1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
|
/*
* tclWinTime.c --
*
* Contains Windows specific versions of Tcl functions that
* obtain time values from the operating system.
*
* Copyright 1995-1998 by Sun Microsystems, Inc.
*
* See the file "license.terms" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
* RCS: @(#) $Id: tclWinTime.c,v 1.14.2.2 2003/04/15 21:06:36 kennykb Exp $
*/
#include <windows.h>
#include "Lang.h"
#include <sys/timeb.h>
#include "tkWin.h"
#if defined(TCL_EVENT_IMPLEMENT)
#define SECSPERDAY (60L * 60L * 24L)
#define SECSPERYEAR (SECSPERDAY * 365L)
#define SECSPER4YEAR (SECSPERYEAR * 4L + SECSPERDAY)
/*
* Number of samples over which to estimate the performance counter
*/
#define SAMPLES 64
/*
* The following arrays contain the day of year for the last day of
* each month, where index 1 is January.
*/
static int normalDays[] = {
-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364
};
static int leapDays[] = {
-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365
};
typedef struct ThreadSpecificData {
char tzName[64]; /* Time zone name */
struct tm tm; /* time information */
} ThreadSpecificData;
static Tcl_ThreadDataKey dataKey;
/*
* Data for managing high-resolution timers.
*/
typedef struct TimeInfo {
CRITICAL_SECTION cs; /* Mutex guarding this structure */
int initialized; /* Flag == 1 if this structure is
* initialized. */
int perfCounterAvailable; /* Flag == 1 if the hardware has a
* performance counter */
HANDLE calibrationThread; /* Handle to the thread that keeps the
* virtual clock calibrated. */
HANDLE readyEvent; /* System event used to
* trigger the requesting thread
* when the clock calibration procedure
* is initialized for the first time */
HANDLE exitEvent; /* Event to signal out of an exit handler
* to tell the calibration loop to
* terminate */
LARGE_INTEGER nominalFreq; /* Nominal frequency of the system
* performance counter, that is, the value
* returned from QueryPerformanceFrequency. */
/*
* The following values are used for calculating virtual time.
* Virtual time is always equal to:
* lastFileTime + (current perf counter - lastCounter)
* * 10000000 / curCounterFreq
* and lastFileTime and lastCounter are updated any time that
* virtual time is returned to a caller.
*/
ULARGE_INTEGER fileTimeLastCall;
LARGE_INTEGER perfCounterLastCall;
LARGE_INTEGER curCounterFreq;
/*
* Data used in developing the estimate of performance counter
* frequency
*/
Tcl_WideUInt fileTimeSample[SAMPLES];
/* Last 64 samples of system time */
Tcl_WideInt perfCounterSample[SAMPLES];
/* Last 64 samples of performance counter */
int sampleNo; /* Current sample number */
} TimeInfo;
static TimeInfo timeInfo = {
{ NULL },
0,
0,
(HANDLE) NULL,
(HANDLE) NULL,
(HANDLE) NULL,
#ifdef HAVE_CAST_TO_UNION
(LARGE_INTEGER) (Tcl_WideInt) 0,
(ULARGE_INTEGER) (DWORDLONG) 0,
(LARGE_INTEGER) (Tcl_WideInt) 0,
(LARGE_INTEGER) (Tcl_WideInt) 0,
#else
0,
0,
0,
0,
#endif
{ 0 },
{ 0 },
0
};
CONST static FILETIME posixEpoch = { 0xD53E8000, 0x019DB1DE };
/*
* Declarations for functions defined later in this file.
*/
static struct tm * ComputeGMT _ANSI_ARGS_((const time_t *tp));
static void StopCalibration _ANSI_ARGS_(( ClientData ));
static DWORD WINAPI CalibrationThread _ANSI_ARGS_(( LPVOID arg ));
static void UpdateTimeEachSecond _ANSI_ARGS_(( void ));
static void ResetCounterSamples _ANSI_ARGS_((
Tcl_WideUInt fileTime,
Tcl_WideInt perfCounter,
Tcl_WideInt perfFreq
));
static Tcl_WideInt AccumulateSample _ANSI_ARGS_((
Tcl_WideInt perfCounter,
Tcl_WideUInt fileTime
));
/*
*----------------------------------------------------------------------
*
* TclpGetSeconds --
*
* This procedure returns the number of seconds from the epoch.
