File: playhouse.rst

package info (click to toggle)
peewee 3.14.10%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,268 kB
  • sloc: python: 34,248; makefile: 126; ansic: 109; sh: 10
file content (3843 lines) | stat: -rw-r--r-- 126,896 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
.. _playhouse:

Playhouse, extensions to Peewee
===============================

Peewee comes with numerous extension modules which are collected under the
``playhouse`` namespace. Despite the silly name, there are some very useful
extensions, particularly those that expose vendor-specific database features
like the :ref:`sqlite_ext` and :ref:`postgres_ext` extensions.

Below you will find a loosely organized listing of the various modules that
make up the ``playhouse``.

**Database drivers / vendor-specific database functionality**

* :ref:`sqlite_ext` (on its own page)
* :ref:`sqliteq`
* :ref:`sqlite_udf`
* :ref:`apsw`
* :ref:`sqlcipher_ext`
* :ref:`postgres_ext`
* :ref:`crdb`
* :ref:`mysql_ext`

**High-level features**

* :ref:`extra-fields`
* :ref:`shortcuts`
* :ref:`hybrid`
* :ref:`kv`
* :ref:`signals`
* :ref:`dataset`

**Database management and framework integration**

* :ref:`pwiz`
* :ref:`migrate`
* :ref:`pool`
* :ref:`reflection`
* :ref:`db_url`
* :ref:`test_utils`
* :ref:`flask_utils`

Sqlite Extensions
-----------------

The Sqlite extensions have been moved to :ref:`their own page <sqlite_ext>`.

.. _sqliteq:

SqliteQ
-------

The ``playhouse.sqliteq`` module provides a subclass of
:py:class:`SqliteExtDatabase`, that will serialize concurrent writes to a
SQLite database. :py:class:`SqliteQueueDatabase` can be used as a drop-in
replacement for the regular :py:class:`SqliteDatabase` if you want simple
**read and write** access to a SQLite database from **multiple threads**.

SQLite only allows one connection to write to the database at any given time.
As a result, if you have a multi-threaded application (like a web-server, for
example) that needs to write to the database, you may see occasional errors
when one or more of the threads attempting to write cannot acquire the lock.

:py:class:`SqliteQueueDatabase` is designed to simplify things by sending all
write queries through a single, long-lived connection. The benefit is that you
get the appearance of multiple threads writing to the database without
conflicts or timeouts. The downside, however, is that you cannot issue
write transactions that encompass multiple queries -- all writes run in
autocommit mode, essentially.

.. note::
    The module gets its name from the fact that all write queries get put into
    a thread-safe queue. A single worker thread listens to the queue and
    executes all queries that are sent to it.

Transactions
^^^^^^^^^^^^

Because all queries are serialized and executed by a single worker thread, it
is possible for transactional SQL from separate threads to be executed
out-of-order. In the example below, the transaction started by thread "B" is
rolled back by thread "A" (with bad consequences!):

* Thread A: UPDATE transplants SET organ='liver', ...;
* Thread B: BEGIN TRANSACTION;
* Thread B: UPDATE life_support_system SET timer += 60 ...;
* Thread A: ROLLBACK; -- Oh no....

Since there is a potential for queries from separate transactions to be
interleaved, the :py:meth:`~SqliteQueueDatabase.transaction` and
:py:meth:`~SqliteQueueDatabase.atomic` methods are disabled on :py:class:`SqliteQueueDatabase`.

For cases when you wish to temporarily write to the database from a different
thread, you can use the :py:meth:`~SqliteQueueDatabase.pause` and
:py:meth:`~SqliteQueueDatabase.unpause` methods. These methods block the
caller until the writer thread is finished with its current workload. The
writer then disconnects and the caller takes over until ``unpause`` is called.

The :py:meth:`~SqliteQueueDatabase.stop`, :py:meth:`~SqliteQueueDatabase.start`,
and :py:meth:`~SqliteQueueDatabase.is_stopped` methods can also be used to
control the writer thread.

.. note::
    Take a look at SQLite's `isolation <https://www.sqlite.org/isolation.html>`_
    documentation for more information about how SQLite handles concurrent
    connections.

Code sample
^^^^^^^^^^^

Creating a database instance does not require any special handling. The
:py:class:`SqliteQueueDatabase` accepts some special parameters which you
should be aware of, though. If you are using `gevent <http://gevent.org>`_, you
must specify ``use_gevent=True`` when instantiating your database -- this way
Peewee will know to use the appropriate objects for handling queueing, thread
creation, and locking.

.. code-block:: python

    from playhouse.sqliteq import SqliteQueueDatabase

    db = SqliteQueueDatabase(
        'my_app.db',
        use_gevent=False,  # Use the standard library "threading" module.
        autostart=False,  # The worker thread now must be started manually.
        queue_max_size=64,  # Max. # of pending writes that can accumulate.
        results_timeout=5.0)  # Max. time to wait for query to be executed.


If ``autostart=False``, as in the above example, you will need to call
:py:meth:`~SqliteQueueDatabase.start` to bring up the worker threads that will
do the actual write query execution.

.. code-block:: python

    @app.before_first_request
    def _start_worker_threads():
        db.start()

If you plan on performing SELECT queries or generally wanting to access the
database, you will need to call :py:meth:`~Database.connect` and
:py:meth:`~Database.close` as you would with any other database instance.

When your application is ready to terminate, use the :py:meth:`~SqliteQueueDatabase.stop`
method to shut down the worker thread. If there was a backlog of work, then
this method will block until all pending work is finished (though no new work
is allowed).

.. code-block:: python

    import atexit

    @atexit.register
    def _stop_worker_threads():
        db.stop()


Lastly, the :py:meth:`~SqliteQueueDatabase.is_stopped` method can be used to
determine whether the database writer is up and running.

.. _sqlite_udf:

Sqlite User-Defined Functions
-----------------------------

The ``sqlite_udf`` playhouse module contains a number of user-defined
functions, aggregates, and table-valued functions, which you may find useful.
The functions are grouped in collections and you can register these
user-defined extensions individually, by collection, or register everything.

Scalar functions are functions which take a number of parameters and return a
single value. For example, converting a string to upper-case, or calculating
the MD5 hex digest.

Aggregate functions are like scalar functions that operate on multiple rows of
data, producing a single result. For example, calculating the sum of a list of
integers, or finding the smallest value in a particular column.

Table-valued functions are simply functions that can return multiple rows of
data. For example, a regular-expression search function that returns all the
matches in a given string, or a function that accepts two dates and generates
all the intervening days.

.. note::
    To use table-valued functions, you will need to build the
    ``playhouse._sqlite_ext`` C extension.

Registering user-defined functions:

.. code-block:: python

    db = SqliteDatabase('my_app.db')

    # Register *all* functions.
    register_all(db)

    # Alternatively, you can register individual groups. This will just
    # register the DATE and MATH groups of functions.
    register_groups(db, 'DATE', 'MATH')

    # If you only wish to register, say, the aggregate functions for a
    # particular group or groups, you can:
    register_aggregate_groups(db, 'DATE')

    # If you only wish to register a single function, then you can:
    from playhouse.sqlite_udf import gzip, gunzip
    db.register_function(gzip, 'gzip')
    db.register_function(gunzip, 'gunzip')

Using a library function ("hostname"):

.. code-block:: python

    # Assume we have a model, Link, that contains lots of arbitrary URLs.
    # We want to discover the most common hosts that have been linked.
    query = (Link
             .select(fn.hostname(Link.url).alias('host'), fn.COUNT(Link.id))
             .group_by(fn.hostname(Link.url))
             .order_by(fn.COUNT(Link.id).desc())
             .tuples())

    # Print the hostname along with number of links associated with it.
    for host, count in query:
        print('%s: %s' % (host, count))


Functions, listed by collection name
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Scalar functions are indicated by ``(f)``, aggregate functions by ``(a)``, and
table-valued functions by ``(t)``.

**CONTROL_FLOW**

.. py:function:: if_then_else(cond, truthy[, falsey=None])

    Simple ternary-type operator, where, depending on the truthiness of the
    ``cond`` parameter, either the ``truthy`` or ``falsey`` value will be
    returned.

**DATE**

.. py:function:: strip_tz(date_str)

    :param date_str: A datetime, encoded as a string.
    :returns: The datetime with any timezone info stripped off.

    The time is not adjusted in any way, the timezone is simply removed.

.. py:function:: humandelta(nseconds[, glue=', '])

    :param int nseconds: Number of seconds, total, in timedelta.
    :param str glue: Fragment to join values.
    :returns: Easy-to-read description of timedelta.

    Example, 86471 -> "1 day, 1 minute, 11 seconds"

.. py:function:: mintdiff(datetime_value)

    :param datetime_value: A date-time.
    :returns: Minimum difference between any two values in list.

    Aggregate function that computes the minimum difference between any two
    datetimes.

.. py:function:: avgtdiff(datetime_value)

    :param datetime_value: A date-time.
    :returns: Average difference between values in list.

    Aggregate function that computes the average difference between consecutive
    values in the list.

.. py:function:: duration(datetime_value)

    :param datetime_value: A date-time.
    :returns: Duration from smallest to largest value in list, in seconds.

    Aggregate function that computes the duration from the smallest to the
    largest value in the list, returned in seconds.

.. py:function:: date_series(start, stop[, step_seconds=86400])

    :param datetime start: Start datetime
    :param datetime stop: Stop datetime
    :param int step_seconds: Number of seconds comprising a step.

    Table-value function that returns rows consisting of the date/+time values
    encountered iterating from start to stop, ``step_seconds`` at a time.

    Additionally, if start does not have a time component and step_seconds is
    greater-than-or-equal-to one day (86400 seconds), the values returned will
    be dates. Conversely, if start does not have a date component, values will
    be returned as times. Otherwise values are returned as datetimes.

    Example:

    .. code-block:: sql

        SELECT * FROM date_series('2017-01-28', '2017-02-02');

        value
        -----
        2017-01-28
        2017-01-29
        2017-01-30
        2017-01-31
        2017-02-01
        2017-02-02

**FILE**

.. py:function:: file_ext(filename)

    :param str filename: Filename to extract extension from.
    :return: Returns the file extension, including the leading ".".

.. py:function:: file_read(filename)

    :param str filename: Filename to read.
    :return: Contents of the file.

**HELPER**

.. py:function:: gzip(data[, compression=9])

    :param bytes data: Data to compress.
    :param int compression: Compression level (9 is max).
    :returns: Compressed binary data.

.. py:function:: gunzip(data)

    :param bytes data: Compressed data.
    :returns: Uncompressed binary data.

.. py:function:: hostname(url)

    :param str url: URL to extract hostname from.
    :returns: hostname portion of URL

.. py:function:: toggle(key)

    :param key: Key to toggle.

    Toggle a key between True/False state. Example:

    .. code-block:: pycon

        >>> toggle('my-key')
        True
        >>> toggle('my-key')
        False
        >>> toggle('my-key')
        True

.. py:function:: setting(key[, value=None])

    :param key: Key to set/retrieve.
    :param value: Value to set.
    :returns: Value associated with key.

    Store/retrieve a setting in memory and persist during lifetime of
    application. To get the current value, only specify the key. To set a new
    value, call with key and new value.

.. py:function:: clear_toggles()

    Clears all state associated with the :py:func:`toggle` function.

.. py:function:: clear_settings()

    Clears all state associated with the :py:func:`setting` function.

**MATH**

.. py:function:: randomrange(start[, stop=None[, step=None]])

    :param int start: Start of range (inclusive)
    :param int end: End of range(not inclusive)
    :param int step: Interval at which to return a value.

    Return a random integer between ``[start, end)``.

.. py:function:: gauss_distribution(mean, sigma)

    :param float mean: Mean value
    :param float sigma: Standard deviation

.. py:function:: sqrt(n)

    Calculate the square root of ``n``.

.. py:function:: tonumber(s)

    :param str s: String to convert to number.
    :returns: Integer, floating-point or NULL on failure.

.. py:function:: mode(val)

    :param val: Numbers in list.
    :returns: The mode, or most-common, number observed.

    Aggregate function which calculates *mode* of values.

.. py:function:: minrange(val)

    :param val: Value
    :returns: Min difference between two values.

    Aggregate function which calculates the minimal distance between two
    numbers in the sequence.

.. py:function:: avgrange(val)

    :param val: Value
    :returns: Average difference between values.

    Aggregate function which calculates the average distance between two
    consecutive numbers in the sequence.

.. py:function:: range(val)

    :param val: Value
    :returns: The range from the smallest to largest value in sequence.

    Aggregate function which returns range of values observed.

.. py:function:: median(val)

    :param val: Value
    :returns: The median, or middle, value in a sequence.

    Aggregate function which calculates the middle value in a sequence.

    .. note:: Only available if you compiled the ``_sqlite_udf`` extension.

**STRING**

.. py:function:: substr_count(haystack, needle)

    Returns number of times ``needle`` appears in ``haystack``.

.. py:function:: strip_chars(haystack, chars)

    Strips any characters in ``chars`` from beginning and end of ``haystack``.

.. py:function:: damerau_levenshtein_dist(s1, s2)

    Computes the edit distance from s1 to s2 using the damerau variant of the
    levenshtein algorithm.

    .. note:: Only available if you compiled the ``_sqlite_udf`` extension.

.. py:function:: levenshtein_dist(s1, s2)

    Computes the edit distance from s1 to s2 using the levenshtein algorithm.

    .. note:: Only available if you compiled the ``_sqlite_udf`` extension.

.. py:function:: str_dist(s1, s2)

    Computes the edit distance from s1 to s2 using the standard library
    SequenceMatcher's algorithm.

    .. note:: Only available if you compiled the ``_sqlite_udf`` extension.

.. py:function:: regex_search(regex, search_string)

    :param str regex: Regular expression
    :param str search_string: String to search for instances of regex.

    Table-value function that searches a string for substrings that match
    the provided ``regex``. Returns rows for each match found.

    Example:

    .. code-block:: python

        SELECT * FROM regex_search('\w+', 'extract words, ignore! symbols');

        value
        -----
        extract
        words
        ignore
        symbols

.. _apsw:

apsw, an advanced sqlite driver
-------------------------------

The ``apsw_ext`` module contains a database class suitable for use with
the apsw sqlite driver.

