1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
|
/*
* This file is part of PowerDNS or dnsdist.
* Copyright -- PowerDNS.COM B.V. and its contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* In addition, for the avoidance of any doubt, permission is granted to
* link this program with OpenSSL and to (re)distribute the binaries
* produced as the result of such linking.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <openssl/obj_mac.h>
#ifdef HAVE_LIBCRYPTO_ECDSA
#include <openssl/ecdsa.h>
#endif
#if defined(HAVE_LIBCRYPTO_ED25519) || defined(HAVE_LIBCRYPTO_ED448)
#include <openssl/evp.h>
#endif
#include <openssl/bn.h>
#include <openssl/sha.h>
#include <openssl/rand.h>
#include <openssl/rsa.h>
#include <openssl/opensslv.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include "opensslsigners.hh"
#include "dnssecinfra.hh"
#include "dnsseckeeper.hh"
#if (OPENSSL_VERSION_NUMBER < 0x1010000fL || (defined LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2090100fL)
/* OpenSSL < 1.1.0 needs support for threading/locking in the calling application. */
#include "lock.hh"
static std::vector<std::mutex> openssllocks;
extern "C" {
static void openssl_pthreads_locking_callback(int mode, int type, const char *file, int line)
{
if (mode & CRYPTO_LOCK) {
openssllocks.at(type).lock();
} else {
openssllocks.at(type).unlock();
}
}
static unsigned long openssl_pthreads_id_callback(void)
{
return (unsigned long)pthread_self();
}
}
void openssl_thread_setup()
{
openssllocks = std::vector<std::mutex>(CRYPTO_num_locks());
CRYPTO_set_id_callback(&openssl_pthreads_id_callback);
CRYPTO_set_locking_callback(&openssl_pthreads_locking_callback);
}
void openssl_thread_cleanup()
{
CRYPTO_set_locking_callback(nullptr);
openssllocks.clear();
}
#ifndef HAVE_RSA_GET0_KEY
/* those symbols are defined in LibreSSL 2.7.0+ */
/* compat helpers. These DO NOT do any of the checking that the libssl 1.1 functions do. */
static inline void RSA_get0_key(const RSA* rsakey, const BIGNUM** n, const BIGNUM** e, const BIGNUM** d) {
*n = rsakey->n;
*e = rsakey->e;
*d = rsakey->d;
}
static inline int RSA_set0_key(RSA* rsakey, BIGNUM* n, BIGNUM* e, BIGNUM* d) {
if (n) {
BN_clear_free(rsakey->n);
rsakey->n = n;
}
if (e) {
BN_clear_free(rsakey->e);
rsakey->e = e;
}
if (d) {
BN_clear_free(rsakey->d);
rsakey->d = d;
}
return 1;
}
static inline void RSA_get0_factors(const RSA* rsakey, const BIGNUM** p, const BIGNUM** q) {
*p = rsakey->p;
*q = rsakey->q;
}
static inline int RSA_set0_factors(RSA* rsakey, BIGNUM* p, BIGNUM* q) {
BN_clear_free(rsakey->p);
rsakey->p = p;
BN_clear_free(rsakey->q);
rsakey->q = q;
return 1;
}
static inline void RSA_get0_crt_params(const RSA* rsakey, const BIGNUM** dmp1, const BIGNUM** dmq1, const BIGNUM** iqmp) {
*dmp1 = rsakey->dmp1;
*dmq1 = rsakey->dmq1;
*iqmp = rsakey->iqmp;
}
static inline int RSA_set0_crt_params(RSA* rsakey, BIGNUM* dmp1, BIGNUM* dmq1, BIGNUM* iqmp) {
BN_clear_free(rsakey->dmp1);
rsakey->dmp1 = dmp1;
BN_clear_free(rsakey->dmq1);
rsakey->dmq1 = dmq1;
BN_clear_free(rsakey->iqmp);
rsakey->iqmp = iqmp;
return 1;
}
#ifdef HAVE_LIBCRYPTO_ECDSA
static inline void ECDSA_SIG_get0(const ECDSA_SIG* signature, const BIGNUM** pr, const BIGNUM** ps) {
*pr = signature->r;
*ps = signature->s;
}
static inline int ECDSA_SIG_set0(ECDSA_SIG* signature, BIGNUM* pr, BIGNUM* ps) {
BN_clear_free(signature->r);
BN_clear_free(signature->s);
signature->r = pr;
signature->s = ps;
return 1;
}
#endif /* HAVE_LIBCRYPTO_ECDSA */
#endif /* HAVE_RSA_GET0_KEY */
#else
void openssl_thread_setup() {}
void openssl_thread_cleanup() {}
#endif
/* seeding PRNG */
void openssl_seed()
{
std::string entropy;
entropy.reserve(1024);
unsigned int r;
for(int i=0; i<1024; i+=4) {
r=dns_random(0xffffffff);
entropy.append((const char*)&r, 4);
}
RAND_seed((const unsigned char*)entropy.c_str(), 1024);
}
class OpenSSLRSADNSCryptoKeyEngine : public DNSCryptoKeyEngine
{
public:
explicit OpenSSLRSADNSCryptoKeyEngine(unsigned int algo): DNSCryptoKeyEngine(algo), d_key(std::unique_ptr<RSA, void(*)(RSA*)>(nullptr, RSA_free))
{
int ret = RAND_status();
if (ret != 1) {
throw runtime_error(getName()+" insufficient entropy");
}
}
~OpenSSLRSADNSCryptoKeyEngine()
{
}
string getName() const override { return "OpenSSL RSA"; }
int getBits() const override { return RSA_size(d_key.get()) << 3; }
void create(unsigned int bits) override;
/**
* \brief Creates an RSA key engine from a PEM file.
*
* Receives an open file handle with PEM contents and creates an RSA key
* engine.
*
* \param[in] drc Key record contents to be populated.
