1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
#include <openssl/err.h>
#include <openssl/pem.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <decaf.hxx>
#include <decaf/eddsa.hxx>
#include <decaf/spongerng.hxx>
#include "dnsseckeeper.hh"
#include "dnssecinfra.hh"
using namespace decaf;
class DecafED25519DNSCryptoKeyEngine : public DNSCryptoKeyEngine
{
public:
explicit DecafED25519DNSCryptoKeyEngine(unsigned int algo) :
DNSCryptoKeyEngine(algo)
{
}
string getName() const override { return "Decaf ED25519"; }
void create(unsigned int bits) override;
#if defined(HAVE_LIBCRYPTO_ED25519)
/**
* \brief Creates an ED25519 key engine from a PEM file.
*
* Receives an open file handle with PEM contents and creates an
* ED25519 key engine.
*
* \param[in] drc Key record contents to be populated.
*
* \param[in] filename Only used for providing filename information in
* error messages.
*
* \param[in] fp An open file handle to a file containing ED25519 PEM
* contents.
*
* \return An ED25519 key engine populated with the contents of the
* PEM file.
*/
void createFromPEMFile(DNSKEYRecordContent& drc, const std::string& filename, std::FILE& fp) override;
/**
* \brief Writes this key's contents to a file.
*
* Receives an open file handle and writes this key's contents to the
* file.
*
* \param[in] fp An open file handle for writing.
*
* \exception std::runtime_error In case of OpenSSL errors.
*/
void convertToPEM(std::FILE& fp) const override;
#endif
storvector_t convertToISCVector() const override;
std::string getPubKeyHash() const override;
std::string sign(const std::string& msg) const override;
bool verify(const std::string& msg, const std::string& signature) const override;
std::string getPublicKeyString() const override;
int getBits() const override;
void fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) override;
void fromPublicKeyString(const std::string& content) override;
static std::unique_ptr<DNSCryptoKeyEngine> maker(unsigned int algorithm)
{
return make_unique<DecafED25519DNSCryptoKeyEngine>(algorithm);
}
private:
unsigned char d_pubkey[DECAF_EDDSA_25519_PUBLIC_BYTES];
unsigned char d_seckey[DECAF_EDDSA_25519_PRIVATE_BYTES];
};
void DecafED25519DNSCryptoKeyEngine::create(unsigned int bits)
{
if (bits != (unsigned int)getBits()) {
throw runtime_error("Unsupported key length of " + std::to_string(bits) + " bits requested, DecafED25519 class");
}
SpongeRng rng("/dev/urandom");
typename EdDSA<IsoEd25519>::PrivateKey priv(rng);
typename EdDSA<IsoEd25519>::PublicKey pub(priv);
priv.serialize_into(d_seckey);
pub.serialize_into(d_pubkey);
}
#if defined(HAVE_LIBCRYPTO_ED25519)
void DecafED25519DNSCryptoKeyEngine::createFromPEMFile(DNSKEYRecordContent& drc, const string& filename, std::FILE& fp)
{
drc.d_algorithm = d_algorithm;
auto key = std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>(PEM_read_PrivateKey(&fp, nullptr, nullptr, nullptr), &EVP_PKEY_free);
if (key == nullptr) {
throw runtime_error(getName() + ": Failed to read private key from PEM file `" + filename + "`");
}
std::size_t keylen = DECAF_EDDSA_25519_PRIVATE_BYTES;
int ret = EVP_PKEY_get_raw_private_key(key.get(), d_seckey, &keylen);
if (ret == 0) {
throw runtime_error(getName() + ": Failed to get private key from PEM file contents `" + filename + "`");
}
keylen = DECAF_EDDSA_25519_PUBLIC_BYTES;
ret = EVP_PKEY_get_raw_public_key(key.get(), d_pubkey, &keylen);
if (ret == 0) {