APSW Project page: https://github.com/rogerbinns/apsw

APSW is a really neat library that provides a thin wrapper on top of SQLite's
C interface, making it possible to use all of SQLite's advanced features.

Here are just a few reasons to use APSW, taken from the documentation:

* APSW gives all functionality of SQLite, including virtual tables, virtual
  file system, blob i/o, backups and file control.
* Connections can be shared across threads without any additional locking.
* Transactions are managed explicitly by your code.
* APSW can handle nested transactions.
* Unicode is handled correctly.
* APSW is faster.

For more information on the differences between apsw and pysqlite,
check `the apsw docs <http://rogerbinns.github.io/apsw/>`_.

How to use the APSWDatabase
^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: python

    from apsw_ext import *

    db = APSWDatabase(':memory:')

    class BaseModel(Model):
        class Meta:
            database = db

    class SomeModel(BaseModel):
        col1 = CharField()
        col2 = DateTimeField()


apsw_ext API notes
^^^^^^^^^^^^^^^^^^

:py:class:`APSWDatabase` extends the :py:class:`SqliteExtDatabase` and inherits
its advanced features.

.. py:class:: APSWDatabase(database, **connect_kwargs)

    :param string database: filename of sqlite database
    :param connect_kwargs: keyword arguments passed to apsw when opening a connection

    .. py:method:: register_module(mod_name, mod_inst)

        Provides a way of globally registering a module. For more information,
        see the `documentation on virtual tables <http://rogerbinns.github.io/apsw/vtable.html>`_.

        :param string mod_name: name to use for module
        :param object mod_inst: an object implementing the `Virtual Table <http://rogerbinns.github.io/apsw/vtable.html#vttable-class>`_ interface

    .. py:method:: unregister_module(mod_name)

        Unregister a module.

        :param string mod_name: name to use for module

.. note::
    Be sure to use the ``Field`` subclasses defined in the ``apsw_ext``
    module, as they will properly handle adapting the data types for storage.

    For example, instead of using ``peewee.DateTimeField``, be sure you are importing
    and using ``playhouse.apsw_ext.DateTimeField``.


.. _sqlcipher_ext:

Sqlcipher backend
-----------------

.. note::
    Although this extention's code is short, it has not been properly
    peer-reviewed yet and may have introduced vulnerabilities.

Also note that this code relies on sqlcipher3_ (python bindings) and sqlcipher_,
and the code there might have vulnerabilities as well, but since these
are widely used crypto modules, we can expect "short zero days" there.

..  _sqlcipher3: https://pypi.python.org/pypi/sqlcipher3
..  _pysqlcipher3: https://pypi.python.org/pypi/pysqlcipher3
..  _sqlcipher: http://sqlcipher.net

sqlcipher_ext API notes
^^^^^^^^^^^^^^^^^^^^^^^

.. py:class:: SqlCipherDatabase(database, passphrase, **kwargs)

    Subclass of :py:class:`SqliteDatabase` that stores the database
    encrypted. Instead of the standard ``sqlite3`` backend, it uses sqlcipher3_:
    a python wrapper for sqlcipher_, which -- in turn -- is an encrypted wrapper
    around ``sqlite3``, so the API is *identical* to :py:class:`SqliteDatabase`'s,
    except for object construction parameters:

    :param database: Path to encrypted database filename to open [or create].
    :param passphrase: Database encryption passphrase: should be at least 8 character
        long, but it is *strongly advised* to enforce better `passphrase strength`_
        criteria in your implementation.

    * If the ``database`` file doesn't exist, it will be *created* with
      encryption by a key derived from ``passhprase``.
    * When trying to open an existing database, ``passhprase`` should be
      identical to the ones used when it was created. If the passphrase is
      incorrect, an error will be raised when first attempting to access the
      database.

    .. py:method:: rekey(passphrase)

        :param str passphrase: New passphrase for database.

        Change the passphrase for database.

.. _passphrase strength: https://en.wikipedia.org/wiki/Password_strength

.. note::
    SQLCipher can be configured using a number of extension PRAGMAs. The list
    of PRAGMAs and their descriptions can be found in the `SQLCipher documentation <https://www.zetetic.net/sqlcipher/sqlcipher-api/>`_.

    For example to specify the number of PBKDF2 iterations for the key
    derivation (64K in SQLCipher 3.x, 256K in SQLCipher 4.x by default):

    .. code-block:: python

        # Use 1,000,000 iterations.
        db = SqlCipherDatabase('my_app.db', pragmas={'kdf_iter': 1000000})

    To use a cipher page-size of 16KB and a cache-size of 10,000 pages:

    .. code-block:: python

        db = SqlCipherDatabase('my_app.db', passphrase='secret!!!', pragmas={
            'cipher_page_size': 1024 * 16,
            'cache_size': 10000})  # 10,000 16KB pages, or 160MB.


Example of prompting the user for a passphrase:

.. code-block:: python

    db = SqlCipherDatabase(None)

    class BaseModel(Model):
        """Parent for all app's models"""
        class Meta:
            # We won't have a valid db until user enters passhrase.
            database = db

    # Derive our model subclasses
    class Person(BaseModel):
        name = TextField(primary_key=True)

    right_passphrase = False
    while not right_passphrase:
        db.init(
            'testsqlcipher.db',
            passphrase=get_passphrase_from_user())

        try:  # Actually execute a query against the db to test passphrase.
            db.get_tables()
        except DatabaseError as exc:
            # This error indicates the password was wrong.
            if exc.args[0] == 'file is encrypted or is not a database':
                tell_user_the_passphrase_was_wrong()
                db.init(None)  # Reset the db.
            else:
                raise exc
        else:
            # The password was correct.
            right_passphrase = True

See also: a slightly more elaborate `example <https://gist.github.com/thedod/11048875#file-testpeeweesqlcipher-py>`_.

.. _postgres_ext:

Postgresql Extensions
---------------------

The postgresql extensions module provides a number of "postgres-only" functions,
currently:

* :ref:`json support <pgjson>`, including *jsonb* for Postgres 9.4.
* :ref:`hstore support <hstore>`
* :ref:`server-side cursors <server_side_cursors>`
* :ref:`full-text search <pg_fts>`
* :py:class:`ArrayField` field type, for storing arrays.
* :py:class:`HStoreField` field type, for storing key/value pairs.
* :py:class:`IntervalField` field type, for storing ``timedelta`` objects.
* :py:class:`JSONField` field type, for storing JSON data.
* :py:class:`BinaryJSONField` field type for the ``jsonb`` JSON data type.
* :py:class:`TSVectorField` field type, for storing full-text search data.
* :py:class:`DateTimeTZField` field type, a timezone-aware datetime field.

In the future I would like to add support for more of postgresql's features.
If there is a particular feature you would like to see added, please
`open a Github issue <https://github.com/coleifer/peewee/issues>`_.

.. warning:: In order to start using the features described below, you will need to use the extension :py:class:`PostgresqlExtDatabase` class instead of :py:class:`PostgresqlDatabase`.

The code below will assume you are using the following database and base model:

.. code-block:: python

    from playhouse.postgres_ext import *

    ext_db = PostgresqlExtDatabase('peewee_test', user='postgres')

    class BaseExtModel(Model):
        class Meta:
            database = ext_db

.. _pgjson:

JSON Support
^^^^^^^^^^^^

peewee has basic support for Postgres' native JSON data type, in the form of
:py:class:`JSONField`. As of version 2.4.7, peewee also supports the Postgres
9.4 binary json ``jsonb`` type, via :py:class:`BinaryJSONField`.

.. warning::
  Postgres supports a JSON data type natively as of 9.2 (full support in 9.3).
  In order to use this functionality you must be using the correct version of
  Postgres with `psycopg2` version 2.5 or greater.

  To use :py:class:`BinaryJSONField`, which has many performance and querying
  advantages, you must have Postgres 9.4 or later.

.. note::
  You must be sure your database is an instance of
  :py:class:`PostgresqlExtDatabase` in order to use the `JSONField`.

Here is an example of how you might declare a model with a JSON field:

.. code-block:: python

    import json
    import urllib2
    from playhouse.postgres_ext import *

    db = PostgresqlExtDatabase('my_database')

    class APIResponse(Model):
        url = CharField()
        response = JSONField()

        class Meta:
            database = db

        @classmethod
        def request(cls, url):
            fh = urllib2.urlopen(url)
            return cls.create(url=url, response=json.loads(fh.read()))

    APIResponse.create_table()

    # Store a JSON response.
    offense = APIResponse.request('http://crime-api.com/api/offense/')
    booking = APIResponse.request('http://crime-api.com/api/booking/')

    # Query a JSON data structure using a nested key lookup:
    offense_responses = APIResponse.select().where(
        APIResponse.response['meta']['model'] == 'offense')

    # Retrieve a sub-key for each APIResponse. By calling .as_json(), the
    # data at the sub-key will be returned as Python objects (dicts, lists,
    # etc) instead of serialized JSON.
    q = (APIResponse
         .select(
           APIResponse.data['booking']['person'].as_json().alias('person'))
         .where(APIResponse.data['meta']['model'] == 'booking'))

    for result in q:
        print(result.person['name'], result.person['dob'])

The :py:class:`BinaryJSONField` works the same and supports the same operations
as the regular :py:class:`JSONField`, but provides several additional
operations for testing **containment**. Using the binary json field, you can
test whether your JSON data contains other partial JSON structures
(:py:meth:`~BinaryJSONField.contains`, :py:meth:`~BinaryJSONField.contains_any`,
:py:meth:`~BinaryJSONField.contains_all`), or whether it is a subset of a
larger JSON document (:py:meth:`~BinaryJSONField.contained_by`).

For more examples, see the :py:class:`JSONField` and
:py:class:`BinaryJSONField` API documents below.

.. _hstore:

hstore support
^^^^^^^^^^^^^^

`Postgresql hstore <http://www.postgresql.org/docs/current/static/hstore.html>`_
is an embedded key/value store. With hstore, you can store arbitrary key/value
pairs in your database alongside structured relational data.

To use ``hstore``, you need to specify an additional parameter when
instantiating your :py:class:`PostgresqlExtDatabase`:

.. code-block:: python

    # Specify "register_hstore=True":
    db = PostgresqlExtDatabase('my_db', register_hstore=True)

Currently the ``postgres_ext`` module supports the following operations:

* Store and retrieve arbitrary dictionaries
* Filter by key(s) or partial dictionary
* Update/add one or more keys to an existing dictionary
* Delete one or more keys from an existing dictionary
* Select keys, values, or zip keys and values
* Retrieve a slice of keys/values
* Test for the existence of a key
* Test that a key has a non-NULL value

Using hstore
^^^^^^^^^^^^

To start with, you will need to import the custom database class and the hstore
functions from ``playhouse.postgres_ext`` (see above code snippet). Then, it
is as simple as adding a :py:class:`HStoreField` to your model:

.. code-block:: python

    class House(BaseExtModel):
        address = CharField()
        features = HStoreField()

You can now store arbitrary key/value pairs on ``House`` instances:

.. code-block:: pycon

    >>> h = House.create(
    ...     address='123 Main St',
    ...     features={'garage': '2 cars', 'bath': '2 bath'})
    ...
    >>> h_from_db = House.get(House.id == h.id)
    >>> h_from_db.features
    {'bath': '2 bath', 'garage': '2 cars'}

You can filter by individual key, multiple keys or partial dictionary:

.. code-block:: pycon

    >>> query = House.select()
    >>> garage = query.where(House.features.contains('garage'))
    >>> garage_and_bath = query.where(House.features.contains(['garage', 'bath']))
    >>> twocar = query.where(House.features.contains({'garage': '2 cars'}))

Suppose you want to do an atomic update to the house:

.. code-block:: pycon

    >>> new_features = House.features.update({'bath': '2.5 bath', 'sqft': '1100'})
    >>> query = House.update(features=new_features)
    >>> query.where(House.id == h.id).execute()
    1
    >>> h = House.get(House.id == h.id)
    >>> h.features
    {'bath': '2.5 bath', 'garage': '2 cars', 'sqft': '1100'}

Or, alternatively an atomic delete:

.. code-block:: pycon

    >>> query = House.update(features=House.features.delete('bath'))
    >>> query.where(House.id == h.id).execute()
    1
    >>> h = House.get(House.id == h.id)
    >>> h.features
    {'garage': '2 cars', 'sqft': '1100'}

Multiple keys can be deleted at the same time:

.. code-block:: pycon

    >>> query = House.update(features=House.features.delete('garage', 'sqft'))

You can select just keys, just values, or zip the two:

.. code-block:: pycon

    >>> for h in House.select(House.address, House.features.keys().alias('keys')):
    ...     print(h.address, h.keys)

    123 Main St [u'bath', u'garage']

    >>> for h in House.select(House.address, House.features.values().alias('vals')):
    ...     print(h.address, h.vals)

    123 Main St [u'2 bath', u'2 cars']

    >>> for h in House.select(House.address, House.features.items().alias('mtx')):
    ...     print(h.address, h.mtx)

    123 Main St [[u'bath', u'2 bath'], [u'garage', u'2 cars']]

You can retrieve a slice of data, for example, all the garage data:

.. code-block:: pycon

    >>> query = House.select(House.address, House.features.slice('garage').alias('garage_data'))
    >>> for house in query:
    ...     print(house.address, house.garage_data)

    123 Main St {'garage': '2 cars'}

You can check for the existence of a key and filter rows accordingly:

.. code-block:: pycon

    >>> has_garage = House.features.exists('garage')
    >>> for house in House.select(House.address, has_garage.alias('has_garage')):
    ...     print(house.address, house.has_garage)

    123 Main St True

    >>> for house in House.select().where(House.features.exists('garage')):
    ...     print(house.address, house.features['garage'])  # <-- just houses w/garage data

    123 Main St 2 cars


Interval support
^^^^^^^^^^^^^^^^

Postgres supports durations through the ``INTERVAL`` data-type (`docs <https://www.postgresql.org/docs/current/static/datatype-datetime.html>`_).

