File: Player.cpp

package info (click to toggle)
pentobi 29.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,892 kB
  • sloc: cpp: 25,719; javascript: 875; xml: 40; makefile: 13; sh: 6
file content (347 lines) | stat: -rw-r--r-- 12,910 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
//-----------------------------------------------------------------------------
/** @file libpentobi_mcts/Player.cpp
    @author Markus Enzenberger
    @copyright GNU General Public License version 3 or later */
//-----------------------------------------------------------------------------

#include "Player.h"

#include <fstream>
#include "libboardgame_base/Memory.h"

namespace libpentobi_mcts {

using libpentobi_base::BoardType;

//-----------------------------------------------------------------------------

namespace {

// Rationale for choosing the number of simulations:
// * Level 9, the highest in the desktop version, should be as strong as
//   possible on a mid-range PC with reasonable thinking times. The average
//   time per game and player is targeted at 2-3 min for the 2-color game
//   variants and 5-6 min for the others.
// * Level 7, the highest in the Android version, should be as strong as
//   possible on typical mobile hardware. It is set to 4% of level 9.
// * Level 8 is set to 20% of level 9, the middle (on a log scale) between
//   level 7 and 9. Since most parameter tuning is done at level 7 or 8, it is
//   better for development purposes to define level 8 in terms of time, even
//   if it doesn't necessarily correspond to the middle wrt. playing strength.
// * The numbers for level 1 are set to a value that is weak enough for
//   beginners without playing silly moves. They are currently chosen depending
//   on how strong we estimate Pentobi is in a game variant. It is also taken
//   into consideration how much the Elo difference level 1-9 is in self-play
//   experiments. After applying the scale factor (see comment in
//   Player::get_rating()), we want a range of about 1000 Elo (difference
//   between beginner and lower master level).
// * The numbers for level 1-6 are chosen such that they correspond to roughly
//   equidistant Elo differences measured in self-play experiments.
// * We only calibrate the numbers for the game variants we care most about.
//   For other game variants, we use the numbers of game variants with similar
//   playing strength and speed of simulations.

constexpr float counts_classic[Player::max_supported_level] =
    { 3, 30, 90, 181, 667, 5028, 69809, 349044, 1745221 };

constexpr float counts_duo[Player::max_supported_level] =
    { 3, 21, 77, 213, 861, 7280, 221867, 1109339, 5546695 };

constexpr float counts_trigon[Player::max_supported_level] =
    { 100, 246, 457, 876, 1882, 5506, 19819, 99092, 495465 };

constexpr float counts_nexos[Player::max_supported_level] =
    { 250, 347, 625, 1223, 3117, 8270, 20954, 104774, 523877 };

constexpr float counts_callisto_2[Player::max_supported_level] =
    { 30, 87, 300, 1017, 4729, 20435, 122778, 613905, 3069529 };

/** Suggest how much memory to use for the trees depending on the maximum
    level used. */
size_t get_memory(unsigned max_level)
{
    auto available = libboardgame_base::get_memory();
    if (available == 0)
    {
        LIBBOARDGAME_LOG("WARNING: could not determine system memory"
                         " (assuming 512MB)");
        available = 512000000;
    }
    // Don't use all of the available memory
    size_t reasonable = available / 4;
    size_t wanted = 2000000000;
    if (max_level < Player::max_supported_level)
    {
        // We don't need so much memory if m_max_level is smaller than
        // max_supported_level. Trigon has the highest relative number of
        // simulations on lower levels compared to the highest level. The
        // memory used in a search is not proportional to the number of
        // simulations (e.g. because the expand threshold increases with the
        // depth). We approximate this by adding an exponent to the ratio
        // and not taking into account if m_max_level is very small.
        static_assert(Player::max_supported_level >= 5);
        auto factor = pow(counts_trigon[Player::max_supported_level - 1]
                          / counts_trigon[max(max_level, 5u) - 1], 0.8);
        wanted = static_cast<size_t>(double(wanted) / factor);
    }
    size_t memory = min(wanted, reasonable);
    LIBBOARDGAME_LOG("Using ", memory / 1000000, " MB of ",
                     available / 1000000, " MB");
    return memory;
}