throw runtime_error(getName() + ": Failed to get public key from PEM file contents `" + filename + "`");
}
}
void DecafED25519DNSCryptoKeyEngine::convertToPEM(std::FILE& fp) const
{
auto key = std::unique_ptr<EVP_PKEY, void (*)(EVP_PKEY*)>(EVP_PKEY_new_raw_private_key(EVP_PKEY_ED25519, nullptr, d_seckey, DECAF_EDDSA_25519_PRIVATE_BYTES), EVP_PKEY_free);
if (key == nullptr) {
throw runtime_error(getName() + ": Could not create private key from buffer");
}
auto ret = PEM_write_PrivateKey(&fp, key.get(), nullptr, nullptr, 0, nullptr, nullptr);
if (ret == 0) {
throw runtime_error(getName() + ": Could not convert private key to PEM");
}
}
#endif
int DecafED25519DNSCryptoKeyEngine::getBits() const
{
return DECAF_EDDSA_25519_PRIVATE_BYTES << 3;
}
DNSCryptoKeyEngine::storvector_t DecafED25519DNSCryptoKeyEngine::convertToISCVector() const
{
/*
Private-key-format: v1.2
Algorithm: 15 (ED25519)
PrivateKey: ODIyNjAzODQ2MjgwODAxMjI2NDUxOTAyMDQxNDIyNjI=
*/
auto storvector = storvector_t{
{"Algorithm", "15 (ED25519)"},
{"PrivateKey", string((char*)d_seckey, DECAF_EDDSA_25519_PRIVATE_BYTES)},
};
return storvector;
}
void DecafED25519DNSCryptoKeyEngine::fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap)
{
/*
Private-key-format: v1.2
Algorithm: 15 (ED25519)
PrivateKey: ODIyNjAzODQ2MjgwODAxMjI2NDUxOTAyMDQxNDIyNjI=
*/
pdns::checked_stoi_into(drc.d_algorithm, stormap["algorithm"]);
string privateKey = stormap["privatekey"];
if (privateKey.length() != DECAF_EDDSA_25519_PRIVATE_BYTES)
throw runtime_error("Private key size mismatch in ISCMap, DecafED25519 class");
typename EdDSA<IsoEd25519>::PrivateKey priv(Block((const unsigned char*)privateKey.c_str(), DECAF_EDDSA_25519_PRIVATE_BYTES));
typename EdDSA<IsoEd25519>::PublicKey pub(priv);
priv.serialize_into(d_seckey);
pub.serialize_into(d_pubkey);
}
std::string DecafED25519DNSCryptoKeyEngine::getPubKeyHash() const
{
return this->getPublicKeyString();
}
std::string DecafED25519DNSCryptoKeyEngine::getPublicKeyString() const
{
return string((char*)d_pubkey, DECAF_EDDSA_25519_PUBLIC_BYTES);
}
void DecafED25519DNSCryptoKeyEngine::fromPublicKeyString(const std::string& input)
{
if (input.length() != DECAF_EDDSA_25519_PUBLIC_BYTES)
throw runtime_error("Public key size mismatch, DecafED25519 class");
memcpy(d_pubkey, input.c_str(), DECAF_EDDSA_25519_PUBLIC_BYTES);
}
std::string DecafED25519DNSCryptoKeyEngine::sign(const std::string& msg) const
{
typename EdDSA<IsoEd25519>::PrivateKey priv(Block(d_seckey, DECAF_EDDSA_25519_PRIVATE_BYTES));
SecureBuffer message(msg.begin(), msg.end());
SecureBuffer sig = priv.sign(message);
return string(sig.begin(), sig.end());
}
bool DecafED25519DNSCryptoKeyEngine::verify(const std::string& msg, const std::string& signature) const
{
if (signature.length() != DECAF_EDDSA_25519_SIGNATURE_BYTES)
return false;
typename EdDSA<IsoEd25519>::PublicKey pub(Block(d_pubkey, DECAF_EDDSA_25519_PUBLIC_BYTES));
SecureBuffer sig(signature.begin(), signature.end());
SecureBuffer message(msg.begin(), msg.end());
try {
pub.verify(sig, message);
}
catch (const CryptoException& e) {
return false;
}
return true;
}
class DecafED448DNSCryptoKeyEngine : public DNSCryptoKeyEngine
{
public:
explicit DecafED448DNSCryptoKeyEngine(unsigned int algo) :
DNSCryptoKeyEngine(algo)
{
}
string getName() const override { return "Decaf ED448"; }
void create(unsigned int bits) override;
#if defined(HAVE_LIBCRYPTO_ED448)
/**
* \brief Creates an ED448 key engine from a PEM file.
