1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093
|
/* regcomp.c
*/
/*
* 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
*
* [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
*/
/* This file contains functions for compiling a regular expression. See
* also regexec.c which funnily enough, contains functions for executing
* a regular expression.
*
* This file is also copied at build time to ext/re/re_comp.c, where
* it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
* This causes the main functions to be compiled under new names and with
* debugging support added, which makes "use re 'debug'" work.
*/
/* NOTE: this is derived from Henry Spencer's regexp code, and should not
* confused with the original package (see point 3 below). Thanks, Henry!
*/
/* Additional note: this code is very heavily munged from Henry's version
* in places. In some spots I've traded clarity for efficiency, so don't
* blame Henry for some of the lack of readability.
*/
/* The names of the functions have been changed from regcomp and
* regexec to pregcomp and pregexec in order to avoid conflicts
* with the POSIX routines of the same names.
*/
#ifdef PERL_EXT_RE_BUILD
#include "re_top.h"
#endif
/*
* pregcomp and pregexec -- regsub and regerror are not used in perl
*
* Copyright (c) 1986 by University of Toronto.
* Written by Henry Spencer. Not derived from licensed software.
*
* Permission is granted to anyone to use this software for any
* purpose on any computer system, and to redistribute it freely,
* subject to the following restrictions:
*
* 1. The author is not responsible for the consequences of use of
* this software, no matter how awful, even if they arise
* from defects in it.
*
* 2. The origin of this software must not be misrepresented, either
* by explicit claim or by omission.
*
* 3. Altered versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
*
*
**** Alterations to Henry's code are...
****
**** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
**** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
**** by Larry Wall and others
****
**** You may distribute under the terms of either the GNU General Public
**** License or the Artistic License, as specified in the README file.
*
* Beware that some of this code is subtly aware of the way operator
* precedence is structured in regular expressions. Serious changes in
* regular-expression syntax might require a total rethink.
*/
#include "EXTERN.h"
#define PERL_IN_REGCOMP_C
#include "perl.h"
#ifndef PERL_IN_XSUB_RE
# include "INTERN.h"
#endif
#define REG_COMP_C
#ifdef PERL_IN_XSUB_RE
# include "re_comp.h"
#else
# include "regcomp.h"
#endif
#include "dquote_static.c"
#ifdef op
#undef op
#endif /* op */
#ifdef MSDOS
# if defined(BUGGY_MSC6)
/* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
# pragma optimize("a",off)
/* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
# pragma optimize("w",on )
# endif /* BUGGY_MSC6 */
#endif /* MSDOS */
#ifndef STATIC
#define STATIC static
#endif
typedef struct RExC_state_t {
U32 flags; /* are we folding, multilining? */
char *precomp; /* uncompiled string. */
REGEXP *rx_sv; /* The SV that is the regexp. */
regexp *rx; /* perl core regexp structure */
regexp_internal *rxi; /* internal data for regexp object pprivate field */
char *start; /* Start of input for compile */
char *end; /* End of input for compile */
char *parse; /* Input-scan pointer. */
I32 whilem_seen; /* number of WHILEM in this expr */
regnode *emit_start; /* Start of emitted-code area */
regnode *emit_bound; /* First regnode outside of the allocated space */
regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
I32 naughty; /* How bad is this pattern? */
I32 sawback; /* Did we see \1, ...? */
U32 seen;
I32 size; /* Code size. */
I32 npar; /* Capture buffer count, (OPEN). */
I32 cpar; /* Capture buffer count, (CLOSE). */
I32 nestroot; /* root parens we are in - used by accept */
I32 extralen;
I32 seen_zerolen;
I32 seen_evals;
regnode **open_parens; /* pointers to open parens */
regnode **close_parens; /* pointers to close parens */
regnode *opend; /* END node in program */
I32 utf8; /* whether the pattern is utf8 or not */
I32 orig_utf8; /* whether the pattern was originally in utf8 */
/* XXX use this for future optimisation of case
* where pattern must be upgraded to utf8. */
I32 uni_semantics; /* If a d charset modifier should use unicode
rules, even if the pattern is not in
utf8 */
HV *paren_names; /* Paren names */
regnode **recurse; /* Recurse regops */
I32 recurse_count; /* Number of recurse regops */
I32 in_lookbehind;
I32 contains_locale;
I32 override_recoding;
#if ADD_TO_REGEXEC
char *starttry; /* -Dr: where regtry was called. */
#define RExC_starttry (pRExC_state->starttry)
#endif
#ifdef DEBUGGING
const char *lastparse;
I32 lastnum;
AV *paren_name_list; /* idx -> name */
#define RExC_lastparse (pRExC_state->lastparse)
#define RExC_lastnum (pRExC_state->lastnum)
#define RExC_paren_name_list (pRExC_state->paren_name_list)
#endif
} RExC_state_t;
#define RExC_flags (pRExC_state->flags)
#define RExC_precomp (pRExC_state->precomp)
#define RExC_rx_sv (pRExC_state->rx_sv)
#define RExC_rx (pRExC_state->rx)
#define RExC_rxi (pRExC_state->rxi)
#define RExC_start (pRExC_state->start)
#define RExC_end (pRExC_state->end)
#define RExC_parse (pRExC_state->parse)
#define RExC_whilem_seen (pRExC_state->whilem_seen)
#ifdef RE_TRACK_PATTERN_OFFSETS
#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
#endif
#define RExC_emit (pRExC_state->emit)
#define RExC_emit_start (pRExC_state->emit_start)
#define RExC_emit_bound (pRExC_state->emit_bound)
#define RExC_naughty (pRExC_state->naughty)
#define RExC_sawback (pRExC_state->sawback)
#define RExC_seen (pRExC_state->seen)
#define RExC_size (pRExC_state->size)
#define RExC_npar (pRExC_state->npar)
#define RExC_nestroot (pRExC_state->nestroot)
#define RExC_extralen (pRExC_state->extralen)
#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
#define RExC_seen_evals (pRExC_state->seen_evals)
#define RExC_utf8 (pRExC_state->utf8)
#define RExC_uni_semantics (pRExC_state->uni_semantics)
#define RExC_orig_utf8 (pRExC_state->orig_utf8)
#define RExC_open_parens (pRExC_state->open_parens)
#define RExC_close_parens (pRExC_state->close_parens)
#define RExC_opend (pRExC_state->opend)
#define RExC_paren_names (pRExC_state->paren_names)
#define RExC_recurse (pRExC_state->recurse)
#define RExC_recurse_count (pRExC_state->recurse_count)
#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
#define RExC_contains_locale (pRExC_state->contains_locale)
#define RExC_override_recoding (pRExC_state->override_recoding)
#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
((*s) == '{' && regcurly(s)))
#ifdef SPSTART
#undef SPSTART /* dratted cpp namespace... */
#endif
/*
* Flags to be passed up and down.