*
* \param[in] filename Only used for providing filename information in error
* messages.
*
* \param[in] fp An open file handle to a file containing RSA PEM contents.
*
* \return An RSA key engine populated with the contents of the PEM file.
*/
void createFromPEMFile(DNSKEYRecordContent& drc, const std::string& filename, std::FILE& fp) override;
/**
* \brief Writes this key's contents to a file.
*
* Receives an open file handle and writes this key's contents to the
* file.
*
* \param[in] fp An open file handle for writing.
*
* \exception std::runtime_error In case of OpenSSL errors.
*/
void convertToPEM(std::FILE& fp) const override;
storvector_t convertToISCVector() const override;
std::string hash(const std::string& hash) const override;
std::string sign(const std::string& hash) const override;
bool verify(const std::string& hash, const std::string& signature) const override;
std::string getPubKeyHash() const override;
std::string getPublicKeyString() const override;
std::unique_ptr<BIGNUM, void(*)(BIGNUM*)>parse(std::map<std::string, std::string>& stormap, const std::string& key) const;
void fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) override;
void fromPublicKeyString(const std::string& content) override;
bool checkKey(vector<string> *errorMessages) const override;
static std::unique_ptr<DNSCryptoKeyEngine> maker(unsigned int algorithm)
{
return make_unique<OpenSSLRSADNSCryptoKeyEngine>(algorithm);
}
private:
static int hashSizeToKind(size_t hashSize);
std::unique_ptr<RSA, void(*)(RSA*)> d_key;
};
void OpenSSLRSADNSCryptoKeyEngine::create(unsigned int bits)
{
// When changing the bitsizes, also edit them in ::checkKey
if ((d_algorithm == DNSSECKeeper::RSASHA1 || d_algorithm == DNSSECKeeper::RSASHA1NSEC3SHA1) && (bits < 512 || bits > 4096)) {
/* RFC3110 */
throw runtime_error(getName()+" RSASHA1 key generation failed for invalid bits size " + std::to_string(bits));
}
if (d_algorithm == DNSSECKeeper::RSASHA256 && (bits < 512 || bits > 4096)) {
/* RFC5702 */
throw runtime_error(getName()+" RSASHA256 key generation failed for invalid bits size " + std::to_string(bits));
}
if (d_algorithm == DNSSECKeeper::RSASHA512 && (bits < 1024 || bits > 4096)) {
/* RFC5702 */
throw runtime_error(getName()+" RSASHA512 key generation failed for invalid bits size " + std::to_string(bits));
}
auto e = std::unique_ptr<BIGNUM, void(*)(BIGNUM*)>(BN_new(), BN_clear_free);
if (!e) {
throw runtime_error(getName()+" key generation failed, unable to allocate e");
}
/* RSA_F4 is a public exponent value of 65537 */
int res = BN_set_word(e.get(), RSA_F4);
if (res == 0) {
throw runtime_error(getName()+" key generation failed while setting e");
}
auto key = std::unique_ptr<RSA, void(*)(RSA*)>(RSA_new(), RSA_free);
if (!key) {
throw runtime_error(getName()+" allocation of key structure failed");
}
res = RSA_generate_key_ex(key.get(), bits, e.get(), nullptr);
if (res == 0) {
throw runtime_error(getName()+" key generation failed");
}
d_key = std::move(key);
}
void OpenSSLRSADNSCryptoKeyEngine::createFromPEMFile(DNSKEYRecordContent& drc, const std::string& filename, std::FILE& fp) {
drc.d_algorithm = d_algorithm;
d_key = std::unique_ptr<RSA, decltype(&RSA_free)>(PEM_read_RSAPrivateKey(&fp, nullptr, nullptr, nullptr), &RSA_free);
if (d_key == nullptr) {
throw runtime_error(getName() + ": Failed to read private key from PEM file `" + filename + "`");
}
}
void OpenSSLRSADNSCryptoKeyEngine::convertToPEM(std::FILE& fp) const {
auto ret = PEM_write_RSAPrivateKey(&fp, d_key.get(), nullptr, nullptr, 0, nullptr, nullptr);
if (ret == 0) {
throw runtime_error(getName() + ": Could not convert private key to PEM");
}
}
DNSCryptoKeyEngine::storvector_t OpenSSLRSADNSCryptoKeyEngine::convertToISCVector() const
{
storvector_t storvect;
typedef vector<pair<string, const BIGNUM*> > outputs_t;
outputs_t outputs;
const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
RSA_get0_key(d_key.get(), &n, &e, &d);
RSA_get0_factors(d_key.get(), &p, &q);
RSA_get0_crt_params(d_key.get(), &dmp1, &dmq1, &iqmp);
outputs.emplace_back("Modulus", n);
outputs.emplace_back("PublicExponent", e);
outputs.emplace_back("PrivateExponent", d);
outputs.emplace_back("Prime1", p);
outputs.emplace_back("Prime2", q);
outputs.emplace_back("Exponent1", dmp1);
outputs.emplace_back("Exponent2", dmq1);
outputs.emplace_back("Coefficient", iqmp);
string algorithm=std::to_string(d_algorithm);
switch(d_algorithm) {
case DNSSECKeeper::RSASHA1:
case DNSSECKeeper::RSASHA1NSEC3SHA1:
algorithm += " (RSASHA1)";
break;
case DNSSECKeeper::RSASHA256:
algorithm += " (RSASHA256)";
break;
case DNSSECKeeper::RSASHA512:
algorithm += " (RSASHA512)";
break;
default:
algorithm += " (?)";
}
storvect.emplace_back("Algorithm", algorithm);
for(const outputs_t::value_type& value : outputs) {
std::string tmp;
