1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
|
/*
* This file is part of PowerDNS or dnsdist.
* Copyright -- PowerDNS.COM B.V. and its contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* In addition, for the avoidance of any doubt, permission is granted to
* link this program with OpenSSL and to (re)distribute the binaries
* produced as the result of such linking.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#pragma once
#include <string>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <iostream>
#include <cstdio>
#include <functional>
#include "pdnsexception.hh"
#include "misc.hh"
#include <netdb.h>
#include <sstream>
#include <sys/un.h>
#include "namespaces.hh"
#ifdef __APPLE__
#include <libkern/OSByteOrder.h>
#define htobe16(x) OSSwapHostToBigInt16(x)
#define htole16(x) OSSwapHostToLittleInt16(x)
#define be16toh(x) OSSwapBigToHostInt16(x)
#define le16toh(x) OSSwapLittleToHostInt16(x)
#define htobe32(x) OSSwapHostToBigInt32(x)
#define htole32(x) OSSwapHostToLittleInt32(x)
#define be32toh(x) OSSwapBigToHostInt32(x)
#define le32toh(x) OSSwapLittleToHostInt32(x)
#define htobe64(x) OSSwapHostToBigInt64(x)
#define htole64(x) OSSwapHostToLittleInt64(x)
#define be64toh(x) OSSwapBigToHostInt64(x)
#define le64toh(x) OSSwapLittleToHostInt64(x)
#endif
#ifdef __sun
#define htobe16(x) BE_16(x)
#define htole16(x) LE_16(x)
#define be16toh(x) BE_IN16(&(x))
#define le16toh(x) LE_IN16(&(x))
#define htobe32(x) BE_32(x)
#define htole32(x) LE_32(x)
#define be32toh(x) BE_IN32(&(x))
#define le32toh(x) LE_IN32(&(x))
#define htobe64(x) BE_64(x)
#define htole64(x) LE_64(x)
#define be64toh(x) BE_IN64(&(x))
#define le64toh(x) LE_IN64(&(x))
#endif
#ifdef __FreeBSD__
#include <sys/endian.h>
#endif
#if defined(__NetBSD__) && defined(IP_PKTINFO) && !defined(IP_SENDSRCADDR)
// The IP_PKTINFO option in NetBSD was incompatible with Linux until a
// change that also introduced IP_SENDSRCADDR for FreeBSD compatibility.
#undef IP_PKTINFO
#endif
union ComboAddress
{
sockaddr_in sin4{};
sockaddr_in6 sin6;
bool operator==(const ComboAddress& rhs) const
{
if (std::tie(sin4.sin_family, sin4.sin_port) != std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) {
return false;
}
if (sin4.sin_family == AF_INET) {
return sin4.sin_addr.s_addr == rhs.sin4.sin_addr.s_addr;
}
return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr)) == 0;
}
bool operator!=(const ComboAddress& rhs) const
{
return (!operator==(rhs));
}
bool operator<(const ComboAddress& rhs) const
{
if (sin4.sin_family == 0) {
return false;
}
if (std::tie(sin4.sin_family, sin4.sin_port) < std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) {
return true;
}
if (std::tie(sin4.sin_family, sin4.sin_port) > std::tie(rhs.sin4.sin_family, rhs.sin4.sin_port)) {
return false;
}
if (sin4.sin_family == AF_INET) {
return sin4.sin_addr.s_addr < rhs.sin4.sin_addr.s_addr;
}
return memcmp(&sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(sin6.sin6_addr.s6_addr)) < 0;
}
bool operator>(const ComboAddress& rhs) const
{
return rhs.operator<(*this);
}
struct addressPortOnlyHash
{
uint32_t operator()(const ComboAddress& address) const
{
// NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
if (address.sin4.sin_family == AF_INET) {
const auto* start = reinterpret_cast<const unsigned char*>(&address.sin4.sin_addr.s_addr);
auto tmp = burtle(start, 4, 0);
return burtle(reinterpret_cast<const uint8_t*>(&address.sin4.sin_port), 2, tmp);
}
const auto* start = reinterpret_cast<const unsigned char*>(&address.sin6.sin6_addr.s6_addr);
auto tmp = burtle(start, 16, 0);
return burtle(reinterpret_cast<const unsigned char*>(&address.sin6.sin6_port), 2, tmp);
// NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
}
};
struct addressOnlyHash
{
uint32_t operator()(const ComboAddress& address) const
{
const unsigned char* start = nullptr;
uint32_t len = 0;
// NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
if (address.sin4.sin_family == AF_INET) {
start = reinterpret_cast<const unsigned char*>(&address.sin4.sin_addr.s_addr);
len = 4;
}
else {
start = reinterpret_cast<const unsigned char*>(&address.sin6.sin6_addr.s6_addr);
len = 16;
}
// NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
return burtle(start, len, 0);
}
};
struct addressOnlyLessThan
{
bool operator()(const ComboAddress& lhs, const ComboAddress& rhs) const
{
if (lhs.sin4.sin_family < rhs.sin4.sin_family) {
return true;
}
if (lhs.sin4.sin_family > rhs.sin4.sin_family) {
return false;
}
if (lhs.sin4.sin_family == AF_INET) {
return lhs.sin4.sin_addr.s_addr < rhs.sin4.sin_addr.s_addr;
}
return memcmp(&lhs.sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(lhs.sin6.sin6_addr.s6_addr)) < 0;
}
};
struct addressOnlyEqual
{
bool operator()(const ComboAddress& lhs, const ComboAddress& rhs) const
{
if (lhs.sin4.sin_family != rhs.sin4.sin_family) {
return false;
}
if (lhs.sin4.sin_family == AF_INET) {
return lhs.sin4.sin_addr.s_addr == rhs.sin4.sin_addr.s_addr;
}
return memcmp(&lhs.sin6.sin6_addr.s6_addr, &rhs.sin6.sin6_addr.s6_addr, sizeof(lhs.sin6.sin6_addr.s6_addr)) == 0;
}
};
[[nodiscard]] socklen_t getSocklen() const
{
if (sin4.sin_family == AF_INET) {
return sizeof(sin4);
}
return sizeof(sin6);
}
ComboAddress()
{
sin4.sin_family = AF_INET;
sin4.sin_addr.s_addr = 0;
sin4.sin_port = 0;
sin6.sin6_scope_id = 0;
sin6.sin6_flowinfo = 0;
}
ComboAddress(const struct sockaddr* socketAddress, socklen_t salen)
{
setSockaddr(socketAddress, salen);
};
ComboAddress(const struct sockaddr_in6* socketAddress)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in6));
};
ComboAddress(const struct sockaddr_in* socketAddress)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in));
};
void setSockaddr(const struct sockaddr* socketAddress, socklen_t salen)
{
if (salen > sizeof(struct sockaddr_in6)) {
throw PDNSException("ComboAddress can't handle other than sockaddr_in or sockaddr_in6");
}
memcpy(this, socketAddress, salen);
}
// 'port' sets a default value in case 'str' does not set a port
explicit ComboAddress(const string& str, uint16_t port = 0)
{
memset(&sin6, 0, sizeof(sin6));
sin4.sin_family = AF_INET;
sin4.sin_port = 0;
if (makeIPv4sockaddr(str, &sin4) != 0) {
sin6.sin6_family = AF_INET6;
if (makeIPv6sockaddr(str, &sin6) < 0) {
throw PDNSException("Unable to convert presentation address '" + str + "'");
}
}
if (sin4.sin_port == 0) { // 'str' overrides port!