} // namespace

//-----------------------------------------------------------------------------

Player::Player(Variant initial_variant, unsigned max_level,
               const string&  books_dir, unsigned nu_threads)
    : m_is_book_loaded(false),
      m_use_book(true),
      m_resign(false),
      m_books_dir(books_dir),
      m_max_level(max_level),
      m_level(4),
      m_search(initial_variant, nu_threads, get_memory(max_level)),
      m_book(initial_variant)
{
    for (unsigned i = 0; i < Board::max_player_moves; ++i)
    {
        // Hand-tuned such that time per move is more evenly spread among all
        // moves than with a fixed number of simulations (because the
        // simulations per second increase rapidly with the move number) but
        // the average time per game is roughly the same.
        m_weight_max_count_duo[i] = 0.7f * exp(0.1f * static_cast<float>(i));
        m_weight_max_count_classic[i] = m_weight_max_count_duo[i];
        m_weight_max_count_trigon[i] = m_weight_max_count_duo[i];
        m_weight_max_count_callisto[i] = m_weight_max_count_duo[i];
        m_weight_max_count_callisto_2[i] = m_weight_max_count_duo[i];
        // Less weight for the first move(s) because number of legal moves
        // is lower and the search applies some pruning rules to reduce the
        // branching factor in early moves
        if (i == 0)
        {
            m_weight_max_count_classic[i] *= 0.2f;
            m_weight_max_count_trigon[i] *= 0.2f;
            m_weight_max_count_duo[i] *= 0.6f;
            m_weight_max_count_callisto[i] *= 0.2f;
            m_weight_max_count_callisto_2[i] *= 0.2f;
        }
        else if (i == 1)
        {
            m_weight_max_count_classic[i] *= 0.2f;
            m_weight_max_count_trigon[i] *= 0.5f;
            m_weight_max_count_callisto[i] *= 0.6f;
            m_weight_max_count_callisto_2[i] *= 0.2f;
        }
        else if (i == 2)
        {
            m_weight_max_count_classic[i] *= 0.3f;
            m_weight_max_count_trigon[i] *= 0.6f;
        }
        else if (i == 3)
        {
            m_weight_max_count_trigon[i] *= 0.8f;
        }
    }
}

void Player::abort()
{
    m_search.abort();
    m_was_aborted = true;
}

Move Player::genmove(const Board& bd, Color c)
{
    m_resign = false;
    m_was_aborted = false;
    if (! bd.has_moves(c))
        return Move::null();
    Move mv;
    auto variant = bd.get_variant();
    auto board_type = bd.get_board_type();
    auto level = min(max(m_level, 1u), m_max_level);
    // Don't use more than 2 moves per color from opening book in lower levels
    if (m_use_book
        && (level >= 4 || bd.get_nu_moves() < 2u * bd.get_nu_colors()))
    {
        if (! is_book_loaded(variant))
            load_book(m_books_dir
                      + "/book_" + to_string_id(variant) + ".blksgf");
        if (m_is_book_loaded)
        {
            mv = m_book.genmove(bd, c);
            if (! mv.is_null())
                return mv;
        }
    }
    Float max_count = 0;
    switch (board_type)
    {
    case BoardType::classic:
    case BoardType::gembloq_2:
        max_count = counts_classic[level - 1];
        break;
    case BoardType::duo:
        max_count = counts_duo[level - 1];
        break;
    case BoardType::trigon:
    case BoardType::trigon_3:
    case BoardType::callisto:
    case BoardType::callisto_3:
    case BoardType::gembloq:
    case BoardType::gembloq_3:
        max_count = counts_trigon[level - 1];
        break;
    case BoardType::nexos:
        max_count = counts_nexos[level - 1];
        break;
    case BoardType::callisto_2:
        max_count = counts_callisto_2[level - 1];
        break;
    }
    // Don't weight max_count in low levels, otherwise it is still too
    // strong for beginners (later in the game, the weight becomes much
    // greater than 1 because the simulations become very fast)
    if (level >= 4)
    {
        auto player_move = bd.get_nu_onboard_pieces(c);
        float weight = 1; // Init to avoid compiler warning
        switch (board_type)
        {
        case BoardType::classic:
            weight = m_weight_max_count_classic[player_move];
            break;
        case BoardType::duo:
        case BoardType::gembloq_2:
            weight = m_weight_max_count_duo[player_move];
            break;
        case BoardType::callisto:
        case BoardType::callisto_3:
            weight = m_weight_max_count_callisto[player_move];
            break;
        case BoardType::callisto_2:
            weight = m_weight_max_count_callisto_2[player_move];
            break;
        case BoardType::trigon:
        case BoardType::trigon_3:
        case BoardType::nexos:
        case BoardType::gembloq:
        case BoardType::gembloq_3:
            weight = m_weight_max_count_trigon[player_move];
            break;
        }
        max_count = ceil(max_count * weight);
    }
    LIBBOARDGAME_LOG("MaxCnt ", fixed, setprecision(0), max_count);
    if (! m_search.search(mv, bd, c, max_count, 0, 0, m_time_source))
        return Move::null();
    m_was_aborted = m_search.was_aborted();
    // Resign only in two-player game variants
    if (get_nu_players(variant) == 2)
        if (m_search.get_root_visit_count() > 500
                && m_search.get_root_val().get_mean() < 0.09f)
            m_resign = true;
    return mv;
}