tmp.resize(BN_num_bytes(value.second));
int len = BN_bn2bin(value.second, reinterpret_cast<unsigned char*>(&tmp.at(0)));
if (len >= 0) {
tmp.resize(len);
storvect.emplace_back(value.first, tmp);
}
}
return storvect;
}
std::string OpenSSLRSADNSCryptoKeyEngine::hash(const std::string& orig) const
{
if (d_algorithm == DNSSECKeeper::RSASHA1 || d_algorithm == DNSSECKeeper::RSASHA1NSEC3SHA1) {
unsigned char l_hash[SHA_DIGEST_LENGTH];
SHA1((unsigned char*) orig.c_str(), orig.length(), l_hash);
return string((char*) l_hash, sizeof(l_hash));
}
else if (d_algorithm == DNSSECKeeper::RSASHA256) {
unsigned char l_hash[SHA256_DIGEST_LENGTH];
SHA256((unsigned char*) orig.c_str(), orig.length(), l_hash);
return string((char*) l_hash, sizeof(l_hash));
}
else if (d_algorithm == DNSSECKeeper::RSASHA512) {
unsigned char l_hash[SHA512_DIGEST_LENGTH];
SHA512((unsigned char*) orig.c_str(), orig.length(), l_hash);
return string((char*) l_hash, sizeof(l_hash));
}
throw runtime_error(getName()+" does not support hash operation for algorithm "+std::to_string(d_algorithm));
}
int OpenSSLRSADNSCryptoKeyEngine::hashSizeToKind(const size_t hashSize)
{
switch(hashSize) {
case SHA_DIGEST_LENGTH:
return NID_sha1;
case SHA256_DIGEST_LENGTH:
return NID_sha256;
case SHA384_DIGEST_LENGTH:
return NID_sha384;
case SHA512_DIGEST_LENGTH:
return NID_sha512;
default:
throw runtime_error("OpenSSL RSA does not handle hash of size " + std::to_string(hashSize));
}
}
std::string OpenSSLRSADNSCryptoKeyEngine::sign(const std::string& msg) const
{
string l_hash = this->hash(msg);
int hashKind = hashSizeToKind(l_hash.size());
std::string signature;
signature.resize(RSA_size(d_key.get()));
unsigned int signatureLen = 0;
int res = RSA_sign(hashKind, reinterpret_cast<unsigned char*>(&l_hash.at(0)), l_hash.length(), reinterpret_cast<unsigned char*>(&signature.at(0)), &signatureLen, d_key.get());
if (res != 1) {
throw runtime_error(getName()+" failed to generate signature");
}
signature.resize(signatureLen);
return signature;
}
bool OpenSSLRSADNSCryptoKeyEngine::verify(const std::string& msg, const std::string& signature) const
{
string l_hash = this->hash(msg);
int hashKind = hashSizeToKind(l_hash.size());
int ret = RSA_verify(hashKind, (const unsigned char*)l_hash.c_str(), l_hash.length(), (unsigned char*)signature.c_str(), signature.length(), d_key.get());
return (ret == 1);
}
std::string OpenSSLRSADNSCryptoKeyEngine::getPubKeyHash() const
{
const BIGNUM *n, *e, *d;
RSA_get0_key(d_key.get(), &n, &e, &d);
std::vector<unsigned char> tmp;
tmp.resize(std::max(BN_num_bytes(e), BN_num_bytes(n)));
unsigned char l_hash[SHA_DIGEST_LENGTH];
SHA_CTX ctx;
int res = SHA1_Init(&ctx);
if (res != 1) {
throw runtime_error(getName()+" failed to init hash context for generating the public key hash");
}
int len = BN_bn2bin(e, tmp.data());
res = SHA1_Update(&ctx, tmp.data(), len);
if (res != 1) {
throw runtime_error(getName()+" failed to update hash context for generating the public key hash");
}
len = BN_bn2bin(n, tmp.data());
res = SHA1_Update(&ctx, tmp.data(), len);
if (res != 1) {
throw runtime_error(getName()+" failed to update hash context for generating the public key hash");
}
res = SHA1_Final(l_hash, &ctx);
if (res != 1) {
throw runtime_error(getName()+" failed to finish hash context for generating the public key hash");
}
return string((char*)l_hash, sizeof(l_hash));
}
std::string OpenSSLRSADNSCryptoKeyEngine::getPublicKeyString() const
{
const BIGNUM *n, *e, *d;
RSA_get0_key(d_key.get(), &n, &e, &d);
string keystring;
std::string tmp;
tmp.resize(std::max(BN_num_bytes(e), BN_num_bytes(n)));
int len = BN_bn2bin(e, reinterpret_cast<unsigned char*>(&tmp.at(0)));
if (len < 255) {
keystring.assign(1, (char) (unsigned int) len);
} else {
keystring.assign(1, 0);
uint16_t tempLen = len;
tempLen = htons(tempLen);
keystring.append((char*)&tempLen, 2);
}
keystring.append(&tmp.at(0), len);
len = BN_bn2bin(n, reinterpret_cast<unsigned char*>(&tmp.at(0)));
keystring.append(&tmp.at(0), len);
return keystring;
}
std::unique_ptr<BIGNUM, void(*)(BIGNUM*)>OpenSSLRSADNSCryptoKeyEngine::parse(std::map<std::string, std::string>& stormap, const std::string& key) const
{
const std::string& v = stormap.at(key);
auto n = std::unique_ptr<BIGNUM, void(*)(BIGNUM*)>(BN_bin2bn(reinterpret_cast<const unsigned char*>(v.data()), v.length(), nullptr), BN_clear_free);
if (!n) {
throw runtime_error(getName() + " parsing of " + key + " failed");
}
return n;
}
void OpenSSLRSADNSCryptoKeyEngine::fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap)
{
auto key = std::unique_ptr<RSA, void(*)(RSA*)>(RSA_new(), RSA_free);
if (!key) {
throw runtime_error(getName() + " allocation of key structure failed");
}
auto n = parse(stormap, "modulus");
auto e = parse(stormap, "publicexponent");
auto d = parse(stormap, "privateexponent");