sin4.sin_port = htons(port);
}
}
[[nodiscard]] bool isIPv6() const
{
return sin4.sin_family == AF_INET6;
}
[[nodiscard]] bool isIPv4() const
{
return sin4.sin_family == AF_INET;
}
[[nodiscard]] bool isMappedIPv4() const
{
if (sin4.sin_family != AF_INET6) {
return false;
}
int iter = 0;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
const auto* ptr = reinterpret_cast<const unsigned char*>(&sin6.sin6_addr.s6_addr);
for (iter = 0; iter < 10; ++iter) {
if (ptr[iter] != 0) { // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
return false;
}
}
for (; iter < 12; ++iter) {
if (ptr[iter] != 0xff) { // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
return false;
}
}
return true;
}
[[nodiscard]] bool isUnspecified() const
{
const ComboAddress unspecifiedV4("0.0.0.0:0");
const ComboAddress unspecifiedV6("[::]:0");
return *this == unspecifiedV4 || *this == unspecifiedV6;
}
[[nodiscard]] ComboAddress mapToIPv4() const
{
if (!isMappedIPv4()) {
throw PDNSException("ComboAddress can't map non-mapped IPv6 address back to IPv4");
}
ComboAddress ret;
ret.sin4.sin_family = AF_INET;
ret.sin4.sin_port = sin4.sin_port;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
const auto* ptr = reinterpret_cast<const unsigned char*>(&sin6.sin6_addr.s6_addr);
ptr += (sizeof(sin6.sin6_addr.s6_addr) - sizeof(ret.sin4.sin_addr.s_addr)); // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
memcpy(&ret.sin4.sin_addr.s_addr, ptr, sizeof(ret.sin4.sin_addr.s_addr));
return ret;
}
[[nodiscard]] string toString() const
{
std::array<char, 1024> host{};
if (sin4.sin_family != 0) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
int retval = getnameinfo(reinterpret_cast<const struct sockaddr*>(this), getSocklen(), host.data(), host.size(), nullptr, 0, NI_NUMERICHOST);
if (retval == 0) {
return host.data();
}
return "invalid " + string(gai_strerror(retval));
}
return "invalid";
}
//! Ignores any interface specifiers possibly available in the sockaddr data.
[[nodiscard]] string toStringNoInterface() const
{
std::array<char, 1024> host{};
if (sin4.sin_family == AF_INET) {
const auto* ret = inet_ntop(sin4.sin_family, &sin4.sin_addr, host.data(), host.size());
if (ret != nullptr) {
return host.data();
}
}
else if (sin4.sin_family == AF_INET6) {
const auto* ret = inet_ntop(sin4.sin_family, &sin6.sin6_addr, host.data(), host.size());
if (ret != nullptr) {
return host.data();
}
}
else {
return "invalid";
}
return "invalid " + stringerror();
}
[[nodiscard]] string toStringReversed() const
{
if (isIPv4()) {
const auto address = ntohl(sin4.sin_addr.s_addr);
auto aaa = (address >> 0) & 0xFF;
auto bbb = (address >> 8) & 0xFF;
auto ccc = (address >> 16) & 0xFF;
auto ddd = (address >> 24) & 0xFF;
return std::to_string(aaa) + "." + std::to_string(bbb) + "." + std::to_string(ccc) + "." + std::to_string(ddd);
}
const auto* addr = &sin6.sin6_addr;
std::stringstream res{};
res << std::hex;
for (int i = 15; i >= 0; i--) {
auto byte = addr->s6_addr[i]; // NOLINT(cppcoreguidelines-pro-bounds-constant-array-index)
res << ((byte >> 0) & 0xF) << ".";
res << ((byte >> 4) & 0xF);
if (i != 0) {
res << ".";
}
}
return res.str();
}
[[nodiscard]] string toStringWithPort() const
{
if (sin4.sin_family == AF_INET) {
return toString() + ":" + std::to_string(ntohs(sin4.sin_port));
}
return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port));
}
[[nodiscard]] string toStringWithPortExcept(int port) const
{
if (ntohs(sin4.sin_port) == port) {
return toString();
}
if (sin4.sin_family == AF_INET) {
return toString() + ":" + std::to_string(ntohs(sin4.sin_port));
}
return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port));
}
[[nodiscard]] string toLogString() const
{
return toStringWithPortExcept(53);
}
[[nodiscard]] string toStructuredLogString() const
{
return toStringWithPort();
}
[[nodiscard]] string toByteString() const
{
// NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
if (isIPv4()) {
return {reinterpret_cast<const char*>(&sin4.sin_addr.s_addr), sizeof(sin4.sin_addr.s_addr)};
}
return {reinterpret_cast<const char*>(&sin6.sin6_addr.s6_addr), sizeof(sin6.sin6_addr.s6_addr)};
// NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
}
void truncate(unsigned int bits) noexcept;
[[nodiscard]] uint16_t getNetworkOrderPort() const noexcept
{
return sin4.sin_port;
}
[[nodiscard]] uint16_t getPort() const noexcept
{
return ntohs(getNetworkOrderPort());
}
void setPort(uint16_t port)
{
sin4.sin_port = htons(port);
}
void reset()
{
memset(&sin6, 0, sizeof(sin6));
}
//! Get the total number of address bits (either 32 or 128 depending on IP version)
[[nodiscard]] uint8_t getBits() const
{
if (isIPv4()) {
return 32;
}
if (isIPv6()) {
return 128;
}
return 0;
}
/** Get the value of the bit at the provided bit index. When the index >= 0,
the index is relative to the LSB starting at index zero. When the index < 0,
the index is relative to the MSB starting at index -1 and counting down.
