1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
|
/*
* This file is part of PowerDNS or dnsdist.
* Copyright -- PowerDNS.COM B.V. and its contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* In addition, for the avoidance of any doubt, permission is granted to
* link this program with OpenSSL and to (re)distribute the binaries
* produced as the result of such linking.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <openssl/obj_mac.h>
#ifdef HAVE_LIBCRYPTO_ECDSA
#include <openssl/ecdsa.h>
#endif
#include <openssl/sha.h>
#include <openssl/rand.h>
#include <openssl/rsa.h>
#include <openssl/opensslv.h>
#include "opensslsigners.hh"
#include "dnssecinfra.hh"
#if (OPENSSL_VERSION_NUMBER < 0x1010000fL || defined LIBRESSL_VERSION_NUMBER)
/* OpenSSL < 1.1.0 needs support for threading/locking in the calling application. */
static pthread_mutex_t *openssllocks;
extern "C" {
void openssl_pthreads_locking_callback(int mode, int type, const char *file, int line)
{
if (mode & CRYPTO_LOCK) {
pthread_mutex_lock(&(openssllocks[type]));
}else {
pthread_mutex_unlock(&(openssllocks[type]));
}
}
unsigned long openssl_pthreads_id_callback()
{
return (unsigned long)pthread_self();
}
}
void openssl_thread_setup()
{
openssllocks = (pthread_mutex_t*)OPENSSL_malloc(CRYPTO_num_locks() * sizeof(pthread_mutex_t));
for (int i = 0; i < CRYPTO_num_locks(); i++)
pthread_mutex_init(&(openssllocks[i]), NULL);
CRYPTO_set_id_callback(openssl_pthreads_id_callback);
CRYPTO_set_locking_callback(openssl_pthreads_locking_callback);
}
void openssl_thread_cleanup()
{
CRYPTO_set_locking_callback(NULL);
for (int i=0; i<CRYPTO_num_locks(); i++) {
pthread_mutex_destroy(&(openssllocks[i]));
}
OPENSSL_free(openssllocks);
}
/* compat helpers. These DO NOT do any of the checking that the libssl 1.1 functions do. */
static inline void RSA_get0_key(const RSA* rsakey, const BIGNUM** n, const BIGNUM** e, const BIGNUM** d) {
*n = rsakey->n;
*e = rsakey->e;
*d = rsakey->d;
}
static inline int RSA_set0_key(RSA* rsakey, BIGNUM* n, BIGNUM* e, BIGNUM* d) {
if (n) {
BN_clear_free(rsakey->n);
rsakey->n = n;
}
if (e) {
BN_clear_free(rsakey->e);
rsakey->e = e;
}
if (d) {
BN_clear_free(rsakey->d);
rsakey->d = d;
}
return 1;
}
static inline void RSA_get0_factors(const RSA* rsakey, const BIGNUM** p, const BIGNUM** q) {
*p = rsakey->p;
*q = rsakey->q;
}
static inline int RSA_set0_factors(RSA* rsakey, BIGNUM* p, BIGNUM* q) {
BN_clear_free(rsakey->p);
rsakey->p = p;
BN_clear_free(rsakey->q);
rsakey->q = q;
return 1;
}
static inline void RSA_get0_crt_params(const RSA* rsakey, const BIGNUM** dmp1, const BIGNUM** dmq1, const BIGNUM** iqmp) {
*dmp1 = rsakey->dmp1;
*dmq1 = rsakey->dmq1;
*iqmp = rsakey->iqmp;
}
static inline int RSA_set0_crt_params(RSA* rsakey, BIGNUM* dmp1, BIGNUM* dmq1, BIGNUM* iqmp) {
BN_clear_free(rsakey->dmp1);
rsakey->dmp1 = dmp1;
BN_clear_free(rsakey->dmq1);
rsakey->dmq1 = dmq1;
BN_clear_free(rsakey->iqmp);
rsakey->iqmp = iqmp;
return 1;
}
#ifdef HAVE_LIBCRYPTO_ECDSA
static inline void ECDSA_SIG_get0(const ECDSA_SIG* signature, const BIGNUM** pr, const BIGNUM** ps) {
*pr = signature->r;
*ps = signature->s;
}
static inline int ECDSA_SIG_set0(ECDSA_SIG* signature, BIGNUM* pr, BIGNUM* ps) {
BN_clear_free(signature->r);
BN_clear_free(signature->s);
