1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
|
/*
* Pure Data Packet. portable image processing routines.
* Copyright (c) 2003-2012 by Tom Schouten <tom@zwizwa.be>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
/* Check this file for the relation between the more generic names and
the direct wrappers for the MMX instructions.
For GCC 4.6 on Debian this is in:
/usr/lib/gcc/x86_64-linux-gnu/4.6/include/mmintrin.h */
#include <mmintrin.h>
/* General remarks on MMX code.
PMUL
----
There is only one kind of multiplication implemented by 2
instructions, both operating on signed 16 bit values grouped in 4
element vectors
(4 x s16, 4 x s16) -> 4 x s16 (hi) | 4 x u16 (lo)
_mm_mullo_pi16() -> returns low 16 bits
_mm_mulhi_pi16() -> returns high 16 bits
Most code below uses _mm_mulhi_pi16()
If you _interpret_ the data as fixed point s.15, meaing 1 sign bit,
15 fractional bits, the _interpretation_ of _mm_mulhi_pi16(a,b) is
(a x b) / 2
PACK / PUNPCK
-------------
In general:
PACK: Reduce the word size by throwing away the upper bits
PUNPCK: Increase the word size by appending upper bits.
PACK comes in two variants: signed and unsigned saturation. This
is fairly straightforward. If you want to throw away lower bits,
do a shift first.
PACK does not interleave vectors.
PUNPCK is the only one that interleaves vectors. It comes in two
variants, taking data from the low or high words of the operand
vectors.
http://www.tommesani.com/MMXPrimer.html
*/
#include "pdp_imageproc.h"
#ifdef DEBUG
#define INLINE
#else
#define INLINE inline
//#define INLINE __attribute__((always_inline))
#endif
/* pdp memory alloc/dealloc prototype */
void *pdp_alloc(int size);
void pdp_dealloc(void *);
/* This should be the native signed machine word, i.e. 64 bit on 64
bit arch, 32 bit on 32 bit arch. */
typedef int word_t;
typedef union {
__m64 v;
s16 s[4]; // short
u16 us[4]; // short
word_t w; // only low 32 bits are used
} v4_t;
typedef union {
__m64 v;
u32 l[2]; // long
} v2_t;
#define CLAMP16(x) (((x) > 0x7fff) ? 0x7fff : (((x) < -0x7fff) ? -0x7fff : (x)))
// utility stuff
inline static s16 float2fixed(float f)
{
if (f > 1) f = 1;
if (f < -1) f = -1;
f *= 0x7fff;
return (s16)f;
}
inline static void setvec(s16 *v, float f)
{
s16 a = float2fixed(f);
v[0] = a;
v[1] = a;
v[2] = a;
v[3] = a;
}
// GCC what? 4.7 ??
#define __builtin_assume_aligned(x,a) x
// add two images
void pdp_imageproc_add_process(void __attribute__((unused)) *x,
u32 width, u32 height,
s16 *image, s16 *image2) {
__m64 *im = __builtin_assume_aligned((void*)image, 16);
__m64 *im2 = __builtin_assume_aligned((void*)image2, 16);
int a, b;
unsigned int v, v_max = width * height / 4;
for (v = 0; v < v_max; v++) {
im[v] = _mm_adds_pi16(im[v], im2[v]);
}
_mm_empty();
}
// mul two images
void pdp_imageproc_mul_process(void __attribute__((unused)) *x,
u32 width, u32 height, s16 *image, s16 *image2)
{
__m64 *im = (void*)image;
__m64 *im2 = (void*)image2;
int a, b;
unsigned int v, v_max = width * height / 4;
for (v = 0; v < v_max; v++) {
im[v] = _mm_mulhi_pi16(im[v], im2[v]);
}
_mm_empty();
}
// mix 2 images
#define MIX_SIZE 8*sizeof(s16)
void *pdp_imageproc_mix_new(void){return pdp_alloc(MIX_SIZE);}
int pdp_imageproc_mix_nb_stackwords(void){return PDP_IMAGEPROC_NB_STACKWORDS(MIX_SIZE);}
void pdp_imageproc_mix_delete(void *x) {pdp_dealloc (x);}
void pdp_imageproc_mix_setleftgain(void *x, float gain){setvec((s16 *)x, gain);}
void pdp_imageproc_mix_setrightgain(void *x, float gain){setvec((s16 *)x + 4, gain);}
void pdp_imageproc_mix_process(void *x, u32 width, u32 height, s16 *image, s16 *image2)
{
__m64 *g = x;
__m64 g_left = g[0];
__m64 g_right = g[1];
/* Do not multiply; copy image to allow for perfect feedback. Do
not copy if pointers are the same (same packet). */
if (0 == *((s16*)x)) {
if (image != image2) {
memcpy(image, image2, width * height * 2);
}
return;
}
__m64 *im_left = (void*)image;
__m64 *im_right = (void*)image2;
int a, b;
unsigned int v, v_max = width * height / 4;
for (v = 0; v < v_max; v++) {
__m64 left = _mm_mulhi_pi16(g_left, im_left[v]);
__m64 right = _mm_mulhi_pi16(g_right, im_right[v]);
__m64 sum = _mm_adds_pi16(left, right);
__m64 sum2 = _mm_adds_pi16(sum, sum);
im_left[v] = sum2;
}
_mm_empty();
}
// random mix 2 images
void *pdp_imageproc_randmix_new(void){return pdp_alloc(2*sizeof(s32));;}