*/
#define WORST 0 /* Worst case. */
#define HASWIDTH 0x01 /* Known to match non-null strings. */
/* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
* character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
#define SIMPLE 0x02
#define SPSTART 0x04 /* Starts with * or +. */
#define TRYAGAIN 0x08 /* Weeded out a declaration. */
#define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
/* whether trie related optimizations are enabled */
#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
#define TRIE_STUDY_OPT
#define FULL_TRIE_STUDY
#define TRIE_STCLASS
#endif
#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
#define PBITVAL(paren) (1 << ((paren) & 7))
#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
/* If not already in utf8, do a longjmp back to the beginning */
#define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
#define REQUIRE_UTF8 STMT_START { \
if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
} STMT_END
/* About scan_data_t.
During optimisation we recurse through the regexp program performing
various inplace (keyhole style) optimisations. In addition study_chunk
and scan_commit populate this data structure with information about
what strings MUST appear in the pattern. We look for the longest
string that must appear at a fixed location, and we look for the
longest string that may appear at a floating location. So for instance
in the pattern:
/FOO[xX]A.*B[xX]BAR/
Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
strings (because they follow a .* construct). study_chunk will identify
both FOO and BAR as being the longest fixed and floating strings respectively.
The strings can be composites, for instance
/(f)(o)(o)/
will result in a composite fixed substring 'foo'.
For each string some basic information is maintained:
- offset or min_offset
This is the position the string must appear at, or not before.
It also implicitly (when combined with minlenp) tells us how many
characters must match before the string we are searching for.
Likewise when combined with minlenp and the length of the string it
tells us how many characters must appear after the string we have
found.
- max_offset
Only used for floating strings. This is the rightmost point that
the string can appear at. If set to I32 max it indicates that the
string can occur infinitely far to the right.
- minlenp
A pointer to the minimum length of the pattern that the string
was found inside. This is important as in the case of positive
lookahead or positive lookbehind we can have multiple patterns
involved. Consider
/(?=FOO).*F/
The minimum length of the pattern overall is 3, the minimum length
of the lookahead part is 3, but the minimum length of the part that
will actually match is 1. So 'FOO's minimum length is 3, but the
minimum length for the F is 1. This is important as the minimum length
is used to determine offsets in front of and behind the string being
looked for. Since strings can be composites this is the length of the
pattern at the time it was committed with a scan_commit. Note that
the length is calculated by study_chunk, so that the minimum lengths
are not known until the full pattern has been compiled, thus the
pointer to the value.
- lookbehind
In the case of lookbehind the string being searched for can be
offset past the start point of the final matching string.
If this value was just blithely removed from the min_offset it would
invalidate some of the calculations for how many chars must match
before or after (as they are derived from min_offset and minlen and
the length of the string being searched for).
When the final pattern is compiled and the data is moved from the
scan_data_t structure into the regexp structure the information
about lookbehind is factored in, with the information that would
have been lost precalculated in the end_shift field for the
associated string.
The fields pos_min and pos_delta are used to store the minimum offset
and the delta to the maximum offset at the current point in the pattern.
*/
typedef struct scan_data_t {
/*I32 len_min; unused */
/*I32 len_delta; unused */
I32 pos_min;
I32 pos_delta;
SV *last_found;
I32 last_end; /* min value, <0 unless valid. */
I32 last_start_min;
I32 last_start_max;
SV **longest; /* Either &l_fixed, or &l_float. */
SV *longest_fixed; /* longest fixed string found in pattern */
I32 offset_fixed; /* offset where it starts */
I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
I32 lookbehind_fixed; /* is the position of the string modfied by LB */
SV *longest_float; /* longest floating string found in pattern */
I32 offset_float_min; /* earliest point in string it can appear */
I32 offset_float_max; /* latest point in string it can appear */
I32 *minlen_float; /* pointer to the minlen relevant to the string */
I32 lookbehind_float; /* is the position of the string modified by LB */
I32 flags;
I32 whilem_c;
I32 *last_closep;
struct regnode_charclass_class *start_class;
} scan_data_t;
/*
* Forward declarations for pregcomp()'s friends.
*/
static const scan_data_t zero_scan_data =
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
#define SF_BEFORE_SEOL 0x0001
#define SF_BEFORE_MEOL 0x0002
#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
#ifdef NO_UNARY_PLUS
# define SF_FIX_SHIFT_EOL (0+2)
# define SF_FL_SHIFT_EOL (0+4)
#else
# define SF_FIX_SHIFT_EOL (+2)
# define SF_FL_SHIFT_EOL (+4)
#endif
#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
#define SF_IS_INF 0x0040
#define SF_HAS_PAR 0x0080
#define SF_IN_PAR 0x0100
#define SF_HAS_EVAL 0x0200
#define SCF_DO_SUBSTR 0x0400
#define SCF_DO_STCLASS_AND 0x0800
#define SCF_DO_STCLASS_OR 0x1000
#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
#define SCF_WHILEM_VISITED_POS 0x2000
#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
#define SCF_SEEN_ACCEPT 0x8000
#define UTF cBOOL(RExC_utf8)
#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
#define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
#define OOB_UNICODE 12345678
#define OOB_NAMEDCLASS -1
#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
/* length of regex to show in messages that don't mark a position within */
#define RegexLengthToShowInErrorMessages 127
/*
* If MARKER[12] are adjusted, be sure to adjust the constants at the top
* of t/op/regmesg.t, the tests in t/op/re_tests, and those in
* op/pragma/warn/regcomp.
*/
#define MARKER1 "<-- HERE" /* marker as it appears in the description */
#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
#define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
/*
* Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
* arg. Show regex, up to a maximum length. If it's too long, chop and add
* "...".
*/
#define _FAIL(code) STMT_START { \
const char *ellipses = ""; \
IV len = RExC_end - RExC_precomp; \
\
if (!SIZE_ONLY) \
SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
if (len > RegexLengthToShowInErrorMessages) { \
/* chop 10 shorter than the max, to ensure meaning of "..." */ \
len = RegexLengthToShowInErrorMessages - 10; \
ellipses = "..."; \
} \
code; \
} STMT_END
#define FAIL(msg) _FAIL( \
Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
msg, (int)len, RExC_precomp, ellipses))
#define FAIL2(msg,arg) _FAIL( \
Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
arg, (int)len, RExC_precomp, ellipses))
/*
* Simple_vFAIL -- like FAIL, but marks the current location in the scan
*/
#define Simple_vFAIL(m) STMT_START { \
const IV offset = RExC_parse - RExC_precomp; \
Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
m, (int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
/*
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
*/
#define vFAIL(m) STMT_START { \
if (!SIZE_ONLY) \
SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
Simple_vFAIL(m); \
} STMT_END
/*
* Like Simple_vFAIL(), but accepts two arguments.