* On most Unix systems the epoch is Midnight Jan 1, 1970 GMT.
*
* Results:
* Number of seconds from the epoch.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
unsigned long
TclpGetSeconds()
{
Tcl_Time t;
Tcl_GetTime( &t );
return t.sec;
}
/*
*----------------------------------------------------------------------
*
* TclpGetClicks --
*
* This procedure returns a value that represents the highest
* resolution clock available on the system. There are no
* guarantees on what the resolution will be. In Tcl we will
* call this value a "click". The start time is also system
* dependant.
*
* Results:
* Number of clicks from some start time.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
unsigned long
TclpGetClicks()
{
/*
* Use the Tcl_GetTime abstraction to get the time in microseconds,
* as nearly as we can, and return it.
*/
Tcl_Time now; /* Current Tcl time */
unsigned long retval; /* Value to return */
Tcl_GetTime( &now );
retval = ( now.sec * 1000000 ) + now.usec;
return retval;
}
#ifndef _LANG
/*
*----------------------------------------------------------------------
*
* TclpGetTimeZone --
*
* Determines the current timezone. The method varies wildly
* between different Platform implementations, so its hidden in
* this function.
*
* Results:
* Minutes west of GMT.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int
TclpGetTimeZone (currentTime)
unsigned long currentTime;
{
int timeZone;
tzset();
timeZone = _timezone / 60;
return timeZone;
}
#endif /* _LANG */
/*
*----------------------------------------------------------------------
*
* Tcl_GetTime --
*
* Gets the current system time in seconds and microseconds
* since the beginning of the epoch: 00:00 UCT, January 1, 1970.
*
* Results:
* Returns the current time in timePtr.
*
* Side effects:
* On the first call, initializes a set of static variables to
* keep track of the base value of the performance counter, the
* corresponding wall clock (obtained through ftime) and the
* frequency of the performance counter. Also spins a thread
* whose function is to wake up periodically and monitor these
* values, adjusting them as necessary to correct for drift
* in the performance counter's oscillator.
*
*----------------------------------------------------------------------
*/
void
Tcl_GetTime(timePtr)
Tcl_Time *timePtr; /* Location to store time information. */
{
struct timeb t;
int useFtime = 1; /* Flag == TRUE if we need to fall back
* on ftime rather than using the perf
* counter */
/* Initialize static storage on the first trip through. */
/*
* Note: Outer check for 'initialized' is a performance win
* since it avoids an extra mutex lock in the common case.
*/
if ( !timeInfo.initialized ) {
TclpInitLock();
if ( !timeInfo.initialized ) {
timeInfo.perfCounterAvailable
= QueryPerformanceFrequency( &timeInfo.nominalFreq );
/*
* Some hardware abstraction layers use the CPU clock
* in place of the real-time clock as a performance counter
* reference. This results in:
* - inconsistent results among the processors on
* multi-processor systems.
* - unpredictable changes in performance counter frequency
* on "gearshift" processors such as Transmeta and
* SpeedStep.
*
* There seems to be no way to test whether the performance
* counter is reliable, but a useful heuristic is that
* if its frequency is 1.193182 MHz or 3.579545 MHz, it's
* derived from a colorburst crystal and is therefore
* the RTC rather than the TSC.
*
* A sloppier but serviceable heuristic is that the RTC crystal
* is normally less than 15 MHz while the TSC crystal is
* virtually assured to be greater than 100 MHz. Since Win98SE
* appears to fiddle with the definition of the perf counter
* frequency (perhaps in an attempt to calibrate the clock?)
* we use the latter rule rather than an exact match.
*/
if ( timeInfo.perfCounterAvailable
/* The following lines would do an exact match on
* crystal frequency:
* && timeInfo.nominalFreq.QuadPart != (Tcl_WideInt) 1193182
* && timeInfo.nominalFreq.QuadPart != (Tcl_WideInt) 3579545
*/
&& timeInfo.nominalFreq.QuadPart > (Tcl_WideInt) 15000000 ) {
timeInfo.perfCounterAvailable = FALSE;
}
/*
* If the performance counter is available, start a thread to
* calibrate it.