int pdp_imageproc_randmix_nb_stackwords(void) {return PDP_IMAGEPROC_NB_STACKWORDS(2*sizeof(s32));}
void pdp_imageproc_randmix_delete(void *x) {pdp_dealloc(x);}
void pdp_imageproc_randmix_setthreshold(void *x, float threshold)
{
s32 *d = (s32 *)x;
if (threshold > 1.0f) threshold = 1.0f;
if (threshold < 0.0f) threshold = 0.0f;
d[0] = float2fixed(threshold);
}
void pdp_imageproc_randmix_setseed(void *x, float seed)
{
s32 *d = (s32 *)x;
d[1] = float2fixed(seed);
}
void pdp_imageproc_randmix_process(void *x, u32 width, u32 height, s16 *image, s16 *image2)
{
s32 *d = (s32 *)x;
u32 i;
s16 r;
srandom((u32)d[1]);
for(i=0; i<width*height; i++){
// get a random val between 0 and 0x7fff
r = (s16)(random() & 0x7fff);
if (r < d[0]) image[i] = image2[i];
}
}
// 3x1 or 1x3 in place convolution
// orientation
void *pdp_imageproc_conv_new(void){return(pdp_alloc(6*sizeof(s32)));}
void pdp_imageproc_conv_delete(void *x){pdp_dealloc(x);}
void pdp_imageproc_conv_setmin1(void *x, float val)
{
s32 *d = (s32 *)x;
d[0] = float2fixed(val);
}
void pdp_imageproc_conv_setzero(void *x, float val)
{
s32 *d = (s32 *)x;
d[1] = float2fixed(val);
}
void pdp_imageproc_conv_setplus1(void *x, float val)
{
s32 *d = (s32 *)x;
d[2] = float2fixed(val);
}
void pdp_imageproc_conv_setbordercolor(void *x, float val)
{
s32 *d = (s32 *)x;
d[3] = float2fixed(val);
}
void pdp_imageproc_conv_setorientation(void *x, u32 val){((u32 *)x)[4] = val;}
void pdp_imageproc_conv_setnbpasses(void *x, u32 val){((u32 *)x)[5] = val;}
static inline void pdp_imageproc_conv_scanline(void *x, s16 *data, u32 count, s32 stride)
{
s32 *d = (s32 *)x;
s32 a,b,c,r;
u32 i;
a = d[3]; //border
b = data[0];
c = data[stride];
for(i = 0; i < count-2; i++){
r = a*d[0] + b*d[1] + c*d[2];
a = data[0];
b = data[stride];
c = data[stride<<1];
data[0] = (s16)CLAMP16(r>>15);
data += stride;
}
r = a*d[0] + b*d[1] + c*d[2];
a = data[0];
b = data[stride];
c = d[3]; //border
data[0] = (s16)CLAMP16(r>>15);
r = a*d[0] + b*d[1] + c*d[2];
data[stride] = (s16)CLAMP16(r>>15);
}
void pdp_imageproc_conv_process(void *x, u32 width, u32 height, s16 *image)
{
s32 *d = (s32 *)x;
u32 i, j;
u32 orientation = d[4];
u32 nbp = d[5];
if (orientation == PDP_IMAGEPROC_CONV_HORIZONTAL){
for(i=0; i<width*height; i+=width)
for(j=0; j<nbp; j++)
pdp_imageproc_conv_scanline(x, image+i, width, 1);
}
if (orientation == PDP_IMAGEPROC_CONV_VERTICAL){
for(i=0; i<width; i++)
for(j=0; j<nbp; j++)
pdp_imageproc_conv_scanline(x, image+i, height, width);
}
}
void *pdp_imageproc_gain_new(void){return(pdp_alloc(8*sizeof(s16)));}
void pdp_imageproc_gain_delete(void *x){pdp_dealloc(x);}
void pdp_imageproc_gain_setgain(void *x, float gain)
{
/* convert float to s16 + shift */
s16 *d = (s16 *)x;
s16 g;
int i;
float sign;
int shift = 0;
sign = (gain < 0) ? -1 : 1;
gain *= sign;
/* max shift = 16 */
for(i=0; i<=16; i++) {
if (gain < 0x4000) {
gain *= 2;
shift++;
}
else break;
}
gain *= sign;
g = (s16) gain;
//g = 0x4000;
//shift = 14;
// fprintf(stderr, "0x%04x %2d (%f)\n", g, shift, gain);
d[0]=g;
d[1]=g;
d[2]=g;
d[3]=g;
d[4]=(s16)shift;
d[5]=0;
d[6]=0;
d[7]=0;
}
/* NOTE: In porting from pixel_gain_s16.s this produced a different
result. See the *256 correction factor above. */
void pdp_imageproc_gain_process(void *x, u32 width, u32 height, s16 *image)
{
__m64 *g = x;
__m64 gain = g[0];
__m64 shift = g[1];
__m64 *im = (void*)image;
unsigned int v, v_max = width * height / 4;
for (v = 0; v < v_max; v++) {
__m64 pix = im[v];
/* Integer multiply */
__m64 lo4 = _mm_mullo_pi16(gain, pix);
__m64 hi4 = _mm_mulhi_pi16(gain, pix);
/* Shuffle product into 2 registers containing 2x32 words. */
__m64 w0 = _mm_unpacklo_pi16(lo4, hi4);
__m64 w1 = _mm_unpackhi_pi16(lo4, hi4);
/* Shift right */
__m64 w0s = _mm_sra_pi32(w0, shift);
__m64 w1s = _mm_sra_pi32(w1, shift);
/* Saturated pack */
__m64 w = _mm_packs_pi32(w0s, w1s);
im[v] = w;
}
_mm_empty();
}
// colour rotation for 2 colour planes
void *pdp_imageproc_crot2d_new(void){return pdp_alloc(4*sizeof(s32));}
void pdp_imageproc_crot2d_delete(void *x){pdp_dealloc(x);}
void pdp_imageproc_crot2d_setmatrix(void *x, float *matrix)
{
s32 *d = (s32 *)x;
d[0] = float2fixed(matrix[0]);
d[1] = float2fixed(matrix[1]);
d[2] = float2fixed(matrix[2]);
d[3] = float2fixed(matrix[3]);
}
void pdp_imageproc_crot2d_process(void *x, s16 *image, u32 width, u32 height)
{
s32 *d = (s32 *)x;
u32 i,j;
s32 a1,a2,c1,c2;
for(i=0, j=width*height; i<width*height; i++, j++){
