1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
import os
import math
from Bio.PDB import PDBIO
from Bio.PDB import PDBParser
from Bio.PDB import Superimposer
from Bio.PDB.vectors import calc_angle, calc_dihedral
from PeptideBuilder import Geometry
import PeptideBuilder
resdict = {
"ALA": "A",
"CYS": "C",
"ASP": "D",
"GLU": "E",
"PHE": "F",
"GLY": "G",
"HIS": "H",
"ILE": "I",
"LYS": "K",
"LEU": "L",
"MET": "M",
"ASN": "N",
"PRO": "P",
"GLN": "Q",
"ARG": "R",
"SER": "S",
"THR": "T",
"VAL": "V",
"TRP": "W",
"TYR": "Y",
}
PDBdir = "PDBs"
def build_linear_model(pdb_filename):
parser = PDBParser()
structure = parser.get_structure("sample", os.path.join(PDBdir, pdb_filename))
model = structure[0]
chain = model["A"]
model_structure_geo = []
for res in chain:
if res.get_resname() in resdict.keys():
tempgeo = Geometry.geometry(resdict[res.get_resname()])
model_structure_geo.append(tempgeo)
model_structure = PeptideBuilder.initialize_res(model_structure_geo[0])
for i in range(1, len(model_structure_geo)):
model_structure = PeptideBuilder.add_residue(
model_structure, model_structure_geo[i]
)
return model_structure
def make_pdb_file(struct, file_nom):
outfile = PDBIO()
outfile.set_structure(struct)
outfile.save(os.path.join(PDBdir, file_nom))
return file_nom
def build_backbone_model(pdb_filename):
parser = PDBParser()
structure = parser.get_structure("sample", os.path.join(PDBdir, pdb_filename))
model = structure[0]
chain = model["A"]
model_structure_geo = []
prev = "0"
N_prev = "0"
CA_prev = "0"
CO_prev = "0"
##O_prev="0"
prev_res = ""
rad = 180.0 / math.pi
for res in chain:
if res.get_resname() in resdict.keys():
geo = Geometry.geometry(resdict[res.get_resname()])
if prev == "0":
N_prev = res["N"]
CA_prev = res["CA"]
C_prev = res["C"]
##O_prev=res['O']
prev = "1"
else:
n1 = N_prev.get_vector()
ca1 = CA_prev.get_vector()
c1 = C_prev.get_vector()
##o1=O_prev.get_vector()
##O_curr=res['O']
C_curr = res["C"]
N_curr = res["N"]
CA_curr = res["CA"]
##o=O_curr.get_vector()
c = C_curr.get_vector()
n = N_curr.get_vector()
ca = CA_curr.get_vector()
geo.CA_C_N_angle = calc_angle(ca1, c1, n) * rad
geo.C_N_CA_angle = calc_angle(c1, n, ca) * rad
geo.CA_N_length = CA_curr - N_curr
geo.CA_C_length = CA_curr - C_curr
geo.peptide_bond = N_curr - C_prev
psi = calc_dihedral(n1, ca1, c1, n) ##goes to current res
omega = calc_dihedral(ca1, c1, n, ca) ##goes to current res
phi = calc_dihedral(c1, n, ca, c) ##goes to current res
geo.psi_im1 = psi * rad
geo.omega = omega * rad
geo.phi = phi * rad
geo.CA_N_length = CA_curr - N_curr
geo.CA_C_length = CA_curr - C_curr
##geo.C_O_length= C_curr - O_curr
geo.N_CA_C_angle = calc_angle(n, ca, c) * rad
##geo.CA_C_O_angle= calc_angle(ca, c, o)*rad
##geo.N_CA_C_O= calc_dihedral(n, ca, c, o)*rad
N_prev = res["N"]
CA_prev = res["CA"]
C_prev = res["C"]
##O_prev=res['O']