*/
#define Simple_vFAIL2(m,a1) STMT_START { \
const IV offset = RExC_parse - RExC_precomp; \
S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
(int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
/*
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
*/
#define vFAIL2(m,a1) STMT_START { \
if (!SIZE_ONLY) \
SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
Simple_vFAIL2(m, a1); \
} STMT_END
/*
* Like Simple_vFAIL(), but accepts three arguments.
*/
#define Simple_vFAIL3(m, a1, a2) STMT_START { \
const IV offset = RExC_parse - RExC_precomp; \
S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
(int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
/*
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
*/
#define vFAIL3(m,a1,a2) STMT_START { \
if (!SIZE_ONLY) \
SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
Simple_vFAIL3(m, a1, a2); \
} STMT_END
/*
* Like Simple_vFAIL(), but accepts four arguments.
*/
#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
const IV offset = RExC_parse - RExC_precomp; \
S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
(int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
#define ckWARNreg(loc,m) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
(int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
#define ckWARNregdep(loc,m) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
m REPORT_LOCATION, \
(int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
#define ckWARN2regdep(loc,m, a1) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
m REPORT_LOCATION, \
a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
#define ckWARN2reg(loc, m, a1) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
#define vWARN3(loc, m, a1, a2) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
} STMT_END
/* Allow for side effects in s */
#define REGC(c,s) STMT_START { \
if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
} STMT_END
/* Macros for recording node offsets. 20001227 mjd@plover.com
* Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
* element 2*n-1 of the array. Element #2n holds the byte length node #n.
* Element 0 holds the number n.
* Position is 1 indexed.
*/
#ifndef RE_TRACK_PATTERN_OFFSETS
#define Set_Node_Offset_To_R(node,byte)
#define Set_Node_Offset(node,byte)
#define Set_Cur_Node_Offset
#define Set_Node_Length_To_R(node,len)
#define Set_Node_Length(node,len)
#define Set_Node_Cur_Length(node)
#define Node_Offset(n)
#define Node_Length(n)
#define Set_Node_Offset_Length(node,offset,len)
#define ProgLen(ri) ri->u.proglen
#define SetProgLen(ri,x) ri->u.proglen = x
#else
#define ProgLen(ri) ri->u.offsets[0]
#define SetProgLen(ri,x) ri->u.offsets[0] = x
#define Set_Node_Offset_To_R(node,byte) STMT_START { \
if (! SIZE_ONLY) { \
MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
__LINE__, (int)(node), (int)(byte))); \
if((node) < 0) { \
Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
} else { \
RExC_offsets[2*(node)-1] = (byte); \
} \
} \
} STMT_END
#define Set_Node_Offset(node,byte) \
Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
#define Set_Node_Length_To_R(node,len) STMT_START { \
if (! SIZE_ONLY) { \
MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
__LINE__, (int)(node), (int)(len))); \
if((node) < 0) { \
Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
} else { \
RExC_offsets[2*(node)] = (len); \
} \
} \
} STMT_END
#define Set_Node_Length(node,len) \
Set_Node_Length_To_R((node)-RExC_emit_start, len)
#define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
#define Set_Node_Cur_Length(node) \
Set_Node_Length(node, RExC_parse - parse_start)
/* Get offsets and lengths */
#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
} STMT_END
#endif
#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
#define EXPERIMENTAL_INPLACESCAN
#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
#define DEBUG_STUDYDATA(str,data,depth) \
DEBUG_OPTIMISE_MORE_r(if(data){ \
PerlIO_printf(Perl_debug_log, \
"%*s" str "Pos:%"IVdf"/%"IVdf \
" Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
(int)(depth)*2, "", \
(IV)((data)->pos_min), \
(IV)((data)->pos_delta), \
(UV)((data)->flags), \
(IV)((data)->whilem_c), \
(IV)((data)->last_closep ? *((data)->last_closep) : -1), \
is_inf ? "INF " : "" \
); \
if ((data)->last_found) \
PerlIO_printf(Perl_debug_log, \
"Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
" %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
SvPVX_const((data)->last_found), \
(IV)((data)->last_end), \
(IV)((data)->last_start_min), \
(IV)((data)->last_start_max), \
((data)->longest && \
(data)->longest==&((data)->longest_fixed)) ? "*" : "", \
SvPVX_const((data)->longest_fixed), \
(IV)((data)->offset_fixed), \
((data)->longest && \
(data)->longest==&((data)->longest_float)) ? "*" : "", \
SvPVX_const((data)->longest_float), \
(IV)((data)->offset_float_min), \
(IV)((data)->offset_float_max) \
); \
PerlIO_printf(Perl_debug_log,"\n"); \
});
static void clear_re(pTHX_ void *r);
/* Mark that we cannot extend a found fixed substring at this point.