c1 = (s32)image[i];
c2 = (s32)image[j];
a1 = d[0] * c1;
a2 = d[1] * c1;
a1+= d[2] * c2;
a2+= d[3] * c2;
a1 >>= 15;
a2 >>= 15;
image[i] = (s16)CLAMP16(a1);
image[j] = (s16)CLAMP16(a2);
}
}
// biquad and biquad time
typedef struct
{
s16 ma1[4];
s16 ma2[4];
s16 b0[4];
s16 b1[4];
s16 b2[4];
s16 u0[4];
s16 u1[4];
s16 u0_save[4];
s16 u1_save[4];
u32 nbpasses;
u32 direction;
} t_bq;
void *pdp_imageproc_bq_new(void){return pdp_alloc(sizeof(t_bq));}
void pdp_imageproc_bq_delete(void *x){pdp_dealloc(x);}
void pdp_imageproc_bq_setcoef(void *x, float *coef) // a0,-a1,-a2,b0,b1,b2,u0,u1
{
t_bq *d = (t_bq *)x;
float ia0 = 1.0f / coef[0];
/* all coefs are s1.14 fixed point */
/* representing values -2 < x < 2 */
/* so scale down before using the ordinary s0.15 float->fixed routine */
ia0 *= 0.5f;
// coef
setvec(d->ma1, ia0*coef[1]);
setvec(d->ma2, ia0*coef[2]);
setvec(d->b0, ia0*coef[3]);
setvec(d->b1, ia0*coef[4]);
setvec(d->b2, ia0*coef[5]);
// state to reset too
setvec(d->u0_save, coef[6]);
setvec(d->u1_save, coef[7]);
}
void pdp_imageproc_bq_setnbpasses(void *x, u32 nbpasses){((t_bq *)x)->nbpasses = nbpasses;}
void pdp_imageproc_bq_setdirection(void *x, u32 direction){((t_bq *)x)->direction = direction;}
void pdp_imageproc_bq_process(void *x, u32 width, u32 height, s16* image);
/* DIRECT FORM II BIQUAD
y[k] = b0 * x[k] + u1[k-1]
u1[k] = b1 * x[k] + u2[k-1] - a1 * y[k]
u2[k] = b2 * x[k] - a2 * y[k]
MACRO: df2 <reg>
computes a direct form 2 biquad
does not use {mm0-mm3}\<inreg>
input: <reg> == input
%mm4 == state 1
%mm5 == state 2
(%esi) == biquad coefs (-a1 -a2 b0 b1 b2) in s1.14
output: <reg> == output
%mm4 == state 1
%mm5 == state 2
*/
struct __attribute__((__packed__)) biquad_coef {
__m64 ma1; // -a1
__m64 ma2; // -a2
__m64 b0;
__m64 b1;
__m64 b2;
};
static INLINE void
biquad_df2(__m64 *ry, /* output */
__m64 x, /* input */
__m64 *ru1, /* biquad state */
__m64 *ru2,
struct biquad_coef *c)
{
__m64 xb0 = _mm_mulhi_pi16(c->b0, x);
__m64 xb1 = _mm_mulhi_pi16(c->b1, x);
__m64 u1 = *ru1;
__m64 u2 = *ru2;
__m64 b0x_plus_u1 = _mm_add_pi16(xb0, u1); // (1)
__m64 b1x_plus_u2 = _mm_add_pi16(xb1, u2); // (1)
/* 2x saturated add to compensate for mul = x*y/4;
coefs are s1.14 fixed point */
__m64 y_div_2 = _mm_adds_pi16(b0x_plus_u1, b0x_plus_u1);
__m64 y = _mm_adds_pi16(y_div_2, y_div_2);
__m64 ma1y = _mm_mulhi_pi16(c->ma1, y);
__m64 ma2y = _mm_mulhi_pi16(c->ma2, y);
__m64 b2x = _mm_mulhi_pi16(c->b2, x);
__m64 next_u1 = _mm_add_pi16(b1x_plus_u2, ma1y); // (1)
__m64 next_u2 = _mm_add_pi16(b2x, ma2y); // (1)
*ru1 = next_u1;
*ru2 = next_u2;
*ry = y;
/* (1) This uses non-saturated add for the internal filter nodes.
Leaving it in, but this makes sense only in direct form I, so
is probably a bug from old MMX code switch from DFI->DFII */
}
/* From the old MMX code (edited for clarity).
In order to use the 4 line parallel biquad routine on horizontal
lines, we need to reorder (rotate or transpose) the matrix, since
images are scanline encoded, and we want to work in parallell on 4
lines.
Since the 4 lines are independent, it doesnt matter in which order
the the vector elements are present. This allows to pick either
rotation or transpose to go from horizontal->vertical.
Rotations, transposes and flips are part of the 8-element
non-abelean group of square isometries consisting of
(I) identity
(H) horizontal axis mirror
(V) vertical axis mirror
(T) transpose (diagonal axis mirror)
(A) antitranspose (antidiagonal axis mirror)
(R1) 90deg anticlockwize rotation
(R2) 180deg rotation
(R3) 90deg clockwize rotation
We basicly have two options: (R1,R3) or (T,A)
The choice seems arbitrary.. I opt for flips because they are
self-inverting.
Only one of T,A needs to be implemented with MMX unpack
instructions. The other one can be derived by flips and both input
and output.
A = V T V = H T H
*/
/* The routines below use the low=0 to high=3 naming scheme that is
used in MMX, i.e. the low word corresponds to the lowest 16 bits in
the 64 bit register. Note however that wrt to memory, MMX is
little endian, so what looks like a transpose for the above naming
scheme, looks like an antitranspose for pixels in memory!
Since this is so confusing, to actually implement this it's best to
realize that the transform needs to be performed twice, and the
L->R and R->L need the opposite transforms. Then if it doesn't
look right, flip the signs.