model_structure_geo.append(geo)
return model_structure_geo
def build_all_angles_model(pdb_filename):
parser = PDBParser()
structure = parser.get_structure("sample", os.path.join(PDBdir, pdb_filename))
model = structure[0]
chain = model["A"]
model_structure_geo = []
prev = "0"
N_prev = "0"
CA_prev = "0"
CO_prev = "0"
prev_res = ""
rad = 180.0 / math.pi
for res in chain:
if res.get_resname() in resdict.keys():
geo = Geometry.geometry(resdict[res.get_resname()])
if prev == "0":
N_prev = res["N"]
CA_prev = res["CA"]
C_prev = res["C"]
prev = "1"
else:
n1 = N_prev.get_vector()
ca1 = CA_prev.get_vector()
c1 = C_prev.get_vector()
C_curr = res["C"]
N_curr = res["N"]
CA_curr = res["CA"]
c = C_curr.get_vector()
n = N_curr.get_vector()
ca = CA_curr.get_vector()
geo.CA_C_N_angle = calc_angle(ca1, c1, n) * rad
geo.C_N_CA_angle = calc_angle(c1, n, ca) * rad
psi = calc_dihedral(n1, ca1, c1, n) ##goes to current res
omega = calc_dihedral(ca1, c1, n, ca) ##goes to current res
phi = calc_dihedral(c1, n, ca, c) ##goes to current res
geo.psi_im1 = psi * rad
geo.omega = omega * rad
geo.phi = phi * rad
geo.N_CA_C_angle = calc_angle(n, ca, c) * rad
##geo.CA_C_O_angle= calc_angle(ca, c, o)*rad
##geo.N_CA_C_O= calc_dihedral(n, ca, c, o)*rad
N_prev = res["N"]
CA_prev = res["CA"]
C_prev = res["C"]
##O_prev=res['O']
model_structure_geo.append(geo)
return model_structure_geo
def build_phi_psi_model(pdb_filename):
parser = PDBParser()
structure = parser.get_structure("sample", os.path.join(PDBdir, pdb_filename))
model = structure[0]
chain = model["A"]
seq = ""
phi_diangle = []
psi_diangle = []
omega_diangle = []
for res in chain:
if res.get_resname() in resdict.keys():
seq += resdict[res.get_resname()]
if len(seq) == 1:
N_prev = res["N"]
CA_prev = res["CA"]
C_prev = res["C"]
else:
n1 = N_prev.get_vector()
ca1 = CA_prev.get_vector()
c1 = C_prev.get_vector()
C_curr = res["C"]
N_curr = res["N"]
CA_curr = res["CA"]
c = C_curr.get_vector()
n = N_curr.get_vector()
ca = CA_curr.get_vector()
psi = calc_dihedral(n1, ca1, c1, n) ##goes to current res
omega = calc_dihedral(ca1, c1, n, ca)
phi = calc_dihedral(c1, n, ca, c) ##goes to current res
phi_diangle.append(phi * 180.0 / math.pi)
psi_diangle.append(psi * 180.0 / math.pi)
omega_diangle.append(omega * 180.0 / math.pi)
N_prev = res["N"]
CA_prev = res["CA"]
C_prev = res["C"]
model_structure_omega = PeptideBuilder.make_structure(
seq, phi_diangle, psi_diangle, omega_diangle
)
model_structure_phi_psi = PeptideBuilder.make_structure(
seq, phi_diangle, psi_diangle
)
return model_structure_omega, model_structure_phi_psi
def compare_structure(reference, alternate):
parser = PDBParser()
ref_struct = parser.get_structure("Reference", os.path.join(PDBdir, reference))
alt_struct = parser.get_structure("Alternate", os.path.join(PDBdir, alternate))
ref_model = ref_struct[0]
ref_chain = ref_model["A"]