*/
[[nodiscard]] bool getBit(int index) const
{
if (isIPv4()) {
if (index >= 32) {
return false;
}
if (index < 0) {
if (index < -32) {
return false;
}
index = 32 + index;
}
uint32_t ls_addr = ntohl(sin4.sin_addr.s_addr);
return ((ls_addr & (1U << index)) != 0x00000000);
}
if (isIPv6()) {
if (index >= 128) {
return false;
}
if (index < 0) {
if (index < -128) {
return false;
}
index = 128 + index;
}
const auto* ls_addr = reinterpret_cast<const uint8_t*>(sin6.sin6_addr.s6_addr); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast)
uint8_t byte_idx = index / 8;
uint8_t bit_idx = index % 8;
return ((ls_addr[15 - byte_idx] & (1U << bit_idx)) != 0x00); // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
}
return false;
}
/*! Returns a comma-separated string of IP addresses
*
* \param c An stl container with ComboAddresses
* \param withPort Also print the port (default true)
* \param portExcept Print the port, except when this is the port (default 53)
*/
template <template <class...> class Container, class... Args>
static string caContainerToString(const Container<ComboAddress, Args...>& container, const bool withPort = true, const uint16_t portExcept = 53)
{
vector<string> strs;
for (const auto& address : container) {
if (withPort) {
strs.push_back(address.toStringWithPortExcept(portExcept));
continue;
}
strs.push_back(address.toString());
}
return boost::join(strs, ",");
};
};
union SockaddrWrapper
{
sockaddr_in sin4{};
sockaddr_in6 sin6;
sockaddr_un sinun;
[[nodiscard]] socklen_t getSocklen() const
{
if (sin4.sin_family == AF_INET) {
return sizeof(sin4);
}
if (sin6.sin6_family == AF_INET6) {
return sizeof(sin6);
}
if (sinun.sun_family == AF_UNIX) {
return sizeof(sinun);
}
return 0;
}
SockaddrWrapper()
{
sin4.sin_family = AF_INET;
sin4.sin_addr.s_addr = 0;
sin4.sin_port = 0;
}
SockaddrWrapper(const struct sockaddr* socketAddress, socklen_t salen)
{
setSockaddr(socketAddress, salen);
};
SockaddrWrapper(const struct sockaddr_in6* socketAddress)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in6));
};
SockaddrWrapper(const struct sockaddr_in* socketAddress)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_in));
};
SockaddrWrapper(const struct sockaddr_un* socketAddress)
{
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
setSockaddr(reinterpret_cast<const struct sockaddr*>(socketAddress), sizeof(struct sockaddr_un));
};
void setSockaddr(const struct sockaddr* socketAddress, socklen_t salen)
{
if (salen > sizeof(struct sockaddr_un)) {
throw PDNSException("ComboAddress can't handle other than sockaddr_in, sockaddr_in6 or sockaddr_un");
}
memcpy(this, socketAddress, salen);
}
explicit SockaddrWrapper(const string& str, uint16_t port = 0)
{
memset(&sinun, 0, sizeof(sinun));
sin4.sin_family = AF_INET;
sin4.sin_port = 0;
if (str == "\"\"" || str == "''") {
throw PDNSException("Stray quotation marks in address.");
}
if (makeIPv4sockaddr(str, &sin4) != 0) {
sin6.sin6_family = AF_INET6;
if (makeIPv6sockaddr(str, &sin6) < 0) {
sinun.sun_family = AF_UNIX;
// only attempt Unix socket address if address candidate does not contain a port
if (str.find(':') != string::npos || makeUNsockaddr(str, &sinun) < 0) {
throw PDNSException("Unable to convert presentation address '" + str + "'");
}
}
}
if (sinun.sun_family != AF_UNIX && sin4.sin_port == 0) { // 'str' overrides port!
sin4.sin_port = htons(port);
}
}
[[nodiscard]] bool isIPv6() const
{
return sin4.sin_family == AF_INET6;
}
[[nodiscard]] bool isIPv4() const
{
return sin4.sin_family == AF_INET;
}
[[nodiscard]] bool isUnixSocket() const
{
return sin4.sin_family == AF_UNIX;
}
[[nodiscard]] string toString() const
{
if (sinun.sun_family == AF_UNIX) {
return sinun.sun_path;
}
std::array<char, 1024> host{};
if (sin4.sin_family != 0) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
int retval = getnameinfo(reinterpret_cast<const struct sockaddr*>(this), getSocklen(), host.data(), host.size(), nullptr, 0, NI_NUMERICHOST);
if (retval == 0) {
return host.data();
}
return "invalid " + string(gai_strerror(retval));
}
return "invalid";
}
[[nodiscard]] string toStringWithPort() const
{
if (sinun.sun_family == AF_UNIX) {
return toString();
}
if (sin4.sin_family == AF_INET) {
return toString() + ":" + std::to_string(ntohs(sin4.sin_port));
}
return "[" + toString() + "]:" + std::to_string(ntohs(sin4.sin_port));
}
void reset()
{
memset(&sinun, 0, sizeof(sinun));
}
};
/** This exception is thrown by the Netmask class and by extension by the NetmaskGroup class */
class NetmaskException : public PDNSException
{
public:
NetmaskException(const string& arg) :
PDNSException(arg) {}
};
inline ComboAddress makeComboAddress(const string& str)
{
ComboAddress address;
address.sin4.sin_family = AF_INET;
if (inet_pton(AF_INET, str.c_str(), &address.sin4.sin_addr) <= 0) {
address.sin4.sin_family = AF_INET6;
if (makeIPv6sockaddr(str, &address.sin6) < 0) {
throw NetmaskException("Unable to convert '" + str + "' to a netmask");
}
}
return address;
}
inline ComboAddress makeComboAddressFromRaw(uint8_t version, const char* raw, size_t len)
{
ComboAddress address;
if (version == 4) {
address.sin4.sin_family = AF_INET;
if (len != sizeof(address.sin4.sin_addr)) {
throw NetmaskException("invalid raw address length");
}
memcpy(&address.sin4.sin_addr, raw, sizeof(address.sin4.sin_addr));
}
else if (version == 6) {
address.sin6.sin6_family = AF_INET6;
if (len != sizeof(address.sin6.sin6_addr)) {
throw NetmaskException("invalid raw address length");
}
memcpy(&address.sin6.sin6_addr, raw, sizeof(address.sin6.sin6_addr));
}
else {
throw NetmaskException("invalid address family");
}
return address;
}
inline ComboAddress makeComboAddressFromRaw(uint8_t version, const string& str)
{
return makeComboAddressFromRaw(version, str.c_str(), str.size());
}
/** This class represents a netmask and can be queried to see if a certain
IP address is matched by this mask */
class Netmask
{
public:
Netmask()
{
d_network.sin4.sin_family = 0; // disable this doing anything useful
d_network.sin4.sin_port = 0; // this guarantees d_network compares identical
}
Netmask(const ComboAddress& network, uint8_t bits = 0xff) :
d_network(network)
{
d_network.sin4.sin_port = 0;
setBits(bits);
}
Netmask(const sockaddr_in* network, uint8_t bits = 0xff) :