auto p = parse(stormap, "prime1");
auto q = parse(stormap, "prime2");
auto dmp1 = parse(stormap, "exponent1");
auto dmq1 = parse(stormap, "exponent2");
auto iqmp = parse(stormap, "coefficient");
pdns::checked_stoi_into(drc.d_algorithm, stormap["algorithm"]);
if (drc.d_algorithm != d_algorithm) {
throw runtime_error(getName() + " tried to feed an algorithm " + std::to_string(drc.d_algorithm) + " to a " + std::to_string(d_algorithm) + " key");
}
// Everything OK, we're releasing ownership since the RSA_* functions want it
RSA_set0_key(key.get(), n.release(), e.release(), d.release());
RSA_set0_factors(key.get(), p.release(), q.release());
RSA_set0_crt_params(key.get(), dmp1.release(), dmq1.release(), iqmp.release());
d_key = std::move(key);
}
bool OpenSSLRSADNSCryptoKeyEngine::checkKey(vector<string> *errorMessages) const
{
bool retval = true;
// When changing the bitsizes, also edit them in ::create
if ((d_algorithm == DNSSECKeeper::RSASHA1 || d_algorithm == DNSSECKeeper::RSASHA1NSEC3SHA1 || d_algorithm == DNSSECKeeper::RSASHA256) && (getBits() < 512 || getBits()> 4096)) {
retval = false;
if (errorMessages != nullptr) {
errorMessages->push_back("key is " + std::to_string(getBits()) + " bytes, should be between 512 and 4096");
}
}
if (d_algorithm == DNSSECKeeper::RSASHA512 && (getBits() < 1024 || getBits() > 4096)) {
retval = false;
if (errorMessages != nullptr) {
errorMessages->push_back("key is " + std::to_string(getBits()) + " bytes, should be between 1024 and 4096");
}
}
if (RSA_check_key(d_key.get()) != 1) {
retval = false;
if (errorMessages != nullptr) {
auto errmsg = ERR_reason_error_string(ERR_get_error());
if (errmsg == nullptr) {
errmsg = "Unknown OpenSSL error";
}
errorMessages->push_back(errmsg);
}
}
return retval;
}
void OpenSSLRSADNSCryptoKeyEngine::fromPublicKeyString(const std::string& input)
{
string exponent, modulus;
const size_t inputLen = input.length();
const unsigned char* raw = (const unsigned char*)input.c_str();
if (inputLen < 1) {
throw runtime_error(getName()+" invalid input size for the public key");
}
if (raw[0] != 0) {
const size_t exponentSize = raw[0];
if (inputLen < (exponentSize + 2)) {
throw runtime_error(getName()+" invalid input size for the public key");
}
exponent = input.substr(1, exponentSize);
modulus = input.substr(exponentSize + 1);
} else {
if (inputLen < 3) {
throw runtime_error(getName()+" invalid input size for the public key");
}
const size_t exponentSize = raw[1]*0xff + raw[2];
if (inputLen < (exponentSize + 4)) {
throw runtime_error(getName()+" invalid input size for the public key");
}
exponent = input.substr(3, exponentSize);
modulus = input.substr(exponentSize + 3);
}
auto key = std::unique_ptr<RSA, void(*)(RSA*)>(RSA_new(), RSA_free);
if (!key) {
throw runtime_error(getName()+" allocation of key structure failed");
}
auto e = std::unique_ptr<BIGNUM, void(*)(BIGNUM*)>(BN_bin2bn((unsigned char*)exponent.c_str(), exponent.length(), nullptr), BN_clear_free);
if (!e) {
throw runtime_error(getName()+" error loading e value of public key");
}
auto n = std::unique_ptr<BIGNUM, void(*)(BIGNUM*)>(BN_bin2bn((unsigned char*)modulus.c_str(), modulus.length(), nullptr), BN_clear_free);
if (!n) {
throw runtime_error(getName()+" error loading n value of public key");
}
RSA_set0_key(key.get(), n.release(), e.release(), nullptr);
d_key = std::move(key);
}
#ifdef HAVE_LIBCRYPTO_ECDSA
class OpenSSLECDSADNSCryptoKeyEngine : public DNSCryptoKeyEngine
{
public:
explicit OpenSSLECDSADNSCryptoKeyEngine(unsigned int algo) : DNSCryptoKeyEngine(algo), d_eckey(std::unique_ptr<EC_KEY, void(*)(EC_KEY*)>(EC_KEY_new(), EC_KEY_free)), d_ecgroup(std::unique_ptr<EC_GROUP, void(*)(EC_GROUP*)>(nullptr, EC_GROUP_clear_free))
{
int ret = RAND_status();
if (ret != 1) {
throw runtime_error(getName()+" insufficient entropy");
}
if (!d_eckey) {
throw runtime_error(getName()+" allocation of key structure failed");
}
if(d_algorithm == 13) {
d_ecgroup = std::unique_ptr<EC_GROUP, void(*)(EC_GROUP*)>(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1), EC_GROUP_clear_free);
d_len = 32;
} else if (d_algorithm == 14) {
d_ecgroup = std::unique_ptr<EC_GROUP, void(*)(EC_GROUP*)>(EC_GROUP_new_by_curve_name(NID_secp384r1), EC_GROUP_clear_free);
d_len = 48;
} else {
throw runtime_error(getName()+" unknown algorithm "+std::to_string(d_algorithm));
}
if (!d_ecgroup) {
throw runtime_error(getName()+" allocation of group structure failed");
}
ret = EC_KEY_set_group(d_eckey.get(), d_ecgroup.get());
if (ret != 1) {
throw runtime_error(getName()+" setting key group failed");
}
}
~OpenSSLECDSADNSCryptoKeyEngine()
{
}
string getName() const override { return "OpenSSL ECDSA"; }
int getBits() const override { return d_len << 3; }
void create(unsigned int bits) override;
/**
* \brief Creates an ECDSA key engine from a PEM file.