.. py:class:: IntervalField([null=False, [...]])

    Field class capable of storing Python ``datetime.timedelta`` instances.

    Example:

    .. code-block:: python

        from datetime import timedelta

        from playhouse.postgres_ext import *

        db = PostgresqlExtDatabase('my_db')

        class Event(Model):
            location = CharField()
            duration = IntervalField()
            start_time = DateTimeField()

            class Meta:
                database = db

            @classmethod
            def get_long_meetings(cls):
                return cls.select().where(cls.duration > timedelta(hours=1))

.. _server_side_cursors:

Server-side cursors
^^^^^^^^^^^^^^^^^^^

When psycopg2 executes a query, normally all results are fetched and returned
to the client by the backend. This can cause your application to use a lot of
memory when making large queries. Using server-side cursors, results are
returned a little at a time (by default 2000 records). For the definitive
reference, please see the `psycopg2 documentation <http://initd.org/psycopg/docs/usage.html#server-side-cursors>`_.

.. note:: To use server-side (or named) cursors, you must be using :py:class:`PostgresqlExtDatabase`.

To execute a query using a server-side cursor, simply wrap your select query
using the :py:func:`ServerSide` helper:

.. code-block:: python

    large_query = PageView.select()  # Build query normally.

    # Iterate over large query inside a transaction.
    for page_view in ServerSide(large_query):
        # do some interesting analysis here.
        pass

    # Server-side resources are released.

If you would like all ``SELECT`` queries to automatically use a server-side
cursor, you can specify this when creating your :py:class:`PostgresqlExtDatabase`:

.. code-block:: python

    from postgres_ext import PostgresqlExtDatabase

    ss_db = PostgresqlExtDatabase('my_db', server_side_cursors=True)

.. note::
    Server-side cursors live only as long as the transaction, so for this reason
    peewee will not automatically call ``commit()`` after executing a ``SELECT``
    query. If you do not ``commit`` after you are done iterating, you will not
    release the server-side resources until the connection is closed (or the
    transaction is committed later). Furthermore, since peewee will by default
    cache rows returned by the cursor, you should always call ``.iterator()``
    when iterating over a large query.

    If you are using the :py:func:`ServerSide` helper, the transaction and
    call to ``iterator()`` will be handled transparently.


.. _pg_fts:

Full-text search
^^^^^^^^^^^^^^^^

Postgresql provides `sophisticated full-text search
<http://www.postgresql.org/docs/9.3/static/textsearch.html>`_ using special
data-types (``tsvector`` and ``tsquery``). Documents should be stored or
converted to the ``tsvector`` type, and search queries should be converted to
``tsquery``.

For simple cases, you can simply use the :py:func:`Match` function, which will
automatically perform the appropriate conversions, and requires no schema
changes:

.. code-block:: python

    def blog_search(search_term):
        return Blog.select().where(
            (Blog.status == Blog.STATUS_PUBLISHED) &
            Match(Blog.content, search_term))

The :py:func:`Match` function will automatically convert the left-hand operand
to a ``tsvector``, and the right-hand operand to a ``tsquery``. For better
performance, it is recommended you create a ``GIN`` index on the column you
plan to search:

.. code-block:: sql

    CREATE INDEX blog_full_text_search ON blog USING gin(to_tsvector(content));

Alternatively, you can use the :py:class:`TSVectorField` to maintain a
dedicated column for storing ``tsvector`` data:

.. code-block:: python

    class Blog(Model):
        content = TextField()
        search_content = TSVectorField()

.. note::
    :py:class:`TSVectorField`, will automatically be created with a GIN index.

You will need to explicitly convert the incoming text data to ``tsvector`` when
inserting or updating the ``search_content`` field:

.. code-block:: python

    content = 'Excellent blog post about peewee ORM.'
    blog_entry = Blog.create(
        content=content,
        search_content=fn.to_tsvector(content))

To perform a full-text search, use :py:meth:`TSVectorField.match`:

.. code-block:: python

    terms = 'python & (sqlite | postgres)'
    results = Blog.select().where(Blog.search_content.match(terms))

For more information, see the `Postgres full-text search docs <https://www.postgresql.org/docs/current/textsearch.html>`_.


postgres_ext API notes
^^^^^^^^^^^^^^^^^^^^^^

.. py:class:: PostgresqlExtDatabase(database[, server_side_cursors=False[, register_hstore=False[, ...]]])

    Identical to :py:class:`PostgresqlDatabase` but required in order to support:

    :param str database: Name of database to connect to.
    :param bool server_side_cursors: Whether ``SELECT`` queries should utilize
        server-side cursors.
    :param bool register_hstore: Register the HStore extension with the connection.

    * :ref:`server_side_cursors`
    * :py:class:`ArrayField`
    * :py:class:`DateTimeTZField`
    * :py:class:`JSONField`
    * :py:class:`BinaryJSONField`
    * :py:class:`HStoreField`
    * :py:class:`TSVectorField`

    If you wish to use the HStore extension, you must specify ``register_hstore=True``.

    If using ``server_side_cursors``, also be sure to wrap your queries with
    :py:func:`ServerSide`.

.. py:function:: ServerSide(select_query)

    :param select_query: a :py:class:`SelectQuery` instance.
    :rtype generator:

    Wrap the given select query in a transaction, and call its
    :py:meth:`~SelectQuery.iterator` method to avoid caching row instances. In
    order for the server-side resources to be released, be sure to exhaust the
    generator (iterate over all the rows).

    Usage:

    .. code-block:: python

        large_query = PageView.select()
        for page_view in ServerSide(large_query):
            # Do something interesting.
            pass

        # At this point server side resources are released.

.. _pgarrays:

.. py:class:: ArrayField([field_class=IntegerField[, field_kwargs=None[, dimensions=1[, convert_values=False]]]])

    :param field_class: a subclass of :py:class:`Field`, e.g. :py:class:`IntegerField`.
    :param dict field_kwargs: arguments to initialize ``field_class``.
    :param int dimensions: dimensions of array.
    :param bool convert_values: apply ``field_class`` value conversion to array data.

    Field capable of storing arrays of the provided `field_class`.

    .. note::
        By default ArrayField will use a GIN index. To disable this, initialize
        the field with ``index=False``.

    You can store and retrieve lists (or lists-of-lists):

    .. code-block:: python

        class BlogPost(BaseModel):
            content = TextField()
            tags = ArrayField(CharField)


        post = BlogPost(content='awesome', tags=['foo', 'bar', 'baz'])

    Additionally, you can use the ``__getitem__`` API to query values or slices
    in the database:

    .. code-block:: python

        # Get the first tag on a given blog post.
        first_tag = (BlogPost
                     .select(BlogPost.tags[0].alias('first_tag'))
                     .where(BlogPost.id == 1)
                     .dicts()
                     .get())

        # first_tag = {'first_tag': 'foo'}

    Get a slice of values:

    .. code-block:: python

        # Get the first two tags.
        two_tags = (BlogPost
                    .select(BlogPost.tags[:2].alias('two'))
                    .dicts()
                    .get())
        # two_tags = {'two': ['foo', 'bar']}

    .. py:method:: contains(*items)

        :param items: One or more items that must be in the given array field.

        .. code-block:: python

            # Get all blog posts that are tagged with both "python" and "django".
            Blog.select().where(Blog.tags.contains('python', 'django'))

    .. py:method:: contains_any(*items)

        :param items: One or more items to search for in the given array field.

        Like :py:meth:`~ArrayField.contains`, except will match rows where the
        array contains *any* of the given items.

        .. code-block:: python

            # Get all blog posts that are tagged with "flask" and/or "django".
            Blog.select().where(Blog.tags.contains_any('flask', 'django'))

.. py:class:: DateTimeTZField(*args, **kwargs)

    A timezone-aware subclass of :py:class:`DateTimeField`.

.. py:class:: HStoreField(*args, **kwargs)

    A field for storing and retrieving arbitrary key/value pairs. For details
    on usage, see :ref:`hstore`.

    .. attention::
        To use the :py:class:`HStoreField` you will need to be sure the
        *hstore* extension is registered with the connection. To accomplish
        this, instantiate the :py:class:`PostgresqlExtDatabase` with
        ``register_hstore=True``.

    .. note::
        By default ``HStoreField`` will use a *GiST* index. To disable this,
        initialize the field with ``index=False``.

    .. py:method:: keys()

        Returns the keys for a given row.

        .. code-block:: pycon

            >>> for h in House.select(House.address, House.features.keys().alias('keys')):
            ...     print(h.address, h.keys)

            123 Main St [u'bath', u'garage']

    .. py:method:: values()

        Return the values for a given row.

        .. code-block:: pycon

            >>> for h in House.select(House.address, House.features.values().alias('vals')):
            ...     print(h.address, h.vals)

            123 Main St [u'2 bath', u'2 cars']

    .. py:method:: items()

        Like python's ``dict``, return the keys and values in a list-of-lists:

        .. code-block:: pycon

            >>> for h in House.select(House.address, House.features.items().alias('mtx')):
            ...     print(h.address, h.mtx)

            123 Main St [[u'bath', u'2 bath'], [u'garage', u'2 cars']]

    .. py:method:: slice(*args)

        Return a slice of data given a list of keys.

        .. code-block:: pycon

            >>> for h in House.select(House.address, House.features.slice('garage').alias('garage_data')):
            ...     print(h.address, h.garage_data)

            123 Main St {'garage': '2 cars'}

    .. py:method:: exists(key)

        Query for whether the given key exists.

        .. code-block:: pycon

            >>> for h in House.select(House.address, House.features.exists('garage').alias('has_garage')):
            ...     print(h.address, h.has_garage)

            123 Main St True

            >>> for h in House.select().where(House.features.exists('garage')):
            ...     print(h.address, h.features['garage']) # <-- just houses w/garage data

            123 Main St 2 cars

    .. py:method:: defined(key)

        Query for whether the given key has a value associated with it.

    .. py:method:: update(**data)

        Perform an atomic update to the keys/values for a given row or rows.

        .. code-block:: pycon

            >>> query = House.update(features=House.features.update(
            ...     sqft=2000,
            ...     year_built=2012))
            >>> query.where(House.id == 1).execute()

    .. py:method:: delete(*keys)

        Delete the provided keys for a given row or rows.

        .. note:: We will use an ``UPDATE`` query.

        .. code-block:: pycon

        >>> query = House.update(features=House.features.delete(
        ...     'sqft', 'year_built'))
        >>> query.where(House.id == 1).execute()

    .. py:method:: contains(value)

        :param value: Either a ``dict``, a ``list`` of keys, or a single key.

        Query rows for the existence of either:

        * a partial dictionary.
        * a list of keys.
        * a single key.

        .. code-block:: pycon

            >>> query = House.select()
            >>> has_garage = query.where(House.features.contains('garage'))
            >>> garage_bath = query.where(House.features.contains(['garage', 'bath']))
            >>> twocar = query.where(House.features.contains({'garage': '2 cars'}))

    .. py:method:: contains_any(*keys)

        :param keys: One or more keys to search for.

        Query rows for the existence of *any* key.

.. py:class:: JSONField(dumps=None, *args, **kwargs)

    :param dumps: The default is to call json.dumps() or the dumps function.
        You can override this method to create a customized JSON wrapper.

    Field class suitable for storing and querying arbitrary JSON. When using
    this on a model, set the field's value to a Python object (either a
    ``dict`` or a ``list``). When you retrieve your value from the database it
    will be returned as a Python data structure.

    .. note:: You must be using Postgres 9.2 / psycopg2 2.5 or greater.

    .. note::
        If you are using Postgres 9.4, strongly consider using the
        :py:class:`BinaryJSONField` instead as it offers better performance and
        more powerful querying options.

    Example model declaration:

    .. code-block:: python

        db = PostgresqlExtDatabase('my_db')

        class APIResponse(Model):
            url = CharField()
            response = JSONField()

            class Meta:
                database = db

    Example of storing JSON data:

    .. code-block:: python

        url = 'http://foo.com/api/resource/'
        resp = json.loads(urllib2.urlopen(url).read())
        APIResponse.create(url=url, response=resp)

        APIResponse.create(url='http://foo.com/baz/', response={'key': 'value'})

    To query, use Python's ``[]`` operators to specify nested key or array lookups:

    .. code-block:: python

        APIResponse.select().where(
            APIResponse.response['key1']['nested-key'] == 'some-value')

    To illustrate the use of the ``[]`` operators, imagine we have the
    following data stored in an ``APIResponse``:

    .. code-block:: javascript

        {
          "foo": {
            "bar": ["i1", "i2", "i3"],
            "baz": {
              "huey": "mickey",
              "peewee": "nugget"
            }
          }
        }

    Here are the results of a few queries:

    .. code-block:: python

        def get_data(expression):
            # Helper function to just retrieve the results of a
            # particular expression.
            query = (APIResponse
                     .select(expression.alias('my_data'))
                     .dicts()
                     .get())
            return query['my_data']

        # Accessing the foo -> bar subkey will return a JSON
        # representation of the list.
        get_data(APIResponse.data['foo']['bar'])
        # '["i1", "i2", "i3"]'

        # In order to retrieve this list as a Python list,
        # we will call .as_json() on the expression.
        get_data(APIResponse.data['foo']['bar'].as_json())
        # ['i1', 'i2', 'i3']

        # Similarly, accessing the foo -> baz subkey will
        # return a JSON representation of the dictionary.
        get_data(APIResponse.data['foo']['baz'])
        # '{"huey": "mickey", "peewee": "nugget"}'

        # Again, calling .as_json() will return an actual
        # python dictionary.
        get_data(APIResponse.data['foo']['baz'].as_json())
        # {'huey': 'mickey', 'peewee': 'nugget'}

        # When dealing with simple values, either way works as
        # you expect.
        get_data(APIResponse.data['foo']['bar'][0])
        # 'i1'

        # Calling .as_json() when the result is a simple value
        # will return the same thing as the previous example.
        get_data(APIResponse.data['foo']['bar'][0].as_json())
        # 'i1'

.. py:class:: BinaryJSONField(dumps=None, *args, **kwargs)

    :param dumps: The default is to call json.dumps() or the dumps function.
      You can override this method to create a customized JSON wrapper.