d_network(network)
{
d_network.sin4.sin_port = 0;
setBits(bits);
}
Netmask(const sockaddr_in6* network, uint8_t bits = 0xff) :
d_network(network)
{
d_network.sin4.sin_port = 0;
setBits(bits);
}
void setBits(uint8_t value)
{
d_bits = d_network.isIPv4() ? std::min(value, static_cast<uint8_t>(32U)) : std::min(value, static_cast<uint8_t>(128U));
if (d_bits < 32) {
d_mask = ~(0xFFFFFFFF >> d_bits);
}
else {
// note that d_mask is unused for IPv6
d_mask = 0xFFFFFFFF;
}
if (isIPv4()) {
d_network.sin4.sin_addr.s_addr = htonl(ntohl(d_network.sin4.sin_addr.s_addr) & d_mask);
}
else if (isIPv6()) {
uint8_t bytes = d_bits / 8;
auto* address = reinterpret_cast<uint8_t*>(&d_network.sin6.sin6_addr.s6_addr); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast)
uint8_t bits = d_bits % 8;
auto mask = static_cast<uint8_t>(~(0xFF >> bits));
if (bytes < sizeof(d_network.sin6.sin6_addr.s6_addr)) {
address[bytes] &= mask; // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
}
for (size_t idx = bytes + 1; idx < sizeof(d_network.sin6.sin6_addr.s6_addr); ++idx) {
address[idx] = 0; // NOLINT(cppcoreguidelines-pro-bounds-pointer-arithmetic)
}
}
}
enum stringType
{
humanString,
byteString,
};
//! Constructor supplies the mask, which cannot be changed
Netmask(const string& mask, stringType type = humanString)
{
if (type == byteString) {
uint8_t afi = mask.at(0);
size_t len = afi == 4 ? 4 : 16;
uint8_t bits = mask.at(len + 1);
d_network = makeComboAddressFromRaw(afi, mask.substr(1, len));
setBits(bits);
}
else {
pair<string, string> split = splitField(mask, '/');
d_network = makeComboAddress(split.first);
if (!split.second.empty()) {
setBits(pdns::checked_stoi<uint8_t>(split.second));
}
else if (d_network.sin4.sin_family == AF_INET) {
setBits(32);
}
else {
setBits(128);
}
}
}
[[nodiscard]] bool match(const ComboAddress& address) const
{
return match(&address);
}
//! If this IP address in socket address matches
bool match(const ComboAddress* address) const
{
if (d_network.sin4.sin_family != address->sin4.sin_family) {
return false;
}
if (d_network.sin4.sin_family == AF_INET) {
return match4(htonl((unsigned int)address->sin4.sin_addr.s_addr));
}
if (d_network.sin6.sin6_family == AF_INET6) {
uint8_t bytes = d_bits / 8;
uint8_t index = 0;
// NOLINTBEGIN(cppcoreguidelines-pro-type-reinterpret-cast)
const auto* lhs = reinterpret_cast<const uint8_t*>(&d_network.sin6.sin6_addr.s6_addr);
const auto* rhs = reinterpret_cast<const uint8_t*>(&address->sin6.sin6_addr.s6_addr);
// NOLINTEND(cppcoreguidelines-pro-type-reinterpret-cast)
// NOLINTBEGIN(cppcoreguidelines-pro-bounds-pointer-arithmetic)
for (index = 0; index < bytes; ++index) {
if (lhs[index] != rhs[index]) {
return false;
}
}
// still here, now match remaining bits
uint8_t bits = d_bits % 8;
auto mask = static_cast<uint8_t>(~(0xFF >> bits));
return ((lhs[index]) == (rhs[index] & mask));
// NOLINTEND(cppcoreguidelines-pro-bounds-pointer-arithmetic)
}
return false;
}
//! If this ASCII IP address matches
[[nodiscard]] bool match(const string& arg) const
{
ComboAddress address = makeComboAddress(arg);
return match(&address);
}
//! If this IP address in native format matches
[[nodiscard]] bool match4(uint32_t arg) const
{
return (arg & d_mask) == (ntohl(d_network.sin4.sin_addr.s_addr));
}
[[nodiscard]] string toString() const
{
return d_network.toStringNoInterface() + "/" + std::to_string((unsigned int)d_bits);
}
[[nodiscard]] string toStringNoMask() const
{
return d_network.toStringNoInterface();
}
[[nodiscard]] string toByteString() const
{
ostringstream tmp;
tmp << (d_network.isIPv4() ? "\x04" : "\x06")
<< d_network.toByteString()
<< getBits();
return tmp.str();
}
[[nodiscard]] const ComboAddress& getNetwork() const
{
return d_network;
}
[[nodiscard]] const ComboAddress& getMaskedNetwork() const
{
return getNetwork();
}
[[nodiscard]] uint8_t getBits() const
{
return d_bits;
}
[[nodiscard]] bool isIPv6() const
{
return d_network.sin6.sin6_family == AF_INET6;
}
[[nodiscard]] bool isIPv4() const
{
return d_network.sin4.sin_family == AF_INET;
}
bool operator<(const Netmask& rhs) const
{
if (empty() && !rhs.empty()) {
return false;
}
if (!empty() && rhs.empty()) {
return true;
}
if (d_bits > rhs.d_bits) {
return true;
}
if (d_bits < rhs.d_bits) {
return false;
}
return d_network < rhs.d_network;
}
bool operator>(const Netmask& rhs) const
{
return rhs.operator<(*this);
}
bool operator==(const Netmask& rhs) const
{
return std::tie(d_network, d_bits) == std::tie(rhs.d_network, rhs.d_bits);
}
bool operator!=(const Netmask& rhs) const
{
return !operator==(rhs);
}
[[nodiscard]] bool empty() const
{
return d_network.sin4.sin_family == 0;
}
//! Get normalized version of the netmask. This means that all address bits below the network bits are zero.
[[nodiscard]] Netmask getNormalized() const
{
return {getMaskedNetwork(), d_bits};
}
//! Get Netmask for super network of this one (i.e. with fewer network bits)
[[nodiscard]] Netmask getSuper(uint8_t bits) const
{
return {d_network, std::min(d_bits, bits)};
}
//! Get the total number of address bits for this netmask (either 32 or 128 depending on IP version)
[[nodiscard]] uint8_t getFullBits() const
{
return d_network.getBits();
}
/** Get the value of the bit at the provided bit index. When the index >= 0,
the index is relative to the LSB starting at index zero. When the index < 0,
the index is relative to the MSB starting at index -1 and counting down.
When the index points outside the network bits, it always yields zero.
*/
[[nodiscard]] bool getBit(int bit) const
{
if (bit < -d_bits) {
return false;
}
if (bit >= 0) {
if (isIPv4()) {
if (bit >= 32 || bit < (32 - d_bits)) {
return false;
}
}
if (isIPv6()) {
if (bit >= 128 || bit < (128 - d_bits)) {
return false;
}
}
}
return d_network.getBit(bit);
}
struct Hash
{
size_t operator()(const Netmask& netmask) const
{
return burtle(&netmask.d_bits, 1, ComboAddress::addressOnlyHash()(netmask.d_network));
}
};
private:
ComboAddress d_network;
uint32_t d_mask{0};
uint8_t d_bits{0};
};
namespace std
{
template <>
struct hash<Netmask>
{
auto operator()(const Netmask& netmask) const
{
return Netmask::Hash{}(netmask);
}
};
}
/** Binary tree map implementation with <Netmask,T> pair.