*
* Receives an open file handle with PEM contents and creates an ECDSA
* key engine.
*
* \param[in] drc Key record contents to be populated.
*
* \param[in] filename Only used for providing filename information
* in error messages.
*
* \param[in] fp An open file handle to a file containing ECDSA PEM
* contents.
*
* \return An ECDSA key engine populated with the contents of the PEM
* file.
*/
void createFromPEMFile(DNSKEYRecordContent& drc, const std::string& filename, std::FILE& fp) override;
/**
* \brief Writes this key's contents to a file.
*
* Receives an open file handle and writes this key's contents to the
* file.
*
* \param[in] fp An open file handle for writing.
*
* \exception std::runtime_error In case of OpenSSL errors.
*/
void convertToPEM(std::FILE& fp) const override;
storvector_t convertToISCVector() const override;
std::string hash(const std::string& hash) const override;
std::string sign(const std::string& hash) const override;
bool verify(const std::string& hash, const std::string& signature) const override;
std::string getPubKeyHash() const override;
std::string getPublicKeyString() const override;
void fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) override;
void fromPublicKeyString(const std::string& content) override;
bool checkKey(vector<string> *errorMessages) const override;
static std::unique_ptr<DNSCryptoKeyEngine> maker(unsigned int algorithm)
{
return make_unique<OpenSSLECDSADNSCryptoKeyEngine>(algorithm);
}
private:
unsigned int d_len;
std::unique_ptr<EC_KEY, void(*)(EC_KEY*)> d_eckey;
std::unique_ptr<EC_GROUP, void(*)(EC_GROUP*)> d_ecgroup;
};
void OpenSSLECDSADNSCryptoKeyEngine::create(unsigned int bits)
{
if (bits >> 3 != d_len) {
throw runtime_error(getName()+" unknown key length of "+std::to_string(bits)+" bits requested");
}
int res = EC_KEY_generate_key(d_eckey.get());
if (res == 0) {
throw runtime_error(getName()+" key generation failed");
}
EC_KEY_set_asn1_flag(d_eckey.get(), OPENSSL_EC_NAMED_CURVE);
}
void OpenSSLECDSADNSCryptoKeyEngine::createFromPEMFile(DNSKEYRecordContent& drc, const string& filename, std::FILE& fp)
{
drc.d_algorithm = d_algorithm;
d_eckey = std::unique_ptr<EC_KEY, decltype(&EC_KEY_free)>(PEM_read_ECPrivateKey(&fp, nullptr, nullptr, nullptr), &EC_KEY_free);
if (d_eckey == nullptr) {
throw runtime_error(getName() + ": Failed to read private key from PEM file `" + filename + "`");
}
int ret = EC_KEY_set_group(d_eckey.get(), d_ecgroup.get());
if (ret != 1) {
throw runtime_error(getName() + " setting key group failed");
}
const BIGNUM* privateKeyBN = EC_KEY_get0_private_key(d_eckey.get());
auto pub_key = std::unique_ptr<EC_POINT, void (*)(EC_POINT*)>(EC_POINT_new(d_ecgroup.get()), EC_POINT_free);
if (!pub_key) {
throw runtime_error(getName() + " allocation of public key point failed");
}
ret = EC_POINT_mul(d_ecgroup.get(), pub_key.get(), privateKeyBN, nullptr, nullptr, nullptr);
if (ret != 1) {
throw runtime_error(getName() + " computing public key from private failed");
}
ret = EC_KEY_set_public_key(d_eckey.get(), pub_key.get());
if (ret != 1) {
ERR_print_errors_fp(stderr);
throw runtime_error(getName() + " setting public key failed");
}
EC_KEY_set_asn1_flag(d_eckey.get(), OPENSSL_EC_NAMED_CURVE);
}
void OpenSSLECDSADNSCryptoKeyEngine::convertToPEM(std::FILE& fp) const
{
auto ret = PEM_write_ECPrivateKey(&fp, d_eckey.get(), nullptr, nullptr, 0, nullptr, nullptr);
if (ret == 0) {
throw runtime_error(getName() + ": Could not convert private key to PEM");
}
}
DNSCryptoKeyEngine::storvector_t OpenSSLECDSADNSCryptoKeyEngine::convertToISCVector() const
{
storvector_t storvect;
string algorithm;
if(d_algorithm == 13)
algorithm = "13 (ECDSAP256SHA256)";
else if(d_algorithm == 14)
algorithm = "14 (ECDSAP384SHA384)";
else
algorithm = " ? (?)";
storvect.emplace_back("Algorithm", algorithm);
const BIGNUM *key = EC_KEY_get0_private_key(d_eckey.get());
if (key == nullptr) {
throw runtime_error(getName()+" private key not set");
}
std::string tmp;
tmp.resize(BN_num_bytes(key));
int len = BN_bn2bin(key, reinterpret_cast<unsigned char*>(&tmp.at(0)));
string prefix;
if (d_len - len)
prefix.append(d_len - len, 0x00);
storvect.emplace_back("PrivateKey", prefix + tmp);
return storvect;
}
std::string OpenSSLECDSADNSCryptoKeyEngine::hash(const std::string& orig) const
{
if(getBits() == 256) {
unsigned char l_hash[SHA256_DIGEST_LENGTH];
SHA256((unsigned char*) orig.c_str(), orig.length(), l_hash);
return string((char*)l_hash, sizeof(l_hash));
}
else if(getBits() == 384) {
unsigned char l_hash[SHA384_DIGEST_LENGTH];
SHA384((unsigned char*) orig.c_str(), orig.length(), l_hash);
return string((char*)l_hash, sizeof(l_hash));
}