*/
if ( timeInfo.perfCounterAvailable ) {
DWORD id;
InitializeCriticalSection( &timeInfo.cs );
timeInfo.readyEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
timeInfo.exitEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
timeInfo.calibrationThread = CreateThread( NULL,
256,
CalibrationThread,
(LPVOID) NULL,
0,
&id );
SetThreadPriority( timeInfo.calibrationThread,
THREAD_PRIORITY_HIGHEST );
/*
* Wait for the thread just launched to start running,
* and create an exit handler that kills it so that it
* doesn't outlive unloading tclXX.dll
*/
WaitForSingleObject( timeInfo.readyEvent, INFINITE );
CloseHandle( timeInfo.readyEvent );
Tcl_CreateExitHandler( StopCalibration, (ClientData) NULL );
}
timeInfo.initialized = TRUE;
}
TclpInitUnlock();
}
if ( timeInfo.perfCounterAvailable ) {
/*
* Query the performance counter and use it to calculate the
* current time.
*/
LARGE_INTEGER curCounter;
/* Current performance counter */
Tcl_WideInt curFileTime;
/* Current estimated time, expressed
* as 100-ns ticks since the Windows epoch */
static LARGE_INTEGER posixEpoch;
/* Posix epoch expressed as 100-ns ticks
* since the windows epoch */
Tcl_WideInt usecSincePosixEpoch;
/* Current microseconds since Posix epoch */
posixEpoch.LowPart = 0xD53E8000;
posixEpoch.HighPart = 0x019DB1DE;
EnterCriticalSection( &timeInfo.cs );
QueryPerformanceCounter( &curCounter );
/*
* If it appears to be more than 1.1 seconds since the last trip
* through the calibration loop, the performance counter may
* have jumped forward. (See MSDN Knowledge Base article
* Q274323 for a description of the hardware problem that makes
* this test necessary.) If the counter jumps, we don't want
* to use it directly. Instead, we must return system time.
* Eventually, the calibration loop should recover.
*/
if ( curCounter.QuadPart - timeInfo.perfCounterLastCall.QuadPart
< 11 * timeInfo.curCounterFreq.QuadPart / 10 ) {
curFileTime = timeInfo.fileTimeLastCall.QuadPart
+ ( ( curCounter.QuadPart - timeInfo.perfCounterLastCall.QuadPart )
* 10000000 / timeInfo.curCounterFreq.QuadPart );
timeInfo.fileTimeLastCall.QuadPart = curFileTime;
timeInfo.perfCounterLastCall.QuadPart = curCounter.QuadPart;
usecSincePosixEpoch = ( curFileTime - posixEpoch.QuadPart ) / 10;
timePtr->sec = (time_t) ( usecSincePosixEpoch / 1000000 );
timePtr->usec = (unsigned long ) ( usecSincePosixEpoch % 1000000 );
useFtime = 0;
}
LeaveCriticalSection( &timeInfo.cs );
}
if ( useFtime ) {
/* High resolution timer is not available. Just use ftime */
ftime(&t);
timePtr->sec = t.time;
timePtr->usec = t.millitm * 1000;
}
}
/*
*----------------------------------------------------------------------
*
* StopCalibration --
*
* Turns off the calibration thread in preparation for exiting the
* process.
*
* Results:
* None.
*
* Side effects:
* Sets the 'exitEvent' event in the 'timeInfo' structure to ask
* the thread in question to exit, and waits for it to do so.
*
*----------------------------------------------------------------------
*/
static void
StopCalibration( ClientData unused )
/* Client data is unused */
{
SetEvent( timeInfo.exitEvent );
WaitForSingleObject( timeInfo.calibrationThread, INFINITE );
CloseHandle( timeInfo.exitEvent );
CloseHandle( timeInfo.calibrationThread );
}
/*
*----------------------------------------------------------------------
*
* TclpGetTZName --
*
* Gets the current timezone string.
*
* Results:
* Returns a pointer to a static string, or NULL on failure.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
#ifndef _LANG
char *
TclpGetTZName(int dst)
{
int len;
char *zone, *p;
TIME_ZONE_INFORMATION tz;
Tcl_Encoding encoding;
ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey);
char *name = tsdPtr->tzName;
/*
* tzset() under Borland doesn't seem to set up tzname[] at all.
