1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
|
/*
* This file is part of PowerDNS or dnsdist.
* Copyright -- PowerDNS.COM B.V. and its contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* In addition, for the avoidance of any doubt, permission is granted to
* link this program with OpenSSL and to (re)distribute the binaries
* produced as the result of such linking.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include "misc.hh"
#include <memory>
#include <openssl/crypto.h>
#include <openssl/ec.h>
#include <optional>
#include <openssl/obj_mac.h>
#ifdef HAVE_LIBCRYPTO_ECDSA
#include <openssl/ecdsa.h>
#endif
#if defined(HAVE_LIBCRYPTO_ED25519) || defined(HAVE_LIBCRYPTO_ED448)
#include <openssl/evp.h>
#endif
#include <openssl/bn.h>
#include <openssl/sha.h>
#include <openssl/rand.h>
#include <openssl/rsa.h>
#if OPENSSL_VERSION_MAJOR >= 3
#include <openssl/types.h>
#include <openssl/core_names.h>
#include <openssl/param_build.h>
#include <openssl/params.h>
#endif
#include <openssl/opensslv.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include "opensslsigners.hh"
#include "dnssecinfra.hh"
#include "dnsseckeeper.hh"
#if (OPENSSL_VERSION_NUMBER < 0x1010000fL || (defined LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2090100fL)
/* OpenSSL < 1.1.0 needs support for threading/locking in the calling application. */
#include "lock.hh"
static std::vector<std::mutex> openssllocks;
extern "C"
{
static void openssl_pthreads_locking_callback(int mode, int type, const char* file, int line)
{
if (mode & CRYPTO_LOCK) {
openssllocks.at(type).lock();
}
else {
openssllocks.at(type).unlock();
}
}
static unsigned long openssl_pthreads_id_callback(void)
{
return (unsigned long)pthread_self();
}
}
void openssl_thread_setup()
{
openssllocks = std::vector<std::mutex>(CRYPTO_num_locks());
CRYPTO_set_id_callback(&openssl_pthreads_id_callback);
CRYPTO_set_locking_callback(&openssl_pthreads_locking_callback);
}
void openssl_thread_cleanup()
{
CRYPTO_set_locking_callback(nullptr);
openssllocks.clear();
}
#ifndef HAVE_RSA_GET0_KEY
/* those symbols are defined in LibreSSL 2.7.0+ */
/* compat helpers. These DO NOT do any of the checking that the libssl 1.1 functions do. */
static inline void RSA_get0_key(const RSA* rsakey, const BIGNUM** n, const BIGNUM** e, const BIGNUM** d)
{
*n = rsakey->n;
*e = rsakey->e;
*d = rsakey->d;
}
static inline int RSA_set0_key(RSA* rsakey, BIGNUM* n, BIGNUM* e, BIGNUM* d)
{
if (n) {
BN_clear_free(rsakey->n);
rsakey->n = n;
}
if (e) {
BN_clear_free(rsakey->e);
rsakey->e = e;
}
if (d) {
BN_clear_free(rsakey->d);
rsakey->d = d;
}
return 1;
}
static inline void RSA_get0_factors(const RSA* rsakey, const BIGNUM** p, const BIGNUM** q)
{
*p = rsakey->p;
*q = rsakey->q;
}
static inline int RSA_set0_factors(RSA* rsakey, BIGNUM* p, BIGNUM* q)
{
BN_clear_free(rsakey->p);
rsakey->p = p;
BN_clear_free(rsakey->q);
rsakey->q = q;
return 1;
}
static inline void RSA_get0_crt_params(const RSA* rsakey, const BIGNUM** dmp1, const BIGNUM** dmq1, const BIGNUM** iqmp)
{
*dmp1 = rsakey->dmp1;
*dmq1 = rsakey->dmq1;
*iqmp = rsakey->iqmp;
}
static inline int RSA_set0_crt_params(RSA* rsakey, BIGNUM* dmp1, BIGNUM* dmq1, BIGNUM* iqmp)
{
BN_clear_free(rsakey->dmp1);
rsakey->dmp1 = dmp1;
BN_clear_free(rsakey->dmq1);
rsakey->dmq1 = dmq1;
BN_clear_free(rsakey->iqmp);
rsakey->iqmp = iqmp;
return 1;
}
#ifdef HAVE_LIBCRYPTO_ECDSA
static inline void ECDSA_SIG_get0(const ECDSA_SIG* signature, const BIGNUM** pr, const BIGNUM** ps)
{
*pr = signature->r;
*ps = signature->s;
}
static inline int ECDSA_SIG_set0(ECDSA_SIG* signature, BIGNUM* pr, BIGNUM* ps)
{
BN_clear_free(signature->r);
BN_clear_free(signature->s);
signature->r = pr;
signature->s = ps;
return 1;
}
#endif /* HAVE_LIBCRYPTO_ECDSA */
#endif /* HAVE_RSA_GET0_KEY */
#else
void openssl_thread_setup() {}
void openssl_thread_cleanup() {}
#endif
/* seeding PRNG */
void openssl_seed()
{
std::string entropy;
entropy.reserve(1024);
unsigned int r;
for (int i = 0; i < 1024; i += 4) {
r = dns_random_uint32();
entropy.append((const char*)&r, 4);
}
RAND_seed((const unsigned char*)entropy.c_str(), 1024);
}
using BigNum = unique_ptr<BIGNUM, decltype(&BN_clear_free)>;
static auto mapToBN(const std::string& componentName, const std::map<std::string, std::string>& stormap, const std::string& key) -> BigNum
{
const std::string& value = stormap.at(key);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
const auto* valueCStr = reinterpret_cast<const unsigned char*>(value.c_str());
auto number = BigNum{BN_bin2bn(valueCStr, static_cast<int>(value.length()), nullptr), BN_clear_free};
if (number == nullptr) {
throw pdns::OpenSSL::error(componentName, "Failed to parse key `" + key + "`");
}
return number;
}
class OpenSSLRSADNSCryptoKeyEngine : public DNSCryptoKeyEngine
{
public:
explicit OpenSSLRSADNSCryptoKeyEngine(unsigned int algo);
[[nodiscard]] string getName() const override { return "OpenSSL RSA"; }
[[nodiscard]] int getBits() const override;
void create(unsigned int bits) override;
/**
* \brief Creates an RSA key engine from a PEM file.
*
* Receives an open file handle with PEM contents and creates an RSA key engine.
*
* \param[in] drc Key record contents to be populated.
*
* \param[in] inputFile An open file handle to a file containing RSA PEM contents.
*
* \param[in] filename Only used for providing filename information in error messages.
*
* \return An RSA key engine populated with the contents of the PEM file.
*/
void createFromPEMFile(DNSKEYRecordContent& drc, std::FILE& inputFile, std::optional<std::reference_wrapper<const std::string>> filename = std::nullopt) override;
/**
* \brief Writes this key's contents to a file.
*
* Receives an open file handle and writes this key's contents to the
* file.
*
* \param[in] outputFile An open file handle for writing.
*
* \exception std::runtime_error In case of OpenSSL errors.
*/
void convertToPEMFile(std::FILE& outputFile) const override;
[[nodiscard]] storvector_t convertToISCVector() const override;
// TODO Fred: hash() can probably be completely removed. See #12464.
[[nodiscard]] std::string hash(const std::string& message) const override;
[[nodiscard]] std::string sign(const std::string& message) const override;
[[nodiscard]] bool verify(const std::string& message, const std::string& signature) const override;
[[nodiscard]] std::string getPublicKeyString() const override;
void fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) override;
void fromPublicKeyString(const std::string& content) override;
[[nodiscard]] bool checkKey(std::optional<std::reference_wrapper<std::vector<std::string>>> errorMessages) const override;
static std::unique_ptr<DNSCryptoKeyEngine> maker(unsigned int algorithm)
{
return make_unique<OpenSSLRSADNSCryptoKeyEngine>(algorithm);
}
private:
#if OPENSSL_VERSION_MAJOR >= 3
[[nodiscard]] BigNum getKeyParamModulus() const;
[[nodiscard]] BigNum getKeyParamPublicExponent() const;
[[nodiscard]] BigNum getKeyParamPrivateExponent() const;
[[nodiscard]] BigNum getKeyParamPrime1() const;
[[nodiscard]] BigNum getKeyParamPrime2() const;
[[nodiscard]] BigNum getKeyParamDmp1() const;
[[nodiscard]] BigNum getKeyParamDmq1() const;
[[nodiscard]] BigNum getKeyParamIqmp() const;
using Params = std::unique_ptr<OSSL_PARAM, decltype(&OSSL_PARAM_free)>;
auto makeKeyParams(const BIGNUM* modulus, const BIGNUM* publicExponent, const BIGNUM* privateExponent, const BIGNUM* prime1, const BIGNUM* prime2, const BIGNUM* dmp1, const BIGNUM* dmq1, const BIGNUM* iqmp) const -> Params;
#endif
// TODO Fred: hashSize(), hasher() and hashSizeToKind() can probably be completely
// removed along with hash(). See #12464.