    Store and query arbitrary JSON documents. Data should be stored using
    normal Python ``dict`` and ``list`` objects, and when data is returned from
    the database, it will be returned using ``dict`` and ``list`` as well.

    For examples of basic query operations, see the above code samples for
    :py:class:`JSONField`. The example queries below will use the same
    ``APIResponse`` model described above.

    .. note::
        By default BinaryJSONField will use a GiST index. To disable this,
        initialize the field with ``index=False``.

    .. note:: You must be using Postgres 9.4 / psycopg2 2.5 or newer. If you are using Postgres 9.2 or 9.3, you can use the regular :py:class:`JSONField` instead.

    .. py:method:: contains(other)

        Test whether the given JSON data contains the given JSON fragment or key.

        Example:

        .. code-block:: python

            search_fragment = {
                'foo': {'bar': ['i2']}
            }
            query = (APIResponse
                     .select()
                     .where(APIResponse.data.contains(search_fragment)))

            # If we're searching for a list, the list items do not need to
            # be ordered in a particular way:
            query = (APIResponse
                     .select()
                     .where(APIResponse.data.contains({
                         'foo': {'bar': ['i2', 'i1']}})))

        We can pass in simple keys as well. To find APIResponses that contain the key ``foo`` at the top-level:

        .. code-block:: python

            APIResponse.select().where(APIResponse.data.contains('foo'))

        We can also search sub-keys using square-brackets:

        .. code-block:: python

            APIResponse.select().where(
                APIResponse.data['foo']['bar'].contains(['i2', 'i1']))

    .. py:method:: contains_any(*items)

        Search for the presence of one or more of the given items.

        .. code-block:: python

            APIResponse.select().where(
                APIResponse.data.contains_any('foo', 'baz', 'nugget'))

        Like :py:meth:`~BinaryJSONField.contains`, we can also search sub-keys:

        .. code-block:: python

            APIResponse.select().where(
                APIResponse.data['foo']['bar'].contains_any('i2', 'ix'))

    .. py:method:: contains_all(*items)

        Search for the presence of all of the given items.

        .. code-block:: python

            APIResponse.select().where(
                APIResponse.data.contains_all('foo'))

        Like :py:meth:`~BinaryJSONField.contains_any`, we can also search sub-keys:

        .. code-block:: python

            APIResponse.select().where(
                APIResponse.data['foo']['bar'].contains_all('i1', 'i2', 'i3'))

    .. py:method:: contained_by(other)

        Test whether the given JSON document is contained by (is a subset of) the given JSON document. This method is the inverse of :py:meth:`~BinaryJSONField.contains`.

        .. code-block:: python

            big_doc = {
                'foo': {
                    'bar': ['i1', 'i2', 'i3'],
                    'baz': {
                        'huey': 'mickey',
                        'peewee': 'nugget',
                    }
                },
                'other_key': ['nugget', 'bear', 'kitten'],
            }
            APIResponse.select().where(
                APIResponse.data.contained_by(big_doc))

    .. py:method:: concat(data)

        Concatenate two field data and the provided data. Note that this
        operation does not merge or do a "deep concat".

    .. py:method:: has_key(key)

        Test whether the key exists at the top-level of the JSON object.

    .. py:method:: remove(*keys)

        Remove one or more keys from the top-level of the JSON object.


.. py:function:: Match(field, query)

    Generate a full-text search expression, automatically converting the
    left-hand operand to a ``tsvector``, and the right-hand operand to a
    ``tsquery``.

    Example:

    .. code-block:: python

        def blog_search(search_term):
            return Blog.select().where(
                (Blog.status == Blog.STATUS_PUBLISHED) &
                Match(Blog.content, search_term))

.. py:class:: TSVectorField

    Field type suitable for storing ``tsvector`` data. This field will
    automatically be created with a ``GIN`` index for improved search
    performance.

    .. note::
        Data stored in this field will still need to be manually converted to
        the ``tsvector`` type.

    .. note::
        By default TSVectorField will use a GIN index. To disable this,
        initialize the field with ``index=False``.

     Example usage:

     .. code-block:: python

          class Blog(Model):
              content = TextField()
              search_content = TSVectorField()

          content = 'this is a sample blog entry.'
          blog_entry = Blog.create(
              content=content,
              search_content=fn.to_tsvector(content))  # Note `to_tsvector()`.

    .. py:method:: match(query[, language=None[, plain=False]])

        :param str query: the full-text search query.
        :param str language: language name (optional).
        :param bool plain: parse search query using plain (simple) parser.
        :returns: an expression representing full-text search/match.

        Example:

        .. code-block:: python

            # Perform a search using the "match" method.
            terms = 'python & (sqlite | postgres)'
            results = Blog.select().where(Blog.search_content.match(terms))


.. include:: crdb.rst


.. _mysql_ext:

MySQL Extensions
----------------

Peewee provides an alternate database implementation for using the
`mysql-connector <https://dev.mysql.com/doc/connector-python/en/>`_ driver or
the `mariadb-connector <https://mariadb-corporation.github.io/mariadb-connector-python/>`_.
The implementations can be found in ``playhouse.mysql_ext``.

Example usage of mysql-connector:

.. code-block:: python

    from playhouse.mysql_ext import MySQLConnectorDatabase

    # MySQL database implementation that utilizes mysql-connector driver.
    db = MySQLConnectorDatabase('my_database', host='1.2.3.4', user='mysql')

Example usage of mariadb-connector:

.. code-block:: python

    from playhouse.mysql_ext import MariaDBConnectorDatabase

    # MySQL database implementation that utilizes mysql-connector driver.
    db = MariaDBConnectorDatabase('my_database', host='1.2.3.4', user='mysql')

.. note::
    The :py:class:`MariaDBConnectorDatabase` does **not** accept the following
    parameters:

    * ``charset`` (it is always utf8mb4)
    * ``sql_mode``
    * ``use_unicode``

Additional MySQL-specific helpers:

.. py:class:: JSONField()

    Extends :py:class:`TextField` and implements transparent JSON encoding and
    decoding in Python.

.. py:function:: Match(columns, expr[, modifier=None])

    :param columns: a single :py:class:`Field` or a tuple of multiple fields.
    :param str expr: the full-text search expression.
    :param str modifier: optional modifiers for the search, e.g. *'in boolean mode'*.

    Helper class for constructing MySQL full-text search queries of the form:

    .. code-block:: sql

        MATCH (columns, ...) AGAINST (expr[ modifier])

.. _dataset:

DataSet
-------

The *dataset* module contains a high-level API for working with databases
modeled after the popular `project of the same name <https://dataset.readthedocs.io/en/latest/index.html>`_.
The aims of the *dataset* module are to provide:

* A simplified API for working with relational data, along the lines of working with JSON.
* An easy way to export relational data as JSON or CSV.
* An easy way to import JSON or CSV data into a relational database.

A minimal data-loading script might look like this:

.. code-block:: python

    from playhouse.dataset import DataSet

    db = DataSet('sqlite:///:memory:')

    table = db['sometable']
    table.insert(name='Huey', age=3)
    table.insert(name='Mickey', age=5, gender='male')

    huey = table.find_one(name='Huey')
    print(huey)
    # {'age': 3, 'gender': None, 'id': 1, 'name': 'Huey'}

    for obj in table:
        print(obj)
    # {'age': 3, 'gender': None, 'id': 1, 'name': 'Huey'}
    # {'age': 5, 'gender': 'male', 'id': 2, 'name': 'Mickey'}

You can insert, update or delete using the dictionary APIs as well:

.. code-block:: python

    huey = table.find_one(name='Huey')
    # {'age': 3, 'gender': None, 'id': 1, 'name': 'Huey'}

    # Perform an update by supplying a partial record of changes.
    table[1] = {'gender': 'male', 'age': 4}
    print(table[1])
    # {'age': 4, 'gender': 'male', 'id': 1, 'name': 'Huey'}

    # Or insert a new record:
    table[3] = {'name': 'Zaizee', 'age': 2}
    print(table[3])
    # {'age': 2, 'gender': None, 'id': 3, 'name': 'Zaizee'}

    # Or delete a record:
    del table[3]  # Remove the row we just added.

You can export or import data using :py:meth:`~DataSet.freeze` and
:py:meth:`~DataSet.thaw`:

.. code-block:: python

    # Export table content to the `users.json` file.
    db.freeze(table.all(), format='json', filename='users.json')

    # Import data from a CSV file into a new table. Columns will be automatically
    # created for each field in the CSV file.
    new_table = db['stats']
    new_table.thaw(format='csv', filename='monthly_stats.csv')

Getting started
^^^^^^^^^^^^^^^

:py:class:`DataSet` objects are initialized by passing in a database URL of the
format ``dialect://user:password@host/dbname``. See the :ref:`db_url` section
for examples of connecting to various databases.

.. code-block:: python

    # Create an in-memory SQLite database.
    db = DataSet('sqlite:///:memory:')

Storing data
^^^^^^^^^^^^

To store data, we must first obtain a reference to a table. If the table does
not exist, it will be created automatically:

.. code-block:: python

    # Get a table reference, creating the table if it does not exist.
    table = db['users']

We can now :py:meth:`~Table.insert` new rows into the table. If the columns do
not exist, they will be created automatically:

.. code-block:: python

    table.insert(name='Huey', age=3, color='white')
    table.insert(name='Mickey', age=5, gender='male')

To update existing entries in the table, pass in a dictionary containing the
new values and filter conditions. The list of columns to use as filters is
specified in the *columns* argument. If no filter columns are specified, then
all rows will be updated.

.. code-block:: python

    # Update the gender for "Huey".
    table.update(name='Huey', gender='male', columns=['name'])

    # Update all records. If the column does not exist, it will be created.
    table.update(favorite_orm='peewee')

Importing data
^^^^^^^^^^^^^^

To import data from an external source, such as a JSON or CSV file, you can use
the :py:meth:`~Table.thaw` method. By default, new columns will be created for
any attributes encountered. If you wish to only populate columns that are
already defined on a table, you can pass in ``strict=True``.

.. code-block:: python

    # Load data from a JSON file containing a list of objects.
    table = dataset['stock_prices']
    table.thaw(filename='stocks.json', format='json')
    table.all()[:3]

    # Might print...
    [{'id': 1, 'ticker': 'GOOG', 'price': 703},
     {'id': 2, 'ticker': 'AAPL', 'price': 109},
     {'id': 3, 'ticker': 'AMZN', 'price': 300}]


Using transactions
^^^^^^^^^^^^^^^^^^

DataSet supports nesting transactions using a simple context manager.

.. code-block:: python

    table = db['users']
    with db.transaction() as txn:
        table.insert(name='Charlie')

        with db.transaction() as nested_txn:
            # Set Charlie's favorite ORM to Django.
            table.update(name='Charlie', favorite_orm='django', columns=['name'])

            # jk/lol
            nested_txn.rollback()

Inspecting the database
^^^^^^^^^^^^^^^^^^^^^^^

You can use the :py:meth:`tables` method to list the tables in the current
database:

.. code-block:: pycon

    >>> print(db.tables)
    ['sometable', 'user']

And for a given table, you can print the columns:

.. code-block:: pycon

    >>> table = db['user']
    >>> print(table.columns)
    ['id', 'age', 'name', 'gender', 'favorite_orm']

We can also find out how many rows are in a table:

.. code-block:: pycon

    >>> print(len(db['user']))
    3

Reading data
^^^^^^^^^^^^

To retrieve all rows, you can use the :py:meth:`~Table.all` method:

.. code-block:: python

    # Retrieve all the users.
    users = db['user'].all()

    # We can iterate over all rows without calling `.all()`
    for user in db['user']:
        print(user['name'])

Specific objects can be retrieved using :py:meth:`~Table.find` and
:py:meth:`~Table.find_one`.

.. code-block:: python

    # Find all the users who like peewee.
    peewee_users = db['user'].find(favorite_orm='peewee')

    # Find Huey.
    huey = db['user'].find_one(name='Huey')

Exporting data
^^^^^^^^^^^^^^

To export data, use the :py:meth:`~DataSet.freeze` method, passing in the query
you wish to export:

.. code-block:: python

    peewee_users = db['user'].find(favorite_orm='peewee')
    db.freeze(peewee_users, format='json', filename='peewee_users.json')

API
^^^

.. py:class:: DataSet(url, **kwargs)

    :param url: A database URL or a :py:class:`Database` instance. For
        details on using a URL, see :ref:`db_url` for examples.
    :param kwargs: additional keyword arguments passed to
        :py:meth:`Introspector.generate_models` when introspecting the db.

    The *DataSet* class provides a high-level API for working with relational
    databases.

    .. py:attribute:: tables

        Return a list of tables stored in the database. This list is computed
        dynamically each time it is accessed.

    .. py:method:: __getitem__(table_name)

        Provide a :py:class:`Table` reference to the specified table. If the
        table does not exist, it will be created.

    .. py:method:: query(sql[, params=None[, commit=True]])

        :param str sql: A SQL query.
        :param list params: Optional parameters for the query.
        :param bool commit: Whether the query should be committed upon execution.
        :return: A database cursor.

        Execute the provided query against the database.

    .. py:method:: transaction()

        Create a context manager representing a new transaction (or savepoint).

    .. py:method:: freeze(query[, format='csv'[, filename=None[, file_obj=None[, encoding='utf8'[, **kwargs]]]]])

        :param query: A :py:class:`SelectQuery`, generated using :py:meth:`~Table.all` or `~Table.find`.
        :param format: Output format. By default, *csv* and *json* are supported.
        :param filename: Filename to write output to.
        :param file_obj: File-like object to write output to.
        :param str encoding: File encoding.
        :param kwargs: Arbitrary parameters for export-specific functionality.

    .. py:method:: thaw(table[, format='csv'[, filename=None[, file_obj=None[, strict=False[, encoding='utf8'[, **kwargs]]]]]])

        :param str table: The name of the table to load data into.
        :param format: Input format. By default, *csv* and *json* are supported.
        :param filename: Filename to read data from.
        :param file_obj: File-like object to read data from.
        :param bool strict: Whether to store values for columns that do not already exist on the table.
        :param str encoding: File encoding.
        :param kwargs: Arbitrary parameters for import-specific functionality.