Rating Player::get_rating(Variant variant, unsigned level)
{
    // The ratings are roughly based on Elo differences measured in self-play
    // experiments. The measured values are scaled with a factor smaller than 1
    // to take into account that self-play usually overestimates the strength
    // against humans. The anchor is set to about 1000 (beginner level) for
    // level 1. The exact value for anchor and scale is chosen according to our
    // estimate how strong Pentobi plays at level 1 and level 9 in each game
    // variant (2000 Elo would be lower expert level). Currently, only 2-player
    // variants are calibrated and the ratings are also used for other game
    // variants that we assume have comparable strength (e.g. multi-player on
    // the same board).
    level = min(max(level, 1u), max_supported_level);
    Rating result;
    switch (get_board_type(variant))
    {
    case BoardType::classic: // Measured for classic_2
        {
            // Anchor 1000, scale 0.6
            static double elo[max_supported_level] =
                { 1000, 1142, 1283, 1425, 1567, 1708, 1850, 1951, 2030 };
            result = Rating(elo[level - 1]);
        }
        break;
    case BoardType::duo:
        {
            // Anchor 1000, scale 0.74
            static double elo[max_supported_level] =
                { 1000, 1189, 1378, 1567, 1755, 1945, 2134, 2185, 2209 };
            result = Rating(elo[level - 1]);
        }
        break;
    case BoardType::callisto_2:
        {
            // Anchor 1000, scale 0.49
            static double elo[max_supported_level] =
                { 1000, 1113, 1225, 1338, 1450, 1563, 1675, 1783, 1868 };
            result = Rating(elo[level - 1]);
        }
        break;
    case BoardType::trigon: // Measured for trigon_2
    case BoardType::trigon_3:
        {
            // Anchor 1000, scale 0.48
            static double elo[max_supported_level] =
                { 1000, 1110, 1220, 1330, 1440, 1550, 1660, 1765, 1897 };
            result = Rating(elo[level - 1]);
        }
        break;
    case BoardType::nexos: // Measured for nexos_2
    case BoardType::callisto:
    case BoardType::callisto_3:
    case BoardType::gembloq:
    case BoardType::gembloq_2:
    case BoardType::gembloq_3:
        {
            // Anchor 1000, scale 0.60
            static double elo[Player::max_supported_level] =
                { 1000, 1101, 1202, 1304, 1406, 1507, 1608, 1698, 1799 };
            result = Rating(elo[level - 1]);
        }
        break;
    }
    return result;
}

bool Player::is_book_loaded(Variant variant) const
{
    return m_is_book_loaded && m_book.get_tree().get_variant() == variant;
}

void Player::load_book(istream& in)
{
    m_book.load(in);
    m_is_book_loaded = true;
}

bool Player::load_book(const string& filepath)
{
    ifstream in(filepath);
    if (! in)
    {
        LIBBOARDGAME_LOG("Could not load book ", filepath);
        return false;
    }
    m_book.load(in);
    m_is_book_loaded = true;
    LIBBOARDGAME_LOG("Loaded book ", filepath);
    return true;
}

bool Player::resign() const
{
    return m_resign;
}

//-----------------------------------------------------------------------------

} // namespace libpentobi_mcts