Update the longest found anchored substring and the longest found
floating substrings if needed. */
STATIC void
S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
{
const STRLEN l = CHR_SVLEN(data->last_found);
const STRLEN old_l = CHR_SVLEN(*data->longest);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_SCAN_COMMIT;
if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
SvSetMagicSV(*data->longest, data->last_found);
if (*data->longest == data->longest_fixed) {
data->offset_fixed = l ? data->last_start_min : data->pos_min;
if (data->flags & SF_BEFORE_EOL)
data->flags
|= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
else
data->flags &= ~SF_FIX_BEFORE_EOL;
data->minlen_fixed=minlenp;
data->lookbehind_fixed=0;
}
else { /* *data->longest == data->longest_float */
data->offset_float_min = l ? data->last_start_min : data->pos_min;
data->offset_float_max = (l
? data->last_start_max
: data->pos_min + data->pos_delta);
if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
data->offset_float_max = I32_MAX;
if (data->flags & SF_BEFORE_EOL)
data->flags
|= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
else
data->flags &= ~SF_FL_BEFORE_EOL;
data->minlen_float=minlenp;
data->lookbehind_float=0;
}
}
SvCUR_set(data->last_found, 0);
{
SV * const sv = data->last_found;
if (SvUTF8(sv) && SvMAGICAL(sv)) {
MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
if (mg)
mg->mg_len = 0;
}
}
data->last_end = -1;
data->flags &= ~SF_BEFORE_EOL;
DEBUG_STUDYDATA("commit: ",data,0);
}
/* Can match anything (initialization) */
STATIC void
S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
{
PERL_ARGS_ASSERT_CL_ANYTHING;
ANYOF_BITMAP_SETALL(cl);
cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
|ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
/* If any portion of the regex is to operate under locale rules,
* initialization includes it. The reason this isn't done for all regexes
* is that the optimizer was written under the assumption that locale was
* all-or-nothing. Given the complexity and lack of documentation in the
* optimizer, and that there are inadequate test cases for locale, so many
* parts of it may not work properly, it is safest to avoid locale unless
* necessary. */
if (RExC_contains_locale) {
ANYOF_CLASS_SETALL(cl); /* /l uses class */
cl->flags |= ANYOF_LOCALE;
}
else {
ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
}
}
/* Can match anything (initialization) */
STATIC int
S_cl_is_anything(const struct regnode_charclass_class *cl)
{
int value;
PERL_ARGS_ASSERT_CL_IS_ANYTHING;
for (value = 0; value <= ANYOF_MAX; value += 2)
if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
return 1;
if (!(cl->flags & ANYOF_UNICODE_ALL))
return 0;
if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
return 0;
return 1;
}
/* Can match anything (initialization) */
STATIC void
S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
{
PERL_ARGS_ASSERT_CL_INIT;
Zero(cl, 1, struct regnode_charclass_class);
cl->type = ANYOF;
cl_anything(pRExC_state, cl);
ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
}
/* These two functions currently do the exact same thing */
#define cl_init_zero S_cl_init
/* 'AND' a given class with another one. Can create false positives. 'cl'
* should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
* 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
STATIC void
S_cl_and(struct regnode_charclass_class *cl,
const struct regnode_charclass_class *and_with)
{
PERL_ARGS_ASSERT_CL_AND;
assert(and_with->type == ANYOF);
/* I (khw) am not sure all these restrictions are necessary XXX */
if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
&& !(ANYOF_CLASS_TEST_ANY_SET(cl))
&& (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
&& !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
&& !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
int i;
if (and_with->flags & ANYOF_INVERT)
for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
cl->bitmap[i] &= ~and_with->bitmap[i];
else
for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
cl->bitmap[i] &= and_with->bitmap[i];
} /* XXXX: logic is complicated otherwise, leave it along for a moment. */
if (and_with->flags & ANYOF_INVERT) {
/* Here, the and'ed node is inverted. Get the AND of the flags that
* aren't affected by the inversion. Those that are affected are
* handled individually below */
U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
cl->flags |= affected_flags;
/* We currently don't know how to deal with things that aren't in the
* bitmap, but we know that the intersection is no greater than what
* is already in cl, so let there be false positives that get sorted
* out after the synthetic start class succeeds, and the node is
* matched for real. */
/* The inversion of these two flags indicate that the resulting
* intersection doesn't have them */
if (and_with->flags & ANYOF_UNICODE_ALL) {
cl->flags &= ~ANYOF_UNICODE_ALL;
}
if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
}
}
else { /* and'd node is not inverted */
U8 outside_bitmap_but_not_utf8; /* Temp variable */
if (! ANYOF_NONBITMAP(and_with)) {
/* Here 'and_with' doesn't match anything outside the bitmap
* (except possibly ANYOF_UNICODE_ALL), which means the
* intersection can't either, except for ANYOF_UNICODE_ALL, in
* which case we don't know what the intersection is, but it's no
* greater than what cl already has, so can just leave it alone,
* with possible false positives */
if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
}
}
else if (! ANYOF_NONBITMAP(cl)) {
/* Here, 'and_with' does match something outside the bitmap, and cl
* doesn't have a list of things to match outside the bitmap. If
* cl can match all code points above 255, the intersection will
* be those above-255 code points that 'and_with' matches. If cl
* can't match all Unicode code points, it means that it can't
* match anything outside the bitmap (since the 'if' that got us
* into this block tested for that), so we leave the bitmap empty.
*/
if (cl->flags & ANYOF_UNICODE_ALL) {
ARG_SET(cl, ARG(and_with));
/* and_with's ARG may match things that don't require UTF8.
* And now cl's will too, in spite of this being an 'and'. See
* the comments below about the kludge */
cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
}
}
else {
/* Here, both 'and_with' and cl match something outside the
* bitmap. Currently we do not do the intersection, so just match
* whatever cl had at the beginning. */
}
/* Take the intersection of the two sets of flags. However, the
* ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
* kludge around the fact that this flag is not treated like the others
* which are initialized in cl_anything(). The way the optimizer works
* is that the synthetic start class (SSC) is initialized to match
* anything, and then the first time a real node is encountered, its
* values are AND'd with the SSC's with the result being the values of
* the real node. However, there are paths through the optimizer where
* the AND never gets called, so those initialized bits are set
* inappropriately, which is not usually a big deal, as they just cause
* false positives in the SSC, which will just mean a probably
* imperceptible slow down in execution. However this bit has a
* higher false positive consequence in that it can cause utf8.pm,
* utf8_heavy.pl ... to be loaded when not necessary, which is a much
* bigger slowdown and also causes significant extra memory to be used.
* In order to prevent this, the code now takes a different tack. The
* bit isn't set unless some part of the regular expression needs it,
* but once set it won't get cleared. This means that these extra
* modules won't get loaded unless there was some path through the
* pattern that would have required them anyway, and so any false
* positives that occur by not ANDing them out when they could be
* aren't as severe as they would be if we treated this bit like all
* the others */
outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
& ANYOF_NONBITMAP_NON_UTF8;
cl->flags &= and_with->flags;
cl->flags |= outside_bitmap_but_not_utf8;
}
}
/* 'OR' a given class with another one. Can create false positives. 'cl'
* should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
* 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
STATIC void
S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
{
PERL_ARGS_ASSERT_CL_OR;
if (or_with->flags & ANYOF_INVERT) {
/* Here, the or'd node is to be inverted. This means we take the
* complement of everything not in the bitmap, but currently we don't
* know what that is, so give up and match anything */
if (ANYOF_NONBITMAP(or_with)) {
cl_anything(pRExC_state, cl);
}
/* We do not use
* (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
* <= (B1 | !B2) | (CL1 | !CL2)
* which is wasteful if CL2 is small, but we ignore CL2:
* (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
* XXXX Can we handle case-fold? Unclear:
* (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
* (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
*/
else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
&& !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
&& !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
int i;
for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
cl->bitmap[i] |= ~or_with->bitmap[i];
} /* XXXX: logic is complicated otherwise */
else {
cl_anything(pRExC_state, cl);
}
/* And, we can just take the union of the flags that aren't affected
* by the inversion */
cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
/* For the remaining flags:
ANYOF_UNICODE_ALL and inverted means to not match anything above
255, which means that the union with cl should just be
what cl has in it, so can ignore this flag
ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
is 127-255 to match them, but then invert that, so the
union with cl should just be what cl has in it, so can
ignore this flag
*/
} else { /* 'or_with' is not inverted */
/* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
&& (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
|| (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
int i;
/* OR char bitmap and class bitmap separately */
for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
cl->bitmap[i] |= or_with->bitmap[i];
if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
cl->classflags[i] |= or_with->classflags[i];
cl->flags |= ANYOF_CLASS;
}
}
else { /* XXXX: logic is complicated, leave it along for a moment. */
cl_anything(pRExC_state, cl);
}
if (ANYOF_NONBITMAP(or_with)) {
/* Use the added node's outside-the-bit-map match if there isn't a
* conflict. If there is a conflict (both nodes match something
* outside the bitmap, but what they match outside is not the same
* pointer, and hence not easily compared until XXX we extend
* inversion lists this far), give up and allow the start class to
* match everything outside the bitmap. If that stuff is all above
* 255, can just set UNICODE_ALL, otherwise caould be anything. */
if (! ANYOF_NONBITMAP(cl)) {
ARG_SET(cl, ARG(or_with));
}
else if (ARG(cl) != ARG(or_with)) {
if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
cl_anything(pRExC_state, cl);
}
else {
cl->flags |= ANYOF_UNICODE_ALL;
}
}
}
/* Take the union */
cl->flags |= or_with->flags;
}
}
#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
#ifdef DEBUGGING
/*
dump_trie(trie,widecharmap,revcharmap)
dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
These routines dump out a trie in a somewhat readable format.