*
* This is an binary tree implementation for storing attributes for IPv4 and IPv6 prefixes.
* The most simple use case is simple NetmaskTree<bool> used by NetmaskGroup, which only
* wants to know if given IP address is matched in the prefixes stored.
*
* This element is useful for anything that needs to *STORE* prefixes, and *MATCH* IP addresses
* to a *LIST* of *PREFIXES*. Not the other way round.
*
* You can store IPv4 and IPv6 addresses to same tree, separate payload storage is kept per AFI.
* Network prefixes (Netmasks) are always recorded in normalized fashion, meaning that only
* the network bits are set. This is what is returned in the insert() and lookup() return
* values.
*
* Use swap if you need to move the tree to another NetmaskTree instance, it is WAY faster
* than using copy ctor or assignment operator, since it moves the nodes and tree root to
* new home instead of actually recreating the tree.
*
* Please see NetmaskGroup for example of simple use case. Other usecases can be found
* from GeoIPBackend and Sortlist, and from dnsdist.
*/
template <typename T, class K = Netmask>
class NetmaskTree
{
public:
class Iterator;
using key_type = K;
using value_type = T;
using node_type = std::pair<const key_type, value_type>;
using size_type = size_t;
using iterator = class Iterator;
private:
/** Single node in tree, internal use only.
*/
class TreeNode : boost::noncopyable
{
public:
explicit TreeNode() noexcept :
parent(nullptr), node(), assigned(false), d_bits(0)
{
}
explicit TreeNode(const key_type& key) :
parent(nullptr), node({key.getNormalized(), value_type()}), assigned(false), d_bits(key.getFullBits())
{
}
//<! Makes a left leaf node with specified key.
TreeNode* make_left(const key_type& key)
{
d_bits = node.first.getBits();
left = make_unique<TreeNode>(key);
left->parent = this;
return left.get();
}
//<! Makes a right leaf node with specified key.
TreeNode* make_right(const key_type& key)
{
d_bits = node.first.getBits();
right = make_unique<TreeNode>(key);
right->parent = this;
return right.get();
}
//<! Splits branch at indicated bit position by inserting key
TreeNode* split(const key_type& key, int bits)
{
if (parent == nullptr) {
// not to be called on the root node
throw std::logic_error(
"NetmaskTree::TreeNode::split(): must not be called on root node");
}
// determine reference from parent
unique_ptr<TreeNode>& parent_ref = (parent->left.get() == this ? parent->left : parent->right);
if (parent_ref.get() != this) {
throw std::logic_error(
"NetmaskTree::TreeNode::split(): parent node reference is invalid");
}
// create new tree node for the new key and
// attach the new node under our former parent
auto new_intermediate_node = make_unique<TreeNode>(key);
new_intermediate_node->d_bits = bits;
new_intermediate_node->parent = parent;
auto* new_intermediate_node_raw = new_intermediate_node.get();
// hereafter new_intermediate points to "this"
// ie the child of the new intermediate node
std::swap(parent_ref, new_intermediate_node);
// and we now assign this to current_node so
// it's clear it no longer refers to the new
// intermediate node
std::unique_ptr<TreeNode> current_node = std::move(new_intermediate_node);
// attach "this" node below the new node
// (left or right depending on bit)
// technically the raw pointer escapes the duration of the
// unique pointer, but just below we store the unique pointer
// in the parent, so it lives as long as necessary
// coverity[escape]
current_node->parent = new_intermediate_node_raw;
if (current_node->node.first.getBit(-1 - bits)) {
new_intermediate_node_raw->right = std::move(current_node);
}
else {
new_intermediate_node_raw->left = std::move(current_node);
}
return new_intermediate_node_raw;
}
//<! Forks branch for new key at indicated bit position
TreeNode* fork(const key_type& key, int bits)
{
if (parent == nullptr) {
// not to be called on the root node
throw std::logic_error(
"NetmaskTree::TreeNode::fork(): must not be called on root node");
}
// determine reference from parent
unique_ptr<TreeNode>& parent_ref = (parent->left.get() == this ? parent->left : parent->right);
if (parent_ref.get() != this) {
throw std::logic_error(
"NetmaskTree::TreeNode::fork(): parent node reference is invalid");
}
// create new tree node for the branch point
// the current node will now be a child of the new branch node
// (hereafter new_child1 points to "this")
unique_ptr<TreeNode> new_child1 = std::move(parent_ref);
// attach the branch node under our former parent
parent_ref = make_unique<TreeNode>(node.first.getSuper(bits));
auto* branch_node = parent_ref.get();
branch_node->d_bits = bits;
branch_node->parent = parent;
// create second new leaf node for the new key
unique_ptr<TreeNode> new_child2 = make_unique<TreeNode>(key);
TreeNode* new_node = new_child2.get();
// attach the new child nodes below the branch node
// (left or right depending on bit)
new_child1->parent = branch_node;
new_child2->parent = branch_node;
if (new_child1->node.first.getBit(-1 - bits)) {
branch_node->right = std::move(new_child1);
branch_node->left = std::move(new_child2);
}
else {
branch_node->right = std::move(new_child2);
branch_node->left = std::move(new_child1);
}
// now we have attached the new unique pointers to the tree:
// - branch_node is below its parent
// - new_child1 (ourselves) is below branch_node
// - new_child2, the new leaf node, is below branch_node as well
return new_node;
}
//<! Traverse left branch depth-first
TreeNode* traverse_l()
{
TreeNode* tnode = this;
while (tnode->left) {
tnode = tnode->left.get();
}
return tnode;
}
//<! Traverse tree depth-first and in-order (L-N-R)
TreeNode* traverse_lnr()
{
TreeNode* tnode = this;
// precondition: descended left as deep as possible
if (tnode->right) {
// descend right
tnode = tnode->right.get();
// descend left as deep as possible and return next node
return tnode->traverse_l();
}
// ascend to parent
while (tnode->parent != nullptr) {
TreeNode* prev_child = tnode;
tnode = tnode->parent;
// return this node, but only when we come from the left child branch
if (tnode->left && tnode->left.get() == prev_child) {
return tnode;
}
}
return nullptr;
}
//<! Traverse only assigned nodes
TreeNode* traverse_lnr_assigned()
{
TreeNode* tnode = traverse_lnr();
while (tnode != nullptr && !tnode->assigned) {
tnode = tnode->traverse_lnr();
}
return tnode;
}
unique_ptr<TreeNode> left;