    .. py:method:: connect()

        Open a connection to the underlying database. If a connection is not
        opened explicitly, one will be opened the first time a query is
        executed.

    .. py:method:: close()

        Close the connection to the underlying database.

.. py:class:: Table(dataset, name, model_class)

    :noindex:

    Provides a high-level API for working with rows in a given table.

    .. py:attribute:: columns

        Return a list of columns in the given table.

    .. py:attribute:: model_class

        A dynamically-created :py:class:`Model` class.

    .. py:method:: create_index(columns[, unique=False])

        Create an index on the given columns:

        .. code-block:: python

            # Create a unique index on the `username` column.
            db['users'].create_index(['username'], unique=True)

    .. py:method:: insert(**data)

        Insert the given data dictionary into the table, creating new columns
        as needed.

    .. py:method:: update(columns=None, conjunction=None, **data)

        Update the table using the provided data. If one or more columns are
        specified in the *columns* parameter, then those columns' values in the
        *data* dictionary will be used to determine which rows to update.

        .. code-block:: python

            # Update all rows.
            db['users'].update(favorite_orm='peewee')

            # Only update Huey's record, setting his age to 3.
            db['users'].update(name='Huey', age=3, columns=['name'])

    .. py:method:: find(**query)

        Query the table for rows matching the specified equality conditions. If
        no query is specified, then all rows are returned.

        .. code-block:: python

            peewee_users = db['users'].find(favorite_orm='peewee')

    .. py:method:: find_one(**query)

        Return a single row matching the specified equality conditions. If no
        matching row is found then ``None`` will be returned.

        .. code-block:: python

            huey = db['users'].find_one(name='Huey')

    .. py:method:: all()

        Return all rows in the given table.

    .. py:method:: delete(**query)

        Delete all rows matching the given equality conditions. If no query is
        provided, then all rows will be deleted.

        .. code-block:: python

            # Adios, Django!
            db['users'].delete(favorite_orm='Django')

            # Delete all the secret messages.
            db['secret_messages'].delete()

    .. py:method:: freeze([format='csv'[, filename=None[, file_obj=None[, **kwargs]]]])

        :param format: Output format. By default, *csv* and *json* are supported.
        :param filename: Filename to write output to.
        :param file_obj: File-like object to write output to.
        :param kwargs: Arbitrary parameters for export-specific functionality.

    .. py:method:: thaw([format='csv'[, filename=None[, file_obj=None[, strict=False[, **kwargs]]]]])

        :param format: Input format. By default, *csv* and *json* are supported.
        :param filename: Filename to read data from.
        :param file_obj: File-like object to read data from.
        :param bool strict: Whether to store values for columns that do not already exist on the table.
        :param kwargs: Arbitrary parameters for import-specific functionality.

.. _extra-fields:

Fields
------

These fields can be found in the ``playhouse.fields`` module.

.. py:class:: CompressedField([compression_level=6[, algorithm='zlib'[, **kwargs]]])

    :param int compression_level: A value from 0 to 9.
    :param str algorithm: Either ``'zlib'`` or ``'bz2'``.

    Stores compressed data using the specified algorithm. This field extends
    :py:class:`BlobField`, transparently storing a compressed representation of
    the data in the database.

.. py:class:: PickleField()

    Stores arbitrary Python data by transparently pickling and un-pickling data
    stored in the field. This field extends :py:class:`BlobField`. If the
    ``cPickle`` module is available, it will be used.

.. _hybrid:

Hybrid Attributes
-----------------

Hybrid attributes encapsulate functionality that operates at both the Python
*and* SQL levels. The idea for hybrid attributes comes from a feature of the
`same name in SQLAlchemy <https://docs.sqlalchemy.org/en/14/orm/extensions/hybrid.html>`_.
Consider the following example:

.. code-block:: python

    class Interval(Model):
        start = IntegerField()
        end = IntegerField()

        @hybrid_property
        def length(self):
            return self.end - self.start

        @hybrid_method
        def contains(self, point):
            return (self.start <= point) & (point < self.end)

The *hybrid attribute* gets its name from the fact that the ``length``
attribute will behave differently depending on whether it is accessed via the
``Interval`` class or an ``Interval`` instance.

If accessed via an instance, then it behaves just as you would expect.

If accessed via the ``Interval.length`` class attribute, however, the length
calculation will be expressed as a SQL expression. For example:

.. code-block:: python

    query = Interval.select().where(Interval.length > 5)

This query will be equivalent to the following SQL:

.. code-block:: sql

    SELECT "t1"."id", "t1"."start", "t1"."end"
    FROM "interval" AS t1
    WHERE (("t1"."end" - "t1"."start") > 5)

The ``playhouse.hybrid`` module also contains a decorator for implementing
hybrid methods which can accept parameters. As with hybrid properties, when
accessed via a model instance, then the function executes normally as-written.
When the hybrid method is called on the class, however, it will generate a SQL
expression.

Example:

.. code-block:: python

    query = Interval.select().where(Interval.contains(2))

This query is equivalent to the following SQL:

.. code-block:: sql

    SELECT "t1"."id", "t1"."start", "t1"."end"
    FROM "interval" AS t1
    WHERE (("t1"."start" <= 2) AND (2 < "t1"."end"))

There is an additional API for situations where the python implementation differs slightly from the SQL implementation. Let's add a ``radius`` method to the ``Interval`` model. Because this method calculates an absolute value, we will use the Python ``abs()`` function for the instance portion and the ``fn.ABS()`` SQL function for the class portion.

.. code-block:: python

    class Interval(Model):
        start = IntegerField()
        end = IntegerField()

        @hybrid_property
        def length(self):
            return self.end - self.start

        @hybrid_property
        def radius(self):
            return abs(self.length) / 2

        @radius.expression
        def radius(cls):
            return fn.ABS(cls.length) / 2

What is neat is that both the ``radius`` implementations refer to the
``length`` hybrid attribute! When accessed via an ``Interval`` instance, the
radius calculation will be executed in Python. When invoked via an ``Interval``
class, we will get the appropriate SQL.

Example:

.. code-block:: python

    query = Interval.select().where(Interval.radius < 3)

This query is equivalent to the following SQL:

.. code-block:: sql

    SELECT "t1"."id", "t1"."start", "t1"."end"
    FROM "interval" AS t1
    WHERE ((abs("t1"."end" - "t1"."start") / 2) < 3)

Pretty neat, right? Thanks for the cool idea, SQLAlchemy!

Hybrid API
^^^^^^^^^^

.. py:class:: hybrid_method(func[, expr=None])

    Method decorator that allows the definition of a Python object method with
    both instance-level and class-level behavior.

    Example:

    .. code-block:: python

        class Interval(Model):
            start = IntegerField()
            end = IntegerField()

            @hybrid_method
            def contains(self, point):
                return (self.start <= point) & (point < self.end)

    When called with an ``Interval`` instance, the ``contains`` method will
    behave as you would expect. When called as a classmethod, though, a SQL
    expression will be generated:

    .. code-block:: python

        query = Interval.select().where(Interval.contains(2))

    Would generate the following SQL:

    .. code-block:: sql

        SELECT "t1"."id", "t1"."start", "t1"."end"
        FROM "interval" AS t1
        WHERE (("t1"."start" <= 2) AND (2 < "t1"."end"))

    .. py:method:: expression(expr)

        Method decorator for specifying the SQL-expression producing method.

.. py:class:: hybrid_property(fget[, fset=None[, fdel=None[, expr=None]]])

    Method decorator that allows the definition of a Python object property
    with both instance-level and class-level behavior.

    Examples:

    .. code-block:: python

        class Interval(Model):
            start = IntegerField()
            end = IntegerField()

            @hybrid_property
            def length(self):
                return self.end - self.start

            @hybrid_property
            def radius(self):
                return abs(self.length) / 2

            @radius.expression
            def radius(cls):
                return fn.ABS(cls.length) / 2

    When accessed on an ``Interval`` instance, the ``length`` and ``radius``
    properties will behave as you would expect. When accessed as class
    attributes, though, a SQL expression will be generated instead:

    .. code-block:: python

        query = (Interval
                 .select()
                 .where(
                     (Interval.length > 6) &
                     (Interval.radius >= 3)))

    Would generate the following SQL:

    .. code-block:: sql

        SELECT "t1"."id", "t1"."start", "t1"."end"
        FROM "interval" AS t1
        WHERE (
            (("t1"."end" - "t1"."start") > 6) AND
            ((abs("t1"."end" - "t1"."start") / 2) >= 3)
        )

.. _kv:

Key/Value Store
---------------

The ``playhouse.kv`` module contains the implementation of a persistent
dictionary.

.. py:class:: KeyValue([key_field=None[, value_field=None[, ordered=False[, database=None[, table_name='keyvalue']]]]])

    :param Field key_field: field to use for key. Defaults to
        :py:class:`CharField`. **Must have** ``primary_key=True``.
    :param Field value_field: field to use for value. Defaults to
        :py:class:`PickleField`.
    :param bool ordered: data should be returned in key-sorted order.
    :param Database database: database where key/value data is stored. If not
        specified, an in-memory SQLite database will be used.
    :param str table_name: table name for data storage.

    Dictionary-like API for storing key/value data. Like dictionaries, supports
    the expected APIs, but also has the added capability of accepting
    expressions for getting, setting and deleting items.

    Table is created automatically (if it doesn't exist) when the ``KeyValue``
    is instantiated.

    Uses efficient upsert implementation for setting and updating/overwriting
    key/value pairs.

    Basic examples:

    .. code-block:: python

        # Create a key/value store, which uses an in-memory SQLite database
        # for data storage.
        KV = KeyValue()

        # Set (or overwrite) the value for "k1".
        KV['k1'] = 'v1'

        # Set (or update) multiple keys at once (uses an efficient upsert).
        KV.update(k2='v2', k3='v3')

        # Getting values works as you'd expect.
        assert KV['k2'] == 'v2'

        # We can also do this:
        for value in KV[KV.key > 'k1']:
            print(value)

        # 'v2'
        # 'v3'

        # Update multiple values at once using expression:
        KV[KV.key > 'k1'] = 'vx'

        # What's stored in the KV?
        print(dict(KV))

        # {'k1': 'v1', 'k2': 'vx', 'k3': 'vx'}

        # Delete a single item.
        del KV['k2']

        # How many items are stored in the KV?
        print(len(KV))
        # 2

        # Delete items that match the given condition.
        del KV[KV.key > 'k1']

    .. py:method:: __contains__(expr)

        :param expr: a single key or an expression
        :returns: Boolean whether key/expression exists.

        Example:

        .. code-block:: pycon

            >>> kv = KeyValue()
            >>> kv.update(k1='v1', k2='v2')

            >>> 'k1' in kv
            True
            >>> 'kx' in kv
            False

            >>> (KV.key < 'k2') in KV
            True
            >>> (KV.key > 'k2') in KV
            False

    .. py:method:: __len__()

        :returns: Count of items stored.

    .. py:method:: __getitem__(expr)

        :param expr: a single key or an expression.
        :returns: value(s) corresponding to key/expression.
        :raises: ``KeyError`` if single key given and not found.

        Examples:

        .. code-block:: pycon

            >>> KV = KeyValue()
            >>> KV.update(k1='v1', k2='v2', k3='v3')

            >>> KV['k1']
            'v1'
            >>> KV['kx']
            KeyError: "kx" not found

            >>> KV[KV.key > 'k1']
            ['v2', 'v3']
            >>> KV[KV.key < 'k1']
            []

    .. py:method:: __setitem__(expr, value)

        :param expr: a single key or an expression.
        :param value: value to set for key(s)

        Set value for the given key. If ``expr`` is an expression, then any
        keys matching the expression will have their value updated.

        Example:

        .. code-block:: pycon

            >>> KV = KeyValue()
            >>> KV.update(k1='v1', k2='v2', k3='v3')

            >>> KV['k1'] = 'v1-x'
            >>> print(KV['k1'])
            'v1-x'

            >>> KV[KV.key >= 'k2'] = 'v99'
            >>> dict(KV)
            {'k1': 'v1-x', 'k2': 'v99', 'k3': 'v99'}

    .. py:method:: __delitem__(expr)

        :param expr: a single key or an expression.

        Delete the given key. If an expression is given, delete all keys that
        match the expression.

        Example:

        .. code-block:: pycon

            >>> KV = KeyValue()
            >>> KV.update(k1=1, k2=2, k3=3)

            >>> del KV['k1']  # Deletes "k1".
            >>> del KV['k1']
            KeyError: "k1" does not exist

            >>> del KV[KV.key > 'k2']  # Deletes "k3".
            >>> del KV[KV.key > 'k99']  # Nothing deleted, no keys match.

    .. py:method:: keys()

        :returns: an iterable of all keys in the table.

    .. py:method:: values()

        :returns: an iterable of all values in the table.

    .. py:method:: items()

        :returns: an iterable of all key/value pairs in the table.

    .. py:method:: update([__data=None[, **mapping]])

        Efficiently bulk-insert or replace the given key/value pairs.

        Example:

        .. code-block:: pycon

            >>> KV = KeyValue()
            >>> KV.update(k1=1, k2=2)  # Sets 'k1'=1, 'k2'=2.

            >>> dict(KV)
            {'k1': 1, 'k2': 2}

            >>> KV.update(k2=22, k3=3)  # Updates 'k2'->22, sets 'k3'=3.

            >>> dict(KV)
            {'k1': 1, 'k2': 22, 'k3': 3}

            >>> KV.update({'k2': -2, 'k4': 4})  # Also can pass a dictionary.

            >>> dict(KV)
            {'k1': 1, 'k2': -2, 'k3': 3, 'k4': 4}

    .. py:method:: get(expr[, default=None])

        :param expr: a single key or an expression.
        :param default: default value if key not found.
        :returns: value of given key/expr or default if single key not found.

        Get the value at the given key. If the key does not exist, the default
        value is returned, unless the key is an expression in which case an
        empty list will be returned.