The _interim_ variants are used for debugging the interim
tables that are used to generate the final compressed
representation which is what dump_trie expects.
Part of the reason for their existence is to provide a form
of documentation as to how the different representations function.
*/
/*
Dumps the final compressed table form of the trie to Perl_debug_log.
Used for debugging make_trie().
*/
STATIC void
S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
AV *revcharmap, U32 depth)
{
U32 state;
SV *sv=sv_newmortal();
int colwidth= widecharmap ? 6 : 4;
U16 word;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_DUMP_TRIE;
PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
(int)depth * 2 + 2,"",
"Match","Base","Ofs" );
for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
SV ** const tmp = av_fetch( revcharmap, state, 0);
if ( tmp ) {
PerlIO_printf( Perl_debug_log, "%*s",
colwidth,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_ESCAPE_FIRSTCHAR
)
);
}
}
PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
(int)depth * 2 + 2,"");
for( state = 0 ; state < trie->uniquecharcount ; state++ )
PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
PerlIO_printf( Perl_debug_log, "\n");
for( state = 1 ; state < trie->statecount ; state++ ) {
const U32 base = trie->states[ state ].trans.base;
PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
if ( trie->states[ state ].wordnum ) {
PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
} else {
PerlIO_printf( Perl_debug_log, "%6s", "" );
}
PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
if ( base ) {
U32 ofs = 0;
while( ( base + ofs < trie->uniquecharcount ) ||
( base + ofs - trie->uniquecharcount < trie->lasttrans
&& trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
ofs++;
PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
if ( ( base + ofs >= trie->uniquecharcount ) &&
( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
{
PerlIO_printf( Perl_debug_log, "%*"UVXf,
colwidth,
(UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
} else {
PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
}
}
PerlIO_printf( Perl_debug_log, "]");
}
PerlIO_printf( Perl_debug_log, "\n" );
}
PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
for (word=1; word <= trie->wordcount; word++) {
PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
(int)word, (int)(trie->wordinfo[word].prev),
(int)(trie->wordinfo[word].len));
}
PerlIO_printf(Perl_debug_log, "\n" );
}
/*
Dumps a fully constructed but uncompressed trie in list form.
List tries normally only are used for construction when the number of
possible chars (trie->uniquecharcount) is very high.
Used for debugging make_trie().
*/
STATIC void
S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
HV *widecharmap, AV *revcharmap, U32 next_alloc,
U32 depth)
{
U32 state;
SV *sv=sv_newmortal();
int colwidth= widecharmap ? 6 : 4;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
/* print out the table precompression. */
PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
(int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
"------:-----+-----------------\n" );
for( state=1 ; state < next_alloc ; state ++ ) {
U16 charid;
PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
(int)depth * 2 + 2,"", (UV)state );
if ( ! trie->states[ state ].wordnum ) {
PerlIO_printf( Perl_debug_log, "%5s| ","");
} else {
PerlIO_printf( Perl_debug_log, "W%4x| ",
trie->states[ state ].wordnum
);
}
for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
if ( tmp ) {
PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
colwidth,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_ESCAPE_FIRSTCHAR
) ,
TRIE_LIST_ITEM(state,charid).forid,
(UV)TRIE_LIST_ITEM(state,charid).newstate
);
if (!(charid % 10))
PerlIO_printf(Perl_debug_log, "\n%*s| ",
(int)((depth * 2) + 14), "");
}
}
PerlIO_printf( Perl_debug_log, "\n");
}
}
/*
Dumps a fully constructed but uncompressed trie in table form.
This is the normal DFA style state transition table, with a few
twists to facilitate compression later.
Used for debugging make_trie().
*/
STATIC void
S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
HV *widecharmap, AV *revcharmap, U32 next_alloc,
U32 depth)
{
U32 state;
U16 charid;
SV *sv=sv_newmortal();
int colwidth= widecharmap ? 6 : 4;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
/*
print out the table precompression so that we can do a visual check
that they are identical.
*/
PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
SV ** const tmp = av_fetch( revcharmap, charid, 0);
if ( tmp ) {
PerlIO_printf( Perl_debug_log, "%*s",
colwidth,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_ESCAPE_FIRSTCHAR
)
);
}
}
PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
}
PerlIO_printf( Perl_debug_log, "\n" );
for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
(int)depth * 2 + 2,"",
(UV)TRIE_NODENUM( state ) );
for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
if (v)
PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
else
PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
}
if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
} else {
PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
trie->states[ TRIE_NODENUM( state ) ].wordnum );
}
}
}
#endif
/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
startbranch: the first branch in the whole branch sequence
first : start branch of sequence of branch-exact nodes.
May be the same as startbranch
last : Thing following the last branch.
May be the same as tail.
tail : item following the branch sequence
count : words in the sequence
flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
depth : indent depth
Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
A trie is an N'ary tree where the branches are determined by digital
decomposition of the key. IE, at the root node you look up the 1st character and
follow that branch repeat until you find the end of the branches. Nodes can be
marked as "accepting" meaning they represent a complete word. Eg:
/he|she|his|hers/
would convert into the following structure. Numbers represent states, letters
following numbers represent valid transitions on the letter from that state, if
the number is in square brackets it represents an accepting state, otherwise it
will be in parenthesis.
+-h->+-e->[3]-+-r->(8)-+-s->[9]
| |
| (2)
| |
(1) +-i->(6)-+-s->[7]
|
+-s->(3)-+-h->(4)-+-e->[5]
Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
This shows that when matching against the string 'hers' we will begin at state 1
read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
is also accepting. Thus we know that we can match both 'he' and 'hers' with a
single traverse. We store a mapping from accepting to state to which word was
matched, and then when we have multiple possibilities we try to complete the
rest of the regex in the order in which they occured in the alternation.