alt_model = alt_struct[0]
alt_chain = alt_model["A"]
ref_atoms = []
alt_atoms = []
for ref_res in ref_chain:
if ref_res.get_resname() in resdict.keys():
ref_atoms.append(ref_res["CA"])
for alt_res in alt_chain:
if alt_res.get_resname() in resdict.keys():
alt_atoms.append(alt_res["CA"])
super_imposer = Superimposer()
super_imposer.set_atoms(ref_atoms, alt_atoms)
super_imposer.apply(alt_model.get_atoms())
make_pdb_file(alt_struct, "Aligned_" + alternate)
full = super_imposer.rms
super_imposer_50 = Superimposer()
super_imposer_50.set_atoms(ref_atoms[:50], alt_atoms[:50])
super_imposer_50.apply(alt_model.get_atoms())
make_pdb_file(alt_struct, "Aligned_50_" + alternate)
f_50 = super_imposer_50.rms
super_imposer_150 = Superimposer()
super_imposer_150.set_atoms(ref_atoms[:150], alt_atoms[:150])
super_imposer_150.apply(alt_model.get_atoms())
make_pdb_file(alt_struct, "Aligned_150_" + alternate)
f_150 = super_imposer_150.rms
return f_50, f_150, full, len(ref_atoms)
def test_PeptideBuilder(pdb_code):
# retrieve pdb file
pdb_file = "%s_clean.pdb" % (pdb_code)
# build backbone model from all angles and bond lengths
structure_backbone = PeptideBuilder.make_structure_from_geos(
build_backbone_model(pdb_file)
)
# build backbone model from all angles
structure_all_angles = PeptideBuilder.make_structure_from_geos(
build_all_angles_model(pdb_file)
)
# build models from dihedral angles only
structure_omega, structure_phi_psi = build_phi_psi_model(pdb_file)
# compare models to original structure
RMS_backbone_50, RMS_backbone_150, RMS_backbone, size = compare_structure(
pdb_file, make_pdb_file(structure_backbone, "Backbone_" + pdb_file)
)
RMS_phi_psi_50, RMS_phi_psi_150, RMS_phi_psi, size = compare_structure(
pdb_file, make_pdb_file(structure_phi_psi, "PhiPsi_" + pdb_file)
)
RMS_omega_50, RMS_omega_150, RMS_omega, size = compare_structure(
pdb_file, make_pdb_file(structure_omega, "PhiPsiOmega_" + pdb_file)
)
RMS_all_angles_50, RMS_all_angles_150, RMS_all_angles, size = compare_structure(
pdb_file, make_pdb_file(structure_all_angles, "AllAngles_" + pdb_file)
)
output_line = (
"%s\t%i\t%0.1f\t%0.1f\t%0.1f\t%0.1f\t%0.1f\t%0.1f\t%0.1f\t%0.1f\t%0.1f\t%0.1f\t%0.1f\t%0.1f\n"
% (
pdb_code,
size,
RMS_phi_psi_50,
RMS_phi_psi_150,
RMS_phi_psi,
RMS_omega_50,
RMS_omega_150,
RMS_omega,
RMS_all_angles_50,
RMS_all_angles_150,
RMS_all_angles,
RMS_backbone_50,
RMS_backbone_150,
RMS_backbone,
)
)
return output_line
test_structures = [
"1aq7",
"1gfl",
"1nbw",
"1vca",
"2o6r",
"2r83",
"3cap",
"3cuq",
"3vni",
"7tim",
]
f_out = open("reconstructed_RMSDs.txt", "w")
f_out.write(
"PDB-ID\t\tlengthPhi-Psi-50\tPhi-Psi-150\tPhi-Psi\tPhi-Psi-Omega-50\tPhi-Psi-Omega-150\tPhi-Psi-Omega\tAll-Angles-50\tAll-Angles-150\tAll-Angles\tBackbone-50\tBackbone-150\tBackbone\n"
)
for i in test_structures:
print(i)
f_out.write(test_PeptideBuilder(i))
f_out.close()
|