unique_ptr<TreeNode> right;
TreeNode* parent;
node_type node;
bool assigned; //<! Whether this node is assigned-to by the application
int d_bits; //<! How many bits have been used so far
};
void cleanup_tree(TreeNode* node)
{
// only cleanup this node if it has no children and node not assigned
if (!(node->left || node->right || node->assigned)) {
// get parent node ptr
TreeNode* pparent = node->parent;
// delete this node
if (pparent) {
if (pparent->left.get() == node) {
pparent->left.reset();
}
else {
pparent->right.reset();
}
// now recurse up to the parent
cleanup_tree(pparent);
}
}
}
void copyTree(const NetmaskTree& rhs)
{
try {
TreeNode* node = rhs.d_root.get();
if (node != nullptr) {
node = node->traverse_l();
}
while (node != nullptr) {
if (node->assigned) {
insert(node->node.first).second = node->node.second;
}
node = node->traverse_lnr();
}
}
catch (const NetmaskException&) {
abort();
}
catch (const std::logic_error&) {
abort();
}
}
public:
class Iterator
{
public:
using value_type = node_type;
using reference = node_type&;
using pointer = node_type*;
using iterator_category = std::forward_iterator_tag;
using difference_type = size_type;
private:
friend class NetmaskTree;
const NetmaskTree* d_tree;
TreeNode* d_node;
Iterator(const NetmaskTree* tree, TreeNode* node) :
d_tree(tree), d_node(node)
{
}
public:
Iterator() :
d_tree(nullptr), d_node(nullptr) {}
Iterator& operator++() // prefix
{
if (d_node == nullptr) {
throw std::logic_error(
"NetmaskTree::Iterator::operator++: iterator is invalid");
}
d_node = d_node->traverse_lnr_assigned();
return *this;
}
Iterator operator++(int) // postfix
{
Iterator tmp(*this);
operator++();
return tmp;
}
reference operator*()
{
if (d_node == nullptr) {
throw std::logic_error(
"NetmaskTree::Iterator::operator*: iterator is invalid");
}
return d_node->node;
}
pointer operator->()
{
if (d_node == nullptr) {
throw std::logic_error(
"NetmaskTree::Iterator::operator->: iterator is invalid");
}
return &d_node->node;
}
bool operator==(const Iterator& rhs)
{
return (d_tree == rhs.d_tree && d_node == rhs.d_node);
}
bool operator!=(const Iterator& rhs)
{
return !(*this == rhs);
}
};
NetmaskTree() noexcept :
d_root(new TreeNode()), d_left(nullptr)
{
}
NetmaskTree(const NetmaskTree& rhs) :
d_root(new TreeNode()), d_left(nullptr)
{
copyTree(rhs);
}
~NetmaskTree() = default;
NetmaskTree& operator=(const NetmaskTree& rhs)
{
if (this != &rhs) {
clear();
copyTree(rhs);
}
return *this;
}
NetmaskTree(NetmaskTree&&) noexcept = default;
NetmaskTree& operator=(NetmaskTree&&) noexcept = default;
[[nodiscard]] iterator begin() const
{
return Iterator(this, d_left);
}
[[nodiscard]] iterator end() const
{
return Iterator(this, nullptr);
}
iterator begin()
{
return Iterator(this, d_left);
}
iterator end()
{
return Iterator(this, nullptr);
}
node_type& insert(const string& mask)
{
return insert(key_type(mask));
}
//<! Creates new value-pair in tree and returns it.
node_type& insert(const key_type& key)
{
TreeNode* node{};
bool is_left = true;
// we turn left on IPv4 and right on IPv6
if (key.isIPv4()) {
node = d_root->left.get();
if (node == nullptr) {
d_root->left = make_unique<TreeNode>(key);
node = d_root->left.get();
node->assigned = true;
node->parent = d_root.get();
d_size++;
d_left = node;
return node->node;
}
}
else if (key.isIPv6()) {
node = d_root->right.get();
if (node == nullptr) {
d_root->right = make_unique<TreeNode>(key);
node = d_root->right.get();
node->assigned = true;
node->parent = d_root.get();
d_size++;
if (!d_root->left) {
d_left = node;
}
return node->node;
}
if (d_root->left) {
is_left = false;
}
}
else {
throw NetmaskException("invalid address family");
}
// we turn left on 0 and right on 1
int bits = 0;
for (; bits < key.getBits(); bits++) {
bool vall = key.getBit(-1 - bits);
if (bits >= node->d_bits) {
// the end of the current node is reached; continue with the next
if (vall) {
if (node->left || node->assigned) {
is_left = false;
}
if (!node->right) {
// the right branch doesn't exist yet; attach our key here
node = node->make_right(key);
break;
}
node = node->right.get();
}
else {
if (!node->left) {
// the left branch doesn't exist yet; attach our key here
node = node->make_left(key);
break;
}
node = node->left.get();
}
continue;
}
if (bits >= node->node.first.getBits()) {
// the matching branch ends here, yet the key netmask has more bits; add a
// child node below the existing branch leaf.
if (vall) {
if (node->assigned) {
is_left = false;
}
node = node->make_right(key);
}
else {
node = node->make_left(key);
}
break;
}
bool valr = node->node.first.getBit(-1 - bits);
if (vall != valr) {
if (vall) {
is_left = false;
}
// the branch matches just upto this point, yet continues in a different
// direction; fork the branch.
node = node->fork(key, bits);
break;
}
}
if (node->node.first.getBits() > key.getBits()) {
// key is a super-network of the matching node; split the branch and
// insert a node for the key above the matching node.
node = node->split(key, key.getBits());
}
if (node->left) {
is_left = false;
}
node_type& value = node->node;
if (!node->assigned) {
// only increment size if not assigned before
d_size++;
// update the pointer to the left-most tree node
if (is_left) {
d_left = node;
}
node->assigned = true;
}
else {
// tree node exists for this value
if (is_left && d_left != node) {
throw std::logic_error(
"NetmaskTree::insert(): lost track of left-most node in tree");
}
}
return value;
}
//<! Creates or updates value
void insert_or_assign(const key_type& mask, const value_type& value)
{
insert(mask).second = value;
}
void insert_or_assign(const string& mask, const value_type& value)
{
insert(key_type(mask)).second = value;
}
//<! check if given key is present in TreeMap
[[nodiscard]] bool has_key(const key_type& key) const
{
const node_type* ptr = lookup(key);
return ptr && ptr->first == key;
}
//<! Returns "best match" for key_type, which might not be value
[[nodiscard]] node_type* lookup(const key_type& value) const
{
uint8_t max_bits = value.getBits();
return lookupImpl(value, max_bits);
}
//<! Perform best match lookup for value, using at most max_bits
[[nodiscard]] node_type* lookup(const ComboAddress& value, int max_bits = 128) const
{
uint8_t addr_bits = value.getBits();
if (max_bits < 0 || max_bits > addr_bits) {
max_bits = addr_bits;
}
return lookupImpl(key_type(value, max_bits), max_bits);
}
//<! Removes key from TreeMap.