The only prior NFA like behaviour that would be changed by the TRIE support is
the silent ignoring of duplicate alternations which are of the form:
/ (DUPE|DUPE) X? (?{ ... }) Y /x
Thus EVAL blocks following a trie may be called a different number of times with
and without the optimisation. With the optimisations dupes will be silently
ignored. This inconsistent behaviour of EVAL type nodes is well established as
the following demonstrates:
'words'=~/(word|word|word)(?{ print $1 })[xyz]/
which prints out 'word' three times, but
'words'=~/(word|word|word)(?{ print $1 })S/
which doesnt print it out at all. This is due to other optimisations kicking in.
Example of what happens on a structural level:
The regexp /(ac|ad|ab)+/ will produce the following debug output:
1: CURLYM[1] {1,32767}(18)
5: BRANCH(8)
6: EXACT <ac>(16)
8: BRANCH(11)
9: EXACT <ad>(16)
11: BRANCH(14)
12: EXACT <ab>(16)
16: SUCCEED(0)
17: NOTHING(18)
18: END(0)
This would be optimizable with startbranch=5, first=5, last=16, tail=16
and should turn into:
1: CURLYM[1] {1,32767}(18)
5: TRIE(16)
[Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
<ac>
<ad>
<ab>
16: SUCCEED(0)
17: NOTHING(18)
18: END(0)
Cases where tail != last would be like /(?foo|bar)baz/:
1: BRANCH(4)
2: EXACT <foo>(8)
4: BRANCH(7)
5: EXACT <bar>(8)
7: TAIL(8)
8: EXACT <baz>(10)
10: END(0)
which would be optimizable with startbranch=1, first=1, last=7, tail=8
and would end up looking like:
1: TRIE(8)
[Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
<foo>
<bar>
7: TAIL(8)
8: EXACT <baz>(10)
10: END(0)
d = uvuni_to_utf8_flags(d, uv, 0);
is the recommended Unicode-aware way of saying
*(d++) = uv;
*/
#define TRIE_STORE_REVCHAR \
STMT_START { \
if (UTF) { \
SV *zlopp = newSV(2); \
unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, uvc & 0xFF); \
SvCUR_set(zlopp, kapow - flrbbbbb); \
SvPOK_on(zlopp); \
SvUTF8_on(zlopp); \
av_push(revcharmap, zlopp); \
} else { \
char ooooff = (char)uvc; \
av_push(revcharmap, newSVpvn(&ooooff, 1)); \
} \
} STMT_END
#define TRIE_READ_CHAR STMT_START { \
wordlen++; \
if ( UTF ) { \
if ( folder ) { \
if ( foldlen > 0 ) { \
uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
foldlen -= len; \
scan += len; \
len = 0; \
} else { \
uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
uvc = to_uni_fold( uvc, foldbuf, &foldlen ); \
foldlen -= UNISKIP( uvc ); \
scan = foldbuf + UNISKIP( uvc ); \
} \
} else { \
uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
} \
} else { \
uvc = (U32)*uc; \
len = 1; \
} \
} STMT_END
#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
U32 ging = TRIE_LIST_LEN( state ) *= 2; \
Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
} \
TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
TRIE_LIST_CUR( state )++; \
} STMT_END
#define TRIE_LIST_NEW(state) STMT_START { \
Newxz( trie->states[ state ].trans.list, \
4, reg_trie_trans_le ); \
TRIE_LIST_CUR( state ) = 1; \
TRIE_LIST_LEN( state ) = 4; \
} STMT_END
#define TRIE_HANDLE_WORD(state) STMT_START { \
U16 dupe= trie->states[ state ].wordnum; \
regnode * const noper_next = regnext( noper ); \
\
DEBUG_r({ \
/* store the word for dumping */ \
SV* tmp; \
if (OP(noper) != NOTHING) \
tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
else \
tmp = newSVpvn_utf8( "", 0, UTF ); \
av_push( trie_words, tmp ); \
}); \
\
curword++; \
trie->wordinfo[curword].prev = 0; \
trie->wordinfo[curword].len = wordlen; \
trie->wordinfo[curword].accept = state; \
\
if ( noper_next < tail ) { \
if (!trie->jump) \
trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
trie->jump[curword] = (U16)(noper_next - convert); \
if (!jumper) \
jumper = noper_next; \
if (!nextbranch) \
nextbranch= regnext(cur); \
} \
\
if ( dupe ) { \
/* It's a dupe. Pre-insert into the wordinfo[].prev */\
/* chain, so that when the bits of chain are later */\
/* linked together, the dups appear in the chain */\
trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
trie->wordinfo[dupe].prev = curword; \
} else { \
/* we haven't inserted this word yet. */ \
trie->states[ state ].wordnum = curword; \
} \
} STMT_END
#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
( ( base + charid >= ucharcount \
&& base + charid < ubound \
&& state == trie->trans[ base - ucharcount + charid ].check \
&& trie->trans[ base - ucharcount + charid ].next ) \
? trie->trans[ base - ucharcount + charid ].next \
: ( state==1 ? special : 0 ) \
)
#define MADE_TRIE 1
#define MADE_JUMP_TRIE 2
#define MADE_EXACT_TRIE 4
STATIC I32
S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
{
dVAR;
/* first pass, loop through and scan words */
reg_trie_data *trie;
HV *widecharmap = NULL;
AV *revcharmap = newAV();
regnode *cur;
const U32 uniflags = UTF8_ALLOW_DEFAULT;
STRLEN len = 0;
UV uvc = 0;
U16 curword = 0;
U32 next_alloc = 0;
regnode *jumper = NULL;
regnode *nextbranch = NULL;
regnode *convert = NULL;
U32 *prev_states; /* temp array mapping each state to previous one */
/* we just use folder as a flag in utf8 */
const U8 * folder = NULL;
#ifdef DEBUGGING
const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
AV *trie_words = NULL;
/* along with revcharmap, this only used during construction but both are
* useful during debugging so we store them in the struct when debugging.