[[nodiscard]] std::size_t hashSize() const;
[[nodiscard]] const EVP_MD* hasher() const;
static int hashSizeToKind(size_t hashSize);
#if OPENSSL_VERSION_MAJOR >= 3
using KeyContext = std::unique_ptr<EVP_PKEY_CTX, decltype(&EVP_PKEY_CTX_free)>;
using Key = std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>;
using MessageDigestContext = std::unique_ptr<EVP_MD_CTX, decltype(&EVP_MD_CTX_free)>;
using ParamsBuilder = std::unique_ptr<OSSL_PARAM_BLD, decltype(&OSSL_PARAM_BLD_free)>;
using MessageDigest = std::unique_ptr<EVP_MD, decltype(&EVP_MD_free)>;
#else
using Key = std::unique_ptr<RSA, decltype(&RSA_free)>;
#endif
Key d_key;
};
OpenSSLRSADNSCryptoKeyEngine::OpenSSLRSADNSCryptoKeyEngine(unsigned int algo) :
DNSCryptoKeyEngine(algo),
#if OPENSSL_VERSION_MAJOR >= 3
d_key(Key(nullptr, EVP_PKEY_free))
#else
d_key(Key(nullptr, RSA_free))
#endif
{
int ret = RAND_status();
if (ret != 1) {
throw runtime_error(getName() + " insufficient entropy");
}
}
int OpenSSLRSADNSCryptoKeyEngine::getBits() const
{
#if OPENSSL_VERSION_MAJOR >= 3
return EVP_PKEY_get_bits(d_key.get());
#else
return RSA_size(d_key.get()) << 3;
#endif
}
void OpenSSLRSADNSCryptoKeyEngine::create(unsigned int bits)
{
// When changing the bitsizes, also edit them in ::checkKey
if ((d_algorithm == DNSSECKeeper::RSASHA1 || d_algorithm == DNSSECKeeper::RSASHA1NSEC3SHA1) && (bits < 512 || bits > 4096)) {
/* RFC3110 */
throw runtime_error(getName() + " RSASHA1 key generation failed for invalid bits size " + std::to_string(bits));
}
if (d_algorithm == DNSSECKeeper::RSASHA256 && (bits < 512 || bits > 4096)) {
/* RFC5702 */
throw runtime_error(getName() + " RSASHA256 key generation failed for invalid bits size " + std::to_string(bits));
}
if (d_algorithm == DNSSECKeeper::RSASHA512 && (bits < 1024 || bits > 4096)) {
/* RFC5702 */
throw runtime_error(getName() + " RSASHA512 key generation failed for invalid bits size " + std::to_string(bits));
}
auto exponent = BigNum(BN_new(), BN_clear_free);
if (!exponent) {
throw runtime_error(getName() + " key generation failed, unable to allocate e");
}
/* RSA_F4 is a public exponent value of 65537 */
int res = BN_set_word(exponent.get(), RSA_F4);
if (res == 0) {
throw runtime_error(getName() + " key generation failed while setting e");
}
#if OPENSSL_VERSION_MAJOR >= 3
auto ctx = KeyContext(EVP_PKEY_CTX_new_from_name(nullptr, "RSA", nullptr), EVP_PKEY_CTX_free);
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Could not initialize context");
}
if (EVP_PKEY_keygen_init(ctx.get()) != 1) {
throw pdns::OpenSSL::error(getName(), "Could not initialize keygen");
}
if (EVP_PKEY_CTX_set_rsa_keygen_bits(ctx.get(), (int)bits) <= 0) {
throw pdns::OpenSSL::error(getName(), "Could not set keygen bits to " + std::to_string(bits));
}
if (EVP_PKEY_CTX_set1_rsa_keygen_pubexp(ctx.get(), exponent.get()) <= 0) {
throw pdns::OpenSSL::error(getName(), "Could not set keygen public exponent");
}
EVP_PKEY* key = nullptr;
if (EVP_PKEY_generate(ctx.get(), &key) != 1) {
throw pdns::OpenSSL::error(getName(), "Could not generate key");
}
d_key.reset(key);
#else
auto key = Key(RSA_new(), RSA_free);
if (!key) {
throw runtime_error(getName() + " allocation of key structure failed");
}
res = RSA_generate_key_ex(key.get(), bits, exponent.get(), nullptr);
if (res == 0) {
throw runtime_error(getName() + " key generation failed");
}
d_key = std::move(key);
#endif
}
void OpenSSLRSADNSCryptoKeyEngine::createFromPEMFile(DNSKEYRecordContent& drc, std::FILE& inputFile, const std::optional<std::reference_wrapper<const std::string>> filename)
{
drc.d_algorithm = d_algorithm;
#if OPENSSL_VERSION_MAJOR >= 3
EVP_PKEY* key = nullptr;
if (PEM_read_PrivateKey(&inputFile, &key, nullptr, nullptr) == nullptr) {
if (filename.has_value()) {
throw pdns::OpenSSL::error(getName(), "Could not read private key from PEM file `" + filename->get() + "`");
}
throw pdns::OpenSSL::error(getName(), "Could not read private key from PEM contents");
}
d_key.reset(key);
#else
d_key = Key(PEM_read_RSAPrivateKey(&inputFile, nullptr, nullptr, nullptr), &RSA_free);
if (d_key == nullptr) {
if (filename.has_value()) {
throw runtime_error(getName() + ": Failed to read private key from PEM file `" + filename->get() + "`");
}
throw runtime_error(getName() + ": Failed to read private key from PEM contents");
}
#endif
}
void OpenSSLRSADNSCryptoKeyEngine::convertToPEMFile(std::FILE& outputFile) const
{
#if OPENSSL_VERSION_MAJOR >= 3
if (PEM_write_PrivateKey(&outputFile, d_key.get(), nullptr, nullptr, 0, nullptr, nullptr) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not convert private key to PEM");
}
#else
auto ret = PEM_write_RSAPrivateKey(&outputFile, d_key.get(), nullptr, nullptr, 0, nullptr, nullptr);
if (ret == 0) {
throw runtime_error(getName() + ": Could not convert private key to PEM");
}
#endif
}
#if OPENSSL_VERSION_MAJOR >= 3
BigNum OpenSSLRSADNSCryptoKeyEngine::getKeyParamModulus() const
{
BIGNUM* modulus = nullptr;
if (EVP_PKEY_get_bn_param(d_key.get(), OSSL_PKEY_PARAM_RSA_N, &modulus) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get key's modulus (n) parameter");
}
return BigNum{modulus, BN_clear_free};
}
BigNum OpenSSLRSADNSCryptoKeyEngine::getKeyParamPublicExponent() const
{
BIGNUM* publicExponent = nullptr;
if (EVP_PKEY_get_bn_param(d_key.get(), OSSL_PKEY_PARAM_RSA_E, &publicExponent) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get key's public exponent (e) parameter");
}
return BigNum{publicExponent, BN_clear_free};
}
BigNum OpenSSLRSADNSCryptoKeyEngine::getKeyParamPrivateExponent() const
{
BIGNUM* privateExponent = nullptr;
if (EVP_PKEY_get_bn_param(d_key.get(), OSSL_PKEY_PARAM_RSA_D, &privateExponent) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get key's private exponent (d) parameter");
}
return BigNum{privateExponent, BN_clear_free};
}
BigNum OpenSSLRSADNSCryptoKeyEngine::getKeyParamPrime1() const
{
BIGNUM* prime1 = nullptr;
if (EVP_PKEY_get_bn_param(d_key.get(), OSSL_PKEY_PARAM_RSA_FACTOR1, &prime1) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get key's first prime (p) parameter");
}
return BigNum{prime1, BN_clear_free};
}
BigNum OpenSSLRSADNSCryptoKeyEngine::getKeyParamPrime2() const
{
BIGNUM* prime2 = nullptr;
if (EVP_PKEY_get_bn_param(d_key.get(), OSSL_PKEY_PARAM_RSA_FACTOR2, &prime2) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get key's second prime (q) parameter");
}
return BigNum{prime2, BN_clear_free};
}
BigNum OpenSSLRSADNSCryptoKeyEngine::getKeyParamDmp1() const
{
BIGNUM* dmp1 = nullptr;
if (EVP_PKEY_get_bn_param(d_key.get(), OSSL_PKEY_PARAM_RSA_EXPONENT1, &dmp1) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get key's first exponent parameter");
}
return BigNum{dmp1, BN_clear_free};
}
BigNum OpenSSLRSADNSCryptoKeyEngine::getKeyParamDmq1() const
{
BIGNUM* dmq1 = nullptr;
if (EVP_PKEY_get_bn_param(d_key.get(), OSSL_PKEY_PARAM_RSA_EXPONENT2, &dmq1) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get key's second exponent parameter");
}
return BigNum{dmq1, BN_clear_free};
}
BigNum OpenSSLRSADNSCryptoKeyEngine::getKeyParamIqmp() const
{
BIGNUM* iqmp = nullptr;
if (EVP_PKEY_get_bn_param(d_key.get(), OSSL_PKEY_PARAM_RSA_COEFFICIENT1, &iqmp) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get key's first coefficient parameter");
}
return BigNum{iqmp, BN_clear_free};
}
#endif
#if OPENSSL_VERSION_MAJOR >= 3
auto OpenSSLRSADNSCryptoKeyEngine::makeKeyParams(const BIGNUM* modulus, const BIGNUM* publicExponent, const BIGNUM* privateExponent, const BIGNUM* prime1, const BIGNUM* prime2, const BIGNUM* dmp1, const BIGNUM* dmq1, const BIGNUM* iqmp) const -> Params
{
auto params_build = ParamsBuilder(OSSL_PARAM_BLD_new(), OSSL_PARAM_BLD_free);
if (params_build == nullptr) {
throw pdns::OpenSSL::error(getName(), "Could not create key's parameters builder");
}
if ((modulus != nullptr) && OSSL_PARAM_BLD_push_BN(params_build.get(), OSSL_PKEY_PARAM_RSA_N, modulus) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not create key's modulus parameter");
}
if ((publicExponent != nullptr) && OSSL_PARAM_BLD_push_BN(params_build.get(), OSSL_PKEY_PARAM_RSA_E, publicExponent) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not create key's public exponent parameter");
}
if ((privateExponent != nullptr) && OSSL_PARAM_BLD_push_BN(params_build.get(), OSSL_PKEY_PARAM_RSA_D, privateExponent) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not create key's private exponent parameter");
}
if ((prime1 != nullptr) && OSSL_PARAM_BLD_push_BN(params_build.get(), OSSL_PKEY_PARAM_RSA_FACTOR1, prime1) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not create key's first prime parameter");
}
if ((prime2 != nullptr) && OSSL_PARAM_BLD_push_BN(params_build.get(), OSSL_PKEY_PARAM_RSA_FACTOR2, prime2) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not create key's second prime parameter");
}
if ((dmp1 != nullptr) && OSSL_PARAM_BLD_push_BN(params_build.get(), OSSL_PKEY_PARAM_RSA_EXPONENT1, dmp1) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not create key's first exponent parameter");
}
if ((dmq1 != nullptr) && OSSL_PARAM_BLD_push_BN(params_build.get(), OSSL_PKEY_PARAM_RSA_EXPONENT2, dmq1) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not create key's second exponent parameter");
}
if ((iqmp != nullptr) && OSSL_PARAM_BLD_push_BN(params_build.get(), OSSL_PKEY_PARAM_RSA_COEFFICIENT1, iqmp) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not create key's first coefficient parameter");
}
auto params = Params(OSSL_PARAM_BLD_to_param(params_build.get()), OSSL_PARAM_free);
if (params == nullptr) {
throw pdns::OpenSSL::error(getName(), "Could not create key's parameters");
}
return params;
}
#endif
DNSCryptoKeyEngine::storvector_t OpenSSLRSADNSCryptoKeyEngine::convertToISCVector() const
{
storvector_t storvect;
using outputs_t = vector<pair<string, const BIGNUM*>>;
outputs_t outputs;
#if OPENSSL_VERSION_MAJOR >= 3
// If any of those calls throw, we correctly free the BIGNUMs allocated before it.