signature->r = pr;
signature->s = ps;
return 1;
}
#endif /* HAVE_LIBCRYPTO_ECDSA */
#else
void openssl_thread_setup() {}
void openssl_thread_cleanup() {}
#endif
/* seeding PRNG */
void openssl_seed()
{
std::string entropy;
entropy.reserve(1024);
unsigned int r;
for(int i=0; i<1024; i+=4) {
r=dns_random(0xffffffff);
entropy.append((const char*)&r, 4);
}
RAND_seed((const unsigned char*)entropy.c_str(), 1024);
}
class OpenSSLRSADNSCryptoKeyEngine : public DNSCryptoKeyEngine
{
public:
explicit OpenSSLRSADNSCryptoKeyEngine(unsigned int algo) : DNSCryptoKeyEngine(algo)
{
int ret = RAND_status();
if (ret != 1) {
throw runtime_error(getName()+" insufficient entropy");
}
}
~OpenSSLRSADNSCryptoKeyEngine()
{
if (d_key)
RSA_free(d_key);
}
string getName() const override { return "OpenSSL RSA"; }
int getBits() const override { return RSA_size(d_key) << 3; }
void create(unsigned int bits) override;
storvector_t convertToISCVector() const override;
std::string hash(const std::string& hash) const override;
std::string sign(const std::string& hash) const override;
bool verify(const std::string& hash, const std::string& signature) const override;
std::string getPubKeyHash() const override;
std::string getPublicKeyString() const override;
void fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) override;
void fromPublicKeyString(const std::string& content) override;
bool checkKey() const override;
static DNSCryptoKeyEngine* maker(unsigned int algorithm)
{
return new OpenSSLRSADNSCryptoKeyEngine(algorithm);
}
private:
static int hashSizeToKind(size_t hashSize);
RSA* d_key{NULL};
};
void OpenSSLRSADNSCryptoKeyEngine::create(unsigned int bits)
{
BIGNUM *e = BN_new();
if (!e) {
throw runtime_error(getName()+" key generation failed, unable to allocate e");
}
/* RSA_F4 is a public exponent value of 65537 */
int res = BN_set_word(e, RSA_F4);
if (res == 0) {
BN_free(e);
throw runtime_error(getName()+" key generation failed while setting e");
}
RSA* key = RSA_new();
if (key == NULL) {
BN_free(e);
throw runtime_error(getName()+" allocation of key structure failed");
}
res = RSA_generate_key_ex(key, bits, e, NULL);
BN_free(e);
if (res == 0) {
RSA_free(key);
throw runtime_error(getName()+" key generation failed");
}
if (d_key)
RSA_free(d_key);
d_key = key;
}
DNSCryptoKeyEngine::storvector_t OpenSSLRSADNSCryptoKeyEngine::convertToISCVector() const
{
storvector_t storvect;
typedef vector<pair<string, const BIGNUM*> > outputs_t;
outputs_t outputs;
const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
RSA_get0_key(d_key, &n, &e, &d);
RSA_get0_factors(d_key, &p, &q);
RSA_get0_crt_params(d_key, &dmp1, &dmq1, &iqmp);
outputs.push_back(make_pair("Modulus", n));
outputs.push_back(make_pair("PublicExponent", e));
outputs.push_back(make_pair("PrivateExponent", d));
outputs.push_back(make_pair("Prime1", p));
outputs.push_back(make_pair("Prime2", q));
outputs.push_back(make_pair("Exponent1", dmp1));
outputs.push_back(make_pair("Exponent2", dmq1));
outputs.push_back(make_pair("Coefficient", iqmp));
string algorithm=std::to_string(d_algorithm);
switch(d_algorithm) {
case 5:
case 7:
algorithm += " (RSASHA1)";
break;
case 8:
algorithm += " (RSASHA256)";
break;
case 10:
algorithm += " (RSASHA512)";
break;
default:
algorithm += " (?)";
}