* tzset() under MSVC has the following weird observed behavior:
* First time we call "clock format [clock seconds] -format %Z -gmt 1"
* we get "GMT", but on all subsequent calls we get the current time
* zone string, even though env(TZ) is GMT and the variable _timezone
* is 0.
*/
name[0] = '\0';
zone = getenv("TZ");
if (zone != NULL) {
/*
* TZ is of form "NST-4:30NDT", where "NST" would be the
* name of the standard time zone for this area, "-4:30" is
* the offset from GMT in hours, and "NDT is the name of
* the daylight savings time zone in this area. The offset
* and DST strings are optional.
*/
len = strlen(zone);
if (len > 3) {
len = 3;
}
if (dst != 0) {
/*
* Skip the offset string and get the DST string.
*/
p = zone + len;
p += strspn(p, "+-:0123456789");
if (*p != '\0') {
zone = p;
len = strlen(zone);
if (len > 3) {
len = 3;
}
}
}
Tcl_ExternalToUtf(NULL, NULL, zone, len, 0, NULL, name,
sizeof(tsdPtr->tzName), NULL, NULL, NULL);
}
if (name[0] == '\0') {
if (GetTimeZoneInformation(&tz) == TIME_ZONE_ID_UNKNOWN) {
/*
* MSDN: On NT this is returned if DST is not used in
* the current TZ
*/
dst = 0;
}
encoding = Tcl_GetEncoding(NULL, "unicode");
Tcl_ExternalToUtf(NULL, encoding,
(char *) ((dst) ? tz.DaylightName : tz.StandardName), -1,
0, NULL, name, sizeof(tsdPtr->tzName), NULL, NULL, NULL);
Tcl_FreeEncoding(encoding);
}
return name;
}
#endif
#ifndef _LANG
/*
*----------------------------------------------------------------------
*
* TclpGetDate --
*
* This function converts between seconds and struct tm. If
* useGMT is true, then the returned date will be in Greenwich
* Mean Time (GMT). Otherwise, it will be in the local time zone.
*
* Results:
* Returns a static tm structure.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
struct tm *
TclpGetDate(t, useGMT)
TclpTime_t t;
int useGMT;
{
const time_t *tp = (const time_t *) t;
struct tm *tmPtr;
long time;
if (!useGMT) {
tzset();
/*
* If we are in the valid range, let the C run-time library
* handle it. Otherwise we need to fake it. Note that this
* algorithm ignores daylight savings time before the epoch.
*/
if (*tp >= 0) {
return localtime(tp);
}
time = *tp - _timezone;
/*
* If we aren't near to overflowing the long, just add the bias and
* use the normal calculation. Otherwise we will need to adjust
* the result at the end.
*/
if (*tp < (LONG_MAX - 2 * SECSPERDAY)
&& *tp > (LONG_MIN + 2 * SECSPERDAY)) {
tmPtr = ComputeGMT(&time);
} else {
tmPtr = ComputeGMT(tp);
tzset();
/*
* Add the bias directly to the tm structure to avoid overflow.
* Propagate seconds overflow into minutes, hours and days.
*/
time = tmPtr->tm_sec - _timezone;
tmPtr->tm_sec = (int)(time % 60);
if (tmPtr->tm_sec < 0) {
tmPtr->tm_sec += 60;
time -= 60;
}
time = tmPtr->tm_min + time/60;
tmPtr->tm_min = (int)(time % 60);
if (tmPtr->tm_min < 0) {
tmPtr->tm_min += 60;
time -= 60;
}
time = tmPtr->tm_hour + time/60;
tmPtr->tm_hour = (int)(time % 24);
if (tmPtr->tm_hour < 0) {
tmPtr->tm_hour += 24;
time -= 24;
}
time /= 24;
tmPtr->tm_mday += time;
tmPtr->tm_yday += time;
tmPtr->tm_wday = (tmPtr->tm_wday + time) % 7;
}
} else {
tmPtr = ComputeGMT(tp);
}
return tmPtr;
}
#endif
/*
*----------------------------------------------------------------------
*
* ComputeGMT --
*
* This function computes GMT given the number of seconds since
* the epoch (midnight Jan 1 1970).