BigNum modulusPtr = getKeyParamModulus();
BigNum publicExponentPtr = getKeyParamPublicExponent();
BigNum privateExponentPtr = getKeyParamPrivateExponent();
BigNum prime1Ptr = getKeyParamPrime1();
BigNum prime2Ptr = getKeyParamPrime2();
BigNum dmp1Ptr = getKeyParamDmp1();
BigNum dmq1Ptr = getKeyParamDmq1();
BigNum iqmpPtr = getKeyParamIqmp();
// All the calls succeeded, we can take references to the BIGNUM pointers.
BIGNUM* modulus = modulusPtr.get();
BIGNUM* publicExponent = publicExponentPtr.get();
BIGNUM* privateExponent = privateExponentPtr.get();
BIGNUM* prime1 = prime1Ptr.get();
BIGNUM* prime2 = prime2Ptr.get();
BIGNUM* dmp1 = dmp1Ptr.get();
BIGNUM* dmq1 = dmq1Ptr.get();
BIGNUM* iqmp = iqmpPtr.get();
#else
const BIGNUM* modulus = nullptr;
const BIGNUM* publicExponent = nullptr;
const BIGNUM* privateExponent = nullptr;
const BIGNUM* prime1 = nullptr;
const BIGNUM* prime2 = nullptr;
const BIGNUM* dmp1 = nullptr;
const BIGNUM* dmq1 = nullptr;
const BIGNUM* iqmp = nullptr;
RSA_get0_key(d_key.get(), &modulus, &publicExponent, &privateExponent);
RSA_get0_factors(d_key.get(), &prime1, &prime2);
RSA_get0_crt_params(d_key.get(), &dmp1, &dmq1, &iqmp);
#endif
outputs.emplace_back("Modulus", modulus);
outputs.emplace_back("PublicExponent", publicExponent);
outputs.emplace_back("PrivateExponent", privateExponent);
outputs.emplace_back("Prime1", prime1);
outputs.emplace_back("Prime2", prime2);
outputs.emplace_back("Exponent1", dmp1);
outputs.emplace_back("Exponent2", dmq1);
outputs.emplace_back("Coefficient", iqmp);
string algorithm = std::to_string(d_algorithm);
switch (d_algorithm) {
case DNSSECKeeper::RSASHA1:
case DNSSECKeeper::RSASHA1NSEC3SHA1:
algorithm += " (RSASHA1)";
break;
case DNSSECKeeper::RSASHA256:
algorithm += " (RSASHA256)";
break;
case DNSSECKeeper::RSASHA512:
algorithm += " (RSASHA512)";
break;
default:
algorithm += " (?)";
}
storvect.emplace_back("Algorithm", algorithm);
for (const outputs_t::value_type& value : outputs) {
std::string tmp;
tmp.resize(BN_num_bytes(value.second));
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
int len = BN_bn2bin(value.second, reinterpret_cast<unsigned char*>(tmp.data()));
if (len >= 0) {
tmp.resize(len);
storvect.emplace_back(value.first, tmp);
}
}
return storvect;
}
std::size_t OpenSSLRSADNSCryptoKeyEngine::hashSize() const
{
switch (d_algorithm) {
case DNSSECKeeper::RSASHA1:
case DNSSECKeeper::RSASHA1NSEC3SHA1:
return SHA_DIGEST_LENGTH;
case DNSSECKeeper::RSASHA256:
return SHA256_DIGEST_LENGTH;
case DNSSECKeeper::RSASHA512:
return SHA512_DIGEST_LENGTH;
default:
throw runtime_error(getName() + " does not support hash operations for algorithm " + std::to_string(d_algorithm));
}
}
const EVP_MD* OpenSSLRSADNSCryptoKeyEngine::hasher() const
{
const EVP_MD* messageDigest = nullptr;
switch (d_algorithm) {
case DNSSECKeeper::RSASHA1:
case DNSSECKeeper::RSASHA1NSEC3SHA1:
messageDigest = EVP_sha1();
break;
case DNSSECKeeper::RSASHA256:
messageDigest = EVP_sha256();
break;
case DNSSECKeeper::RSASHA512:
messageDigest = EVP_sha512();
break;
default:
throw runtime_error(getName() + " does not support hash operations for algorithm " + std::to_string(d_algorithm));
}
if (messageDigest == nullptr) {
throw std::runtime_error("Could not retrieve a SHA implementation of size " + std::to_string(hashSize()) + " from OpenSSL");
}
return messageDigest;
}
std::string OpenSSLRSADNSCryptoKeyEngine::hash(const std::string& message) const
{
if (d_algorithm == DNSSECKeeper::RSASHA1 || d_algorithm == DNSSECKeeper::RSASHA1NSEC3SHA1) {
std::string l_hash{};
l_hash.resize(SHA_DIGEST_LENGTH);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
SHA1(reinterpret_cast<unsigned char*>(const_cast<char*>(message.c_str())), message.length(), reinterpret_cast<unsigned char*>(l_hash.data()));
return l_hash;
}
if (d_algorithm == DNSSECKeeper::RSASHA256) {
std::string l_hash{};
l_hash.resize(SHA256_DIGEST_LENGTH);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
SHA256(reinterpret_cast<unsigned char*>(const_cast<char*>(message.c_str())), message.length(), reinterpret_cast<unsigned char*>(l_hash.data()));
return l_hash;
}
if (d_algorithm == DNSSECKeeper::RSASHA512) {
std::string l_hash{};
l_hash.resize(SHA512_DIGEST_LENGTH);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
SHA512(reinterpret_cast<unsigned char*>(const_cast<char*>(message.c_str())), message.length(), reinterpret_cast<unsigned char*>(l_hash.data()));
return l_hash;
}
throw runtime_error(getName() + " does not support hash operation for algorithm " + std::to_string(d_algorithm));
}
int OpenSSLRSADNSCryptoKeyEngine::hashSizeToKind(const size_t hashSize)
{
switch (hashSize) {
case SHA_DIGEST_LENGTH:
return NID_sha1;
case SHA256_DIGEST_LENGTH:
return NID_sha256;
case SHA384_DIGEST_LENGTH:
return NID_sha384;
case SHA512_DIGEST_LENGTH:
return NID_sha512;
default:
throw runtime_error("OpenSSL RSA does not handle hash of size " + std::to_string(hashSize));
}
}
std::string OpenSSLRSADNSCryptoKeyEngine::sign(const std::string& message) const
{
std::string signature;
#if OPENSSL_VERSION_MAJOR >= 3
auto ctx = MessageDigestContext(EVP_MD_CTX_new(), EVP_MD_CTX_free);
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Could not create context for signing");
}
if (EVP_DigestSignInit(ctx.get(), nullptr, hasher(), nullptr, d_key.get()) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not initialize context for signing");
}
std::size_t signatureLen = 0;
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
const auto* messageData = reinterpret_cast<const unsigned char*>(message.data());
if (EVP_DigestSign(ctx.get(), nullptr, &signatureLen, messageData, message.size()) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get message signature length");
}
signature.resize(signatureLen);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
auto* signatureData = reinterpret_cast<unsigned char*>(signature.data());
if (EVP_DigestSign(ctx.get(), signatureData, &signatureLen, messageData, message.size()) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not sign message");
}
#else
unsigned int signatureLen = 0;
string l_hash = this->hash(message);
int hashKind = hashSizeToKind(l_hash.size());
signature.resize(RSA_size(d_key.get()));
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
int res = RSA_sign(hashKind, reinterpret_cast<unsigned char*>(&l_hash.at(0)), l_hash.length(), reinterpret_cast<unsigned char*>(&signature.at(0)), &signatureLen, d_key.get());
if (res != 1) {
throw runtime_error(getName() + " failed to generate signature");
}
signature.resize(signatureLen);
#endif
return signature;
}
bool OpenSSLRSADNSCryptoKeyEngine::verify(const std::string& message, const std::string& signature) const
{
#if OPENSSL_VERSION_MAJOR >= 3
auto ctx = MessageDigestContext(EVP_MD_CTX_new(), EVP_MD_CTX_free);
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Failed to create context for verifying signature");
}
if (EVP_DigestVerifyInit(ctx.get(), nullptr, hasher(), nullptr, d_key.get()) == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to initialize context for verifying signature");
}
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
const int ret = EVP_DigestVerify(ctx.get(), reinterpret_cast<const unsigned char*>(signature.data()), signature.size(), reinterpret_cast<const unsigned char*>(message.data()), message.size());
if (ret < 0) {
throw pdns::OpenSSL::error(getName(), "Failed to verify message signature");
}
return (ret == 1);
#else
string l_hash = this->hash(message);
int hashKind = hashSizeToKind(l_hash.size());
int ret = RSA_verify(hashKind, (const unsigned char*)l_hash.c_str(), l_hash.length(), (unsigned char*)signature.c_str(), signature.length(), d_key.get());
return (ret == 1);
#endif
}
std::string OpenSSLRSADNSCryptoKeyEngine::getPublicKeyString() const
{
#if OPENSSL_VERSION_MAJOR >= 3
// If any of those calls throw, we correctly free the BIGNUMs allocated before it.
BigNum modulusPtr = getKeyParamModulus();
BigNum publicExponentPtr = getKeyParamPublicExponent();
// All the calls succeeded, we can take references to the BIGNUM pointers.