storvect.push_back(make_pair("Algorithm", algorithm));
for(outputs_t::value_type value : outputs) {
unsigned char tmp[BN_num_bytes(value.second)];
int len = BN_bn2bin(value.second, tmp);
storvect.push_back(make_pair(value.first, string((char*) tmp, len)));
}
return storvect;
}
std::string OpenSSLRSADNSCryptoKeyEngine::hash(const std::string& orig) const
{
if (d_algorithm == 5 || d_algorithm == 7) {
/* RSA SHA1 */
unsigned char hash[SHA_DIGEST_LENGTH];
SHA1((unsigned char*) orig.c_str(), orig.length(), hash);
return string((char*) hash, sizeof(hash));
}
else if (d_algorithm == 8) {
/* RSA SHA256 */
unsigned char hash[SHA256_DIGEST_LENGTH];
SHA256((unsigned char*) orig.c_str(), orig.length(), hash);
return string((char*) hash, sizeof(hash));
}
else if (d_algorithm == 10) {
/* RSA SHA512 */
unsigned char hash[SHA512_DIGEST_LENGTH];
SHA512((unsigned char*) orig.c_str(), orig.length(), hash);
return string((char*) hash, sizeof(hash));
}
throw runtime_error(getName()+" does not support hash operation for algorithm "+std::to_string(d_algorithm));
}
int OpenSSLRSADNSCryptoKeyEngine::hashSizeToKind(const size_t hashSize)
{
switch(hashSize) {
case SHA_DIGEST_LENGTH:
return NID_sha1;
case SHA256_DIGEST_LENGTH:
return NID_sha256;
case SHA384_DIGEST_LENGTH:
return NID_sha384;
case SHA512_DIGEST_LENGTH:
return NID_sha512;
default:
throw runtime_error("OpenSSL RSA does not handle hash of size " + std::to_string(hashSize));
}
}
std::string OpenSSLRSADNSCryptoKeyEngine::sign(const std::string& msg) const
{
string hash = this->hash(msg);
int hashKind = hashSizeToKind(hash.size());
unsigned char signature[RSA_size(d_key)];
unsigned int signatureLen = 0;
int res = RSA_sign(hashKind, (unsigned char*) hash.c_str(), hash.length(), signature, &signatureLen, d_key);
if (res != 1) {
throw runtime_error(getName()+" failed to generate signature");
}
return string((char*) signature, signatureLen);
}
bool OpenSSLRSADNSCryptoKeyEngine::verify(const std::string& msg, const std::string& signature) const
{
string hash = this->hash(msg);
int hashKind = hashSizeToKind(hash.size());
int ret = RSA_verify(hashKind, (const unsigned char*) hash.c_str(), hash.length(), (unsigned char*) signature.c_str(), signature.length(), d_key);
return (ret == 1);
}
std::string OpenSSLRSADNSCryptoKeyEngine::getPubKeyHash() const
{
const BIGNUM *n, *e, *d;
RSA_get0_key(d_key, &n, &e, &d);
unsigned char tmp[std::max(BN_num_bytes(e), BN_num_bytes(n))];
unsigned char hash[SHA_DIGEST_LENGTH];
SHA_CTX ctx;
int res = SHA1_Init(&ctx);
if (res != 1) {
throw runtime_error(getName()+" failed to init hash context for generating the public key hash");
}
int len = BN_bn2bin(e, tmp);
res = SHA1_Update(&ctx, tmp, len);
if (res != 1) {
throw runtime_error(getName()+" failed to update hash context for generating the public key hash");
}
len = BN_bn2bin(n, tmp);
res = SHA1_Update(&ctx, tmp, len);
if (res != 1) {
throw runtime_error(getName()+" failed to update hash context for generating the public key hash");
}
res = SHA1_Final(hash, &ctx);
if (res != 1) {
throw runtime_error(getName()+" failed to finish hash context for generating the public key hash");
}
return string((char*) hash, sizeof(hash));
}
std::string OpenSSLRSADNSCryptoKeyEngine::getPublicKeyString() const
{
const BIGNUM *n, *e, *d;