*/
static INLINE void
transpose(__m64 *v0, __m64 *v1, __m64 *v2, __m64 *v3) {
__m64 a0_a1_a2_a3 = *v0;
__m64 b0_b1_b2_b3 = *v1;
__m64 c0_c1_c2_c3 = *v2;
__m64 d0_d1_d2_d3 = *v3;
__m64 a0_c0_a1_c1 = _mm_unpacklo_pi16(a0_a1_a2_a3, c0_c1_c2_c3);
__m64 a2_c2_a3_c3 = _mm_unpackhi_pi16(a0_a1_a2_a3, c0_c1_c2_c3);
__m64 b0_d0_b1_d1 = _mm_unpacklo_pi16(b0_b1_b2_b3, d0_d1_d2_d3);
__m64 b2_d2_b3_d3 = _mm_unpackhi_pi16(b0_b1_b2_b3, d0_d1_d2_d3);
__m64 a0_b0_c0_d0 = _mm_unpacklo_pi16(a0_c0_a1_c1, b0_d0_b1_d1);
__m64 a1_b1_c1_d1 = _mm_unpackhi_pi16(a0_c0_a1_c1, b0_d0_b1_d1);
__m64 a2_b2_c2_d2 = _mm_unpacklo_pi16(a2_c2_a3_c3, b2_d2_b3_d3);
__m64 a3_b3_c3_d3 = _mm_unpackhi_pi16(a2_c2_a3_c3, b2_d2_b3_d3);
*v0 = a0_b0_c0_d0;
*v1 = a1_b1_c1_d1;
*v2 = a2_b2_c2_d2;
*v3 = a3_b3_c3_d3;
}
static INLINE void
antitranspose(__m64 *v0, __m64 *v1, __m64 *v2, __m64 *v3) {
/* Vertical flip input and output. */
transpose(v3,v2,v1,v0);
}
static INLINE void
biquad_4x4(__m64 *v0, __m64 *v1, __m64 *v2, __m64 *v3,
__m64 *ru1, /* biquad state */
__m64 *ru2,
struct biquad_coef *c) {
biquad_df2(v0, *v0, ru1, ru2, c);
biquad_df2(v1, *v1, ru1, ru2, c);
biquad_df2(v2, *v2, ru1, ru2, c);
biquad_df2(v3, *v3, ru1, ru2, c);
}
static INLINE void
biquad_4x4_t(__m64 *v0, __m64 *v1, __m64 *v2, __m64 *v3,
__m64 *ru1, /* biquad state */
__m64 *ru2,
struct biquad_coef *c) {
transpose(v0, v1, v2, v3);
biquad_4x4(v0, v1, v2, v3, ru1, ru2, c);
transpose(v0, v1, v2, v3);
}
static INLINE void
biquad_4x4_a(__m64 *v0, __m64 *v1, __m64 *v2, __m64 *v3,
__m64 *ru1, /* biquad state */
__m64 *ru2,
struct biquad_coef *c) {
antitranspose(v0, v1, v2, v3);
biquad_4x4(v0, v1, v2, v3, ru1, ru2, c);
antitranspose(v0, v1, v2, v3);
}
static void pixel_biquad_time_s16(s16 *image, // imput plane
s16 *state0, // state planes
s16 *state1,
s16 *coef,
int v_max) {
__m64 *im = (void*)image;
__m64 *pu1 = (void*)state0;
__m64 *pu2 = (void*)state1;
struct biquad_coef *c = (void*)coef;
int v;
for (v = 0; v < v_max; v++) {
__m64 x = im[v];
__m64 u1 = pu1[v];
__m64 u2 = pu2[v];
__m64 y;
biquad_df2(&y, x, &u1, &u2, c);
im[v] = y;
pu1[v] = u1;
pu2[v] = u2;
}
_mm_empty();
}
/* This code performs 4x4 strips in 4 directions: T->B, B->T, L->R, R->L.
The loop iteration can probably be simplified a bit; this has a lot
of duplication. */
static void pixel_biquad_vertb_s16(s16 *image,
int nb_4x4_blocks /* height>>2 */,
int stride,
s16 *coefs,
s16 *state) {
stride /= 4; // vector stride
__m64 *im = (void*)image;
__m64 *s = (void*)state;
__m64 u1 = s[0];
__m64 u2 = s[1];
struct biquad_coef *c = (void*)coefs;
int block;
int stride2 = 2 * stride;
int stride3 = 3 * stride;
int stride4 = 4 * stride;
for (block = 0; block < nb_4x4_blocks; block++) {
__m64 v0 = im[0];
__m64 v1 = im[stride];
__m64 v2 = im[stride2];
__m64 v3 = im[stride3];
biquad_4x4(&v0, &v1, &v2, &v3, &u1, &u2, c);
im[0] = v0;
im[stride] = v1;
im[stride2] = v2;
im[stride3] = v3;
im += stride4;
}
s[0] = u1;
s[1] = u2;
_mm_empty();
}
static void pixel_biquad_verbt_s16(s16 *image,
int nb_4x4_blocks /* height>>2 */,
int stride,
s16 *coefs,
s16 *state) {
stride /= 4; // vector stride
__m64 *im = (void*)image;
__m64 *s = (void*)state;
__m64 u1 = s[0];
__m64 u2 = s[1];
struct biquad_coef *c = (void*)coefs;
int block;
int stride2 = 2 * stride;
int stride3 = 3 * stride;
int stride4 = 4 * stride;
im += (nb_4x4_blocks - 1) * stride4;
for (block = 0; block < nb_4x4_blocks; block++) {
__m64 v3 = im[0];
__m64 v2 = im[stride];
__m64 v1 = im[stride2];
__m64 v0 = im[stride3];
biquad_4x4(&v0, &v1, &v2, &v3, &u1, &u2, c);
im[0] = v3;
im[stride] = v2;
im[stride2] = v1;
im[stride3] = v0;
im -= stride4;
}
s[0] = u1;
s[1] = u2;
_mm_empty();
}
static void pixel_biquad_horlr_s16(s16 *image,
int nb_4x4_blocks /* width>>2 */,
int stride,
s16 *coefs,
s16 *state) {
stride /= 4; // vector stride
__m64 *im = (void*)image;
__m64 *s = (void*)state;
__m64 u1 = s[0];
__m64 u2 = s[1];
struct biquad_coef *c = (void*)coefs;
int block;
int stride2 = 2 * stride;
int stride3 = 3 * stride;
int stride4 = 4 * stride;
for (block = 0; block < nb_4x4_blocks; block++) {
__m64 v0 = im[0];
__m64 v1 = im[stride];
__m64 v2 = im[stride2];
__m64 v3 = im[stride3];
biquad_4x4_t(&v0, &v1, &v2, &v3, &u1, &u2, c);
im[0] = v0;
im[stride] = v1;
im[stride2] = v2;
im[stride3] = v3;
im ++;
}
s[0] = u1;
s[1] = u2;
_mm_empty();
}
static void pixel_biquad_horrl_s16(s16 *image,
int nb_4x4_blocks /* width>>2 */,
int stride,
s16 *coefs,
s16 *state) {
stride /= 4; // vector stride
__m64 *im = (void*)image;
__m64 *s = (void*)state;
__m64 u1 = s[0];
__m64 u2 = s[1];
struct biquad_coef *c = (void*)coefs;