BIGNUM* modulus = modulusPtr.get();
BIGNUM* publicExponent = publicExponentPtr.get();
#else
const BIGNUM* modulus = nullptr;
const BIGNUM* publicExponent = nullptr;
const BIGNUM* privateExponent = nullptr;
RSA_get0_key(d_key.get(), &modulus, &publicExponent, &privateExponent);
#endif
string keystring;
std::string tmp;
tmp.resize(std::max(BN_num_bytes(publicExponent), BN_num_bytes(modulus)));
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
int len = BN_bn2bin(publicExponent, reinterpret_cast<unsigned char*>(&tmp.at(0)));
if (len < 255) {
keystring.assign(1, (char)(unsigned int)len);
}
else {
keystring.assign(1, 0);
uint16_t tempLen = len;
tempLen = htons(tempLen);
keystring.append((char*)&tempLen, 2);
}
keystring.append(&tmp.at(0), len);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
len = BN_bn2bin(modulus, reinterpret_cast<unsigned char*>(&tmp.at(0)));
keystring.append(&tmp.at(0), len);
return keystring;
}
void OpenSSLRSADNSCryptoKeyEngine::fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap)
{
auto modulus = mapToBN(getName(), stormap, "modulus");
auto publicExponent = mapToBN(getName(), stormap, "publicexponent");
auto privateExponent = mapToBN(getName(), stormap, "privateexponent");
auto prime1 = mapToBN(getName(), stormap, "prime1");
auto prime2 = mapToBN(getName(), stormap, "prime2");
auto dmp1 = mapToBN(getName(), stormap, "exponent1");
auto dmq1 = mapToBN(getName(), stormap, "exponent2");
auto iqmp = mapToBN(getName(), stormap, "coefficient");
pdns::checked_stoi_into(drc.d_algorithm, stormap["algorithm"]);
if (drc.d_algorithm != d_algorithm) {
throw runtime_error(getName() + " tried to feed an algorithm " + std::to_string(drc.d_algorithm) + " to a " + std::to_string(d_algorithm) + " key");
}
#if OPENSSL_VERSION_MAJOR >= 3
auto params = makeKeyParams(modulus.get(), publicExponent.get(), privateExponent.get(), prime1.get(), prime2.get(), dmp1.get(), dmq1.get(), iqmp.get());
auto ctx = KeyContext(EVP_PKEY_CTX_new_from_name(nullptr, "RSA", nullptr), EVP_PKEY_CTX_free);
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Could not create key context");
}
if (EVP_PKEY_fromdata_init(ctx.get()) <= 0) {
throw pdns::OpenSSL::error(getName(), "Could not initialize key context for loading data from ISC");
}
EVP_PKEY* key = nullptr;
if (EVP_PKEY_fromdata(ctx.get(), &key, EVP_PKEY_KEYPAIR, params.get()) <= 0) {
throw pdns::OpenSSL::error(getName(), "Could not create key from parameters");
}
d_key.reset(key);
#else
auto key = Key(RSA_new(), RSA_free);
if (!key) {
throw runtime_error(getName() + " allocation of key structure failed");
}
// Everything OK, we're releasing ownership since the RSA_* functions want it
RSA_set0_key(key.get(), modulus.release(), publicExponent.release(), privateExponent.release());
RSA_set0_factors(key.get(), prime1.release(), prime2.release());
RSA_set0_crt_params(key.get(), dmp1.release(), dmq1.release(), iqmp.release());
d_key = std::move(key);
#endif
}
bool OpenSSLRSADNSCryptoKeyEngine::checkKey(std::optional<std::reference_wrapper<std::vector<std::string>>> errorMessages) const
{
bool retval = true;
// When changing the bitsizes, also edit them in ::create
if ((d_algorithm == DNSSECKeeper::RSASHA1 || d_algorithm == DNSSECKeeper::RSASHA1NSEC3SHA1 || d_algorithm == DNSSECKeeper::RSASHA256) && (getBits() < 512 || getBits() > 4096)) {
retval = false;
if (errorMessages.has_value()) {
errorMessages->get().push_back("key is " + std::to_string(getBits()) + " bytes, should be between 512 and 4096");
}
}
if (d_algorithm == DNSSECKeeper::RSASHA512 && (getBits() < 1024 || getBits() > 4096)) {
retval = false;
if (errorMessages.has_value()) {
errorMessages->get().push_back("key is " + std::to_string(getBits()) + " bytes, should be between 1024 and 4096");
}
}
#if OPENSSL_VERSION_MAJOR >= 3
auto ctx = KeyContext(EVP_PKEY_CTX_new_from_pkey(nullptr, d_key.get(), nullptr), EVP_PKEY_CTX_free);
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Cannot create context to check key");
}
if (EVP_PKEY_pairwise_check(ctx.get()) != 1) {
#else
if (RSA_check_key(d_key.get()) != 1) {
#endif
retval = false;
if (errorMessages.has_value()) {
const auto* errmsg = ERR_error_string(ERR_get_error(), nullptr);
if (errmsg == nullptr) {
errmsg = "Unknown OpenSSL error";
}
errorMessages->get().emplace_back(errmsg);
}
}
return retval;
}
void OpenSSLRSADNSCryptoKeyEngine::fromPublicKeyString(const std::string& content)
{
string publicExponent;
string modulus;
const size_t contentLen = content.length();
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
const auto* raw = reinterpret_cast<const unsigned char*>(content.c_str());
if (contentLen < 1) {
throw runtime_error(getName() + " invalid input size for the public key");
}
if (raw[0] != 0) {
const size_t exponentSize = raw[0];
if (contentLen < (exponentSize + 2)) {
throw runtime_error(getName() + " invalid input size for the public key");
}
publicExponent = content.substr(1, exponentSize);
modulus = content.substr(exponentSize + 1);
}
else {
if (contentLen < 3) {
throw runtime_error(getName() + " invalid input size for the public key");
}
const size_t exponentSize = raw[1] * 0xff + raw[2];
if (contentLen < (exponentSize + 4)) {
throw runtime_error(getName() + " invalid input size for the public key");
}
publicExponent = content.substr(3, exponentSize);
modulus = content.substr(exponentSize + 3);
}
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
auto publicExponentBN = BigNum(BN_bin2bn(reinterpret_cast<unsigned char*>(const_cast<char*>(publicExponent.c_str())), static_cast<int>(publicExponent.length()), nullptr), BN_clear_free);
if (!publicExponentBN) {
throw runtime_error(getName() + " error loading public exponent (e) value of public key");
}
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
auto modulusBN = BigNum(BN_bin2bn(reinterpret_cast<unsigned char*>(const_cast<char*>(modulus.c_str())), static_cast<int>(modulus.length()), nullptr), BN_clear_free);
if (!modulusBN) {
throw runtime_error(getName() + " error loading modulus (n) value of public key");
}
#if OPENSSL_VERSION_MAJOR >= 3
auto params = makeKeyParams(modulusBN.get(), publicExponentBN.get(), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr);
auto ctx = KeyContext(EVP_PKEY_CTX_new_from_name(nullptr, "RSA", nullptr), EVP_PKEY_CTX_free);
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Cannot create context to load key from public key data");
}
if (EVP_PKEY_fromdata_init(ctx.get()) <= 0) {
throw pdns::OpenSSL::error(getName(), "Could not initialize key context for loading data to check key");
}
EVP_PKEY* key = nullptr;
if (EVP_PKEY_fromdata(ctx.get(), &key, EVP_PKEY_PUBLIC_KEY, params.get()) <= 0) {
throw pdns::OpenSSL::error(getName(), "Could not create public key from parameters");
}
d_key.reset(key);
#else
auto key = Key(RSA_new(), RSA_free);
if (!key) {
throw runtime_error(getName() + " allocation of key structure failed");
}
RSA_set0_key(key.get(), modulusBN.release(), publicExponentBN.release(), nullptr);
d_key = std::move(key);
#endif
}
#ifdef HAVE_LIBCRYPTO_ECDSA
class OpenSSLECDSADNSCryptoKeyEngine : public DNSCryptoKeyEngine
{
public:
explicit OpenSSLECDSADNSCryptoKeyEngine(unsigned int algo);
[[nodiscard]] string getName() const override { return "OpenSSL ECDSA"; }
[[nodiscard]] int getBits() const override;
void create(unsigned int bits) override;
/**
* \brief Creates an ECDSA key engine from a PEM file.
*
* Receives an open file handle with PEM contents and creates an ECDSA key engine.
*
* \param[in] drc Key record contents to be populated.
*
* \param[in] inputFile An open file handle to a file containing ECDSA PEM contents.
*
* \param[in] filename Only used for providing filename information in error messages.
*
* \return An ECDSA key engine populated with the contents of the PEM file.
*/
void createFromPEMFile(DNSKEYRecordContent& drc, std::FILE& inputFile, std::optional<std::reference_wrapper<const std::string>> filename = std::nullopt) override;
/**
* \brief Writes this key's contents to a file.
*
* Receives an open file handle and writes this key's contents to the
* file.
*
* \param[in] outputFile An open file handle for writing.
*
* \exception std::runtime_error In case of OpenSSL errors.
*/
void convertToPEMFile(std::FILE& outputFile) const override;
[[nodiscard]] storvector_t convertToISCVector() const override;
[[nodiscard]] std::string hash(const std::string& message) const override;
[[nodiscard]] std::string sign(const std::string& message) const override;
[[nodiscard]] bool verify(const std::string& message, const std::string& signature) const override;
[[nodiscard]] std::string getPublicKeyString() const override;
void fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) override;
void fromPublicKeyString(const std::string& content) override;
[[nodiscard]] bool checkKey(std::optional<std::reference_wrapper<std::vector<std::string>>> errorMessages) const override;
// TODO Fred: hashSize() and hasher() can probably be completely removed along with
// hash(). See #12464.