throw runtime_error(getName()+" does not support a hash size of "+std::to_string(getBits())+" bits");
}
std::string OpenSSLECDSADNSCryptoKeyEngine::sign(const std::string& msg) const
{
string l_hash = this->hash(msg);
auto signature = std::unique_ptr<ECDSA_SIG, void(*)(ECDSA_SIG*)>(ECDSA_do_sign((unsigned char*) l_hash.c_str(), l_hash.length(), d_eckey.get()), ECDSA_SIG_free);
if (!signature) {
throw runtime_error(getName()+" failed to generate signature");
}
string ret;
std::string tmp;
tmp.resize(d_len);
const BIGNUM *pr, *ps;
ECDSA_SIG_get0(signature.get(), &pr, &ps);
int len = BN_bn2bin(pr, reinterpret_cast<unsigned char*>(&tmp.at(0)));
if (d_len - len)
ret.append(d_len - len, 0x00);
ret.append(&tmp.at(0), len);
len = BN_bn2bin(ps, reinterpret_cast<unsigned char*>(&tmp.at(0)));
if (d_len - len)
ret.append(d_len - len, 0x00);
ret.append(&tmp.at(0), len);
return ret;
}
bool OpenSSLECDSADNSCryptoKeyEngine::verify(const std::string& msg, const std::string& signature) const
{
if (signature.length() != (d_len * 2)) {
throw runtime_error(getName()+" invalid signature size "+std::to_string(signature.length()));
}
string l_hash = this->hash(msg);
auto sig = std::unique_ptr<ECDSA_SIG, void(*)(ECDSA_SIG*)>(ECDSA_SIG_new(), ECDSA_SIG_free);
if (!sig) {
throw runtime_error(getName()+" allocation of signature structure failed");
}
auto r = std::unique_ptr<BIGNUM, void(*)(BIGNUM*)>(BN_bin2bn((unsigned char*) signature.c_str(), d_len, nullptr), BN_clear_free);
auto s = std::unique_ptr<BIGNUM, void(*)(BIGNUM*)>(BN_bin2bn((unsigned char*) signature.c_str() + d_len, d_len, nullptr), BN_clear_free);
if (!r || !s) {
throw runtime_error(getName()+" invalid signature");
}
ECDSA_SIG_set0(sig.get(), r.release(), s.release());
int ret = ECDSA_do_verify((unsigned char*) l_hash.c_str(), l_hash.length(), sig.get(), d_eckey.get());
if (ret == -1){
throw runtime_error(getName()+" verify error");
}
return (ret == 1);
}
std::string OpenSSLECDSADNSCryptoKeyEngine::getPubKeyHash() const
{
string pubKey = getPublicKeyString();
unsigned char l_hash[SHA_DIGEST_LENGTH];
SHA1((unsigned char*) pubKey.c_str(), pubKey.length(), l_hash);
return string((char*) l_hash, sizeof(l_hash));
}
std::string OpenSSLECDSADNSCryptoKeyEngine::getPublicKeyString() const
{
std::string binaryPoint;
binaryPoint.resize((d_len * 2) + 1);
int ret = EC_POINT_point2oct(d_ecgroup.get(), EC_KEY_get0_public_key(d_eckey.get()), POINT_CONVERSION_UNCOMPRESSED, reinterpret_cast<unsigned char*>(&binaryPoint.at(0)), binaryPoint.size(), nullptr);
if (ret == 0) {
throw runtime_error(getName()+" exporting point to binary failed");
}
/* we skip the first byte as the other backends use
raw field elements, as opposed to the format described in
SEC1: "2.3.3 Elliptic-Curve-Point-to-Octet-String Conversion" */
binaryPoint.erase(0, 1);
return binaryPoint;
}
void OpenSSLECDSADNSCryptoKeyEngine::fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap)
{
drc.d_algorithm = atoi(stormap["algorithm"].c_str());
if (drc.d_algorithm != d_algorithm) {
throw runtime_error(getName()+" tried to feed an algorithm "+std::to_string(drc.d_algorithm)+" to a "+std::to_string(d_algorithm)+" key");
}
string privateKey = stormap["privatekey"];
auto prv_key = std::unique_ptr<BIGNUM, void(*)(BIGNUM*)>(BN_bin2bn((unsigned char*) privateKey.c_str(), privateKey.length(), nullptr), BN_clear_free);
if (!prv_key) {
throw runtime_error(getName()+" reading private key from binary failed");
}
int ret = EC_KEY_set_private_key(d_eckey.get(), prv_key.get());
if (ret != 1) {
throw runtime_error(getName()+" setting private key failed");
}
auto pub_key = std::unique_ptr<EC_POINT, void(*)(EC_POINT*)>(EC_POINT_new(d_ecgroup.get()), EC_POINT_free);
if (!pub_key) {
throw runtime_error(getName()+" allocation of public key point failed");
}
ret = EC_POINT_mul(d_ecgroup.get(), pub_key.get(), prv_key.get(), nullptr, nullptr, nullptr);
if (ret != 1) {
throw runtime_error(getName()+" computing public key from private failed");
}
ret = EC_KEY_set_public_key(d_eckey.get(), pub_key.get());
if (ret != 1) {
throw runtime_error(getName()+" setting public key failed");
}
EC_KEY_set_asn1_flag(d_eckey.get(), OPENSSL_EC_NAMED_CURVE);
}
bool OpenSSLECDSADNSCryptoKeyEngine::checkKey(vector<string> *errorMessages) const
{
bool retval = true;
if (EC_KEY_check_key(d_eckey.get()) != 1) {
retval = false;
if (errorMessages != nullptr) {
auto errmsg = ERR_reason_error_string(ERR_get_error());
if (errmsg == nullptr) {
errmsg = "Unknown OpenSSL error";
}
errorMessages->push_back(errmsg);
}
}
return retval;
}
void OpenSSLECDSADNSCryptoKeyEngine::fromPublicKeyString(const std::string& input)
{
/* uncompressed point, from SEC1:
"2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion" */