RSA_get0_key(d_key, &n, &e, &d);
string keystring;
unsigned char tmp[std::max(BN_num_bytes(e), BN_num_bytes(n))];
int len = BN_bn2bin(e, tmp);
if (len < 255) {
keystring.assign(1, (char) (unsigned int) len);
} else {
keystring.assign(1, 0);
uint16_t tempLen = len;
tempLen = htons(tempLen);
keystring.append((char*)&tempLen, 2);
}
keystring.append((char *) tmp, len);
len = BN_bn2bin(n, tmp);
keystring.append((char *) tmp, len);
return keystring;
}
void OpenSSLRSADNSCryptoKeyEngine::fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap)
{
typedef map<string, BIGNUM**> places_t;
places_t places;
RSA* key = RSA_new();
if (key == NULL) {
throw runtime_error(getName()+" allocation of key structure failed");
}
BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
n = BN_new();
if (n == NULL) {
RSA_free(key);
throw runtime_error(getName()+" allocation of BIGNUM n failed");
}
e = BN_new();
if (e == NULL) {
RSA_free(key);
BN_clear_free(n);
throw runtime_error(getName()+" allocation of BIGNUM e failed");
}
d = BN_new();
if (d == NULL) {
RSA_free(key);
BN_clear_free(n);
BN_clear_free(e);
throw runtime_error(getName()+" allocation of BIGNUM d failed");
}
RSA_set0_key(key, n, e, d);
p = BN_new();
if (p == NULL) {
RSA_free(key);
throw runtime_error(getName()+" allocation of BIGNUM p failed");
}
q = BN_new();
if (q == NULL) {
RSA_free(key);
BN_clear_free(p);
throw runtime_error(getName()+" allocation of BIGNUM q failed");
}
RSA_set0_factors(key, p, q);
dmp1 = BN_new();
if (dmp1 == NULL) {
RSA_free(key);
throw runtime_error(getName()+" allocation of BIGNUM dmp1 failed");
}
dmq1 = BN_new();
if (dmq1 == NULL) {
RSA_free(key);
BN_clear_free(dmp1);
throw runtime_error(getName()+" allocation of BIGNUM dmq1 failed");
}
iqmp = BN_new();
if (iqmp == NULL) {
RSA_free(key);
BN_clear_free(dmq1);
BN_clear_free(dmp1);
throw runtime_error(getName()+" allocation of BIGNUM iqmp failed");
}
RSA_set0_crt_params(key, dmp1, dmq1, iqmp);
places["Modulus"]=&n;
places["PublicExponent"]=&e;
places["PrivateExponent"]=&d;
places["Prime1"]=&p;
places["Prime2"]=&q;
places["Exponent1"]=&dmp1;
places["Exponent2"]=&dmq1;
places["Coefficient"]=&iqmp;
drc.d_algorithm = pdns_stou(stormap["algorithm"]);
string raw;
for(const places_t::value_type& val : places) {
raw=stormap[toLower(val.first)];
if (!val.second)
continue;
*val.second = BN_bin2bn((unsigned char*) raw.c_str(), raw.length(), *val.second);
if (!*val.second) {
RSA_free(key);
throw runtime_error(getName()+" error loading " + val.first);
}
}
if (drc.d_algorithm != d_algorithm) {
RSA_free(key);
throw runtime_error(getName()+" tried to feed an algorithm "+std::to_string(drc.d_algorithm)+" to a "+std::to_string(d_algorithm)+" key");
}
if (d_key)
RSA_free(d_key);
d_key = key;
}
bool OpenSSLRSADNSCryptoKeyEngine::checkKey() const
{
return (RSA_check_key(d_key) == 1);
}
void OpenSSLRSADNSCryptoKeyEngine::fromPublicKeyString(const std::string& input)
{
string exponent, modulus;
const size_t inputLen = input.length();
const unsigned char* raw = (const unsigned char*)input.c_str();
if (inputLen < 1) {
throw runtime_error(getName()+" invalid input size for the public key");
}
if (raw[0] != 0) {
const size_t exponentSize = raw[0];
if (inputLen < (exponentSize + 2)) {