int block;
int stride2 = 2 * stride;
int stride3 = 3 * stride;
int stride4 = 4 * stride;
im += nb_4x4_blocks - 1;
for (block = 0; block < nb_4x4_blocks; block++) {
__m64 v3 = im[0];
__m64 v2 = im[stride];
__m64 v1 = im[stride2];
__m64 v0 = im[stride3];
biquad_4x4_a(&v0, &v1, &v2, &v3, &u1, &u2, c);
im[0] = v3;
im[stride] = v2;
im[stride2] = v1;
im[stride3] = v0;
im--;
}
s[0] = u1;
s[1] = u2;
_mm_empty();
}
void pdp_imageproc_bqt_process(void *x, u32 width, u32 height, s16 *image, s16 *state0, s16 *state1)
{
s16 *d = (s16 *)x;
pixel_biquad_time_s16(image, state0, state1, d, (width*height)>>2);
}
void pdp_imageproc_bq_process(void *x, u32 width, u32 height, s16 *image)
{
t_bq *d = (t_bq *)x;
s16 *c = d->ma1; /* coefs */
s16 *s = d->u0; /* state */
u32 direction = d->direction;
u32 nbp = d->nbpasses;
unsigned int i,j;
/* VERTICAL */
if ((direction & PDP_IMAGEPROC_BIQUAD_TOP2BOTTOM)
&& (direction & PDP_IMAGEPROC_BIQUAD_BOTTOM2TOP)){
for(i=0; i<width; i +=4){
for (j=0; j<nbp; j++){
pixel_biquad_vertb_s16(image+i, height>>2, width, c, s);
pixel_biquad_verbt_s16(image+i, height>>2, width, c, s);
}
}
}
else if (direction & PDP_IMAGEPROC_BIQUAD_TOP2BOTTOM){
for(i=0; i<width; i +=4){
for (j=0; j<nbp; j++){
pixel_biquad_vertb_s16(image+i, height>>2, width, c, s);
}
}
}
else if (direction & PDP_IMAGEPROC_BIQUAD_BOTTOM2TOP){
for(i=0; i<width; i +=4){
for (j=0; j<nbp; j++){
pixel_biquad_verbt_s16(image+i, height>>2, width, c, s);
}
}
}
/* HORIZONTAL */
if ((direction & PDP_IMAGEPROC_BIQUAD_LEFT2RIGHT)
&& (direction & PDP_IMAGEPROC_BIQUAD_RIGHT2LEFT)){
for(i=0; i<(width*height); i +=(width<<2)){
for (j=0; j<nbp; j++){
pixel_biquad_horlr_s16(image+i, width>>2, width, c, s);
pixel_biquad_horrl_s16(image+i, width>>2, width, c, s);
}
}
}
else if (direction & PDP_IMAGEPROC_BIQUAD_LEFT2RIGHT){
for(i=0; i<(width*height); i +=(width<<2)){
for (j=0; j<nbp; j++){
pixel_biquad_horlr_s16(image+i, width>>2, width, c, s);
}
}
}
else if (direction & PDP_IMAGEPROC_BIQUAD_RIGHT2LEFT){
for(i=0; i<(width*height); i +=(width<<2)){
for (j=0; j<nbp; j++){
pixel_biquad_horrl_s16(image+i, width>>2, width, c, s);
}
}
}
}
// produce a random image
// note: random number generator can be platform specific
// however, it should be seeded. (same seed produces the same result)
void *pdp_imageproc_random_new(void){return pdp_alloc(4*sizeof(s16));}
void pdp_imageproc_random_delete(void *x){pdp_dealloc(x);}
void pdp_imageproc_random_setseed(void *x, float seed)
{
s16 *d = (s16 *)x;
srandom((u32)seed);
d[0] = (s16)random();
d[1] = (s16)random();
d[2] = (s16)random();
d[3] = (s16)random();
}
void pdp_imageproc_random_process(void *x, u32 width, u32 height, s16 *image)
{
v4_t one = {.s = {1,1,1,1}};
__m64 lsb_mask = one.v;
__m64 *im = (void*)image;
__m64 *seed = (void*)x;
__m64 state = *seed;
unsigned int v, nb_vec = (width * height)>>2;
for (v=0; v<nb_vec; v++) {
/* Fibonacci LFSR for the polynomial
p(x) = x^16 + x^15 + x^13 + x^4 + 1
I did not know this at the time (2003?), but a Galois LFSR
seems more appropriate as it uses a single conditional
XOR.
http://en.wikipedia.org/wiki/Linear_feedback_shift_register */
__m64 bit = _mm_srli_pi16(state, 15);
bit = _mm_xor_si64(bit, _mm_srli_pi16(state, 14));
bit = _mm_xor_si64(bit, _mm_srli_pi16(state, 12));
bit = _mm_xor_si64(bit, _mm_srli_pi16(state, 3));
/* Isolate LSB and shift it into the state. */
bit = _mm_and_si64(bit, lsb_mask);
state = _mm_or_si64(_mm_slli_pi16(state, 1), bit);
im[v] = state;
}
/* keep random state to seed next iteration */
*seed = state;
_mm_empty();
}
/* Image resampling
This uses a similar approach to the other MMX routines:
1. Preparation of "cooked" parameters to be used in the vector code
2. Vector code
The major point is this: the resampler MMX code is shared for all
resampling code. It uses data specified in t_resample_cbrd (Cooked
Bilinear Resampler Data)
This is designed for multiple feeder algorithms, but only one is
implemented: Linear remapper with data in t_resample_clmd, that
supports zoom, rotate, ...
Resampling works as follows:
1. A feeder algorithm produces a stream of fractional coordinates:
every pixel in the output frame is thus related to a coordinate.
This consists of two nested loops: one row incrementor and one
column incrementor.
2. From the integer part of the coordinates a 2x2 pixel environment
is fetched from the source image and stored in the TL,TR,BL,BR
temp space.
3. A bilinear resampler will use the fractional part of the
coordinates to perform the interpolation of the 2x2 pixel
environment.