    .. py:method:: pop(expr[, default=Sentinel])

        :param expr: a single key or an expression.
        :param default: default value if key does not exist.
        :returns: value of given key/expr or default if single key not found.

        Get value and delete the given key. If the key does not exist, the
        default value is returned, unless the key is an expression in which
        case an empty list is returned.

    .. py:method:: clear()

        Remove all items from the key-value table.


.. _shortcuts:

Shortcuts
---------

This module contains helper functions for expressing things that would
otherwise be somewhat verbose or cumbersome using peewee's APIs. There are also
helpers for serializing models to dictionaries and vice-versa.

.. py:function:: model_to_dict(model[, recurse=True[, backrefs=False[, only=None[, exclude=None[, extra_attrs=None[, fields_from_query=None[, max_depth=None[, manytomany=False]]]]]]]])

    :param bool recurse: Whether foreign-keys should be recursed.
    :param bool backrefs: Whether lists of related objects should be recursed.
    :param only: A list (or set) of field instances which should be included in the result dictionary.
    :param exclude: A list (or set) of field instances which should be excluded from the result dictionary.
    :param extra_attrs: A list of attribute or method names on the instance which should be included in the dictionary.
    :param Select fields_from_query: The :py:class:`SelectQuery` that created this model instance. Only the fields and values explicitly selected by the query will be serialized.
    :param int max_depth: Maximum depth when recursing.
    :param bool manytomany: Process many-to-many fields.

    Convert a model instance (and optionally any related instances) to
    a dictionary.

    Examples:

    .. code-block:: pycon

        >>> user = User.create(username='charlie')
        >>> model_to_dict(user)
        {'id': 1, 'username': 'charlie'}

        >>> model_to_dict(user, backrefs=True)
        {'id': 1, 'tweets': [], 'username': 'charlie'}

        >>> t1 = Tweet.create(user=user, message='tweet-1')
        >>> t2 = Tweet.create(user=user, message='tweet-2')
        >>> model_to_dict(user, backrefs=True)
        {
          'id': 1,
          'tweets': [
            {'id': 1, 'message': 'tweet-1'},
            {'id': 2, 'message': 'tweet-2'},
          ],
          'username': 'charlie'
        }

        >>> model_to_dict(t1)
        {
          'id': 1,
          'message': 'tweet-1',
          'user': {
            'id': 1,
            'username': 'charlie'
          }
        }

        >>> model_to_dict(t2, recurse=False)
        {'id': 1, 'message': 'tweet-2', 'user': 1}

    The implementation of ``model_to_dict`` is fairly complex, owing to the
    various usages it attempts to support. If you have a special usage, I
    strongly advise that you do **not** attempt to shoe-horn some crazy
    combination of parameters into this function. Just write a simple function
    that accomplishes exactly what you're attempting to do.

.. py:function:: dict_to_model(model_class, data[, ignore_unknown=False])

    :param Model model_class: The model class to construct.
    :param dict data: A dictionary of data. Foreign keys can be included as nested dictionaries, and back-references as lists of dictionaries.
    :param bool ignore_unknown: Whether to allow unrecognized (non-field) attributes.

    Convert a dictionary of data to a model instance, creating related
    instances where appropriate.

    Examples:

    .. code-block:: pycon

        >>> user_data = {'id': 1, 'username': 'charlie'}
        >>> user = dict_to_model(User, user_data)
        >>> user
        <__main__.User at 0x7fea8fa4d490>

        >>> user.username
        'charlie'

        >>> note_data = {'id': 2, 'text': 'note text', 'user': user_data}
        >>> note = dict_to_model(Note, note_data)
        >>> note.text
        'note text'
        >>> note.user.username
        'charlie'

        >>> user_with_notes = {
        ...     'id': 1,
        ...     'username': 'charlie',
        ...     'notes': [{'id': 1, 'text': 'note-1'}, {'id': 2, 'text': 'note-2'}]}
        >>> user = dict_to_model(User, user_with_notes)
        >>> user.notes[0].text
        'note-1'
        >>> user.notes[0].user.username
        'charlie'


.. py:function:: update_model_from_dict(instance, data[, ignore_unknown=False])

    :param Model instance: The model instance to update.
    :param dict data: A dictionary of data. Foreign keys can be included as nested dictionaries, and back-references as lists of dictionaries.
    :param bool ignore_unknown: Whether to allow unrecognized (non-field) attributes.

    Update a model instance with the given data dictionary.


.. py:function:: resolve_multimodel_query(query[, key='_model_identifier'])

    :param query: a compound select query.
    :param str key: key to use for storing model identifier
    :return: an iteratable cursor that yields the proper model instance for
        each row selected in the compound select query.

    Helper for resolving rows returned in a compound select query to the
    correct model instance type. For example, if you have a union of two
    different tables, this helper will resolve each row to the proper model
    when iterating over the query results.


.. py:class:: ThreadSafeDatabaseMetadata()

    Model :py:class:`Metadata` implementation that provides thread-safe access
    to the ``database`` attribute, allowing applications to swap the database
    at run-time safely in a multi-threaded application.

    Usage:

    .. code-block:: python

        from playhouse.shortcuts import ThreadSafeDatabaseMetadata

        # Our multi-threaded application will sometimes swap out the primary
        # for the read-replica at run-time.
        primary = PostgresqlDatabase(...)
        read_replica = PostgresqlDatabase(...)

        class BaseModel(Model):
            class Meta:
                database = primary
                model_metadata_class = ThreadSafeDatabaseMetadata


.. _signals:

Signal support
--------------

Models with hooks for signals (a-la django) are provided in
``playhouse.signals``. To use the signals, you will need all of your project's
models to be a subclass of ``playhouse.signals.Model``, which overrides the
necessary methods to provide support for the various signals.

.. code-block:: python

    from playhouse.signals import Model, post_save


    class MyModel(Model):
        data = IntegerField()

    @post_save(sender=MyModel)
    def on_save_handler(model_class, instance, created):
        put_data_in_cache(instance.data)

.. warning::
    For what I hope are obvious reasons, Peewee signals do not work when you
    use the :py:meth:`Model.insert`, :py:meth:`Model.update`, or
    :py:meth:`Model.delete` methods. These methods generate queries that
    execute beyond the scope of the ORM, and the ORM does not know about which
    model instances might or might not be affected when the query executes.

    Signals work by hooking into the higher-level peewee APIs like
    :py:meth:`Model.save` and :py:meth:`Model.delete_instance`, where the
    affected model instance is known ahead of time.

The following signals are provided:

``pre_save``
    Called immediately before an object is saved to the database. Provides an
    additional keyword argument ``created``, indicating whether the model is being
    saved for the first time or updated.
``post_save``
    Called immediately after an object is saved to the database. Provides an
    additional keyword argument ``created``, indicating whether the model is being
    saved for the first time or updated.
``pre_delete``
    Called immediately before an object is deleted from the database when :py:meth:`Model.delete_instance`
    is used.
``post_delete``
    Called immediately after an object is deleted from the database when :py:meth:`Model.delete_instance`
    is used.
``pre_init``
    Called when a model class is first instantiated


Connecting handlers
^^^^^^^^^^^^^^^^^^^

Whenever a signal is dispatched, it will call any handlers that have been
registered. This allows totally separate code to respond to events like model
save and delete.

The :py:class:`Signal` class provides a :py:meth:`~Signal.connect` method,
which takes a callback function and two optional parameters for "sender" and
"name". If specified, the "sender" parameter should be a single model class
and allows your callback to only receive signals from that one model class.
The "name" parameter is used as a convenient alias in the event you wish to
unregister your signal handler.

Example usage:

.. code-block:: python

    from playhouse.signals import *

    def post_save_handler(sender, instance, created):
        print('%s was just saved' % instance)

    # our handler will only be called when we save instances of SomeModel
    post_save.connect(post_save_handler, sender=SomeModel)

All signal handlers accept as their first two arguments ``sender`` and
``instance``, where ``sender`` is the model class and ``instance`` is the
actual model being acted upon.

If you'd like, you can also use a decorator to connect signal handlers. This
is functionally equivalent to the above example:

.. code-block:: python

    @post_save(sender=SomeModel)
    def post_save_handler(sender, instance, created):
        print('%s was just saved' % instance)


Signal API
^^^^^^^^^^

.. py:class:: Signal()

    Stores a list of receivers (callbacks) and calls them when the "send"
    method is invoked.

    .. py:method:: connect(receiver[, sender=None[, name=None]])

        :param callable receiver: a callable that takes at least two parameters,
            a "sender", which is the Model subclass that triggered the signal, and
            an "instance", which is the actual model instance.
        :param Model sender: if specified, only instances of this model class will
            trigger the receiver callback.
        :param string name: a short alias

        Add the receiver to the internal list of receivers, which will be called
        whenever the signal is sent.

        .. code-block:: python

            from playhouse.signals import post_save
            from project.handlers import cache_buster

            post_save.connect(cache_buster, name='project.cache_buster')

    .. py:method:: disconnect([receiver=None[, name=None]])

        :param callable receiver: the callback to disconnect
        :param string name: a short alias

        Disconnect the given receiver (or the receiver with the given name alias)
        so that it no longer is called. Either the receiver or the name must be
        provided.

        .. code-block:: python

            post_save.disconnect(name='project.cache_buster')

    .. py:method:: send(instance, *args, **kwargs)

        :param instance: a model instance

        Iterates over the receivers and will call them in the order in which
        they were connected. If the receiver specified a sender, it will only
        be called if the instance is an instance of the sender.


    .. py:method __call__([sender=None[, name=None]])

        Function decorator that is an alias for a signal's connect method:

        .. code-block:: python

            from playhouse.signals import connect, post_save

            @post_save(name='project.cache_buster')
            def cache_bust_handler(sender, instance, *args, **kwargs):
                # bust the cache for this instance
                cache.delete(cache_key_for(instance))

.. _pwiz:

pwiz, a model generator
-----------------------

``pwiz`` is a little script that ships with peewee and is capable of
introspecting an existing database and generating model code suitable for
interacting with the underlying data. If you have a database already, pwiz can
give you a nice boost by generating skeleton code with correct column
affinities and foreign keys.

If you install peewee using ``setup.py install``, pwiz will be installed as a
"script" and you can just run:

.. code-block:: console

    python -m pwiz -e postgresql -u postgres my_postgres_db

This will print a bunch of models to standard output. So you can do this:

.. code-block:: console

    python -m pwiz -e postgresql my_postgres_db > mymodels.py
    python # <-- fire up an interactive shell

.. code-block:: pycon

    >>> from mymodels import Blog, Entry, Tag, Whatever
    >>> print([blog.name for blog in Blog.select()])

Command-line options
^^^^^^^^^^^^^^^^^^^^

pwiz accepts the following command-line options:

======    =================================== ============================================
Option    Meaning                             Example
======    =================================== ============================================
-h        show help
-e        database backend                    -e mysql
-H        host to connect to                  -H remote.db.server
-p        port to connect on                  -p 9001
-u        database user                       -u postgres
-P        database password                   -P (will be prompted for password)
-s        schema                              -s public
-t        tables to generate                  -t tweet,users,relationships
-v        generate models for VIEWs           (no argument)
-i        add info metadata to generated file (no argument)
-o        table column order is preserved     (no argument)
======    =================================== ============================================

The following are valid parameters for the ``engine`` (``-e``):

* sqlite
* mysql
* postgresql

.. warning::
    If a password is required to access your database, you will be prompted to
    enter it using a secure prompt.

    **The password will be included in the output**. Specifically, at the top
    of the file a :py:class:`Database` will be defined along with any required
    parameters -- including the password.

pwiz examples
^^^^^^^^^^^^^

Examples of introspecting various databases:

.. code-block:: console

    # Introspect a Sqlite database.
    python -m pwiz -e sqlite path/to/sqlite_database.db

    # Introspect a MySQL database, logging in as root. You will be prompted
    # for a password ("-P").
    python -m pwiz -e mysql -u root -P mysql_db_name

    # Introspect a Postgresql database on a remote server.
    python -m pwiz -e postgres -u postgres -H 10.1.0.3 pg_db_name

Full example:

.. code-block:: console

    $ sqlite3 example.db << EOM
    CREATE TABLE "user" ("id" INTEGER NOT NULL PRIMARY KEY, "username" TEXT NOT NULL);
    CREATE TABLE "tweet" (
        "id" INTEGER NOT NULL PRIMARY KEY,
        "content" TEXT NOT NULL,
        "timestamp" DATETIME NOT NULL,
        "user_id" INTEGER NOT NULL,
        FOREIGN KEY ("user_id") REFERENCES "user" ("id"));
    CREATE UNIQUE INDEX "user_username" ON "user" ("username");
    EOM

    $ python -m pwiz -e sqlite example.db

Produces the following output:

.. code-block:: python

    from peewee import *

    database = SqliteDatabase('example.db', **{})

    class UnknownField(object):
        def __init__(self, *_, **__): pass

    class BaseModel(Model):
        class Meta:
            database = database

    class User(BaseModel):
        username = TextField(unique=True)

        class Meta:
            table_name = 'user'

    class Tweet(BaseModel):
        content = TextField()
        timestamp = DateTimeField()
        user = ForeignKeyField(column_name='user_id', field='id', model=User)

        class Meta:
            table_name = 'tweet'

Observations:

* The foreign-key ``Tweet.user_id`` is detected and mapped correctly.
* The ``User.username`` UNIQUE constraint is detected.
* Each model explicitly declares its table name, even in cases where it is not
  necessary (as Peewee would automatically translate the class name into the
  appropriate table name).
* All the parameters of the :py:class:`ForeignKeyField` are explicitly
  declared, even though they follow the conventions Peewee uses by default.

.. note::
    The ``UnknownField`` is a placeholder that is used in the event your schema
    contains a column declaration that Peewee doesn't know how to map to a
    field class.

.. _migrate:

Schema Migrations
-----------------

Peewee now supports schema migrations, with well-tested support for Postgresql,
SQLite and MySQL. Unlike other schema migration tools, peewee's migrations do
not handle introspection and database "versioning". Rather, peewee provides a
number of helper functions for generating and running schema-altering
statements. This engine provides the basis on which a more sophisticated tool
could some day be built.