void erase(const key_type& key)
{
TreeNode* node = nullptr;
if (key.isIPv4()) {
node = d_root->left.get();
}
else if (key.isIPv6()) {
node = d_root->right.get();
}
else {
throw NetmaskException("invalid address family");
}
// no tree, no value
if (node == nullptr) {
return;
}
int bits = 0;
for (; node && bits < key.getBits(); bits++) {
bool vall = key.getBit(-1 - bits);
if (bits >= node->d_bits) {
// the end of the current node is reached; continue with the next
if (vall) {
node = node->right.get();
}
else {
node = node->left.get();
}
continue;
}
if (bits >= node->node.first.getBits()) {
// the matching branch ends here
if (key.getBits() != node->node.first.getBits()) {
node = nullptr;
}
break;
}
bool valr = node->node.first.getBit(-1 - bits);
if (vall != valr) {
// the branch matches just upto this point, yet continues in a different
// direction
node = nullptr;
break;
}
}
if (node) {
if (d_size == 0) {
throw std::logic_error(
"NetmaskTree::erase(): size of tree is zero before erase");
}
d_size--;
node->assigned = false;
node->node.second = value_type();
if (node == d_left) {
d_left = d_left->traverse_lnr_assigned();
}
cleanup_tree(node);
}
}
void erase(const string& key)
{
erase(key_type(key));
}
//<! checks whether the container is empty.
[[nodiscard]] bool empty() const
{
return (d_size == 0);
}
//<! returns the number of elements
[[nodiscard]] size_type size() const
{
return d_size;
}
//<! See if given ComboAddress matches any prefix
[[nodiscard]] bool match(const ComboAddress& value) const
{
return (lookup(value) != nullptr);
}
[[nodiscard]] bool match(const std::string& value) const
{
return match(ComboAddress(value));
}
//<! Clean out the tree
void clear()
{
d_root = make_unique<TreeNode>();
d_left = nullptr;
d_size = 0;
}
//<! swaps the contents with another NetmaskTree
void swap(NetmaskTree& rhs) noexcept
{
std::swap(d_root, rhs.d_root);
std::swap(d_left, rhs.d_left);
std::swap(d_size, rhs.d_size);
}
private:
[[nodiscard]] node_type* lookupImpl(const key_type& value, uint8_t max_bits) const
{
TreeNode* node = nullptr;
if (value.isIPv4()) {
node = d_root->left.get();
}
else if (value.isIPv6()) {
node = d_root->right.get();
}
else {
throw NetmaskException("invalid address family");
}
if (node == nullptr) {
return nullptr;
}
node_type* ret = nullptr;
int bits = 0;
for (; bits < max_bits; bits++) {
bool vall = value.getBit(-1 - bits);
if (bits >= node->d_bits) {
// the end of the current node is reached; continue with the next
// (we keep track of last assigned node)
if (node->assigned && bits == node->node.first.getBits()) {
ret = &node->node;
}
if (vall) {
if (!node->right) {
break;
}
node = node->right.get();
}
else {
if (!node->left) {
break;
}
node = node->left.get();
}
continue;
}
if (bits >= node->node.first.getBits()) {
// the matching branch ends here
break;
}
bool valr = node->node.first.getBit(-1 - bits);
if (vall != valr) {
// the branch matches just upto this point, yet continues in a different
// direction
break;
}
}
// needed if we did not find one in loop
if (node->assigned && bits == node->node.first.getBits()) {
ret = &node->node;
}
// this can be nullptr.
return ret;
}
unique_ptr<TreeNode> d_root; //<! Root of our tree
TreeNode* d_left;
size_type d_size{0};
};
/** This class represents a group of supplemental Netmask classes. An IP address matches
if it is matched by one or more of the Netmask objects within.
*/
class NetmaskGroup
{
public:
NetmaskGroup() noexcept = default;
//! If this IP address is matched by any of the classes within
bool match(const ComboAddress* address) const
{
const auto& ret = tree.lookup(*address);
if (ret != nullptr) {
return ret->second;
}
return false;
}
[[nodiscard]] bool match(const ComboAddress& address) const
{
return match(&address);
}
bool lookup(const ComboAddress* address, Netmask* nmp) const
{
const auto& ret = tree.lookup(*address);
if (ret != nullptr) {
if (nmp != nullptr) {
*nmp = ret->first;
}
return ret->second;
}
return false;
}
bool lookup(const ComboAddress& address, Netmask* nmp) const
{
return lookup(&address, nmp);
}
//! Add this string to the list of possible matches
void addMask(const string& address, bool positive = true)
{
if (!address.empty() && address[0] == '!') {
addMask(Netmask(address.substr(1)), false);
}
else {
addMask(Netmask(address), positive);
}
}
//! Add this Netmask to the list of possible matches
void addMask(const Netmask& netmask, bool positive = true)
{
tree.insert(netmask).second = positive;
}
void addMasks(const NetmaskGroup& group, boost::optional<bool> positive)
{
for (const auto& entry : group.tree) {
addMask(entry.first, positive ? *positive : entry.second);
}
}
//! Delete this Netmask from the list of possible matches
void deleteMask(const Netmask& netmask)
{
tree.erase(netmask);
}
void deleteMasks(const NetmaskGroup& group)
{
for (const auto& entry : group.tree) {
deleteMask(entry.first);
}
}
void deleteMask(const std::string& address)
{
if (!address.empty()) {
deleteMask(Netmask(address));
}
}
void clear()
{
tree.clear();
}
[[nodiscard]] bool empty() const
{
return tree.empty();
}
[[nodiscard]] size_t size() const
{
return tree.size();
}
[[nodiscard]] string toString() const
{
ostringstream str;
for (auto iter = tree.begin(); iter != tree.end(); ++iter) {
if (iter != tree.begin()) {
str << ", ";
}
if (!(iter->second)) {
str << "!";
}
str << iter->first.toString();
}
return str.str();
}
[[nodiscard]] std::vector<std::string> toStringVector() const
{
std::vector<std::string> out;
out.reserve(tree.size());
for (const auto& entry : tree) {
out.push_back((entry.second ? "" : "!") + entry.first.toString());
}
return out;
}
void toMasks(const string& ips)
{
vector<string> parts;
stringtok(parts, ips, ", \t");
for (const auto& part : parts) {
addMask(part);
}
}
private:
NetmaskTree<bool> tree;
};
struct SComboAddress
{
SComboAddress(const ComboAddress& orig) :
ca(orig) {}
ComboAddress ca;
bool operator<(const SComboAddress& rhs) const
{
return ComboAddress::addressOnlyLessThan()(ca, rhs.ca);
}
operator const ComboAddress&() const
{
return ca;
}
};
class NetworkError : public runtime_error
{
public:
NetworkError(const string& why = "Network Error") :
runtime_error(why.c_str())
{}
NetworkError(const char* why = "Network Error") :
runtime_error(why)
{}
};
class AddressAndPortRange
{
public:
AddressAndPortRange() :
d_addrMask(0), d_portMask(0)
{
d_addr.sin4.sin_family = 0; // disable this doing anything useful
d_addr.sin4.sin_port = 0; // this guarantees d_network compares identical
}
AddressAndPortRange(ComboAddress address, uint8_t addrMask, uint8_t portMask = 0) :
d_addr(address), d_addrMask(addrMask), d_portMask(portMask)
{
if (!d_addr.isIPv4()) {
d_portMask = 0;
}
uint16_t port = d_addr.getPort();
if (d_portMask < 16) {
auto mask = static_cast<uint16_t>(~(0xFFFF >> d_portMask));
port = port & mask;
}
if (d_addrMask < d_addr.getBits()) {
if (d_portMask > 0) {
throw std::runtime_error("Trying to create a AddressAndPortRange with a reduced address mask (" + std::to_string(d_addrMask) + ") and a port range (" + std::to_string(d_portMask) + ")");
}
d_addr = Netmask(d_addr, d_addrMask).getMaskedNetwork();
}
d_addr.setPort(port);
}
[[nodiscard]] uint8_t getFullBits() const
{
return d_addr.getBits() + 16;
}
[[nodiscard]] uint8_t getBits() const
{
if (d_addrMask < d_addr.getBits()) {
return d_addrMask;
}
return d_addr.getBits() + d_portMask;
}
/** Get the value of the bit at the provided bit index. When the index >= 0,
the index is relative to the LSB starting at index zero. When the index < 0,
the index is relative to the MSB starting at index -1 and counting down.