throw runtime_error(getName()+" invalid input size for the public key");
}
exponent = input.substr(1, exponentSize);
modulus = input.substr(exponentSize + 1);
} else {
if (inputLen < 3) {
throw runtime_error(getName()+" invalid input size for the public key");
}
const size_t exponentSize = raw[1]*0xff + raw[2];
if (inputLen < (exponentSize + 4)) {
throw runtime_error(getName()+" invalid input size for the public key");
}
exponent = input.substr(3, exponentSize);
modulus = input.substr(exponentSize + 3);
}
RSA* key = RSA_new();
if (key == NULL) {
throw runtime_error(getName()+" allocation of key structure failed");
}
BIGNUM *e = BN_bin2bn((unsigned char*)exponent.c_str(), exponent.length(), NULL);
if (!e) {
RSA_free(key);
throw runtime_error(getName()+" error loading e value of public key");
}
BIGNUM *n = BN_bin2bn((unsigned char*)modulus.c_str(), modulus.length(), NULL);
if (!n) {
RSA_free(key);
BN_clear_free(e);
throw runtime_error(getName()+" error loading n value of public key");
}
if (d_key)
RSA_free(d_key);
RSA_set0_key(key, n, e, NULL);
d_key = key;
}
#ifdef HAVE_LIBCRYPTO_ECDSA
class OpenSSLECDSADNSCryptoKeyEngine : public DNSCryptoKeyEngine
{
public:
explicit OpenSSLECDSADNSCryptoKeyEngine(unsigned int algo) : DNSCryptoKeyEngine(algo)
{
int ret = RAND_status();
if (ret != 1) {
throw runtime_error(getName()+" insufficient entropy");
}
d_eckey = EC_KEY_new();
if (d_eckey == NULL) {
throw runtime_error(getName()+" allocation of key structure failed");
}
if(d_algorithm == 13) {
d_ecgroup = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
d_len = 32;
} else if (d_algorithm == 14) {
d_ecgroup = EC_GROUP_new_by_curve_name(NID_secp384r1);
d_len = 48;
} else {
throw runtime_error(getName()+" unknown algorithm "+std::to_string(d_algorithm));
}
if (d_ecgroup == NULL) {
throw runtime_error(getName()+" allocation of group structure failed");
}
ret = EC_KEY_set_group(d_eckey,d_ecgroup);
if (ret != 1) {
throw runtime_error(getName()+" setting key group failed");
}
}
~OpenSSLECDSADNSCryptoKeyEngine()
{
EC_KEY_free(d_eckey);
EC_GROUP_free(d_ecgroup);
BN_CTX_free(d_ctx);
}
string getName() const override { return "OpenSSL ECDSA"; }
int getBits() const override { return d_len << 3; }
void create(unsigned int bits) override;
storvector_t convertToISCVector() const override;
std::string hash(const std::string& hash) const override;
std::string sign(const std::string& hash) const override;
bool verify(const std::string& hash, const std::string& signature) const override;
std::string getPubKeyHash() const override;
std::string getPublicKeyString() const override;
void fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) override;
void fromPublicKeyString(const std::string& content) override;
bool checkKey() const override;
static DNSCryptoKeyEngine* maker(unsigned int algorithm)
{
return new OpenSSLECDSADNSCryptoKeyEngine(algorithm);
}
private:
unsigned int d_len;
EC_KEY *d_eckey = NULL;
EC_GROUP *d_ecgroup = NULL;
BN_CTX *d_ctx = NULL;
};
void OpenSSLECDSADNSCryptoKeyEngine::create(unsigned int bits)
{
if (bits >> 3 != d_len) {
throw runtime_error(getName()+" unknown key length of "+std::to_string(bits)+" bits requested");
}
int res = EC_KEY_generate_key(d_eckey);
if (res == 0) {
throw runtime_error(getName()+" key generation failed");
}
}
