address);
}
//! If this IP address in native format matches
bool match4(uint32_t ip) const
{
return (ip & d_mask) == (ntohl(d_network.sin4.sin_addr.s_addr) & d_mask);
}
string toString() const
{
return d_network.toString()+"/"+std::to_string((unsigned int)d_bits);
}
string toStringNoMask() const
{
return d_network.toString();
}
const ComboAddress& getNetwork() const
{
return d_network;
}
const ComboAddress getMaskedNetwork() const
{
ComboAddress result(d_network);
if(isIpv4()) {
result.sin4.sin_addr.s_addr = htonl(ntohl(result.sin4.sin_addr.s_addr) & d_mask);
}
else if(isIpv6()) {
size_t idx;
uint8_t bytes=d_bits/8;
uint8_t *us=(uint8_t*) &result.sin6.sin6_addr.s6_addr;
uint8_t bits= d_bits % 8;
uint8_t mask= (uint8_t) ~(0xFF>>bits);
if (bytes < sizeof(result.sin6.sin6_addr.s6_addr)) {
us[bytes] &= mask;
}
for(idx = bytes + 1; idx < sizeof(result.sin6.sin6_addr.s6_addr); ++idx) {
us[idx] = 0;
}
}
return result;
}
int getBits() const
{
return d_bits;
}
bool isIpv6() const
{
return d_network.sin6.sin6_family == AF_INET6;
}
bool isIpv4() const
{
return d_network.sin4.sin_family == AF_INET;
}
bool operator<(const Netmask& rhs) const
{
return tie(d_network, d_bits) < tie(rhs.d_network, rhs.d_bits);
}
bool operator==(const Netmask& rhs) const
{
return tie(d_network, d_bits) == tie(rhs.d_network, rhs.d_bits);
}
bool empty() const
{
return d_network.sin4.sin_family==0;
}
private:
ComboAddress d_network;
uint32_t d_mask;
uint8_t d_bits;
};
/** Per-bit binary tree map implementation with <Netmask,T> pair.
*
* This is an binary tree implementation for storing attributes for IPv4 and IPv6 prefixes.
* The most simple use case is simple NetmaskTree<bool> used by NetmaskGroup, which only
* wants to know if given IP address is matched in the prefixes stored.
*
* This element is useful for anything that needs to *STORE* prefixes, and *MATCH* IP addresses
* to a *LIST* of *PREFIXES*. Not the other way round.
*
* You can store IPv4 and IPv6 addresses to same tree, separate payload storage is kept per AFI.
*
* To erase something copy values to new tree sans the value you want to erase.
*
* Use swap if you need to move the tree to another NetmaskTree instance, it is WAY faster
* than using copy ctor or assigment operator, since it moves the nodes and tree root to
* new home instead of actually recreating the tree.
*
* Please see NetmaskGroup for example of simple use case. Other usecases can be found
* from GeoIPBackend and Sortlist, and from dnsdist.
*/
template <typename T>
class NetmaskTree {
public:
typedef Netmask key_type;
typedef T value_type;
typedef std::pair<key_type,value_type> node_type;
typedef size_t size_type;
private:
/** Single node in tree, internal use only.
*/
class TreeNode : boost::noncopyable {
public:
explicit TreeNode(int bits) noexcept : parent(NULL),d_bits(bits) {
}
//<! Makes a left node with one more bit than parent
TreeNode* make_left() {
if (!left) {
left = unique_ptr<TreeNode>(new TreeNode(d_bits+1));
left->parent = this;
}
return left.get();
}
//<! Makes a right node with one more bit than parent
TreeNode* make_right() {
if (!right) {
right = unique_ptr<TreeNode>(new TreeNode(d_bits+1));
right->parent = this;
}
return right.get();
}
unique_ptr<TreeNode> left;
unique_ptr<TreeNode> right;
TreeNode* parent;
unique_ptr<node_type> node4; //<! IPv4 value-pair
unique_ptr<node_type> node6; //<! IPv6 value-pair
int d_bits; //<! How many bits have been used so far
};
public:
NetmaskTree() noexcept {
}
NetmaskTree(const NetmaskTree& rhs) {
// it is easier to copy the nodes than tree.