*/
[[nodiscard]] bool getBit(int index) const
{
if (index >= getFullBits()) {
return false;
}
if (index < 0) {
index = getFullBits() + index;
}
if (index < 16) {
/* we are into the port bits */
uint16_t port = d_addr.getPort();
return ((port & (1U << index)) != 0x0000);
}
index -= 16;
return d_addr.getBit(index);
}
[[nodiscard]] bool isIPv4() const
{
return d_addr.isIPv4();
}
[[nodiscard]] bool isIPv6() const
{
return d_addr.isIPv6();
}
[[nodiscard]] AddressAndPortRange getNormalized() const
{
return {d_addr, d_addrMask, d_portMask};
}
[[nodiscard]] AddressAndPortRange getSuper(uint8_t bits) const
{
if (bits <= d_addrMask) {
return {d_addr, bits, 0};
}
if (bits <= d_addrMask + d_portMask) {
return {d_addr, d_addrMask, static_cast<uint8_t>(d_portMask - (bits - d_addrMask))};
}
return {d_addr, d_addrMask, d_portMask};
}
[[nodiscard]] const ComboAddress& getNetwork() const
{
return d_addr;
}
[[nodiscard]] string toString() const
{
if (d_addrMask < d_addr.getBits() || d_portMask == 0) {
return d_addr.toStringNoInterface() + "/" + std::to_string(d_addrMask);
}
return d_addr.toStringNoInterface() + ":" + std::to_string(d_addr.getPort()) + "/" + std::to_string(d_portMask);
}
[[nodiscard]] bool empty() const
{
return d_addr.sin4.sin_family == 0;
}
bool operator==(const AddressAndPortRange& rhs) const
{
return std::tie(d_addr, d_addrMask, d_portMask) == std::tie(rhs.d_addr, rhs.d_addrMask, rhs.d_portMask);
}
bool operator<(const AddressAndPortRange& rhs) const
{
if (empty() && !rhs.empty()) {
return false;
}
if (!empty() && rhs.empty()) {
return true;
}
if (d_addrMask > rhs.d_addrMask) {
return true;
}
if (d_addrMask < rhs.d_addrMask) {
return false;
}
if (d_addr < rhs.d_addr) {
return true;
}
if (d_addr > rhs.d_addr) {
return false;
}
if (d_portMask > rhs.d_portMask) {
return true;
}
if (d_portMask < rhs.d_portMask) {
return false;
}
return d_addr.getPort() < rhs.d_addr.getPort();
}
bool operator>(const AddressAndPortRange& rhs) const
{
return rhs.operator<(*this);
}
struct hash
{
uint32_t operator()(const AddressAndPortRange& apr) const
{
ComboAddress::addressOnlyHash hashOp;
uint16_t port = apr.d_addr.getPort();
/* it's fine to hash the whole address and port because the non-relevant parts have
been masked to 0 */
return burtle(reinterpret_cast<const unsigned char*>(&port), sizeof(port), hashOp(apr.d_addr)); // NOLINT(cppcoreguidelines-pro-type-reinterpret-cast)
}
};
private:
ComboAddress d_addr;
uint8_t d_addrMask;
/* only used for v4 addresses */
uint8_t d_portMask;
};
int SSocket(int family, int type, int flags);
int SConnect(int sockfd, const ComboAddress& remote);
/* tries to connect to remote for a maximum of timeout seconds.
sockfd should be set to non-blocking beforehand.
returns 0 on success (the socket is writable), throw a
runtime_error otherwise */
int SConnectWithTimeout(int sockfd, const ComboAddress& remote, const struct timeval& timeout);
int SBind(int sockfd, const ComboAddress& local);
int SAccept(int sockfd, ComboAddress& remote);
int SListen(int sockfd, int limit);
int SSetsockopt(int sockfd, int level, int opname, int value);
void setSocketIgnorePMTU(int sockfd, int family);
void setSocketForcePMTU(int sockfd, int family);
bool setReusePort(int sockfd);
#if defined(IP_PKTINFO)
#define GEN_IP_PKTINFO IP_PKTINFO
#elif defined(IP_RECVDSTADDR)
#define GEN_IP_PKTINFO IP_RECVDSTADDR
#endif
bool IsAnyAddress(const ComboAddress& addr);
bool HarvestDestinationAddress(const struct msghdr* msgh, ComboAddress* destination);
bool HarvestTimestamp(struct msghdr* msgh, struct timeval* timeval);
void fillMSGHdr(struct msghdr* msgh, struct iovec* iov, cmsgbuf_aligned* cbuf, size_t cbufsize, char* data, size_t datalen, ComboAddress* addr);
int sendOnNBSocket(int fileDesc, const struct msghdr* msgh);
size_t sendMsgWithOptions(int socketDesc, const void* buffer, size_t len, const ComboAddress* dest, const ComboAddress* local, unsigned int localItf, int flags);
/* requires a non-blocking, connected TCP socket */
bool isTCPSocketUsable(int sock);
extern template class NetmaskTree<bool>;
ComboAddress parseIPAndPort(const std::string& input, uint16_t port);
std::set<std::string> getListOfNetworkInterfaces();
std::vector<ComboAddress> getListOfAddressesOfNetworkInterface(const std::string& itf);
std::vector<Netmask> getListOfRangesOfNetworkInterface(const std::string& itf);
/* These functions throw if the value was already set to a higher value,
or on error */
void setSocketBuffer(int fileDesc, int optname, uint32_t size);
void setSocketReceiveBuffer(int fileDesc, uint32_t size);
void setSocketSendBuffer(int fileDesc, uint32_t size);
uint32_t raiseSocketReceiveBufferToMax(int socket);
uint32_t raiseSocketSendBufferToMax(int socket);
|