string ecdsaPoint= "\x04";
ecdsaPoint.append(input);
auto pub_key = std::unique_ptr<EC_POINT, void(*)(EC_POINT*)>(EC_POINT_new(d_ecgroup.get()), EC_POINT_free);
if (!pub_key) {
throw runtime_error(getName()+" allocation of point structure failed");
}
int ret = EC_POINT_oct2point(d_ecgroup.get(), pub_key.get(), (unsigned char*) ecdsaPoint.c_str(), ecdsaPoint.length(), nullptr);
if (ret != 1) {
throw runtime_error(getName()+" reading ECP point from binary failed");
}
ret = EC_KEY_set_private_key(d_eckey.get(), nullptr);
if (ret == 1) {
throw runtime_error(getName()+" setting private key failed");
}
ret = EC_KEY_set_public_key(d_eckey.get(), pub_key.get());
if (ret != 1) {
throw runtime_error(getName()+" setting public key failed");
}
}
#endif
#ifdef HAVE_LIBCRYPTO_EDDSA
class OpenSSLEDDSADNSCryptoKeyEngine : public DNSCryptoKeyEngine
{
public:
explicit OpenSSLEDDSADNSCryptoKeyEngine(unsigned int algo) : DNSCryptoKeyEngine(algo), d_edkey(std::unique_ptr<EVP_PKEY, void(*)(EVP_PKEY*)>(nullptr, EVP_PKEY_free))
{
int ret = RAND_status();
if (ret != 1) {
throw runtime_error(getName()+" insufficient entropy");
}
#ifdef HAVE_LIBCRYPTO_ED25519
if(d_algorithm == 15) {
d_len = 32;
d_id = NID_ED25519;
}
#endif
#ifdef HAVE_LIBCRYPTO_ED448
if (d_algorithm == 16) {
d_len = 57;
d_id = NID_ED448;
}
#endif
if (d_len == 0) {
throw runtime_error(getName()+" unknown algorithm "+std::to_string(d_algorithm));
}
}
~OpenSSLEDDSADNSCryptoKeyEngine()
{
}
string getName() const override { return "OpenSSL EDDSA"; }
int getBits() const override { return d_len << 3; }
void create(unsigned int bits) override;
/**
* \brief Creates an EDDSA key engine from a PEM file.
*
* Receives an open file handle with PEM contents and creates an EDDSA
* key engine.
*
* \param[in] drc Key record contents to be populated.
*
* \param[in] filename Only used for providing filename information in
* error messages.
*
* \param[in] fp An open file handle to a file containing EDDSA PEM
* contents.
*
* \return An EDDSA key engine populated with the contents of the PEM
* file.
*/
void createFromPEMFile(DNSKEYRecordContent& drc, const std::string& filename, std::FILE& fp) override;
/**
* \brief Writes this key's contents to a file.
*
* Receives an open file handle and writes this key's contents to the
* file.
*
* \param[in] fp An open file handle for writing.
*
* \exception std::runtime_error In case of OpenSSL errors.
*/
void convertToPEM(std::FILE& fp) const override;
storvector_t convertToISCVector() const override;
std::string sign(const std::string& msg) const override;
bool verify(const std::string& msg, const std::string& signature) const override;
std::string getPubKeyHash() const override;
std::string getPublicKeyString() const override;
void fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) override;
void fromPublicKeyString(const std::string& content) override;
bool checkKey(vector<string> *errorMessages) const override;
static std::unique_ptr<DNSCryptoKeyEngine> maker(unsigned int algorithm)
{
return make_unique<OpenSSLEDDSADNSCryptoKeyEngine>(algorithm);
}
private:
size_t d_len{0};
int d_id{0};
std::unique_ptr<EVP_PKEY, void(*)(EVP_PKEY*)> d_edkey;
};
bool OpenSSLEDDSADNSCryptoKeyEngine::checkKey(vector<string> *errorMessages) const
{
return (d_edkey ? true : false);
}
void OpenSSLEDDSADNSCryptoKeyEngine::create(unsigned int bits)
{
auto pctx = std::unique_ptr<EVP_PKEY_CTX, void(*)(EVP_PKEY_CTX*)>(EVP_PKEY_CTX_new_id(d_id, nullptr), EVP_PKEY_CTX_free);
if (!pctx) {
throw runtime_error(getName()+" context initialization failed");
}
if (EVP_PKEY_keygen_init(pctx.get()) < 1) {
throw runtime_error(getName()+" keygen initialization failed");
}
EVP_PKEY* newKey = nullptr;
if (EVP_PKEY_keygen(pctx.get(), &newKey) < 1) {
throw runtime_error(getName()+" key generation failed");
}
d_edkey = std::unique_ptr<EVP_PKEY, void(*)(EVP_PKEY*)>(newKey, EVP_PKEY_free);
}
void OpenSSLEDDSADNSCryptoKeyEngine::createFromPEMFile(DNSKEYRecordContent& drc, const string& filename, std::FILE& fp)
{
drc.d_algorithm = d_algorithm;
d_edkey = std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>(PEM_read_PrivateKey(&fp, nullptr, nullptr, nullptr), &EVP_PKEY_free);
if (d_edkey == nullptr) {
throw runtime_error(getName() + ": Failed to read private key from PEM file `" + filename + "`");
}
}
void OpenSSLEDDSADNSCryptoKeyEngine::convertToPEM(std::FILE& fp) const
{
auto ret = PEM_write_PrivateKey(&fp, d_edkey.get(), nullptr, nullptr, 0, nullptr, nullptr);
if (ret == 0) {
throw runtime_error(getName() + ": Could not convert private key to PEM");
}
}
DNSCryptoKeyEngine::storvector_t OpenSSLEDDSADNSCryptoKeyEngine::convertToISCVector() const
{
storvector_t storvect;