*
* Results:
* Returns a (per thread) statically allocated struct tm.
*
* Side effects:
* Updates the values of the static struct tm.
*
*----------------------------------------------------------------------
*/
static struct tm *
ComputeGMT(tp)
const time_t *tp;
{
struct tm *tmPtr;
long tmp, rem;
int isLeap;
int *days;
ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey);
tmPtr = &tsdPtr->tm;
/*
* Compute the 4 year span containing the specified time.
*/
tmp = *tp / SECSPER4YEAR;
rem = *tp % SECSPER4YEAR;
/*
* Correct for weird mod semantics so the remainder is always positive.
*/
if (rem < 0) {
tmp--;
rem += SECSPER4YEAR;
}
/*
* Compute the year after 1900 by taking the 4 year span and adjusting
* for the remainder. This works because 2000 is a leap year, and
* 1900/2100 are out of the range.
*/
tmp = (tmp * 4) + 70;
isLeap = 0;
if (rem >= SECSPERYEAR) { /* 1971, etc. */
tmp++;
rem -= SECSPERYEAR;
if (rem >= SECSPERYEAR) { /* 1972, etc. */
tmp++;
rem -= SECSPERYEAR;
if (rem >= SECSPERYEAR + SECSPERDAY) { /* 1973, etc. */
tmp++;
rem -= SECSPERYEAR + SECSPERDAY;
} else {
isLeap = 1;
}
}
}
tmPtr->tm_year = tmp;
/*
* Compute the day of year and leave the seconds in the current day in
* the remainder.
*/
tmPtr->tm_yday = rem / SECSPERDAY;
rem %= SECSPERDAY;
/*
* Compute the time of day.
*/
tmPtr->tm_hour = rem / 3600;
rem %= 3600;
tmPtr->tm_min = rem / 60;
tmPtr->tm_sec = rem % 60;
/*
* Compute the month and day of month.
*/
days = (isLeap) ? leapDays : normalDays;
for (tmp = 1; days[tmp] < tmPtr->tm_yday; tmp++) {
}
tmPtr->tm_mon = --tmp;
tmPtr->tm_mday = tmPtr->tm_yday - days[tmp];
/*
* Compute day of week. Epoch started on a Thursday.
*/
tmPtr->tm_wday = (*tp / SECSPERDAY) + 4;
if ((*tp % SECSPERDAY) < 0) {
tmPtr->tm_wday--;
}
tmPtr->tm_wday %= 7;
if (tmPtr->tm_wday < 0) {
tmPtr->tm_wday += 7;
}
return tmPtr;
}
/*
*----------------------------------------------------------------------
*
* CalibrationThread --
*
* Thread that manages calibration of the hi-resolution time
* derived from the performance counter, to keep it synchronized
* with the system clock.
*
* Parameters:
* arg -- Client data from the CreateThread call. This parameter
* points to the static TimeInfo structure.
*
* Return value:
* None. This thread embeds an infinite loop.
*
* Side effects:
* At an interval of 1 s, this thread performs virtual time discipline.
*
* Note: When this thread is entered, TclpInitLock has been called
* to safeguard the static storage. There is therefore no synchronization
* in the body of this procedure.
*
*----------------------------------------------------------------------
*/
static DWORD WINAPI
CalibrationThread( LPVOID arg )
{
FILETIME curFileTime;
DWORD waitResult;
/* Get initial system time and performance counter */
GetSystemTimeAsFileTime( &curFileTime );
QueryPerformanceCounter( &timeInfo.perfCounterLastCall );
QueryPerformanceFrequency( &timeInfo.curCounterFreq );
timeInfo.fileTimeLastCall.LowPart = curFileTime.dwLowDateTime;
timeInfo.fileTimeLastCall.HighPart = curFileTime.dwHighDateTime;
ResetCounterSamples( timeInfo.fileTimeLastCall.QuadPart,
timeInfo.perfCounterLastCall.QuadPart,
timeInfo.curCounterFreq.QuadPart );
/*
* Wake up the calling thread. When it wakes up, it will release the
* initialization lock.