[[nodiscard]] std::size_t hashSize() const;
[[nodiscard]] const EVP_MD* hasher() const;
static std::unique_ptr<DNSCryptoKeyEngine> maker(unsigned int algorithm)
{
return make_unique<OpenSSLECDSADNSCryptoKeyEngine>(algorithm);
}
private:
#if OPENSSL_VERSION_MAJOR >= 3
using BigNumContext = std::unique_ptr<BN_CTX, decltype(&BN_CTX_free)>;
using ParamsBuilder = std::unique_ptr<OSSL_PARAM_BLD, decltype(&OSSL_PARAM_BLD_free)>;
using Params = std::unique_ptr<OSSL_PARAM, decltype(&OSSL_PARAM_free)>;
auto makeKeyParams(const std::string& group_name, const BIGNUM* privateKey, const std::optional<std::string>& publicKey) const -> Params;
[[nodiscard]] auto getPrivateKey() const -> BigNum;
#endif
#if OPENSSL_VERSION_MAJOR >= 3
using Key = std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>;
using MessageDigestContext = std::unique_ptr<EVP_MD_CTX, decltype(&EVP_MD_CTX_free)>;
#else
using Key = std::unique_ptr<EC_KEY, decltype(&EC_KEY_free)>;
#endif
using KeyContext = std::unique_ptr<EVP_PKEY_CTX, decltype(&EVP_PKEY_CTX_free)>;
using Group = std::unique_ptr<EC_GROUP, decltype(&EC_GROUP_free)>;
using Point = std::unique_ptr<EC_POINT, decltype(&EC_POINT_free)>;
using Signature = std::unique_ptr<ECDSA_SIG, decltype(&ECDSA_SIG_free)>;
int d_len{0};
std::string d_group_name{};
Group d_group{nullptr, EC_GROUP_free};
#if OPENSSL_VERSION_MAJOR >= 3
Key d_eckey{Key(nullptr, EVP_PKEY_free)};
#else
Key d_eckey{Key(nullptr, EC_KEY_free)};
#endif
};
int OpenSSLECDSADNSCryptoKeyEngine::getBits() const
{
return d_len << 3;
}
OpenSSLECDSADNSCryptoKeyEngine::OpenSSLECDSADNSCryptoKeyEngine(unsigned int algo) :
DNSCryptoKeyEngine(algo)
#if OPENSSL_VERSION_MAJOR < 3
,
d_eckey(Key(EC_KEY_new(), EC_KEY_free))
#endif
{
int ret = RAND_status();
if (ret != 1) {
throw runtime_error(getName() + " insufficient entropy");
}
#if OPENSSL_VERSION_MAJOR < 3
if (!d_eckey) {
throw runtime_error(getName() + " allocation of key structure failed");
}
#endif
int d_id{0};
if (d_algorithm == 13) {
d_group_name = "P-256";
d_len = 32;
d_id = NID_X9_62_prime256v1;
}
else if (d_algorithm == 14) {
d_group_name = "P-384";
d_len = 48;
d_id = NID_secp384r1;
}
else {
throw runtime_error(getName() + " unknown algorithm " + std::to_string(d_algorithm));
}
d_group = Group(EC_GROUP_new_by_curve_name(d_id), EC_GROUP_free);
if (d_group == nullptr) {
throw pdns::OpenSSL::error(getName(), std::string() + "Failed to create EC group `" + d_group_name + "` to export public key");
}
#if OPENSSL_VERSION_MAJOR < 3
ret = EC_KEY_set_group(d_eckey.get(), d_group.get());
if (ret != 1) {
throw runtime_error(getName() + " setting key group failed");
}
#endif
}
void OpenSSLECDSADNSCryptoKeyEngine::create(unsigned int bits)
{
if (bits >> 3 != static_cast<unsigned int>(d_len)) {
throw runtime_error(getName() + " unknown key length of " + std::to_string(bits) + " bits requested");
}
#if OPENSSL_VERSION_MAJOR >= 3
// NOLINTNEXTLINE(*-vararg): Using OpenSSL C APIs.
EVP_PKEY* key = EVP_PKEY_Q_keygen(nullptr, nullptr, "EC", d_group_name.c_str());
if (key == nullptr) {
throw pdns::OpenSSL::error(getName(), "Failed to generate key");
}
d_eckey.reset(key);
#else
int res = EC_KEY_generate_key(d_eckey.get());
if (res == 0) {
throw runtime_error(getName() + " key generation failed");
}
EC_KEY_set_asn1_flag(d_eckey.get(), OPENSSL_EC_NAMED_CURVE);
#endif
}
void OpenSSLECDSADNSCryptoKeyEngine::createFromPEMFile(DNSKEYRecordContent& drc, std::FILE& inputFile, std::optional<std::reference_wrapper<const std::string>> filename)
{
drc.d_algorithm = d_algorithm;
#if OPENSSL_VERSION_MAJOR >= 3
EVP_PKEY* key = nullptr;
if (PEM_read_PrivateKey(&inputFile, &key, nullptr, nullptr) == nullptr) {
if (filename.has_value()) {
throw pdns::OpenSSL::error(getName(), "Failed to read private key from PEM file `" + filename->get() + "`");
}
throw pdns::OpenSSL::error(getName(), "Failed to read private key from PEM contents");
}
d_eckey.reset(key);
#else
d_eckey = Key(PEM_read_ECPrivateKey(&inputFile, nullptr, nullptr, nullptr), &EC_KEY_free);
if (d_eckey == nullptr) {
if (filename.has_value()) {
throw runtime_error(getName() + ": Failed to read private key from PEM file `" + filename->get() + "`");
}
throw runtime_error(getName() + ": Failed to read private key from PEM contents");
}
int ret = EC_KEY_set_group(d_eckey.get(), d_group.get());
if (ret != 1) {
throw runtime_error(getName() + " setting key group failed");
}
const BIGNUM* privateKeyBN = EC_KEY_get0_private_key(d_eckey.get());
auto pub_key = Point(EC_POINT_new(d_group.get()), EC_POINT_free);
if (!pub_key) {
throw runtime_error(getName() + " allocation of public key point failed");
}
ret = EC_POINT_mul(d_group.get(), pub_key.get(), privateKeyBN, nullptr, nullptr, nullptr);
if (ret != 1) {
throw runtime_error(getName() + " computing public key from private failed");
}
ret = EC_KEY_set_public_key(d_eckey.get(), pub_key.get());
if (ret != 1) {
ERR_print_errors_fp(stderr);
throw runtime_error(getName() + " setting public key failed");
}
EC_KEY_set_asn1_flag(d_eckey.get(), OPENSSL_EC_NAMED_CURVE);
#endif
}
void OpenSSLECDSADNSCryptoKeyEngine::convertToPEMFile(std::FILE& outputFile) const
{
#if OPENSSL_VERSION_MAJOR >= 3
if (PEM_write_PrivateKey(&outputFile, d_eckey.get(), nullptr, nullptr, 0, nullptr, nullptr) == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to convert private key to PEM");
}
#else
auto ret = PEM_write_ECPrivateKey(&outputFile, d_eckey.get(), nullptr, nullptr, 0, nullptr, nullptr);
if (ret == 0) {
throw runtime_error(getName() + ": Could not convert private key to PEM");
}
#endif
}
#if OPENSSL_VERSION_MAJOR >= 3
auto OpenSSLECDSADNSCryptoKeyEngine::getPrivateKey() const -> BigNum
{
BIGNUM* privateKey = nullptr;
if (EVP_PKEY_get_bn_param(d_eckey.get(), OSSL_PKEY_PARAM_PRIV_KEY, &privateKey) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get private key parameter");
}
return BigNum{privateKey, BN_clear_free};
}
#endif
DNSCryptoKeyEngine::storvector_t OpenSSLECDSADNSCryptoKeyEngine::convertToISCVector() const
{
storvector_t storvect;
string algorithm;
if (d_algorithm == 13) {
algorithm = "13 (ECDSAP256SHA256)";
}
else if (d_algorithm == 14) {
algorithm = "14 (ECDSAP384SHA384)";
}
else {
algorithm = " ? (?)";
}
storvect.emplace_back("Algorithm", algorithm);
#if OPENSSL_VERSION_MAJOR >= 3
auto privateKeyBN = getPrivateKey();
std::string privateKey;
privateKey.resize(BN_num_bytes(privateKeyBN.get()));
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
int len = BN_bn2bin(privateKeyBN.get(), reinterpret_cast<unsigned char*>(privateKey.data()));
if (len >= 0) {
privateKey.resize(len);
std::string prefix;
if (d_len - len != 0) {
prefix.append(d_len - len, 0x00);
}
storvect.emplace_back("PrivateKey", prefix + privateKey);
}
#else
const BIGNUM* key = EC_KEY_get0_private_key(d_eckey.get());
if (key == nullptr) {
throw runtime_error(getName() + " private key not set");
}
std::string tmp;
tmp.resize(BN_num_bytes(key));
int len = BN_bn2bin(key, reinterpret_cast<unsigned char*>(&tmp.at(0)));
string prefix;
if (d_len - len) {
prefix.append(d_len - len, 0x00);
}
storvect.emplace_back("PrivateKey", prefix + tmp);
#endif
return storvect;
}
std::string OpenSSLECDSADNSCryptoKeyEngine::hash(const std::string& message) const
{
if (getBits() == 256) {
std::string l_hash{};
l_hash.resize(SHA256_DIGEST_LENGTH);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
SHA256(reinterpret_cast<unsigned char*>(const_cast<char*>(message.c_str())), message.length(), reinterpret_cast<unsigned char*>(l_hash.data()));
return l_hash;
}
if (getBits() == 384) {
std::string l_hash{};
l_hash.resize(SHA384_DIGEST_LENGTH);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
SHA384(reinterpret_cast<unsigned char*>(const_cast<char*>(message.c_str())), message.length(), reinterpret_cast<unsigned char*>(l_hash.data()));
return l_hash;
}
throw runtime_error(getName() + " does not support a hash size of " + std::to_string(getBits()) + " bits");
}
const EVP_MD* OpenSSLECDSADNSCryptoKeyEngine::hasher() const
{
const EVP_MD* messageDigest = nullptr;
switch (d_algorithm) {
case DNSSECKeeper::ECDSA256:
messageDigest = EVP_sha256();
break;
case DNSSECKeeper::ECDSA384:
messageDigest = EVP_sha384();
break;
default:
throw runtime_error(getName() + " does not support hash operations for algorithm " + std::to_string(d_algorithm));
}
if (messageDigest == nullptr) {
throw std::runtime_error("Could not retrieve a SHA implementation of size " + std::to_string(hashSize()) + " from OpenSSL");
}
return messageDigest;
}
std::size_t OpenSSLECDSADNSCryptoKeyEngine::hashSize() const
{
switch (d_algorithm) {
case DNSSECKeeper::ECDSA256:
return SHA256_DIGEST_LENGTH;
case DNSSECKeeper::ECDSA384:
return SHA384_DIGEST_LENGTH;
default:
throw runtime_error(getName() + " does not support hash operations for algorithm " + std::to_string(d_algorithm));
}
}
std::string OpenSSLECDSADNSCryptoKeyEngine::sign(const std::string& message) const
{
#if OPENSSL_VERSION_MAJOR >= 3
auto ctx = MessageDigestContext(EVP_MD_CTX_new(), EVP_MD_CTX_free);
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Could not create context for signing");
}