*/
#else
const U32 data_slot = add_data( pRExC_state, 2, "tu" );
STRLEN trie_charcount=0;
#endif
SV *re_trie_maxbuff;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_MAKE_TRIE;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
switch (flags) {
case EXACTFA:
case EXACTFU: folder = PL_fold_latin1; break;
case EXACTF: folder = PL_fold; break;
case EXACTFL: folder = PL_fold_locale; break;
}
trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
trie->refcount = 1;
trie->startstate = 1;
trie->wordcount = word_count;
RExC_rxi->data->data[ data_slot ] = (void*)trie;
trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
if (!(UTF && folder))
trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
trie->wordcount+1, sizeof(reg_trie_wordinfo));
DEBUG_r({
trie_words = newAV();
});
re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
if (!SvIOK(re_trie_maxbuff)) {
sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
}
DEBUG_OPTIMISE_r({
PerlIO_printf( Perl_debug_log,
"%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
(int)depth * 2 + 2, "",
REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
REG_NODE_NUM(last), REG_NODE_NUM(tail),
(int)depth);
});
/* Find the node we are going to overwrite */
if ( first == startbranch && OP( last ) != BRANCH ) {
/* whole branch chain */
convert = first;
} else {
/* branch sub-chain */
convert = NEXTOPER( first );
}
/* -- First loop and Setup --
We first traverse the branches and scan each word to determine if it
contains widechars, and how many unique chars there are, this is
important as we have to build a table with at least as many columns as we
have unique chars.
We use an array of integers to represent the character codes 0..255
(trie->charmap) and we use a an HV* to store Unicode characters. We use the
native representation of the character value as the key and IV's for the
coded index.
*TODO* If we keep track of how many times each character is used we can
remap the columns so that the table compression later on is more
efficient in terms of memory by ensuring the most common value is in the
middle and the least common are on the outside. IMO this would be better
than a most to least common mapping as theres a decent chance the most
common letter will share a node with the least common, meaning the node
will not be compressible. With a middle is most common approach the worst
case is when we have the least common nodes twice.
*/
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
regnode * const noper = NEXTOPER( cur );
const U8 *uc = (U8*)STRING( noper );
const U8 * const e = uc + STR_LEN( noper );
STRLEN foldlen = 0;
U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
const U8 *scan = (U8*)NULL;
U32 wordlen = 0; /* required init */
STRLEN chars = 0;
bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
if (OP(noper) == NOTHING) {
trie->minlen= 0;
continue;
}
if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
regardless of encoding */
for ( ; uc < e ; uc += len ) {
TRIE_CHARCOUNT(trie)++;
TRIE_READ_CHAR;
chars++;
if ( uvc < 256 ) {
if ( !trie->charmap[ uvc ] ) {
trie->charmap[ uvc ]=( ++trie->uniquecharcount );
if ( folder )
trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
TRIE_STORE_REVCHAR;
}
if ( set_bit ) {
/* store the codepoint in the bitmap, and its folded
* equivalent. */
TRIE_BITMAP_SET(trie,uvc);
/* store the folded codepoint */
if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
if ( !UTF ) {
/* store first byte of utf8 representation of
variant codepoints */
if (! UNI_IS_INVARIANT(uvc)) {
TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
}
}
set_bit = 0; /* We've done our bit :-) */
}
} else {
SV** svpp;
if ( !widecharmap )
widecharmap = newHV();
svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
if ( !svpp )
Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
if ( !SvTRUE( *svpp ) ) {
sv_setiv( *svpp, ++trie->uniquecharcount );
TRIE_STORE_REVCHAR;
}
}
}
if( cur == first ) {
trie->minlen=chars;
trie->maxlen=chars;
} else if (chars < trie->minlen) {
trie->minlen=chars;
} else if (chars > trie->maxlen) {
trie->maxlen=chars;
}
} /* end first pass */
DEBUG_TRIE_COMPILE_r(
PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
(int)depth * 2 + 2,"",
( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
(int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
(int)trie->minlen, (int)trie->maxlen )
);
/*
We now know what we are dealing with in terms of unique chars and
string sizes so we can calculate how much memory a naive
representation using a flat table will take. If it's over a reasonable
limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
conservative but potentially much slower representation using an array
of lists.
At the end we convert both representations into the same compressed
form that will be used in regexec.c for matching with. The latter
is a form that cannot be used to construct with but has memory
properties similar to the list form and access properties similar
to the table form making it both suitable for fast searches and
small enough that its feasable to store for the duration of a program.
See the comment in the code where the compressed table is produced
inplace from the flat tabe representation for an explanation of how
the compression works.
*/
Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
prev_states[1] = 0;
if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
/*
Second Pass -- Array Of Lists Representation
Each state will be represented by a list of charid:state records
(reg_trie_trans_le) the first such element holds the CUR and LEN
points of the allocated array. (See defines above).
We build the initial structure using the lists, and then convert
it into the compressed table form which allows faster lookups
(but cant be modified once converted).
*/
STRLEN transcount = 1;
DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
"%*sCompiling trie using list compiler\n",
(int)depth * 2 + 2, ""));
trie->states = (reg_trie_state *)
PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
sizeof(reg_trie_state) );
TRIE_LIST_NEW(1);
next_alloc = 2;
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
regnode * const noper = NEXTOPER( cur );
U8 *uc = (U8*)STRING( noper );
const U8 * const e = uc + STR_LEN( noper );
U32 state = 1; /* required init */
U16 charid = 0; /* sanity init */
U8 *scan = (U8*)NULL; /* sanity init */
STRLEN foldlen = 0; /* required init */
U32 wordlen = 0; /* required init */
U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
if (OP(noper) != NOTHING) {
for ( ; uc < e ; uc += len ) {
TRIE_READ_CHAR;
if ( uvc < 256 ) {
charid = trie->charmap[ uvc ];
} else {
SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
if ( !svpp ) {
charid = 0;
} else {
charid=(U16)SvIV( *svpp );
}
}
/* charid is now 0 if we dont know the char read, or nonzero if we do */
if ( charid ) {
U16 check;
U32 newstate = 0;
charid--;
if ( !trie->states[ state ].trans.list ) {
TRIE_LIST_NEW( state );
}
for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
newstate = TRIE_LIST_ITEM( state, check ).newstate;
break;
}
}
if ( ! newstate ) {
newstate = next_alloc++;
prev_states[newstate] = state;
TRIE_LIST_PUSH( state, charid, newstate );
transcount++;
}
state = newstate;
} else {
Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
}
}
}
TRIE_HANDLE_WORD(state);
} /* end second pass */
/* next alloc is the NEXT state to be allocated */
trie->statecount = next_alloc;
trie->states = (reg_trie_state *)
PerlMemShared_realloc( trie->states,
next_alloc
* sizeof(reg_trie_state) );
/* and now dump it out before we compress it */
DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
revcharmap, next_alloc,
depth+1)
);
trie->trans = (reg_trie_trans *)
PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
{
U32 state;
U32 tp = 0;
U32 zp = 0;
for( state=1 ; state < next_alloc ; state ++ ) {
U32 base=0;
/*
DEBUG_TRIE_COMPILE_MORE_r(
PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
);
*/
if (trie->states[state].trans.list) {
U16 minid=TRIE_LIST_ITEM( state, 1).forid;
U16 maxid=minid;
U16 idx;
for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
if ( forid < minid ) {
minid=forid;
} else if ( forid > maxid ) {
maxid=forid;
}
}
if ( transcount < tp + maxid - minid + 1) {
transcount *= 2;
trie->trans = (reg_trie_trans *)
PerlMemShared_realloc( trie->trans,
transcount
* sizeof(reg_trie_trans) );
Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
}
base = trie->uniquecharcount + tp - minid;
if ( maxid == minid ) {
U32 set = 0;
for ( ; zp < tp ; zp++ ) {
if ( ! trie->trans[ zp ].next ) {
base = trie->uniquecharcount + zp - minid;
trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
trie->trans[ zp ].check = state;
set = 1;
break;
}
}
if ( !set ) {
trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
trie->trans[ tp ].check = state;
tp++;
zp = tp;
}
} else {
for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
trie->trans[ tid ].check = state;
}
tp += ( maxid - minid + 1 );
}
Safefree(trie->states[ state ].trans.list);
}
/*
DEBUG_TRIE_COMPILE_MORE_r(
PerlIO_printf( Perl_debug_log, " base: %d\n",base);
);
*/
trie->states[ state ].trans.base=base;
}
trie->lasttrans = tp + 1;
}
} else {
/*
Second Pass -- Flat Table Representation.