*/
SetEvent( timeInfo.readyEvent );
/* Run the calibration once a second */
for ( ; ; ) {
/* If the exitEvent is set, break out of the loop. */
waitResult = WaitForSingleObjectEx(timeInfo.exitEvent, 1000, FALSE);
if ( waitResult == WAIT_OBJECT_0 ) {
break;
}
UpdateTimeEachSecond();
}
/* lint */
return (DWORD) 0;
}
/*
*----------------------------------------------------------------------
*
* UpdateTimeEachSecond --
*
* Callback from the waitable timer in the clock calibration thread
* that updates system time.
*
* Parameters:
* info -- Pointer to the static TimeInfo structure
*
* Results:
* None.
*
* Side effects:
* Performs virtual time calibration discipline.
*
*----------------------------------------------------------------------
*/
static void
UpdateTimeEachSecond()
{
LARGE_INTEGER curPerfCounter;
/* Current value returned from
* QueryPerformanceCounter */
FILETIME curSysTime; /* Current system time */
LARGE_INTEGER curFileTime; /* File time at the time this callback
* was scheduled. */
Tcl_WideInt estFreq; /* Estimated perf counter frequency */
Tcl_WideInt vt0; /* Tcl time right now */
Tcl_WideInt vt1; /* Tcl time one second from now */
Tcl_WideInt tdiff; /* Difference between system clock and
* Tcl time. */
Tcl_WideInt driftFreq; /* Frequency needed to drift virtual time
* into step over 1 second */
/*
* Sample performance counter and system time.
*/
QueryPerformanceCounter( &curPerfCounter );
GetSystemTimeAsFileTime( &curSysTime );
curFileTime.LowPart = curSysTime.dwLowDateTime;
curFileTime.HighPart = curSysTime.dwHighDateTime;
EnterCriticalSection( &timeInfo.cs );
/*
* Several things may have gone wrong here that have to
* be checked for.
* (1) The performance counter may have jumped.
* (2) The system clock may have been reset.
*
* In either case, we'll need to reinitialize the circular buffer
* with samples relative to the current system time and the NOMINAL
* performance frequency (not the actual, because the actual has
* probably run slow in the first case). Our estimated frequency
* will be the nominal frequency.
*/
/*
* Store the current sample into the circular buffer of samples,
* and estimate the performance counter frequency.
*/
estFreq = AccumulateSample( curPerfCounter.QuadPart,
(Tcl_WideUInt) curFileTime.QuadPart );
/*
* We want to adjust things so that time appears to be continuous.
* Virtual file time, right now, is
*
* vt0 = 10000000 * ( curPerfCounter - perfCounterLastCall )
* / curCounterFreq
* + fileTimeLastCall
*
* Ideally, we would like to drift the clock into place over a
* period of 2 sec, so that virtual time 2 sec from now will be
*
* vt1 = 20000000 + curFileTime
*
* The frequency that we need to use to drift the counter back into
* place is estFreq * 20000000 / ( vt1 - vt0 )
*/
vt0 = 10000000 * ( curPerfCounter.QuadPart
- timeInfo.perfCounterLastCall.QuadPart )
/ timeInfo.curCounterFreq.QuadPart
+ timeInfo.fileTimeLastCall.QuadPart;
vt1 = 20000000 + curFileTime.QuadPart;
/*
* If we've gotten more than a second away from system time,
* then drifting the clock is going to be pretty hopeless.
* Just let it jump. Otherwise, compute the drift frequency and
* fill in everything.
*/
tdiff = vt0 - curFileTime.QuadPart;
if ( tdiff > 10000000 || tdiff < -10000000 ) {
timeInfo.fileTimeLastCall.QuadPart = curFileTime.QuadPart;
timeInfo.curCounterFreq.QuadPart = estFreq;
} else {
driftFreq = estFreq * 20000000 / ( vt1 - vt0 );
if ( driftFreq > 1003 * estFreq / 1000 ) {
driftFreq = 1003 * estFreq / 1000;
}
if ( driftFreq < 997 * estFreq / 1000 ) {
driftFreq = 997 * estFreq / 1000;
}
timeInfo.fileTimeLastCall.QuadPart = vt0;
timeInfo.curCounterFreq.QuadPart = driftFreq;
}
timeInfo.perfCounterLastCall.QuadPart = curPerfCounter.QuadPart;
LeaveCriticalSection( &timeInfo.cs );
}
/*
*----------------------------------------------------------------------
*
* ResetCounterSamples --
*
* Fills the sample arrays in 'timeInfo' with dummy values that will
* yield the current performance counter and frequency.