if (EVP_DigestSignInit(ctx.get(), nullptr, hasher(), nullptr, d_eckey.get()) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not initialize context for signing");
}
std::size_t signatureLen = 0;
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
const auto* messageData = reinterpret_cast<const unsigned char*>(message.data());
if (EVP_DigestSign(ctx.get(), nullptr, &signatureLen, messageData, message.size()) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not get message signature length");
}
std::string signatureBuffer;
signatureBuffer.resize(signatureLen);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
auto* signatureData = reinterpret_cast<unsigned char*>(signatureBuffer.data());
if (EVP_DigestSign(ctx.get(), signatureData, &signatureLen, messageData, message.size()) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not sign message");
}
signatureBuffer.resize(signatureLen);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
auto signature = Signature(d2i_ECDSA_SIG(nullptr, const_cast<const unsigned char**>(&signatureData), (long)signatureLen), ECDSA_SIG_free);
if (signature == nullptr) {
throw pdns::OpenSSL::error(getName(), "Failed to convert DER signature to internal structure");
}
#else
string l_hash = this->hash(message);
auto signature = Signature(ECDSA_do_sign((unsigned char*)l_hash.c_str(), l_hash.length(), d_eckey.get()), ECDSA_SIG_free);
if (!signature) {
throw runtime_error(getName() + " failed to generate signature");
}
#endif
string ret;
std::string tmp;
tmp.resize(d_len);
const BIGNUM* prComponent = nullptr;
const BIGNUM* psComponent = nullptr;
ECDSA_SIG_get0(signature.get(), &prComponent, &psComponent);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
int len = BN_bn2bin(prComponent, reinterpret_cast<unsigned char*>(&tmp.at(0)));
if ((d_len - len) != 0) {
ret.append(d_len - len, 0x00);
}
ret.append(&tmp.at(0), len);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
len = BN_bn2bin(psComponent, reinterpret_cast<unsigned char*>(&tmp.at(0)));
if ((d_len - len) != 0) {
ret.append(d_len - len, 0x00);
}
ret.append(&tmp.at(0), len);
return ret;
}
bool OpenSSLECDSADNSCryptoKeyEngine::verify(const std::string& message, const std::string& signature) const
{
if (signature.length() != (static_cast<unsigned long>(d_len) * 2)) {
throw runtime_error(getName() + " invalid signature size " + std::to_string(signature.length()));
}
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
auto* signatureCStr = const_cast<unsigned char*>(reinterpret_cast<const unsigned char*>(signature.c_str()));
auto rComponent = BigNum(BN_bin2bn(signatureCStr, d_len, nullptr), BN_free);
auto sComponent = BigNum(BN_bin2bn(signatureCStr + d_len, d_len, nullptr), BN_free);
if (!rComponent || !sComponent) {
throw runtime_error(getName() + " invalid signature");
}
auto sig = Signature(ECDSA_SIG_new(), ECDSA_SIG_free);
if (!sig) {
throw runtime_error(getName() + " allocation of signature structure failed");
}
ECDSA_SIG_set0(sig.get(), rComponent.release(), sComponent.release());
#if OPENSSL_VERSION_MAJOR >= 3
unsigned char* derBufferPointer = nullptr;
const int derBufferSize = i2d_ECDSA_SIG(sig.get(), &derBufferPointer);
if (derBufferSize < 0) {
throw pdns::OpenSSL::error(getName(), "Failed to convert signature to DER");
}
// Because OPENSSL_free() is a macro.
auto derBuffer = unique_ptr<unsigned char, void (*)(unsigned char*)>{derBufferPointer, [](auto* buffer) { OPENSSL_free(buffer); }};
auto ctx = MessageDigestContext(EVP_MD_CTX_new(), EVP_MD_CTX_free);
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Could not create message digest context for signing");
}
if (EVP_DigestVerifyInit(ctx.get(), nullptr, hasher(), nullptr, d_eckey.get()) == 0) {
throw pdns::OpenSSL::error(getName(), "Could not initialize context for verifying signature");
}
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
const auto ret = EVP_DigestVerify(ctx.get(), derBuffer.get(), derBufferSize, reinterpret_cast<const unsigned char*>(message.data()), message.size());
if (ret < 0) {
throw pdns::OpenSSL::error(getName(), "Could not verify message signature");
}
return (ret == 1);
#else
string l_hash = this->hash(message);
int ret = ECDSA_do_verify((unsigned char*)l_hash.c_str(), l_hash.length(), sig.get(), d_eckey.get());
if (ret == -1) {
throw runtime_error(getName() + " verify error");
}
return (ret == 1);
#endif
}
std::string OpenSSLECDSADNSCryptoKeyEngine::getPublicKeyString() const
{
#if OPENSSL_VERSION_MAJOR >= 3
size_t bufsize = 0;
if (EVP_PKEY_get_octet_string_param(d_eckey.get(), OSSL_PKEY_PARAM_PUB_KEY, nullptr, 0, &bufsize) == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to get public key buffer size");
}
std::string publicKey{};
publicKey.resize(bufsize);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
auto* publicKeyCStr = const_cast<unsigned char*>(reinterpret_cast<const unsigned char*>(publicKey.c_str()));
if (EVP_PKEY_get_octet_string_param(d_eckey.get(), OSSL_PKEY_PARAM_PUB_KEY, publicKeyCStr, bufsize, &bufsize) == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to get public key");
}
publicKey.resize(bufsize);
auto publicKeyECPoint = Point(EC_POINT_new(d_group.get()), EC_POINT_free);
if (publicKeyECPoint == nullptr) {
throw pdns::OpenSSL::error(getName(), "Failed to create public key point for export");
}
auto ctx = BigNumContext(BN_CTX_new(), BN_CTX_free);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
publicKeyCStr = const_cast<unsigned char*>(reinterpret_cast<const unsigned char*>(publicKey.c_str()));
if (EC_POINT_oct2point(d_group.get(), publicKeyECPoint.get(), publicKeyCStr, publicKey.length(), ctx.get()) == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to export public key to point");
}
std::string publicKeyUncompressed{};
bufsize = EC_POINT_point2oct(d_group.get(), publicKeyECPoint.get(), POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr);
if (bufsize == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to get public key binary buffer size");
}
publicKeyUncompressed.resize(bufsize);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
auto* publicKeyUncompressedCStr = const_cast<unsigned char*>(reinterpret_cast<const unsigned char*>(publicKeyUncompressed.c_str()));
bufsize = EC_POINT_point2oct(d_group.get(), publicKeyECPoint.get(), POINT_CONVERSION_UNCOMPRESSED, publicKeyUncompressedCStr, publicKeyUncompressed.length(), nullptr);
if (bufsize == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to convert public key to oct");
}
/* We skip the first byte as the other backends use raw field elements, as opposed to
* the format described in SEC1: "2.3.3 Elliptic-Curve-Point-to-Octet-String
* Conversion" */
publicKeyUncompressed.erase(0, 1);
return publicKeyUncompressed;
#else
std::string binaryPoint;
binaryPoint.resize((d_len * 2) + 1);
int ret = EC_POINT_point2oct(d_group.get(), EC_KEY_get0_public_key(d_eckey.get()), POINT_CONVERSION_UNCOMPRESSED, reinterpret_cast<unsigned char*>(&binaryPoint.at(0)), binaryPoint.size(), nullptr);
if (ret == 0) {
throw runtime_error(getName() + " exporting point to binary failed");
}
/* we skip the first byte as the other backends use
raw field elements, as opposed to the format described in
SEC1: "2.3.3 Elliptic-Curve-Point-to-Octet-String Conversion" */
binaryPoint.erase(0, 1);
return binaryPoint;
#endif
}
#if OPENSSL_VERSION_MAJOR >= 3
auto OpenSSLECDSADNSCryptoKeyEngine::makeKeyParams(const std::string& group_name, const BIGNUM* privateKey, const std::optional<std::string>& publicKey) const -> Params
{
auto params_build = ParamsBuilder(OSSL_PARAM_BLD_new(), OSSL_PARAM_BLD_free);
if (params_build == nullptr) {
throw pdns::OpenSSL::error(getName(), "Failed to create key's parameters builder");
}
if ((!group_name.empty()) && OSSL_PARAM_BLD_push_utf8_string(params_build.get(), OSSL_PKEY_PARAM_GROUP_NAME, group_name.c_str(), group_name.length()) == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to create key's group parameter");
}
if ((privateKey != nullptr) && OSSL_PARAM_BLD_push_BN(params_build.get(), OSSL_PKEY_PARAM_PRIV_KEY, privateKey) == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to create private key parameter");
}
if (publicKey.has_value()) {
if (OSSL_PARAM_BLD_push_octet_string(params_build.get(), OSSL_PKEY_PARAM_PUB_KEY, publicKey->c_str(), publicKey->length()) == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to create public key parameter");
}
}
auto params = Params(OSSL_PARAM_BLD_to_param(params_build.get()), OSSL_PARAM_free);
if (params == nullptr) {
throw pdns::OpenSSL::error(getName(), "Failed to create key's parameters");
}
return params;
}
#endif
void OpenSSLECDSADNSCryptoKeyEngine::fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap)
{
drc.d_algorithm = atoi(stormap["algorithm"].c_str());
if (drc.d_algorithm != d_algorithm) {
throw runtime_error(getName() + " tried to feed an algorithm " + std::to_string(drc.d_algorithm) + " to a " + std::to_string(d_algorithm) + " key");
}
auto privateKey = mapToBN(getName(), stormap, "privatekey");
#if OPENSSL_VERSION_MAJOR >= 3
auto publicKeyECPoint = Point(EC_POINT_new(d_group.get()), EC_POINT_free);
if (publicKeyECPoint == nullptr) {
throw pdns::OpenSSL::error(getName(), "Failed to create public key point to import from ISC");