*
* Receives an open file handle with PEM contents and creates an ED448
* key engine.
*
* \param[in] drc Key record contents to be populated.
*
* \param[in] filename Only used for providing filename information in
* error messages.
*
* \param[in] fp An open file handle to a file containing ED448 PEM
* contents.
*
* \return An ED448 key engine populated with the contents of the PEM
* file.
*/
void createFromPEMFile(DNSKEYRecordContent& drc, const std::string& filename, std::FILE& fp) override;
/**
* \brief Writes this key's contents to a file.
*
* Receives an open file handle and writes this key's contents to the
* file.
*
* \param[in] fp An open file handle for writing.
*
* \exception std::runtime_error In case of OpenSSL errors.
*/
void convertToPEM(std::FILE& fp) const override;
#endif
storvector_t convertToISCVector() const override;
std::string getPubKeyHash() const override;
std::string sign(const std::string& msg) const override;
bool verify(const std::string& msg, const std::string& signature) const override;
std::string getPublicKeyString() const override;
int getBits() const override;
void fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) override;
void fromPublicKeyString(const std::string& content) override;
static std::unique_ptr<DNSCryptoKeyEngine> maker(unsigned int algorithm)
{
return make_unique<DecafED448DNSCryptoKeyEngine>(algorithm);
}
private:
unsigned char d_pubkey[DECAF_EDDSA_448_PUBLIC_BYTES];
unsigned char d_seckey[DECAF_EDDSA_448_PRIVATE_BYTES];
};
void DecafED448DNSCryptoKeyEngine::create(unsigned int bits)
{
if (bits != (unsigned int)getBits()) {
throw runtime_error("Unsupported key length of " + std::to_string(bits) + " bits requested, DecafED448 class");
}
SpongeRng rng("/dev/urandom");
typename EdDSA<Ed448Goldilocks>::PrivateKey priv(rng);
typename EdDSA<Ed448Goldilocks>::PublicKey pub(priv);
priv.serialize_into(d_seckey);
pub.serialize_into(d_pubkey);
}
#if defined(HAVE_LIBCRYPTO_ED448)
void DecafED448DNSCryptoKeyEngine::createFromPEMFile(DNSKEYRecordContent& drc, const string& filename, std::FILE& fp)
{
drc.d_algorithm = d_algorithm;
auto key = std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>(PEM_read_PrivateKey(&fp, nullptr, nullptr, nullptr), &EVP_PKEY_free);
if (key == nullptr) {
throw runtime_error(getName() + ": Failed to read private key from PEM file `" + filename + "`");
}
std::size_t keylen = DECAF_EDDSA_448_PRIVATE_BYTES;
int ret = EVP_PKEY_get_raw_private_key(key.get(), d_seckey, &keylen);
if (ret == 0) {
throw runtime_error(getName() + ": Failed to get private key from PEM file contents `" + filename + "`");
}
keylen = DECAF_EDDSA_448_PUBLIC_BYTES;
ret = EVP_PKEY_get_raw_public_key(key.get(), d_pubkey, &keylen);
if (ret == 0) {
throw runtime_error(getName() + ": Failed to get public key from PEM file contents `" + filename + "`");
}
}
void DecafED448DNSCryptoKeyEngine::convertToPEM(std::FILE& fp) const
{
auto key = std::unique_ptr<EVP_PKEY, void (*)(EVP_PKEY*)>(EVP_PKEY_new_raw_private_key(EVP_PKEY_ED448, nullptr, d_seckey, DECAF_EDDSA_448_PRIVATE_BYTES), EVP_PKEY_free);