*
* Results:
* None.
*
* Side effects:
* The array of samples is filled in so that it appears that there
* are SAMPLES samples at one-second intervals, separated by precisely
* the given frequency.
*
*----------------------------------------------------------------------
*/
static void
ResetCounterSamples( Tcl_WideUInt fileTime,
/* Current file time */
Tcl_WideInt perfCounter,
/* Current performance counter */
Tcl_WideInt perfFreq )
/* Target performance frequency */
{
int i;
for ( i = SAMPLES-1; i >= 0; --i ) {
timeInfo.perfCounterSample[i] = perfCounter;
timeInfo.fileTimeSample[i] = fileTime;
perfCounter -= perfFreq;
fileTime -= 10000000;
}
timeInfo.sampleNo = 0;
}
/*
*----------------------------------------------------------------------
*
* AccumulateSample --
*
* Updates the circular buffer of performance counter and system
* time samples with a new data point.
*
* Results:
* None.
*
* Side effects:
* The new data point replaces the oldest point in the circular
* buffer, and the descriptive statistics are updated to accumulate
* the new point.
*
* Several things may have gone wrong here that have to
* be checked for.
* (1) The performance counter may have jumped.
* (2) The system clock may have been reset.
*
* In either case, we'll need to reinitialize the circular buffer
* with samples relative to the current system time and the NOMINAL
* performance frequency (not the actual, because the actual has
* probably run slow in the first case).
*/
static Tcl_WideInt
AccumulateSample( Tcl_WideInt perfCounter,
Tcl_WideUInt fileTime )
{
Tcl_WideUInt workFTSample; /* File time sample being removed
* from or added to the circular buffer */
Tcl_WideInt workPCSample; /* Performance counter sample being
* removed from or added to the circular
* buffer */
Tcl_WideUInt lastFTSample; /* Last file time sample recorded */
Tcl_WideInt lastPCSample; /* Last performance counter sample recorded */
Tcl_WideInt FTdiff; /* Difference between last FT and current */
Tcl_WideInt PCdiff; /* Difference between last PC and current */
Tcl_WideInt estFreq; /* Estimated performance counter frequency */
/* Test for jumps and reset the samples if we have one. */
if ( timeInfo.sampleNo == 0 ) {
lastPCSample = timeInfo.perfCounterSample[ timeInfo.sampleNo
+ SAMPLES - 1 ];
lastFTSample = timeInfo.fileTimeSample[ timeInfo.sampleNo
+ SAMPLES - 1 ];
} else {
lastPCSample = timeInfo.perfCounterSample[ timeInfo.sampleNo - 1 ];
lastFTSample = timeInfo.fileTimeSample[ timeInfo.sampleNo - 1 ];
}
PCdiff = perfCounter - lastPCSample;
FTdiff = fileTime - lastFTSample;
if ( PCdiff < timeInfo.nominalFreq.QuadPart * 9 / 10
|| PCdiff > timeInfo.nominalFreq.QuadPart * 11 / 10
|| FTdiff < 9000000
|| FTdiff > 11000000 ) {
ResetCounterSamples( fileTime, perfCounter,
timeInfo.nominalFreq.QuadPart );
return timeInfo.nominalFreq.QuadPart;
} else {
/* Estimate the frequency */
workPCSample = timeInfo.perfCounterSample[ timeInfo.sampleNo ];
workFTSample = timeInfo.fileTimeSample[ timeInfo.sampleNo ];
estFreq = 10000000 * ( perfCounter - workPCSample )
/ ( fileTime - workFTSample );
timeInfo.perfCounterSample[ timeInfo.sampleNo ] = perfCounter;
timeInfo.fileTimeSample[ timeInfo.sampleNo ] = (Tcl_WideInt) fileTime;
/* Advance the sample number */
if ( ++timeInfo.sampleNo >= SAMPLES ) {
timeInfo.sampleNo = 0;
}
return estFreq;
}
}
#endif
|