// also acts as handy compactor
for(auto const& node: rhs._nodes)
insert(node->first).second = node->second;
}
NetmaskTree& operator=(const NetmaskTree& rhs) {
clear();
// see above.
for(auto const& node: rhs._nodes)
insert(node->first).second = node->second;
return *this;
}
const typename std::vector<node_type*>::const_iterator begin() const { return _nodes.begin(); }
const typename std::vector<node_type*>::const_iterator end() const { return _nodes.end(); }
typename std::vector<node_type*>::iterator begin() { return _nodes.begin(); }
typename std::vector<node_type*>::iterator end() { return _nodes.end(); }
node_type& insert(const string &mask) {
return insert(key_type(mask));
}
//<! Creates new value-pair in tree and returns it.
node_type& insert(const key_type& key) {
// lazily initialize tree on first insert.
if (!root) root = unique_ptr<TreeNode>(new TreeNode(0));
TreeNode* node = root.get();
node_type* value = nullptr;
if (key.getNetwork().sin4.sin_family == AF_INET) {
std::bitset<32> addr(be32toh(key.getNetwork().sin4.sin_addr.s_addr));
int bits = 0;
// we turn left on 0 and right on 1
while(bits < key.getBits()) {
uint8_t val = addr[31-bits];
if (val)
node = node->make_right();
else
node = node->make_left();
bits++;
}
// only create node if not yet assigned
if (!node->node4) {
node->node4 = unique_ptr<node_type>(new node_type());
_nodes.push_back(node->node4.get());
}
value = node->node4.get();
} else {
uint64_t* addr = (uint64_t*)key.getNetwork().sin6.sin6_addr.s6_addr;
std::bitset<64> addr_low(be64toh(addr[1]));
std::bitset<64> addr_high(be64toh(addr[0]));
int bits = 0;
while(bits < key.getBits()) {
uint8_t val;
// we use high address until we are
if (bits < 64) val = addr_high[63-bits];
// past 64 bits, and start using low address
else val = addr_low[127-bits];
// we turn left on 0 and right on 1
if (val)
node = node->make_right();
else
node = node->make_left();
bits++;
}
// only create node if not yet assigned
if (!node->node6) {
node->node6 = unique_ptr<node_type>(new node_type());
_nodes.push_back(node->node6.get());
}
value = node->node6.get();
}
// assign key
value->first = key;
return *value;
}
//<! Creates or updates value
void insert_or_assign(const key_type& mask, const value_type& value) {
insert(mask).second = value;
}
void insert_or_assign(const string& mask, const value_type& value) {
insert(key_type(mask)).second = value;
}
//<! check if given key is present in TreeMap
bool has_key(const key_type& key) const {
const node_type *ptr = lookup(key);
return ptr && ptr->first == key;
}
//<! Returns "best match" for key_type, which might not be value
const node_type* lookup(const key_type& value) const {
return lookup(value.getNetwork(), value.getBits());
}
//<! Perform best match lookup for value, using at most max_bits
const node_type* lookup(const ComboAddress& value, int max_bits = 128) const {
if (!root) return nullptr;
TreeNode *node = root.get();
node_type *ret = nullptr;
// exact same thing as above, except
if (value.sin4.sin_family == AF_INET) {
max_bits = std::max(0,std::min(max_bits,32));
std::bitset<32> addr(be32toh(value.sin4.sin_addr.s_addr));
int bits = 0;
while(bits < max_bits) {
// ...we keep track of last non-empty node
if (node->node4) ret = node->node4.get();
uint8_t val = addr[31-bits];
// ...and we don't create left/right hand
if (val) {
if (node->right) node = node->right.get();
// ..and we break when road ends
else break;
} else {
if (node->left) node = node->left.get();
else break;
}
bits++;
}
// needed if we did not find one in loop
if (node->node4) ret = node->node4.get();
} else {
uint64_t* addr = (uint64_t*)value.sin6.sin6_addr.s6_addr;
max_bits = std::max(0,std::min(max_bits,128));
std::bitset<64> addr_low(be64toh(addr[1]));
std::bitset<64> addr_high(be64toh(addr[0]));
int bits = 0;
while(bits < max_bits) {
if (node->node6) ret = node->node6.get();
uint8_t val;
if (bits < 64) val = addr_high[63-bits];
else val = addr_low[127-bits];
if (val) {
if (node->right) node = node->right.get();
else break;
} else {
if (node->left) node = node->left.get();
else break;
}
bits++;
}
if (node->node6) ret = node->node6.get();
}
// this can be nullptr.
return ret;
}
//<! Removes key from TreeMap. This does not clean up the tree.
void erase(const key_type& key) {
TreeNode *node = root.get();
// no tree, no value
if ( node == nullptr ) return;
// exact same thing as above, except
if (key.getNetwork().sin4.sin_family == AF_INET) {
std::bitset<32> addr(be32toh(key.getNetwork().sin4.sin_addr.s_addr));
int bits = 0;
while(node && bits < key.getBits()) {
uint8_t val = addr[31-bits];
if (val) {
node = node->right.get();
} else {
node = node->left.get();
}
bits++;
}
if (node) {
for(auto it = _nodes.begin(); it != _nodes.end(); it++)
if (node->node4.get() == *it) _nodes.erase(it);
node->node4.reset();
}
} else {
uint64_t* addr = (uint64_t*)key.getNetwork().sin6.sin6_addr.s6_addr;
std::bitset<64> addr_low(be64toh(addr[1]));
std::bitset<64> addr_high(be64toh(addr[0]));
int bits = 0;
while(node && bits < key.getBits()) {
uint8_t val;
if (bits < 64) val = addr_high[63-bits];
else val = addr_low[127-bits];
if (val) {
node = node->right.get();
} else {
node = node->left.get();
}
bits++;
}
if (node) {
for(auto it = _nodes.begin(); it != _nodes.end(); it++)
if (node->node6.get() == *it) _nodes.erase(it);
node->node6.reset();
}
}
}
void erase(const string& key) {
erase(key_type(key));
}
//<! checks whether the container is empty.