*/
typedef struct {
u32 lineoffset;
s16 *image;
u32 width;
u32 height;
} t_resample_id; // Image Data
/* MMX resampling source image resampling data + coefs */
typedef struct {
/* [ 0 | 0 | 2*(height-1) | 2(width-1) ]
Used to convert image-relative s.15 coordinate o
pixel coordinates [ pixel_index (16) | pixel_frac (16) ]
The factor 2 is to compensate for the s.15 format */
v4_t coord_scale;
/* PMUL coefficient to convert [ 0 | 0 | y | x ] 16 vector
coordinates to vector offsets [ y_offset | x_offset ] 32
(x == x_offset) */
v4_t row_stride_scale;
/* Image boundaries for PCMP:
[ y_offset_max | x_offset_max ]32 */
v2_t offset_max;
/* Vector increments for x and y */
v2_t inc_x; // [ 0 | 1 ]32;
v2_t inc_y; // [ v_stride | 0 ]32
s16 *image;
} t_resample_cid; // Cooked Image Data
/* Linear mapping data struct (zoom, scale, rotate, shear, ...)
Each output pixel (H,V) is related to an input pixel with
coordinates:
origin + H * hor + V * ver
Coordinates and increments are in 0.32 fractional format relative
to the image width/height. We're processing 2 coordinate sets in
parallel. */
typedef struct {
v2_t origin_x; // initial x coord
v2_t origin_y; // initial y coord
v2_t hor_dx; // x row inc
v2_t hor_dy; // y row inc
v2_t ver_dx; // x column inc
v2_t ver_dy; // y column inc
} t_resample_clmd; // Cooked Linear Mapping Data
/* this struct contains all the data necessary for
bilin interpolation from src -> dst image
(src can be == dst) */
typedef struct {
t_resample_cid csrc; //cooked src image meta data for bilinear interpolator
t_resample_id src; //src image meta
t_resample_id dst; //dst image meta
} t_resample_cbrd; //Bilinear Resampler Data
/* this struct contains high level zoom parameters,
all image relative */
typedef struct {
float centerx;
float centery;
float zoomx;
float zoomy;
float angle;
} t_resample_zrd;
/* This struct contains all data for the zoom object. Note that this
is a flat struct to allow a single pointer register to be used for
getting __m64 data. */
typedef struct {
t_resample_cbrd cbrd; // Bilinear Resampler Data
t_resample_clmd clmd; // Cooked Linear Mapping data
t_resample_zrd zrd; // Zoom / Rotate Data
} t_resample_zoom_rotate;
/* initialize image meta data (dimensions + location) */
static void pdp_imageproc_resample_init_id(t_resample_id *x, u32 offset, s16* image, u32 w, u32 h)
{
x->lineoffset = offset;
x->image = image;
x->width = w;
x->height = h;
}
static INLINE __m64 wrap_0(__m64 val, __m64 max) {
/* Set components to zero when >= max */
__m64 mask = _mm_cmpgt_pi32(max, val); // 0xFFFFFFFF when true
__m64 val_out = _mm_and_si64(val, mask);
return val_out;
}
static INLINE word_t fetch_pixel(__m64 xy_offset, bool do_wrap, t_resample_zoom_rotate *p,
s16 *im) {
__m64 wrapped = do_wrap ?
wrap_0(xy_offset, p->cbrd.csrc.offset_max.v) :
xy_offset;
v2_t flat = {
.v = _mm_add_pi32(wrapped, _mm_srli_si64(wrapped, 32))
};
word_t pixel = im[flat.l[0]];
return pixel;
}
static INLINE void
bilin_pixel(t_resample_zoom_rotate *p, word_t *out, __m64 xy_32) {
/* Input is in 0.32 image-relative coordinates:
xy_32 == [ y(32) : x(32) ] */
/* This routine uses MMX for as long as it is practical, and
switches to scalar integer math once data shuffling would get
too complicated (Yes, I tried, it's horrible..) */
/* MMX only does signed 16 x 16 -> 16hi | 16lo so we convert here.
This means we use a bit of precision which is practice is quite
acceptable. I.e. even for 1920x1080, the x sub-pixel
resolution is still 32 levels. */
__m64 xy_32_s = _mm_srli_pi32(xy_32, 16 + 1); // reduce precision + convert to signed
__m64 xy_16 = _mm_packs_pi32(xy_32_s, xy_32_s); // 2nd arg is dummy: upper 32 bits ignored below
/* Split coordinate into integer and factional part.
Integer: used for indexing
Fractional: used for interpolation.
xy_16_index == [ 0 | 0 | y_index | x_index ]
xy_16_frac == [ 0 | 0 | y_frac | x_frac ] */
__m64 xy_16_index = _mm_mulhi_pi16(xy_16, p->cbrd.csrc.coord_scale.v);
v4_t xy_16_frac = {.v = _mm_mullo_pi16(xy_16, p->cbrd.csrc.coord_scale.v)};
word_t frac_x = xy_16_frac.us[0];
word_t frac_y = xy_16_frac.us[1];
/* The x and y integer pixel coordinates in xy_16_index need to be
converted into pixel offsets for image array indexing. Uses
32bit result because 16bit is not enough. */
__m64 offset_16_lo = _mm_mullo_pi16(xy_16_index, p->cbrd.csrc.row_stride_scale.v);
__m64 offset_16_hi = _mm_mulhi_pi16(xy_16_index, p->cbrd.csrc.row_stride_scale.v);
/* offset_x0_y0 == [ offset_y | x-offset ] */
__m64 offset_x0_y0 = _mm_unpacklo_pi16(offset_16_lo, offset_16_hi);
/* Next is to find the offsets of the neighbouring pixels in both
x and y directions. First just add the appropriate offsets
from config. This leads to offsets that might be past image