}
if (EC_POINT_mul(d_group.get(), publicKeyECPoint.get(), privateKey.get(), nullptr, nullptr, nullptr) == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to derive public key from ISC private key");
}
std::string publicKey{};
size_t bufsize = EC_POINT_point2oct(d_group.get(), publicKeyECPoint.get(), POINT_CONVERSION_COMPRESSED, nullptr, 0, nullptr);
if (bufsize == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to get public key binary buffer size");
}
publicKey.resize(bufsize);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
auto* publicKeyData = reinterpret_cast<unsigned char*>(publicKey.data());
bufsize = EC_POINT_point2oct(d_group.get(), publicKeyECPoint.get(), POINT_CONVERSION_COMPRESSED, publicKeyData, publicKey.length(), nullptr);
if (bufsize == 0) {
throw pdns::OpenSSL::error(getName(), "Failed to convert public key to oct");
}
auto params = makeKeyParams(d_group_name, privateKey.get(), std::make_optional(publicKey));
auto ctx = KeyContext(EVP_PKEY_CTX_new_from_name(nullptr, "EC", nullptr), EVP_PKEY_CTX_free);
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Could not create key context");
}
if (EVP_PKEY_fromdata_init(ctx.get()) <= 0) {
throw pdns::OpenSSL::error(getName(), "Could not initialize key context for loading data from ISC");
}
EVP_PKEY* key = nullptr;
if (EVP_PKEY_fromdata(ctx.get(), &key, EVP_PKEY_KEYPAIR, params.get()) <= 0) {
throw pdns::OpenSSL::error(getName(), "Could not create key from parameters");
}
d_eckey.reset(key);
#else
int ret = EC_KEY_set_private_key(d_eckey.get(), privateKey.get());
if (ret != 1) {
throw runtime_error(getName() + " setting private key failed");
}
auto pub_key = Point(EC_POINT_new(d_group.get()), EC_POINT_free);
if (!pub_key) {
throw runtime_error(getName() + " allocation of public key point failed");
}
ret = EC_POINT_mul(d_group.get(), pub_key.get(), privateKey.get(), nullptr, nullptr, nullptr);
if (ret != 1) {
throw runtime_error(getName() + " computing public key from private failed");
}
ret = EC_KEY_set_public_key(d_eckey.get(), pub_key.get());
if (ret != 1) {
throw runtime_error(getName() + " setting public key failed");
}
EC_KEY_set_asn1_flag(d_eckey.get(), OPENSSL_EC_NAMED_CURVE);
#endif
}
bool OpenSSLECDSADNSCryptoKeyEngine::checkKey(std::optional<std::reference_wrapper<std::vector<std::string>>> errorMessages) const
{
#if OPENSSL_VERSION_MAJOR >= 3
auto ctx = KeyContext{EVP_PKEY_CTX_new_from_pkey(nullptr, d_eckey.get(), nullptr), EVP_PKEY_CTX_free};
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Failed to create context to check key");
}
bool retval = true;
auto addOpenSSLErrorMessageOnFail = [errorMessages, &retval](const int errorCode, const auto defaultErrorMessage) {
// Error code of -2 means the check is not supported for the algorithm, which is fine.
if (errorCode != 1 && errorCode != -2) {
retval = false;
if (errorMessages.has_value()) {
const auto* errorMessage = ERR_reason_error_string(ERR_get_error());
if (errorMessage == nullptr) {
errorMessages->get().push_back(defaultErrorMessage);
}
else {
errorMessages->get().emplace_back(errorMessage);
}
}
}
};
addOpenSSLErrorMessageOnFail(EVP_PKEY_param_check(ctx.get()), getName() + "Unknown OpenSSL error during key param check");
addOpenSSLErrorMessageOnFail(EVP_PKEY_public_check(ctx.get()), getName() + "Unknown OpenSSL error during public key check");
addOpenSSLErrorMessageOnFail(EVP_PKEY_private_check(ctx.get()), getName() + "Unknown OpenSSL error during private key check");
addOpenSSLErrorMessageOnFail(EVP_PKEY_pairwise_check(ctx.get()), getName() + "Unknown OpenSSL error during key pairwise check");
return retval;
#else
bool retval = true;
if (EC_KEY_check_key(d_eckey.get()) != 1) {
retval = false;
if (errorMessages.has_value()) {
const auto* errmsg = ERR_reason_error_string(ERR_get_error());
if (errmsg == nullptr) {
errmsg = "Unknown OpenSSL error";
}
errorMessages->get().push_back(errmsg);
}
}
return retval;
#endif
}
void OpenSSLECDSADNSCryptoKeyEngine::fromPublicKeyString(const std::string& content)
{
#if OPENSSL_VERSION_MAJOR >= 3
/* uncompressed point, from SEC1: "2.3.4 Octet-String-to-Elliptic-Curve-Point
* Conversion"
*/
std::string publicKey = "\x04";
publicKey.append(content);
auto params = makeKeyParams(d_group_name, nullptr, std::make_optional(publicKey));
auto ctx = KeyContext(EVP_PKEY_CTX_new_from_name(nullptr, "EC", nullptr), EVP_PKEY_CTX_free);
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Failed to create key context");
}
if (EVP_PKEY_fromdata_init(ctx.get()) <= 0) {
throw pdns::OpenSSL::error(getName(), "Failed to initialize key context for loading data from ISC");
}
EVP_PKEY* key = nullptr;
if (EVP_PKEY_fromdata(ctx.get(), &key, EVP_PKEY_PUBLIC_KEY, params.get()) <= 0) {
throw pdns::OpenSSL::error(getName(), "Failed to create key from parameters");
}
d_eckey.reset(key);
#else
/* uncompressed point, from SEC1: "2.3.4 Octet-String-to-Elliptic-Curve-Point
* Conversion"
*/
string ecdsaPoint = "\x04";
ecdsaPoint.append(content);
auto pub_key = Point(EC_POINT_new(d_group.get()), EC_POINT_free);
if (!pub_key) {
throw runtime_error(getName() + " allocation of point structure failed");
}
int ret = EC_POINT_oct2point(d_group.get(), pub_key.get(), (unsigned char*)ecdsaPoint.c_str(), ecdsaPoint.length(), nullptr);
if (ret != 1) {
throw runtime_error(getName() + " reading ECP point from binary failed");
}
ret = EC_KEY_set_private_key(d_eckey.get(), nullptr);
if (ret == 1) {
throw runtime_error(getName() + " setting private key failed");
}
ret = EC_KEY_set_public_key(d_eckey.get(), pub_key.get());
if (ret != 1) {
throw runtime_error(getName() + " setting public key failed");
}
#endif
}
#endif
#ifdef HAVE_LIBCRYPTO_EDDSA
class OpenSSLEDDSADNSCryptoKeyEngine : public DNSCryptoKeyEngine
{
public:
explicit OpenSSLEDDSADNSCryptoKeyEngine(unsigned int algo);
[[nodiscard]] string getName() const override { return "OpenSSL EdDSA"; }
[[nodiscard]] int getBits() const override;
void create(unsigned int bits) override;
/**
* \brief Creates an EDDSA key engine from a PEM file.
*
* Receives an open file handle with PEM contents and creates an EDDSA key engine.
*
* \param[in] drc Key record contents to be populated.
*
* \param[in] inputFile An open file handle to a file containing EDDSA PEM contents.
*
* \param[in] filename Only used for providing filename information in error messages.
*
* \return An EDDSA key engine populated with the contents of the PEM file.
*/
void createFromPEMFile(DNSKEYRecordContent& drc, std::FILE& inputFile, std::optional<std::reference_wrapper<const std::string>> filename = std::nullopt) override;
/**
* \brief Writes this key's contents to a file.
*
* Receives an open file handle and writes this key's contents to the
* file.
*
* \param[in] outputFile An open file handle for writing.
*
* \exception std::runtime_error In case of OpenSSL errors.
*/
void convertToPEMFile(std::FILE& outputFile) const override;
[[nodiscard]] storvector_t convertToISCVector() const override;
[[nodiscard]] std::string sign(const std::string& msg) const override;
[[nodiscard]] bool verify(const std::string& message, const std::string& signature) const override;
[[nodiscard]] std::string getPublicKeyString() const override;
void fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap) override;
void fromPublicKeyString(const std::string& content) override;
[[nodiscard]] bool checkKey(std::optional<std::reference_wrapper<std::vector<std::string>>> errorMessages) const override;
static std::unique_ptr<DNSCryptoKeyEngine> maker(unsigned int algorithm)
{
return make_unique<OpenSSLEDDSADNSCryptoKeyEngine>(algorithm);
}
using Key = unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>;
using KeyContext = std::unique_ptr<EVP_PKEY_CTX, decltype(&EVP_PKEY_CTX_free)>;
using MessageDigestContext = std::unique_ptr<EVP_MD_CTX, decltype(&EVP_MD_CTX_free)>;
private:
size_t d_len{0};
int d_id{0};
Key d_edkey;
};
OpenSSLEDDSADNSCryptoKeyEngine::OpenSSLEDDSADNSCryptoKeyEngine(unsigned int algo) :
DNSCryptoKeyEngine(algo),
d_edkey(Key(nullptr, EVP_PKEY_free))
{
int ret = RAND_status();
if (ret != 1) {
throw runtime_error(getName() + " insufficient entropy");
}
#ifdef HAVE_LIBCRYPTO_ED25519
if (d_algorithm == 15) {
d_len = 32;
d_id = NID_ED25519;
}
#endif
#ifdef HAVE_LIBCRYPTO_ED448
if (d_algorithm == 16) {
d_len = 57;
d_id = NID_ED448;
}
#endif
if (d_len == 0) {
throw runtime_error(getName() + " unknown algorithm " + std::to_string(d_algorithm));
}
}
int OpenSSLEDDSADNSCryptoKeyEngine::getBits() const
{
return (int)d_len << 3;
}
bool OpenSSLEDDSADNSCryptoKeyEngine::checkKey([[maybe_unused]] std::optional<std::reference_wrapper<std::vector<std::string>>> errorMessages) const
{
#if OPENSSL_VERSION_MAJOR >= 3
auto ctx = KeyContext{EVP_PKEY_CTX_new_from_pkey(nullptr, d_edkey.get(), nullptr), EVP_PKEY_CTX_free};
if (ctx == nullptr) {
throw pdns::OpenSSL::error(getName(), "Failed to create context to check key");
}
bool retval = true;
auto addOpenSSLErrorMessageOnFail = [errorMessages, &retval](const int errorCode, const auto defaultErrorMessage) {
// Error code of -2 means the check is not supported for the algorithm, which is fine.