Migrations can be written as simple python scripts and executed from the
command-line. Since the migrations only depend on your applications
:py:class:`Database` object, it should be easy to manage changing your model
definitions and maintaining a set of migration scripts without introducing
dependencies.

Example usage
^^^^^^^^^^^^^

Begin by importing the helpers from the `migrate` module:

.. code-block:: python

    from playhouse.migrate import *

Instantiate a ``migrator``. The :py:class:`SchemaMigrator` class is responsible
for generating schema altering operations, which can then be run sequentially
by the :py:func:`migrate` helper.

.. code-block:: python

    # Postgres example:
    my_db = PostgresqlDatabase(...)
    migrator = PostgresqlMigrator(my_db)

    # SQLite example:
    my_db = SqliteDatabase('my_database.db')
    migrator = SqliteMigrator(my_db)

Use :py:func:`migrate` to execute one or more operations:

.. code-block:: python

    title_field = CharField(default='')
    status_field = IntegerField(null=True)

    migrate(
        migrator.add_column('some_table', 'title', title_field),
        migrator.add_column('some_table', 'status', status_field),
        migrator.drop_column('some_table', 'old_column'),
    )

.. warning::
    Migrations are not run inside a transaction. If you wish the migration to
    run in a transaction you will need to wrap the call to `migrate` in a
    :py:meth:`~Database.atomic` context-manager, e.g.

    .. code-block:: python

        with my_db.atomic():
            migrate(...)

Supported Operations
^^^^^^^^^^^^^^^^^^^^

Add new field(s) to an existing model:

.. code-block:: python

    # Create your field instances. For non-null fields you must specify a
    # default value.
    pubdate_field = DateTimeField(null=True)
    comment_field = TextField(default='')

    # Run the migration, specifying the database table, field name and field.
    migrate(
        migrator.add_column('comment_tbl', 'pub_date', pubdate_field),
        migrator.add_column('comment_tbl', 'comment', comment_field),
    )

Renaming a field:

.. code-block:: python

    # Specify the table, original name of the column, and its new name.
    migrate(
        migrator.rename_column('story', 'pub_date', 'publish_date'),
        migrator.rename_column('story', 'mod_date', 'modified_date'),
    )

Dropping a field:

.. code-block:: python

    migrate(
        migrator.drop_column('story', 'some_old_field'),
    )

Making a field nullable or not nullable:

.. code-block:: python

    # Note that when making a field not null that field must not have any
    # NULL values present.
    migrate(
        # Make `pub_date` allow NULL values.
        migrator.drop_not_null('story', 'pub_date'),

        # Prevent `modified_date` from containing NULL values.
        migrator.add_not_null('story', 'modified_date'),
    )

Altering a field's data-type:

.. code-block:: python

    # Change a VARCHAR(50) field to a TEXT field.
    migrate(
        migrator.alter_column_type('person', 'email', TextField())
    )

Renaming a table:

.. code-block:: python

    migrate(
        migrator.rename_table('story', 'stories_tbl'),
    )

Adding an index:

.. code-block:: python

    # Specify the table, column names, and whether the index should be
    # UNIQUE or not.
    migrate(
        # Create an index on the `pub_date` column.
        migrator.add_index('story', ('pub_date',), False),

        # Create a multi-column index on the `pub_date` and `status` fields.
        migrator.add_index('story', ('pub_date', 'status'), False),

        # Create a unique index on the category and title fields.
        migrator.add_index('story', ('category_id', 'title'), True),
    )

Dropping an index:

.. code-block:: python

    # Specify the index name.
    migrate(migrator.drop_index('story', 'story_pub_date_status'))

Adding or dropping table constraints:

.. code-block:: python

    # Add a CHECK() constraint to enforce the price cannot be negative.
    migrate(migrator.add_constraint(
        'products',
        'price_check',
        Check('price >= 0')))

    # Remove the price check constraint.
    migrate(migrator.drop_constraint('products', 'price_check'))

    # Add a UNIQUE constraint on the first and last names.
    migrate(migrator.add_unique('person', 'first_name', 'last_name'))

.. note::
    Postgres users may need to set the search-path when using a non-standard
    schema. This can be done as follows:

    .. code-block:: python

        new_field = TextField(default='', null=False)
        migrator = PostgresqlMigrator(db)
        migrate(migrator.set_search_path('my_schema_name'),
                migrator.add_column('table', 'field_name', new_field))


Migrations API
^^^^^^^^^^^^^^

.. py:function:: migrate(*operations)

    Execute one or more schema altering operations.

    Usage:

    .. code-block:: python

        migrate(
            migrator.add_column('some_table', 'new_column', CharField(default='')),
            migrator.create_index('some_table', ('new_column',)),
        )

.. py:class:: SchemaMigrator(database)

    :param database: a :py:class:`Database` instance.

    The :py:class:`SchemaMigrator` is responsible for generating schema-altering
    statements.

    .. py:method:: add_column(table, column_name, field)

        :param str table: Name of the table to add column to.
        :param str column_name: Name of the new column.
        :param Field field: A :py:class:`Field` instance.

        Add a new column to the provided table. The ``field`` provided will be used
        to generate the appropriate column definition.

        .. note:: If the field is not nullable it must specify a default value.

        .. note::
            For non-null fields, the field will initially be added as a null field,
            then an ``UPDATE`` statement will be executed to populate the column
            with the default value. Finally, the column will be marked as not null.

    .. py:method:: drop_column(table, column_name[, cascade=True])

        :param str table: Name of the table to drop column from.
        :param str column_name: Name of the column to drop.
        :param bool cascade: Whether the column should be dropped with `CASCADE`.

    .. py:method:: rename_column(table, old_name, new_name)

        :param str table: Name of the table containing column to rename.
        :param str old_name: Current name of the column.
        :param str new_name: New name for the column.

    .. py:method:: add_not_null(table, column)

        :param str table: Name of table containing column.
        :param str column: Name of the column to make not nullable.

    .. py:method:: drop_not_null(table, column)

        :param str table: Name of table containing column.
        :param str column: Name of the column to make nullable.

    .. py:method:: alter_column_type(table, column, field[, cast=None])

        :param str table: Name of the table.
        :param str column_name: Name of the column to modify.
        :param Field field: :py:class:`Field` instance representing new
            data type.
        :param cast: (postgres-only) specify a cast expression if the
            data-types are incompatible, e.g. ``column_name::int``. Can be
            provided as either a string or a :py:class:`Cast` instance.

        Alter the data-type of a column. This method should be used with care,
        as using incompatible types may not be well-supported by your database.

    .. py:method:: rename_table(old_name, new_name)

        :param str old_name: Current name of the table.
        :param str new_name: New name for the table.

    .. py:method:: add_index(table, columns[, unique=False[, using=None]])

        :param str table: Name of table on which to create the index.
        :param list columns: List of columns which should be indexed.
        :param bool unique: Whether the new index should specify a unique constraint.
        :param str using: Index type (where supported), e.g. GiST or GIN.

    .. py:method:: drop_index(table, index_name)

        :param str table: Name of the table containing the index to be dropped.
        :param str index_name: Name of the index to be dropped.

    .. py:method:: add_constraint(table, name, constraint)

        :param str table: Table to add constraint to.
        :param str name: Name used to identify the constraint.
        :param constraint: either a :py:func:`Check` constraint or for
            adding an arbitrary constraint use :py:class:`SQL`.

    .. py:method:: drop_constraint(table, name)

        :param str table: Table to drop constraint from.
        :param str name: Name of constraint to drop.

    .. py:method:: add_unique(table, *column_names)

        :param str table: Table to add constraint to.
        :param str column_names: One or more columns for UNIQUE constraint.

.. py:class:: PostgresqlMigrator(database)

    Generate migrations for Postgresql databases.

    .. py:method:: set_search_path(schema_name)

        :param str schema_name: Schema to use.

        Set the search path (schema) for the subsequent operations.

.. py:class:: SqliteMigrator(database)

    Generate migrations for SQLite databases.

    SQLite has limited support for ``ALTER TABLE`` queries, so the following
    operations are currently not supported for SQLite:

    * ``add_constraint``
    * ``drop_constraint``
    * ``add_unique``

.. py:class:: MySQLMigrator(database)

    Generate migrations for MySQL databases.


.. _reflection:

Reflection
----------

The reflection module contains helpers for introspecting existing databases.
This module is used internally by several other modules in the playhouse,
including :ref:`dataset` and :ref:`pwiz`.

.. py:function:: generate_models(database[, schema=None[, **options]])

    :param Database database: database instance to introspect.
    :param str schema: optional schema to introspect.
    :param options: arbitrary options, see :py:meth:`Introspector.generate_models` for details.
    :returns: a ``dict`` mapping table names to model classes.

    Generate models for the tables in the given database. For an example of how
    to use this function, see the section :ref:`interactive`.

    Example:

    .. code-block:: pycon

        >>> from peewee import *
        >>> from playhouse.reflection import generate_models
        >>> db = PostgresqlDatabase('my_app')
        >>> models = generate_models(db)
        >>> list(models.keys())
        ['account', 'customer', 'order', 'orderitem', 'product']

        >>> globals().update(models)  # Inject models into namespace.
        >>> for cust in customer.select():  # Query using generated model.
        ...     print(cust.name)
        ...

        Huey Kitty
        Mickey Dog

.. py:function:: print_model(model)

    :param Model model: model class to print
    :returns: no return value

    Print a user-friendly description of a model class, useful for debugging or
    interactive use. Currently this prints the table name, and all fields along
    with their data-types. The :ref:`interactive` section contains an example.

    Example output:

    .. code-block:: pycon

        >>> from playhouse.reflection import print_model
        >>> print_model(User)
        user
          id AUTO PK
          email TEXT
          name TEXT
          dob DATE

        index(es)
          email UNIQUE

        >>> print_model(Tweet)
        tweet
          id AUTO PK
          user INT FK: User.id
          title TEXT
          content TEXT
          timestamp DATETIME
          is_published BOOL

        index(es)
          user_id
          is_published, timestamp

.. py:function:: print_table_sql(model)

    :param Model model: model to print
    :returns: no return value

    Prints the SQL ``CREATE TABLE`` for the given model class, which may be
    useful for debugging or interactive use. See the :ref:`interactive` section
    for example usage. Note that indexes and constraints are not included in
    the output of this function.

    Example output:

    .. code-block:: pycon

        >>> from playhouse.reflection import print_table_sql
        >>> print_table_sql(User)
        CREATE TABLE IF NOT EXISTS "user" (
          "id" INTEGER NOT NULL PRIMARY KEY,
          "email" TEXT NOT NULL,
          "name" TEXT NOT NULL,
          "dob" DATE NOT NULL
        )

        >>> print_table_sql(Tweet)
        CREATE TABLE IF NOT EXISTS "tweet" (
          "id" INTEGER NOT NULL PRIMARY KEY,
          "user_id" INTEGER NOT NULL,
          "title" TEXT NOT NULL,
          "content" TEXT NOT NULL,
          "timestamp" DATETIME NOT NULL,
          "is_published" INTEGER NOT NULL,
          FOREIGN KEY ("user_id") REFERENCES "user" ("id")
        )

.. py:class:: Introspector(metadata[, schema=None])

    Metadata can be extracted from a database by instantiating an
    :py:class:`Introspector`. Rather than instantiating this class directly, it
    is recommended to use the factory method
    :py:meth:`~Introspector.from_database`.

    .. py:classmethod:: from_database(database[, schema=None])

        :param database: a :py:class:`Database` instance.
        :param str schema: an optional schema (supported by some databases).

        Creates an :py:class:`Introspector` instance suitable for use with the
        given database.

        Usage:

        .. code-block:: python

            db = SqliteDatabase('my_app.db')
            introspector = Introspector.from_database(db)
            models = introspector.generate_models()

            # User and Tweet (assumed to exist in the database) are
            # peewee Model classes generated from the database schema.
            User = models['user']
            Tweet = models['tweet']

    .. py:method:: generate_models([skip_invalid=False[, table_names=None[, literal_column_names=False[, bare_fields=False[, include_views=False]]]]])

        :param bool skip_invalid: Skip tables whose names are invalid python
            identifiers.
        :param list table_names: List of table names to generate. If
            unspecified, models are generated for all tables.
        :param bool literal_column_names: Use column-names as-is. By default,
            column names are "python-ized", i.e. mixed-case becomes lower-case.
        :param bare_fields: **SQLite-only**. Do not specify data-types for
            introspected columns.
        :param include_views: generate models for VIEWs as well.
        :return: A dictionary mapping table-names to model classes.

        Introspect the database, reading in the tables, columns, and foreign
        key constraints, then generate a dictionary mapping each database table
        to a dynamically-generated :py:class:`Model` class.


.. _db_url:

Database URL
------------

This module contains a helper function to generate a database connection from a
URL connection string.

.. py:function:: connect(url, **connect_params)

    Create a :py:class:`Database` instance from the given connection URL.

    Examples:

    * *sqlite:///my_database.db* will create a :py:class:`SqliteDatabase` instance for the file ``my_database.db`` in the current directory.
    * *sqlite:///:memory:* will create an in-memory :py:class:`SqliteDatabase` instance.
    * *postgresql://postgres:my_password@localhost:5432/my_database* will create a :py:class:`PostgresqlDatabase` instance. A username and password are provided, as well as the host and port to connect to.
    * *mysql://user:passwd@ip:port/my_db* will create a :py:class:`MySQLDatabase` instance for the local MySQL database *my_db*.
    * *mysql+pool://user:passwd@ip:port/my_db?max_connections=20&stale_timeout=300* will create a :py:class:`PooledMySQLDatabase` instance for the local MySQL database *my_db* with max_connections set to 20 and a stale_timeout setting of 300 seconds.