DNSCryptoKeyEngine::storvector_t OpenSSLECDSADNSCryptoKeyEngine::convertToISCVector() const
{
storvector_t storvect;
string algorithm;
if(d_algorithm == 13)
algorithm = "13 (ECDSAP256SHA256)";
else if(d_algorithm == 14)
algorithm = "14 (ECDSAP384SHA384)";
else
algorithm = " ? (?)";
storvect.push_back(make_pair("Algorithm", algorithm));
const BIGNUM *key = EC_KEY_get0_private_key(d_eckey);
if (key == NULL) {
throw runtime_error(getName()+" private key not set");
}
unsigned char tmp[BN_num_bytes(key)];
int len = BN_bn2bin(key, tmp);
string prefix;
if (d_len - len)
prefix.append(d_len - len, 0x00);
storvect.push_back(make_pair("PrivateKey", prefix + string((char*) tmp, sizeof(tmp))));
return storvect;
}
std::string OpenSSLECDSADNSCryptoKeyEngine::hash(const std::string& orig) const
{
if(getBits() == 256) {
unsigned char hash[SHA256_DIGEST_LENGTH];
SHA256((unsigned char*) orig.c_str(), orig.length(), hash);
return string((char*) hash, sizeof(hash));
}
else if(getBits() == 384) {
unsigned char hash[SHA384_DIGEST_LENGTH];
SHA384((unsigned char*) orig.c_str(), orig.length(), hash);
return string((char*) hash, sizeof(hash));
}
throw runtime_error(getName()+" does not support a hash size of "+std::to_string(getBits())+" bits");
}
std::string OpenSSLECDSADNSCryptoKeyEngine::sign(const std::string& msg) const
{
string hash = this->hash(msg);
ECDSA_SIG *signature = ECDSA_do_sign((unsigned char*) hash.c_str(), hash.length(), d_eckey);
if (NULL == signature) {
throw runtime_error(getName()+" failed to generate signature");
}
string ret;
unsigned char tmp[d_len];
const BIGNUM *pr, *ps;
ECDSA_SIG_get0(signature, &pr, &ps);
int len = BN_bn2bin(pr, tmp);
if (d_len - len)
ret.append(d_len - len, 0x00);
ret.append(string((char*) tmp, len));
len = BN_bn2bin(ps, tmp);
if (d_len - len)
ret.append(d_len - len, 0x00);
ret.append(string((char*) tmp, len));
ECDSA_SIG_free(signature);
return ret;
}
bool OpenSSLECDSADNSCryptoKeyEngine::verify(const std::string& msg, const std::string& signature) const
{
if (signature.length() != (d_len * 2)) {
throw runtime_error(getName()+" invalid signature size "+std::to_string(signature.length()));
}
string hash = this->hash(msg);
ECDSA_SIG *sig;
sig = ECDSA_SIG_new();
if (sig == NULL) {
throw runtime_error(getName()+" allocation of signature structure failed");
}
BIGNUM *r, *s;
r = BN_bin2bn((unsigned char*) signature.c_str(), d_len, NULL);
s = BN_bin2bn((unsigned char*) signature.c_str() + d_len, d_len, NULL);
if (!r || !s) {
if (r) {
BN_clear_free(r);
}
if (s) {
BN_clear_free(s);
}
ECDSA_SIG_free(sig);
throw runtime_error(getName()+" invalid signature");
}
ECDSA_SIG_set0(sig, r, s);
int ret = ECDSA_do_verify((unsigned char*) hash.c_str(), hash.length(), sig, d_eckey);
ECDSA_SIG_free(sig);
if (ret == -1){
throw runtime_error(getName()+" verify error");
}
return (ret == 1);
}
std::string OpenSSLECDSADNSCryptoKeyEngine::getPubKeyHash() const
{
string pubKey = getPublicKeyString();
unsigned char hash[SHA_DIGEST_LENGTH];
SHA1((unsigned char*) pubKey.c_str(), pubKey.length(), hash);
return string((char*) hash, sizeof(hash));
}
std::string OpenSSLECDSADNSCryptoKeyEngine::getPublicKeyString() const
{
unsigned char binaryPoint[(d_len * 2) + 1];