borders. */
__m64 offset_x1_y0 = _mm_add_pi32(offset_x0_y0, p->cbrd.csrc.inc_x.v);
__m64 offset_x0_y1 = _mm_add_pi32(offset_x0_y0, p->cbrd.csrc.inc_y.v);
__m64 offset_x1_y1 = _mm_add_pi32(offset_x1_y0, p->cbrd.csrc.inc_y.v);
/* Before fetch, set coords to 0 if they are out-of-bounds,
effecitively implementing wrap-around addressing. */
s16 *im = p->cbrd.csrc.image;
/* Fetch 2x2 pixel grid to interpolate. */
word_t w_x0_y0 = fetch_pixel(offset_x0_y0, false, p, im);
word_t w_x1_y0 = fetch_pixel(offset_x1_y0, true, p, im);
word_t w_x0_y1 = fetch_pixel(offset_x0_y1, true, p, im);
word_t w_x1_y1 = fetch_pixel(offset_x1_y1, true, p, im);
/* Perform bilinear interpolation using fractional coordinates. */
word_t w_y0 = w_x0_y0 + (((w_x1_y0 - w_x0_y0) * frac_x) >> 16);
word_t w_y1 = w_x0_y1 + (((w_x1_y1 - w_x0_y1) * frac_x) >> 16);
word_t w = w_y0 + (((w_y1 - w_y0) * frac_y) >> 16);
*out = w;
}
void pixel_resample_linmap_s16(t_resample_zoom_rotate *z) {
int hor,ver;
int vector = 0;
int hor_max = z->cbrd.dst.width / 4; // vector count
int ver_max = z->cbrd.dst.height; // row count
/* Vertical increment loop. */
__m64 ver_co_x = z->clmd.origin_x.v;
__m64 ver_co_y = z->clmd.origin_y.v;
int v = 0;
for (ver = 0; ver < ver_max; ver++) {
/* Horizontal increment loop */
__m64 co_x = ver_co_x;
__m64 co_y = ver_co_y;
for (hor = 0; hor < hor_max; hor++) {
/* Get coords of 2nd pixel pair. */
__m64 co1_x = _mm_add_pi32(co_x, z->clmd.hor_dx.v);
__m64 co1_y = _mm_add_pi32(co_y, z->clmd.hor_dy.v);
/* Now we have 4 sets of input coordinates for the 4
pixels in the output data. The format is 0.32
representing a number between 0 and 1. (0 == top/left,
1 = right/bottom)
The interpolator however does only one pixel at a time,
so these need to be packed to x/y format. */
__m64 xy_0 = _mm_unpacklo_pi32(co_x, co_y);
__m64 xy_1 = _mm_unpackhi_pi32(co_x, co_y);
__m64 xy_2 = _mm_unpacklo_pi32(co1_x, co1_y);
__m64 xy_3 = _mm_unpackhi_pi32(co1_x, co1_y);
/* Resample */
v4_t p0; bilin_pixel(z, &p0.w, xy_0);
v4_t p1; bilin_pixel(z, &p1.w, xy_1);
v4_t p2; bilin_pixel(z, &p2.w, xy_2);
v4_t p3; bilin_pixel(z, &p3.w, xy_3);
/* Pack & store */
__m64 p02 = _mm_unpacklo_pi16(p0.v, p2.v);
__m64 p13 = _mm_unpacklo_pi16(p1.v, p3.v);
__m64 p0123 = _mm_unpacklo_pi16(p02, p13);
__m64 *im = (void*)z->cbrd.dst.image;
im[v++] = p0123;
/* Next coord pair. */
co_x = _mm_add_pi32(co1_x, z->clmd.hor_dx.v);
co_y = _mm_add_pi32(co1_y, z->clmd.hor_dy.v);
}
/* Next coord */
ver_co_x = _mm_add_pi32(ver_co_x, z->clmd.ver_dx.v);
ver_co_y = _mm_add_pi32(ver_co_y, z->clmd.ver_dy.v);
}
_mm_empty();
}
/* convert image meta data into a cooked format used by the resampler routine */
static void pdp_imageproc_resample_init_cid(t_resample_cid *r, t_resample_id *i) {
/* Factor 2 compensates for sign bit shift in s.15 fixed point. */
v4_t coord_scale = {.s = {
2 * (i->width-1),
2 * (i->height-1),
0, 0 }};
/* No scaling factor here since this is proper integer math. */
v4_t row_stride_scale = {.s = {
1, // x coord to offset
i->width, // y coord to offset
0, 0}};
/* 32bit maximum offsets. */
v2_t offset_max = {.l = {
i->width,
i->width * i->height }};
/* 32 bit +1 offsets in x and y directions. */
v2_t inc_x = {.l = {
1,
0}};
v2_t inc_y = {.l = {
0,
i->width }};
r->image = i->image;
r->coord_scale = coord_scale;
r->row_stride_scale = row_stride_scale;
r->offset_max = offset_max;
r->inc_x = inc_x;
r->inc_y = inc_y;
}
/* convert incremental linear remapping vectors to internal cooked
format. Coordinates and increments are 16.16 fixed point. We'll
process 2 pixel coords in parallel. */
static void pdp_imageproc_resample_cookedlinmap_init(t_resample_clmd *l,
s32 origin_x, s32 origin_y,
s32 hor_dx, s32 hor_dy,
s32 ver_dx, s32 ver_dy) {
typeof(*l) config = {
/* 2 Coordinate sets are computed in parallel. */
.origin_x = {.l = {origin_x, origin_x + hor_dx}},
.origin_y = {.l = {origin_y, origin_y + hor_dy}},
.hor_dx = {.l = {hor_dx * 2, hor_dx * 2}},
.hor_dy = {.l = {hor_dy * 2, hor_dy * 2}},
.ver_dx = {.l = {ver_dx, ver_dx}},
.ver_dy = {.l = {ver_dy, ver_dy}},
};
*l = config;
}
/* affine x, y mappings in screen coordinates */
static INLINE double mapx(
double x, double y,
double cx, double cy, double iz, double c, double s)
{return cx + iz * ( c * (x-cx) + s * (y-cy));}
static INLINE double mapy(
double x, double y,
double cx, double cy, double iz, double c, double s)
{return cy + iz * (-s * (x-cx) + c * (y-cy));}
/* convert floating point center and zoom data to incremental linear remapping vectors */
static void pdp_imageproc_resample_clmd_init_from_id_zrd(t_resample_clmd *l, t_resample_id *i, t_resample_zrd *z)
{
double izx = 1.0f / (z->zoomx);
double izy = 1.0f / (z->zoomy);