string algorithm;
#ifdef HAVE_LIBCRYPTO_ED25519
if(d_algorithm == 15) {
algorithm = "15 (ED25519)";
}
#endif
#ifdef HAVE_LIBCRYPTO_ED448
if(d_algorithm == 16) {
algorithm = "16 (ED448)";
}
#endif
if (algorithm.empty()) {
algorithm = " ? (?)";
}
storvect.emplace_back("Algorithm", algorithm);
string buf;
size_t len = d_len;
buf.resize(len);
if (EVP_PKEY_get_raw_private_key(d_edkey.get(), reinterpret_cast<unsigned char*>(&buf.at(0)), &len) < 1) {
throw runtime_error(getName() + " Could not get private key from d_edkey");
}
storvect.emplace_back("PrivateKey", buf);
return storvect;
}
std::string OpenSSLEDDSADNSCryptoKeyEngine::sign(const std::string& msg) const
{
auto mdctx = std::unique_ptr<EVP_MD_CTX, void(*)(EVP_MD_CTX*)>(EVP_MD_CTX_new(), EVP_MD_CTX_free);
if (!mdctx) {
throw runtime_error(getName()+" MD context initialization failed");
}
if(EVP_DigestSignInit(mdctx.get(), nullptr, nullptr, nullptr, d_edkey.get()) < 1) {
throw runtime_error(getName()+" unable to initialize signer");
}
string msgToSign = msg;
size_t siglen = d_len * 2;
string signature;
signature.resize(siglen);
if (EVP_DigestSign(mdctx.get(),
reinterpret_cast<unsigned char*>(&signature.at(0)), &siglen,
reinterpret_cast<unsigned char*>(&msgToSign.at(0)), msgToSign.length()) < 1) {
throw runtime_error(getName()+" signing error");
}
return signature;
}
bool OpenSSLEDDSADNSCryptoKeyEngine::verify(const std::string& msg, const std::string& signature) const
{
auto mdctx = std::unique_ptr<EVP_MD_CTX, void(*)(EVP_MD_CTX*)>(EVP_MD_CTX_new(), EVP_MD_CTX_free);
if (!mdctx) {
throw runtime_error(getName()+" MD context initialization failed");
}
if(EVP_DigestVerifyInit(mdctx.get(), nullptr, nullptr, nullptr, d_edkey.get()) < 1) {
throw runtime_error(getName()+" unable to initialize signer");
}
string checkSignature = signature;
string checkMsg = msg;
auto r = EVP_DigestVerify(mdctx.get(),
reinterpret_cast<unsigned char*>(&checkSignature.at(0)), checkSignature.length(),
reinterpret_cast<unsigned char*>(&checkMsg.at(0)), checkMsg.length());
if (r < 0) {
throw runtime_error(getName()+" verification failure");
}
return (r == 1);
}
std::string OpenSSLEDDSADNSCryptoKeyEngine::getPubKeyHash() const
{
return this->getPublicKeyString();
}
std::string OpenSSLEDDSADNSCryptoKeyEngine::getPublicKeyString() const
{
string buf;
size_t len = d_len;
buf.resize(len);
if (EVP_PKEY_get_raw_public_key(d_edkey.get(), reinterpret_cast<unsigned char*>(&buf.at(0)), &len) < 1) {
throw std::runtime_error(getName() + " unable to get public key from key struct");
}
return buf;
}
void OpenSSLEDDSADNSCryptoKeyEngine::fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) {
drc.d_algorithm = atoi(stormap["algorithm"].c_str());
if (drc.d_algorithm != d_algorithm) {
throw runtime_error(getName()+" tried to feed an algorithm "+std::to_string(drc.d_algorithm)+" to a "+std::to_string(d_algorithm)+" key");
}
d_edkey = std::unique_ptr<EVP_PKEY, void(*)(EVP_PKEY*)>(EVP_PKEY_new_raw_private_key(d_id, nullptr, reinterpret_cast<unsigned char*>(&stormap["privatekey"].at(0)), stormap["privatekey"].length()), EVP_PKEY_free);
if (!d_edkey) {
throw std::runtime_error(getName() + " could not create key structure from private key");
}
}
void OpenSSLEDDSADNSCryptoKeyEngine::fromPublicKeyString(const std::string& content)
{
if (content.length() != d_len) {
throw runtime_error(getName() + " wrong public key length for algorithm " + std::to_string(d_algorithm));
}
const unsigned char* raw = reinterpret_cast<const unsigned char*>(content.c_str());
d_edkey = std::unique_ptr<EVP_PKEY, void(*)(EVP_PKEY*)>(EVP_PKEY_new_raw_public_key(d_id, nullptr, raw, d_len), EVP_PKEY_free);
if (!d_edkey) {
throw runtime_error(getName()+" allocation of public key structure failed");
}
}
#endif // HAVE_LIBCRYPTO_EDDSA
namespace {
const struct LoaderStruct
{
LoaderStruct()
{
DNSCryptoKeyEngine::report(DNSSECKeeper::RSASHA1, &OpenSSLRSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(DNSSECKeeper::RSASHA1NSEC3SHA1, &OpenSSLRSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(DNSSECKeeper::RSASHA256, &OpenSSLRSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(DNSSECKeeper::RSASHA512, &OpenSSLRSADNSCryptoKeyEngine::maker);
#ifdef HAVE_LIBCRYPTO_ECDSA
DNSCryptoKeyEngine::report(DNSSECKeeper::ECDSA256, &OpenSSLECDSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(DNSSECKeeper::ECDSA384, &OpenSSLECDSADNSCryptoKeyEngine::maker);
#endif
#ifdef HAVE_LIBCRYPTO_ED25519
DNSCryptoKeyEngine::report(DNSSECKeeper::ED25519, &OpenSSLEDDSADNSCryptoKeyEngine::maker);
#endif
#ifdef HAVE_LIBCRYPTO_ED448
DNSCryptoKeyEngine::report(DNSSECKeeper::ED448, &OpenSSLEDDSADNSCryptoKeyEngine::maker);
#endif
}
} loaderOpenSSL;
}
|