    Supported schemes:

    * ``apsw``: :py:class:`APSWDatabase`
    * ``mysql``: :py:class:`MySQLDatabase`
    * ``mysql+pool``: :py:class:`PooledMySQLDatabase`
    * ``postgres``: :py:class:`PostgresqlDatabase`
    * ``postgres+pool``: :py:class:`PooledPostgresqlDatabase`
    * ``postgresext``: :py:class:`PostgresqlExtDatabase`
    * ``postgresext+pool``: :py:class:`PooledPostgresqlExtDatabase`
    * ``sqlite``: :py:class:`SqliteDatabase`
    * ``sqliteext``: :py:class:`SqliteExtDatabase`
    * ``sqlite+pool``: :py:class:`PooledSqliteDatabase`
    * ``sqliteext+pool``: :py:class:`PooledSqliteExtDatabase`

    Usage:

    .. code-block:: python

        import os
        from playhouse.db_url import connect

        # Connect to the database URL defined in the environment, falling
        # back to a local Sqlite database if no database URL is specified.
        db = connect(os.environ.get('DATABASE') or 'sqlite:///default.db')

.. py:function:: parse(url)

    Parse the information in the given URL into a dictionary containing
    ``database``, ``host``, ``port``, ``user`` and/or ``password``. Additional
    connection arguments can be passed in the URL query string.

    If you are using a custom database class, you can use the ``parse()``
    function to extract information from a URL which can then be passed in to
    your database object.

.. py:function:: register_database(db_class, *names)

    :param db_class: A subclass of :py:class:`Database`.
    :param names: A list of names to use as the scheme in the URL, e.g. 'sqlite' or 'firebird'

    Register additional database class under the specified names. This function
    can be used to extend the ``connect()`` function to support additional
    schemes. Suppose you have a custom database class for ``Firebird`` named
    ``FirebirdDatabase``.

    .. code-block:: python

        from playhouse.db_url import connect, register_database

        register_database(FirebirdDatabase, 'firebird')
        db = connect('firebird://my-firebird-db')

.. _pool:

Connection pool
---------------

The ``pool`` module contains a number of :py:class:`Database` classes that
provide connection pooling for PostgreSQL, MySQL and SQLite databases. The pool
works by overriding the methods on the :py:class:`Database` class that open and
close connections to the backend. The pool can specify a timeout after which
connections are recycled, as well as an upper bound on the number of open
connections.

In a multi-threaded application, up to `max_connections` will be opened. Each
thread (or, if using gevent, greenlet) will have its own connection.

In a single-threaded application, only one connection will be created. It will
be continually recycled until either it exceeds the stale timeout or is closed
explicitly (using `.manual_close()`).

**By default, all your application needs to do is ensure that connections are
closed when you are finished with them, and they will be returned to the
pool**. For web applications, this typically means that at the beginning of a
request, you will open a connection, and when you return a response, you will
close the connection.

Simple Postgres pool example code:

.. code-block:: python

    # Use the special postgresql extensions.
    from playhouse.pool import PooledPostgresqlExtDatabase

    db = PooledPostgresqlExtDatabase(
        'my_app',
        max_connections=32,
        stale_timeout=300,  # 5 minutes.
        user='postgres')

    class BaseModel(Model):
        class Meta:
            database = db

That's it! If you would like finer-grained control over the pool of
connections, check out the :ref:`connection_management` section.

Pool APIs
^^^^^^^^^

.. py:class:: PooledDatabase(database[, max_connections=20[, stale_timeout=None[, timeout=None[, **kwargs]]]])

    :param str database: The name of the database or database file.
    :param int max_connections: Maximum number of connections. Provide ``None`` for unlimited.
    :param int stale_timeout: Number of seconds to allow connections to be used.
    :param int timeout: Number of seconds to block when pool is full. By default peewee does not block when the pool is full but simply throws an exception. To block indefinitely set this value to ``0``.
    :param kwargs: Arbitrary keyword arguments passed to database class.

    Mixin class intended to be used with a subclass of :py:class:`Database`.

    .. note:: Connections will not be closed exactly when they exceed their `stale_timeout`. Instead, stale connections are only closed when a new connection is requested.

    .. note:: If the number of open connections exceeds `max_connections`, a `ValueError` will be raised.

    .. py:method:: manual_close()

        Close the currently-open connection without returning it to the pool.

    .. py:method:: close_idle()

        Close all idle connections. This does not include any connections that
        are currently in-use -- only those that were previously created but
        have since been returned back to the pool.

    .. py:method:: close_stale([age=600])

        :param int age: Age at which a connection should be considered stale.
        :returns: Number of connections closed.

        Close connections which are in-use but exceed the given age. **Use
        caution when calling this method!**

    .. py:method:: close_all()

        Close all connections. This includes any connections that may be in use
        at the time. **Use caution when calling this method!**

.. py:class:: PooledPostgresqlDatabase

    Subclass of :py:class:`PostgresqlDatabase` that mixes in the :py:class:`PooledDatabase` helper.

.. py:class:: PooledPostgresqlExtDatabase

    Subclass of :py:class:`PostgresqlExtDatabase` that mixes in the :py:class:`PooledDatabase` helper. The :py:class:`PostgresqlExtDatabase` is a part of the
    :ref:`postgres_ext` module and provides support for many Postgres-specific
    features.

.. py:class:: PooledMySQLDatabase

    Subclass of :py:class:`MySQLDatabase` that mixes in the :py:class:`PooledDatabase` helper.

.. py:class:: PooledSqliteDatabase

    Persistent connections for SQLite apps.

.. py:class:: PooledSqliteExtDatabase

    Persistent connections for SQLite apps, using the :ref:`sqlite_ext` advanced database driver :py:class:`SqliteExtDatabase`.

.. _test_utils:

Test Utils
----------

Contains utilities helpful when testing peewee projects.

.. py:class:: count_queries([only_select=False])

    Context manager that will count the number of queries executed within
    the context.

    :param bool only_select: Only count *SELECT* queries.

    .. code-block:: python

        with count_queries() as counter:
            huey = User.get(User.username == 'huey')
            huey_tweets = [tweet.message for tweet in huey.tweets]

        assert counter.count == 2

    .. py:attribute:: count

        The number of queries executed.

    .. py:method:: get_queries()

        Return a list of 2-tuples consisting of the SQL query and a list of
        parameters.


.. py:function:: assert_query_count(expected[, only_select=False])

    Function or method decorator that will raise an ``AssertionError`` if the
    number of queries executed in the decorated function does not equal the
    expected number.

    .. code-block:: python

        class TestMyApp(unittest.TestCase):
            @assert_query_count(1)
            def test_get_popular_blogs(self):
                popular_blogs = Blog.get_popular()
                self.assertEqual(
                    [blog.title for blog in popular_blogs],
                    ["Peewee's Playhouse!", "All About Huey", "Mickey's Adventures"])

    This function can also be used as a context manager:

    .. code-block:: python

        class TestMyApp(unittest.TestCase):
            def test_expensive_operation(self):
                with assert_query_count(1):
                    perform_expensive_operation()


.. _flask_utils:

Flask Utils
-----------

The ``playhouse.flask_utils`` module contains several helpers for integrating
peewee with the `Flask <http://flask.pocoo.org/>`_ web framework.

Database Wrapper
^^^^^^^^^^^^^^^^

The :py:class:`FlaskDB` class is a wrapper for configuring and referencing a
Peewee database from within a Flask application. Don't let its name fool you:
it is **not the same thing as a peewee database**. ``FlaskDB`` is designed to
remove the following boilerplate from your flask app:

* Dynamically create a Peewee database instance based on app config data.
* Create a base class from which all your application's models will descend.
* Register hooks at the start and end of a request to handle opening and
  closing a database connection.

Basic usage:

.. code-block:: python

    import datetime
    from flask import Flask
    from peewee import *
    from playhouse.flask_utils import FlaskDB

    DATABASE = 'postgresql://postgres:password@localhost:5432/my_database'

    # If we want to exclude particular views from the automatic connection
    # management, we list them this way:
    FLASKDB_EXCLUDED_ROUTES = ('logout',)

    app = Flask(__name__)
    app.config.from_object(__name__)

    db_wrapper = FlaskDB(app)

    class User(db_wrapper.Model):
        username = CharField(unique=True)

    class Tweet(db_wrapper.Model):
        user = ForeignKeyField(User, backref='tweets')
        content = TextField()
        timestamp = DateTimeField(default=datetime.datetime.now)

The above code example will create and instantiate a peewee
:py:class:`PostgresqlDatabase` specified by the given database URL. Request
hooks will be configured to establish a connection when a request is received,
and automatically close the connection when the response is sent. Lastly, the
:py:class:`FlaskDB` class exposes a :py:attr:`FlaskDB.Model` property which can
be used as a base for your application's models.

Here is how you can access the wrapped Peewee database instance that is
configured for you by the ``FlaskDB`` wrapper:

.. code-block:: python

    # Obtain a reference to the Peewee database instance.
    peewee_db = db_wrapper.database

    @app.route('/transfer-funds/', methods=['POST'])
    def transfer_funds():
        with peewee_db.atomic():
            # ...

        return jsonify({'transfer-id': xid})

.. note:: The actual peewee database can be accessed using the ``FlaskDB.database`` attribute.

Here is another way to configure a Peewee database using ``FlaskDB``:

.. code-block:: python

    app = Flask(__name__)
    db_wrapper = FlaskDB(app, 'sqlite:///my_app.db')

While the above examples show using a database URL, for more advanced usages
you can specify a dictionary of configuration options, or simply pass in a
peewee :py:class:`Database` instance:

.. code-block:: python

    DATABASE = {
        'name': 'my_app_db',
        'engine': 'playhouse.pool.PooledPostgresqlDatabase',
        'user': 'postgres',
        'max_connections': 32,
        'stale_timeout': 600,
    }

    app = Flask(__name__)
    app.config.from_object(__name__)

    wrapper = FlaskDB(app)
    pooled_postgres_db = wrapper.database

Using a peewee :py:class:`Database` object:

.. code-block:: python

    peewee_db = PostgresqlExtDatabase('my_app')
    app = Flask(__name__)
    db_wrapper = FlaskDB(app, peewee_db)


Database with Application Factory
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If you prefer to use the `application factory pattern <https://flask.palletsprojects.com/en/1.1.x/patterns/appfactories/>`_,
the :py:class:`FlaskDB` class implements an ``init_app()`` method.

Using as a factory:

.. code-block:: python

    db_wrapper = FlaskDB()

    # Even though the database is not yet initialized, you can still use the
    # `Model` property to create model classes.
    class User(db_wrapper.Model):
        username = CharField(unique=True)


    def create_app():
        app = Flask(__name__)
        app.config['DATABASE'] = 'sqlite:////home/code/apps/my-database.db'
        db_wrapper.init_app(app)
        return app

Query utilities
^^^^^^^^^^^^^^^

The ``flask_utils`` module provides several helpers for managing queries in your web app. Some common patterns include:

.. py:function:: get_object_or_404(query_or_model, *query)

    :param query_or_model: Either a :py:class:`Model` class or a pre-filtered :py:class:`SelectQuery`.
    :param query: An arbitrarily complex peewee expression.

    Retrieve the object matching the given query, or return a 404 not found
    response. A common use-case might be a detail page for a weblog. You want
    to either retrieve the post matching the given URL, or return a 404.

    Example:

    .. code-block:: python

        @app.route('/blog/<slug>/')
        def post_detail(slug):
            public_posts = Post.select().where(Post.published == True)
            post = get_object_or_404(public_posts, (Post.slug == slug))
            return render_template('post_detail.html', post=post)

.. py:function:: object_list(template_name, query[, context_variable='object_list'[, paginate_by=20[, page_var='page'[, check_bounds=True[, **kwargs]]]]])

    :param template_name: The name of the template to render.
    :param query: A :py:class:`SelectQuery` instance to paginate.
    :param context_variable: The context variable name to use for the paginated object list.
    :param paginate_by: Number of objects per-page.
    :param page_var: The name of the ``GET`` argument which contains the page.
    :param check_bounds: Whether to check that the given page is a valid page. If ``check_bounds`` is ``True`` and an invalid page is specified, then a 404 will be returned.
    :param kwargs: Arbitrary key/value pairs to pass into the template context.

    Retrieve a paginated list of objects specified by the given query. The
    paginated object list will be dropped into the context using the given
    ``context_variable``, as well as metadata about the current page and total
    number of pages, and finally any arbitrary context data passed as
    keyword-arguments.

    The page is specified using the ``page`` ``GET`` argument, e.g.
    ``/my-object-list/?page=3`` would return the third page of objects.

    Example:

    .. code-block:: python

        @app.route('/blog/')
        def post_index():
            public_posts = (Post
                            .select()
                            .where(Post.published == True)
                            .order_by(Post.timestamp.desc()))

            return object_list(
                'post_index.html',
                query=public_posts,
                context_variable='post_list',
                paginate_by=10)

    The template will have the following context:

    * ``post_list``, which contains a list of up to 10 posts.
    * ``page``, which contains the current page based on the value of the ``page`` ``GET`` parameter.
    * ``pagination``, a :py:class:`PaginatedQuery` instance.

.. py:class:: PaginatedQuery(query_or_model, paginate_by[, page_var='page'[, check_bounds=False]])

    :param query_or_model: Either a :py:class:`Model` or a :py:class:`SelectQuery` instance containing the collection of records you wish to paginate.
    :param paginate_by: Number of objects per-page.
    :param page_var: The name of the ``GET`` argument which contains the page.
    :param check_bounds: Whether to check that the given page is a valid page. If ``check_bounds`` is ``True`` and an invalid page is specified, then a 404 will be returned.

    Helper class to perform pagination based on ``GET`` arguments.

    .. py:method:: get_page()

        Return the currently selected page, as indicated by the value of the
        ``page_var`` ``GET`` parameter. If no page is explicitly selected, then
        this method will return 1, indicating the first page.

    .. py:method:: get_page_count()

        Return the total number of possible pages.

    .. py:method:: get_object_list()

        Using the value of :py:meth:`~PaginatedQuery.get_page`, return the page
        of objects requested by the user. The return value is a
        :py:class:`SelectQuery` with the appropriate ``LIMIT`` and ``OFFSET``
        clauses.

        If ``check_bounds`` was set to ``True`` and the requested page contains
        no objects, then a 404 will be raised.