bool empty() const {
return _nodes.empty();
}
//<! returns the number of elements
size_type size() const {
return _nodes.size();
}
//<! See if given ComboAddress matches any prefix
bool match(const ComboAddress& value) const {
return (lookup(value) != nullptr);
}
bool match(const std::string& value) const {
return match(ComboAddress(value));
}
//<! Clean out the tree
void clear() {
_nodes.clear();
root.reset(nullptr);
}
//<! swaps the contents, rhs is left with nullptr.
void swap(NetmaskTree& rhs) {
root.swap(rhs.root);
_nodes.swap(rhs._nodes);
}
private:
unique_ptr<TreeNode> root; //<! Root of our tree
std::vector<node_type*> _nodes; //<! Container for actual values
};
/** This class represents a group of supplemental Netmask classes. An IP address matchs
if it is matched by zero or more of the Netmask classes within.
*/
class NetmaskGroup
{
public:
//! If this IP address is matched by any of the classes within
bool match(const ComboAddress *ip) const
{
return tree.match(*ip);
}
bool match(const ComboAddress& ip) const
{
return match(&ip);
}
//! Add this string to the list of possible matches
void addMask(const string &ip)
{
addMask(Netmask(ip));
}
//! Add this Netmask to the list of possible matches
void addMask(const Netmask& nm)
{
tree.insert(nm);
}
void clear()
{
tree.clear();
}
bool empty() const
{
return tree.empty();
}
size_t size() const
{
return tree.size();
}
string toString() const
{
ostringstream str;
for(auto iter = tree.begin(); iter != tree.end(); ++iter) {
if(iter != tree.begin())
str <<", ";
str<<(*iter)->first.toString();
}
return str.str();
}
void toStringVector(vector<string>* vec) const
{
for(auto iter = tree.begin(); iter != tree.end(); ++iter)
vec->push_back((*iter)->first.toString());
}
void toMasks(const string &ips)
{
vector<string> parts;
stringtok(parts, ips, ", \t");
for (vector<string>::const_iterator iter = parts.begin(); iter != parts.end(); ++iter)
addMask(*iter);
}
private:
NetmaskTree<bool> tree;
};
struct SComboAddress
{
SComboAddress(const ComboAddress& orig) : ca(orig) {}
ComboAddress ca;
bool operator<(const SComboAddress& rhs) const
{
return ComboAddress::addressOnlyLessThan()(ca, rhs.ca);
}
operator const ComboAddress&()
{
return ca;
}
};
int SSocket(int family, int type, int flags);
int SConnect(int sockfd, const ComboAddress& remote);
/* tries to connect to remote for a maximum of timeout seconds.
sockfd should be set to non-blocking beforehand.
returns 0 on success (the socket is writable), throw a
runtime_error otherwise */
int SConnectWithTimeout(int sockfd, const ComboAddress& remote, int timeout);
int SBind(int sockfd, const ComboAddress& local);
int SAccept(int sockfd, ComboAddress& remote);
int SListen(int sockfd, int limit);
int SSetsockopt(int sockfd, int level, int opname, int value);
#if defined(IP_PKTINFO)
#define GEN_IP_PKTINFO IP_PKTINFO
#elif defined(IP_RECVDSTADDR)
#define GEN_IP_PKTINFO IP_RECVDSTADDR
#endif
bool IsAnyAddress(const ComboAddress& addr);
bool HarvestDestinationAddress(struct msghdr* msgh, ComboAddress* destination);
bool HarvestTimestamp(struct msghdr* msgh, struct timeval* tv);
void fillMSGHdr(struct msghdr* msgh, struct iovec* iov, char* cbuf, size_t cbufsize, char* data, size_t datalen, ComboAddress* addr);
ssize_t sendfromto(int sock, const char* data, size_t len, int flags, const ComboAddress& from, const ComboAddress& to);
ssize_t sendMsgWithTimeout(int fd, const char* buffer, size_t len, int timeout, ComboAddress& dest, const ComboAddress& local, unsigned int localItf);
#endif
extern template class NetmaskTree<bool>;
|