double scale = (double)0xffffffff;
double scalew = scale / ((double)(i->width - 1));
double scaleh = scale / ((double)(i->height - 1));
double cx = ((double)z->centerx) * ((double)(i->width - 1));
double cy = ((double)z->centery) * ((double)(i->height - 1));
double angle = z->angle * (-M_PI / 180.0);
double c = cos(angle);
double s = sin(angle);
u32 tl_x = (u32)(scalew * mapx(0,0, cx,cy,izx,c,s));
u32 tl_y = (u32)(scaleh * mapy(0,0, cx,cy,izy,c,s));
u32 row_inc_x = (u32)(scalew * (mapx(1,0, cx,cy,izx,c,s)-mapx(0,0, cx,cy,izx,c,s)));
u32 row_inc_y = (u32)(scaleh * (mapy(1,0, cx,cy,izy,c,s)-mapy(0,0, cx,cy,izy,c,s)));
u32 col_inc_x = (u32)(scalew * (mapx(0,1, cx,cy,izx,c,s)-mapx(0,0, cx,cy,izx,c,s)));
u32 col_inc_y = (u32)(scaleh * (mapy(0,1, cx,cy,izy,c,s)-mapy(0,0, cx,cy,izy,c,s)));
pdp_imageproc_resample_cookedlinmap_init(l, tl_x, tl_y, row_inc_x, row_inc_y, col_inc_x, col_inc_y);
}
// zoom + rotate
void *pdp_imageproc_resample_affinemap_new(void)
{
t_resample_zoom_rotate *z = (t_resample_zoom_rotate *)pdp_alloc(sizeof(t_resample_zoom_rotate));
z->zrd.centerx = 0.5;
z->zrd.centery = 0.5;
z->zrd.zoomx = 1.0;
z->zrd.zoomy = 1.0;
z->zrd.angle = 0.0f;
return (void *)z;
}
void pdp_imageproc_resample_affinemap_delete(void *x){pdp_dealloc(x);}
void pdp_imageproc_resample_affinemap_setcenterx(void *x, float f){((t_resample_zoom_rotate *)x)->zrd.centerx = f;}
void pdp_imageproc_resample_affinemap_setcentery(void *x, float f){((t_resample_zoom_rotate *)x)->zrd.centery = f;}
void pdp_imageproc_resample_affinemap_setzoomx(void *x, float f){((t_resample_zoom_rotate *)x)->zrd.zoomx = f;}
void pdp_imageproc_resample_affinemap_setzoomy(void *x, float f){((t_resample_zoom_rotate *)x)->zrd.zoomy = f;}
void pdp_imageproc_resample_affinemap_setangle(void *x, float f){((t_resample_zoom_rotate *)x)->zrd.angle = f;}
void pdp_imageproc_resample_affinemap_process(void *x, u32 width, u32 height, s16 *srcimage, s16 *dstimage)
{
t_resample_zoom_rotate *z = (t_resample_zoom_rotate *)x;
/* setup resampler image meta data */
pdp_imageproc_resample_init_id(&(z->cbrd.src), width, srcimage, width, height);
pdp_imageproc_resample_init_id(&(z->cbrd.dst), width, dstimage, width, height);
pdp_imageproc_resample_init_cid(&(z->cbrd.csrc),&(z->cbrd.src));
/* setup linmap data from zoom_rotate parameters */
pdp_imageproc_resample_clmd_init_from_id_zrd(&(z->clmd), &(z->cbrd.src), &(z->zrd));
/* call assembler routine */
pixel_resample_linmap_s16(z);
}
// polynomials
typedef struct
{
u32 order;
u32 nbpasses;
s16 coefs[0];
} t_cheby;
void *pdp_imageproc_cheby_new(int order)
{
t_cheby *z;
int i;
if (order < 2) order = 2;
z = (t_cheby *)pdp_alloc(sizeof(t_cheby) + (order + 1) * sizeof(s16[4]));
z->order = order;
setvec(z->coefs + 0*4, 0);
setvec(z->coefs + 1*4, 0.25);
for (i=2; i<=order; i++) setvec(z->coefs + i*4, 0);
return z;
}
void pdp_imageproc_cheby_delete(void *x){pdp_dealloc(x);}
void pdp_imageproc_cheby_setcoef(void *x, u32 n, float f)
{
t_cheby *z = (t_cheby *)x;
if (n <= z->order){
setvec(z->coefs + n*4, f * 0.25); // coefs are in s2.13 format
}
}
void pdp_imageproc_cheby_setnbpasses(void *x, u32 n){((t_cheby *)x)->nbpasses = n;}
static INLINE void
pixel_cheby_s16_3plus(s16 *image, int nb_vec, int order_plus_one, s16 *coefs) {
/* Coefs are s2.13 fixed point [-4,4] */
__m64 *a = (void*)coefs;
__m64 *im = (void*)image;
__m64 a0 = a[0];
__m64 FFFF = _mm_cmpeq_pi16(a0, a0); // independent of a0
__m64 one = _mm_srli_pi16(FFFF, 1); // logic shift -> 7FFF
__m64 a0_div_2 = _mm_srai_pi16(a0, 1);
int n,v;
for (v = 0; v < nb_vec; v++) {
__m64 x = im[v];
__m64 T1 = x;
__m64 T2 = one;
__m64 a1x_div_2 = _mm_mulhi_pi16(a[1], x);
__m64 acc = _mm_adds_pi16(a1x_div_2, a0_div_2);
for (n = 2; n < order_plus_one; n++) {
/* Chebyshev recursion: T = 2x T1 - T2 */
__m64 xT1_div_2 = _mm_mulhi_pi16(x, T1);
__m64 T2_div_4 = _mm_srai_pi16(T2, 2);
__m64 T_div_4 = _mm_subs_pi16(xT1_div_2, T2_div_4);
__m64 T_div_2 = _mm_adds_pi16(T_div_4, T_div_4);
__m64 T = _mm_adds_pi16(T_div_2, T_div_2);
/* Polynomial evaluation */
__m64 aT_div_2 = _mm_mulhi_pi16(a[n], T);
acc = _mm_adds_pi16(acc, aT_div_2);
/* Recursion state update */
T2 = T1;
T1 = T;
}
/* Compensate for overall 1/8 factor. */
__m64 acc_2 = _mm_adds_pi16(acc, acc);
__m64 acc_4 = _mm_adds_pi16(acc_2, acc_2);
__m64 acc_8 = _mm_adds_pi16(acc_4, acc_4);
im[v] = acc_8;
}
_mm_empty();
}
void pdp_imageproc_cheby_process(void *x, u32 width, u32 height, s16 *image)
{
t_cheby *z = (t_cheby *)x;
u32 iterations = z->nbpasses;
u32 i,j;
for (j=0; j < (height*width); j += width) {
for (i=0; i<iterations; i++) {
pixel_cheby_s16_3plus(image+j, width>>2, z->order+1, z->coefs);
}
}
//pixel_cheby_s16_3plus(image, (width*height)>>2, z->order+1, z->coefs);
}
|