if (key == nullptr) {
throw runtime_error(getName() + ": Could not create private key from buffer");
}
auto ret = PEM_write_PrivateKey(&fp, key.get(), nullptr, nullptr, 0, nullptr, nullptr);
if (ret == 0) {
throw runtime_error(getName() + ": Could not convert private key to PEM");
}
}
#endif
int DecafED448DNSCryptoKeyEngine::getBits() const
{
return DECAF_EDDSA_448_PRIVATE_BYTES << 3;
}
DNSCryptoKeyEngine::storvector_t DecafED448DNSCryptoKeyEngine::convertToISCVector() const
{
/*
Private-key-format: v1.2
Algorithm: 16 (ED448)
PrivateKey: xZ+5Cgm463xugtkY5B0Jx6erFTXp13rYegst0qRtNsOYnaVpMx0Z/c5EiA9x8wWbDDct/U3FhYWA
*/
auto storvector = storvector_t{
{"Algorithm", "16 (ED448)"},
{"PrivateKey", string((char*)d_seckey, DECAF_EDDSA_448_PRIVATE_BYTES)},
};
return storvector;
}
void DecafED448DNSCryptoKeyEngine::fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap)
{
/*
Private-key-format: v1.2
Algorithm: 16 (ED448)
PrivateKey: xZ+5Cgm463xugtkY5B0Jx6erFTXp13rYegst0qRtNsOYnaVpMx0Z/c5EiA9x8wWbDDct/U3FhYWA
*/
pdns::checked_stoi_into(drc.d_algorithm, stormap["algorithm"]);
string privateKey = stormap["privatekey"];
if (privateKey.length() != DECAF_EDDSA_448_PRIVATE_BYTES)
throw runtime_error("Private key size mismatch in ISCMap, DecafED448 class");
typename EdDSA<Ed448Goldilocks>::PrivateKey priv(Block((const unsigned char*)privateKey.c_str(), DECAF_EDDSA_448_PRIVATE_BYTES));
typename EdDSA<Ed448Goldilocks>::PublicKey pub(priv);
priv.serialize_into(d_seckey);
pub.serialize_into(d_pubkey);
}
std::string DecafED448DNSCryptoKeyEngine::getPubKeyHash() const
{
return this->getPublicKeyString();
}
std::string DecafED448DNSCryptoKeyEngine::getPublicKeyString() const
{
return string((char*)d_pubkey, DECAF_EDDSA_448_PUBLIC_BYTES);
}
void DecafED448DNSCryptoKeyEngine::fromPublicKeyString(const std::string& input)
{
if (input.length() != DECAF_EDDSA_448_PUBLIC_BYTES)
throw runtime_error("Public key size mismatch, DecafED448 class");
memcpy(d_pubkey, input.c_str(), DECAF_EDDSA_448_PUBLIC_BYTES);
}
std::string DecafED448DNSCryptoKeyEngine::sign(const std::string& msg) const
{
typename EdDSA<Ed448Goldilocks>::PrivateKey priv(Block(d_seckey, DECAF_EDDSA_448_PRIVATE_BYTES));
SecureBuffer message(msg.begin(), msg.end());
SecureBuffer sig = priv.sign(message);
return string(sig.begin(), sig.end());
}
bool DecafED448DNSCryptoKeyEngine::verify(const std::string& msg, const std::string& signature) const
{
if (signature.length() != DECAF_EDDSA_448_SIGNATURE_BYTES)
return false;
typename EdDSA<Ed448Goldilocks>::PublicKey pub(Block(d_pubkey, DECAF_EDDSA_448_PUBLIC_BYTES));
SecureBuffer sig(signature.begin(), signature.end());
SecureBuffer message(msg.begin(), msg.end());
try {
pub.verify(sig, message);
}
catch (const CryptoException& e) {
return false;
}
return true;
}
namespace
{
const struct LoaderDecafStruct
{
LoaderDecafStruct()
{
DNSCryptoKeyEngine::report(DNSSECKeeper::ED25519, &DecafED25519DNSCryptoKeyEngine::maker, true);
DNSCryptoKeyEngine::report(DNSSECKeeper::ED448, &DecafED448DNSCryptoKeyEngine::maker);
}
} loaderdecaf;
}
|