if (errorCode != 1 && errorCode != -2) {
retval = false;
if (errorMessages.has_value()) {
const auto* errorMessage = ERR_reason_error_string(ERR_get_error());
if (errorMessage == nullptr) {
errorMessages->get().push_back(defaultErrorMessage);
}
else {
errorMessages->get().emplace_back(errorMessage);
}
}
}
};
addOpenSSLErrorMessageOnFail(EVP_PKEY_param_check(ctx.get()), getName() + "Unknown OpenSSL error during key param check");
addOpenSSLErrorMessageOnFail(EVP_PKEY_public_check(ctx.get()), getName() + "Unknown OpenSSL error during public key check");
addOpenSSLErrorMessageOnFail(EVP_PKEY_private_check(ctx.get()), getName() + "Unknown OpenSSL error during private key check");
addOpenSSLErrorMessageOnFail(EVP_PKEY_pairwise_check(ctx.get()), getName() + "Unknown OpenSSL error during key pairwise check");
return retval;
#else
return (d_edkey ? true : false);
#endif
}
void OpenSSLEDDSADNSCryptoKeyEngine::create(unsigned int /* bits */)
{
auto pctx = KeyContext(EVP_PKEY_CTX_new_id(d_id, nullptr), EVP_PKEY_CTX_free);
if (!pctx) {
throw pdns::OpenSSL::error(getName(), "Context initialization failed");
}
if (EVP_PKEY_keygen_init(pctx.get()) < 1) {
throw pdns::OpenSSL::error(getName(), "Keygen initialization failed");
}
EVP_PKEY* newKey = nullptr;
if (EVP_PKEY_keygen(pctx.get(), &newKey) < 1) {
throw pdns::OpenSSL::error(getName(), "Key generation failed");
}
d_edkey.reset(newKey);
}
void OpenSSLEDDSADNSCryptoKeyEngine::createFromPEMFile(DNSKEYRecordContent& drc, std::FILE& inputFile, std::optional<std::reference_wrapper<const std::string>> filename)
{
drc.d_algorithm = d_algorithm;
d_edkey = Key(PEM_read_PrivateKey(&inputFile, nullptr, nullptr, nullptr), &EVP_PKEY_free);
if (d_edkey == nullptr) {
if (filename.has_value()) {
throw pdns::OpenSSL::error(getName(), "Failed to read private key from PEM file `" + filename->get() + "`");
}
throw pdns::OpenSSL::error(getName(), "Failed to read private key from PEM contents");
}
}
void OpenSSLEDDSADNSCryptoKeyEngine::convertToPEMFile(std::FILE& outputFile) const
{
auto ret = PEM_write_PrivateKey(&outputFile, d_edkey.get(), nullptr, nullptr, 0, nullptr, nullptr);
if (ret == 0) {
throw pdns::OpenSSL::error(getName(), "Could not convert private key to PEM");
}
}
DNSCryptoKeyEngine::storvector_t OpenSSLEDDSADNSCryptoKeyEngine::convertToISCVector() const
{
storvector_t storvect;
string algorithm;
#ifdef HAVE_LIBCRYPTO_ED25519
if (d_algorithm == 15) {
algorithm = "15 (ED25519)";
}
#endif
#ifdef HAVE_LIBCRYPTO_ED448
if (d_algorithm == 16) {
algorithm = "16 (ED448)";
}
#endif
if (algorithm.empty()) {
algorithm = " ? (?)";
}
storvect.emplace_back("Algorithm", algorithm);
string buf;
size_t len = d_len;
buf.resize(len);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
if (EVP_PKEY_get_raw_private_key(d_edkey.get(), reinterpret_cast<unsigned char*>(&buf.at(0)), &len) < 1) {
throw pdns::OpenSSL::error(getName(), "Could not get private key from d_edkey");
}
storvect.emplace_back("PrivateKey", buf);
return storvect;
}
std::string OpenSSLEDDSADNSCryptoKeyEngine::sign(const std::string& msg) const
{
auto mdctx = MessageDigestContext(EVP_MD_CTX_new(), EVP_MD_CTX_free);
if (!mdctx) {
throw pdns::OpenSSL::error(getName(), "MD context initialization failed");
}
if (EVP_DigestSignInit(mdctx.get(), nullptr, nullptr, nullptr, d_edkey.get()) < 1) {
throw pdns::OpenSSL::error(getName(), "Unable to initialize signer");
}
string msgToSign = msg;
size_t siglen = d_len * 2;
string signature;
signature.resize(siglen);
if (EVP_DigestSign(mdctx.get(),
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
reinterpret_cast<unsigned char*>(&signature.at(0)), &siglen,
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
reinterpret_cast<unsigned char*>(&msgToSign.at(0)), msgToSign.length())
< 1) {
throw pdns::OpenSSL::error(getName(), "Signing error");
}
return signature;
}
bool OpenSSLEDDSADNSCryptoKeyEngine::verify(const std::string& message, const std::string& signature) const
{
auto ctx = MessageDigestContext(EVP_MD_CTX_new(), EVP_MD_CTX_free);
if (!ctx) {
throw pdns::OpenSSL::error(getName(), "MD context initialization failed");
}
if (EVP_DigestVerifyInit(ctx.get(), nullptr, nullptr, nullptr, d_edkey.get()) < 1) {
throw pdns::OpenSSL::error(getName(), "Unable to initialize signer");
}
auto ret = EVP_DigestVerify(ctx.get(),
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
reinterpret_cast<const unsigned char*>(&signature.at(0)), signature.length(),
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
reinterpret_cast<const unsigned char*>(&message.at(0)), message.length());
if (ret < 0) {
throw pdns::OpenSSL::error(getName(), "Verification failure");
}
return (ret == 1);
}
std::string OpenSSLEDDSADNSCryptoKeyEngine::getPublicKeyString() const
{
string buf;
size_t len = d_len;
buf.resize(len);
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
if (EVP_PKEY_get_raw_public_key(d_edkey.get(), reinterpret_cast<unsigned char*>(&buf.at(0)), &len) < 1) {
throw pdns::OpenSSL::error(getName(), "Unable to get public key from key struct");
}
return buf;
}
void OpenSSLEDDSADNSCryptoKeyEngine::fromISCMap(DNSKEYRecordContent& drc, std::map<std::string, std::string>& stormap)
{
drc.d_algorithm = atoi(stormap["algorithm"].c_str());
if (drc.d_algorithm != d_algorithm) {
throw runtime_error(getName() + " tried to feed an algorithm " + std::to_string(drc.d_algorithm) + " to a " + std::to_string(d_algorithm) + " key");
}
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
d_edkey = Key(EVP_PKEY_new_raw_private_key(d_id, nullptr, reinterpret_cast<unsigned char*>(&stormap["privatekey"].at(0)), stormap["privatekey"].length()), EVP_PKEY_free);
if (!d_edkey) {
throw pdns::OpenSSL::error(getName(), "Could not create key structure from private key");
}
}
void OpenSSLEDDSADNSCryptoKeyEngine::fromPublicKeyString(const std::string& content)
{
if (content.length() != d_len) {
throw runtime_error(getName() + " wrong public key length for algorithm " + std::to_string(d_algorithm));
}
// NOLINTNEXTLINE(*-cast): Using OpenSSL C APIs.
const auto* raw = reinterpret_cast<const unsigned char*>(content.c_str());
d_edkey = Key(EVP_PKEY_new_raw_public_key(d_id, nullptr, raw, d_len), EVP_PKEY_free);
if (!d_edkey) {
throw pdns::OpenSSL::error(getName(), "Allocation of public key structure failed");
}
}
#endif // HAVE_LIBCRYPTO_EDDSA
namespace
{
const struct LoaderStruct
{
LoaderStruct()
{
DNSCryptoKeyEngine::report(DNSSECKeeper::RSASHA1, &OpenSSLRSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(DNSSECKeeper::RSASHA1NSEC3SHA1, &OpenSSLRSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(DNSSECKeeper::RSASHA256, &OpenSSLRSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(DNSSECKeeper::RSASHA512, &OpenSSLRSADNSCryptoKeyEngine::maker);
#ifdef HAVE_LIBCRYPTO_ECDSA
DNSCryptoKeyEngine::report(DNSSECKeeper::ECDSA256, &OpenSSLECDSADNSCryptoKeyEngine::maker);
DNSCryptoKeyEngine::report(DNSSECKeeper::ECDSA384, &OpenSSLECDSADNSCryptoKeyEngine::maker);
#endif
#ifdef HAVE_LIBCRYPTO_ED25519
DNSCryptoKeyEngine::report(DNSSECKeeper::ED25519, &OpenSSLEDDSADNSCryptoKeyEngine::maker);
#endif
#ifdef HAVE_LIBCRYPTO_ED448
DNSCryptoKeyEngine::report(DNSSECKeeper::ED448, &OpenSSLEDDSADNSCryptoKeyEngine::maker);
#endif
}
} loaderOpenSSL;
}
|