int ret = EC_POINT_point2oct(d_ecgroup, EC_KEY_get0_public_key(d_eckey), POINT_CONVERSION_UNCOMPRESSED, binaryPoint, sizeof(binaryPoint), d_ctx);
if (ret == 0) {
throw runtime_error(getName()+" exporting point to binary failed");
}
/* we skip the first byte as the other backends use
raw field elements, as opposed to the format described in
SEC1: "2.3.3 Elliptic-Curve-Point-to-Octet-String Conversion" */
return string((const char *)(binaryPoint + 1), sizeof(binaryPoint) - 1);
}
void OpenSSLECDSADNSCryptoKeyEngine::fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap)
{
drc.d_algorithm = atoi(stormap["algorithm"].c_str());
if (drc.d_algorithm != d_algorithm) {
throw runtime_error(getName()+" tried to feed an algorithm "+std::to_string(drc.d_algorithm)+" to a "+std::to_string(d_algorithm)+" key");
}
string privateKey = stormap["privatekey"];
BIGNUM *prv_key = BN_bin2bn((unsigned char*) privateKey.c_str(), privateKey.length(), NULL);
if (prv_key == NULL) {
throw runtime_error(getName()+" reading private key from binary failed");
}
int ret = EC_KEY_set_private_key(d_eckey, prv_key);
if (ret != 1) {
BN_clear_free(prv_key);
throw runtime_error(getName()+" setting private key failed");
}
EC_POINT *pub_key = EC_POINT_new(d_ecgroup);
if (pub_key == NULL) {
BN_clear_free(prv_key);
throw runtime_error(getName()+" allocation of public key point failed");
}
ret = EC_POINT_mul(d_ecgroup, pub_key, prv_key, NULL, NULL, d_ctx);
if (ret != 1) {
EC_POINT_free(pub_key);
BN_clear_free(prv_key);
throw runtime_error(getName()+" computing public key from private failed");
}
BN_clear_free(prv_key);
ret = EC_KEY_set_public_key(d_eckey, pub_key);
if (ret != 1) {
EC_POINT_free(pub_key);
throw runtime_error(getName()+" setting public key failed");
}
EC_POINT_free(pub_key);
}
bool OpenSSLECDSADNSCryptoKeyEngine::checkKey() const
{
return (EC_KEY_check_key(d_eckey) == 1);
}
void OpenSSLECDSADNSCryptoKeyEngine::fromPublicKeyString(const std::string& input)
{
/* uncompressed point, from SEC1:
"2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion" */
string ecdsaPoint= "\x04";
ecdsaPoint.append(input);
EC_POINT *pub_key = EC_POINT_new(d_ecgroup);
if (pub_key == NULL) {
throw runtime_error(getName()+" allocation of point structure failed");
}
int ret = EC_POINT_oct2point(d_ecgroup, pub_key, (unsigned char*) ecdsaPoint.c_str(), ecdsaPoint.length(), d_ctx);
if (ret != 1) {
EC_POINT_free(pub_key);
throw runtime_error(getName()+" reading ECP point from binary failed");
}
ret = EC_KEY_set_private_key(d_eckey, NULL);
if (ret == 1) {
EC_POINT_free(pub_key);
throw runtime_error(getName()+" setting private key failed");
}
ret = EC_KEY_set_public_key(d_eckey, pub_key);
if (ret != 1) {
EC_POINT_free(pub_key);
throw runtime_error(getName()+" setting public key failed");
}
EC_POINT_free(pub_key);
}
#endif
namespace {
struct LoaderStruct
{
LoaderStruct()
{
DNSCryptoKeyEngine::report(5, &OpenSSLRSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(7, &OpenSSLRSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(8, &OpenSSLRSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(10, &OpenSSLRSADNSCryptoKeyEngine::maker);
#ifdef HAVE_LIBCRYPTO_ECDSA
DNSCryptoKeyEngine::report(13, &OpenSSLECDSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(14, &OpenSSLECDSADNSCryptoKeyEngine::maker);
#endif
}
} loaderOpenSSL;
}
|