we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
We know that we will need Charcount+1 trans at most to store the data
(one row per char at worst case) So we preallocate both structures
assuming worst case.
We then construct the trie using only the .next slots of the entry
structs.
We use the .check field of the first entry of the node temporarily to
make compression both faster and easier by keeping track of how many non
zero fields are in the node.
Since trans are numbered from 1 any 0 pointer in the table is a FAIL
transition.
There are two terms at use here: state as a TRIE_NODEIDX() which is a
number representing the first entry of the node, and state as a
TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
are 2 entrys per node. eg:
A B A B
1. 2 4 1. 3 7
2. 0 3 3. 0 5
3. 0 0 5. 0 0
4. 0 0 7. 0 0
The table is internally in the right hand, idx form. However as we also
have to deal with the states array which is indexed by nodenum we have to
use TRIE_NODENUM() to convert.
*/
DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
"%*sCompiling trie using table compiler\n",
(int)depth * 2 + 2, ""));
trie->trans = (reg_trie_trans *)
PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
* trie->uniquecharcount + 1,
sizeof(reg_trie_trans) );
trie->states = (reg_trie_state *)
PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
sizeof(reg_trie_state) );
next_alloc = trie->uniquecharcount + 1;
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
regnode * const noper = NEXTOPER( cur );
const U8 *uc = (U8*)STRING( noper );
const U8 * const e = uc + STR_LEN( noper );
U32 state = 1; /* required init */
U16 charid = 0; /* sanity init */
U32 accept_state = 0; /* sanity init */
U8 *scan = (U8*)NULL; /* sanity init */
STRLEN foldlen = 0; /* required init */
U32 wordlen = 0; /* required init */
U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
if ( OP(noper) != NOTHING ) {
for ( ; uc < e ; uc += len ) {
TRIE_READ_CHAR;
if ( uvc < 256 ) {
charid = trie->charmap[ uvc ];
} else {
SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
charid = svpp ? (U16)SvIV(*svpp) : 0;
}
if ( charid ) {
charid--;
if ( !trie->trans[ state + charid ].next ) {
trie->trans[ state + charid ].next = next_alloc;
trie->trans[ state ].check++;
prev_states[TRIE_NODENUM(next_alloc)]
= TRIE_NODENUM(state);
next_alloc += trie->uniquecharcount;
}
state = trie->trans[ state + charid ].next;
} else {
Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
}
/* charid is now 0 if we dont know the char read, or nonzero if we do */
}
}
accept_state = TRIE_NODENUM( state );
TRIE_HANDLE_WORD(accept_state);
} /* end second pass */
/* and now dump it out before we compress it */
DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
revcharmap,
next_alloc, depth+1));
{
/*
* Inplace compress the table.*
For sparse data sets the table constructed by the trie algorithm will
be mostly 0/FAIL transitions or to put it another way mostly empty.
(Note that leaf nodes will not contain any transitions.)
This algorithm compresses the tables by eliminating most such
transitions, at the cost of a modest bit of extra work during lookup:
- Each states[] entry contains a .base field which indicates the
index in the state[] array wheres its transition data is stored.
- If .base is 0 there are no valid transitions from that node.
- If .base is nonzero then charid is added to it to find an entry in
the trans array.
-If trans[states[state].base+charid].check!=state then the
transition is taken to be a 0/Fail transition. Thus if there are fail
transitions at the front of the node then the .base offset will point
somewhere inside the previous nodes data (or maybe even into a node
even earlier), but the .check field determines if the transition is
valid.
XXX - wrong maybe?
The following process inplace converts the table to the compressed
table: We first do not compress the root node 1,and mark all its
.check pointers as 1 and set its .base pointer as 1 as well. This
allows us to do a DFA construction from the compressed table later,
and ensures that any .base pointers we calculate later are greater
than 0.
- We set 'pos' to indicate the first entry of the second node.
- We then iterate over the columns of the node, finding the first and
last used entry at l and m. We then copy l..m into pos..(pos+m-l),
and set the .check pointers accordingly, and advance pos
appropriately and repreat for the next node. Note that when we copy
the next pointers we have to convert them from the original
NODEIDX form to NODENUM form as the former is not valid post
compression.
- If a node has no transitions used we mark its base as 0 and do not
advance the pos pointer.
- If a node only has one transition we use a second pointer into the
structure to fill in allocated fail transitions from other states.
This pointer is independent of the main pointer and scans forward
looking for null transitions that are allocated to a state. When it
finds one it writes the single transition into the "hole". If the
pointer doesnt find one the single transition is appended as normal.
- Once compressed we can Renew/realloc the structures to release the
excess space.
See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
specifically Fig 3.47 and the associated pseudocode.
demq
*/
const U32 laststate = TRIE_NODENUM( next_alloc );
U32 state, charid;
U32 pos = 0, zp=0;
trie->statecount = laststate;
for ( state = 1 ; state < laststate ; state++ ) {
U8 flag = 0;
const U32 stateidx = TRIE_NODEIDX( state );
const U32 o_used = trie->trans[ stateidx ].check;
U32 used = trie->trans[ stateidx ].check;
trie->trans[ stateidx ].check = 0;
for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
if ( flag || trie->trans[ stateidx + charid ].next ) {
if ( trie->trans[ stateidx + charid ].next ) {
if (o_used == 1) {
for ( ; zp < pos ; zp++ ) {
if ( ! trie->trans[ zp ].next ) {
break;
}
}
trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
trie->trans[ zp ].check = state;
if ( ++zp > pos ) pos = zp;
break;
}
used--;
}
if ( !flag ) {
flag = 1;
trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
}
trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
trie->trans[ pos ].check = state;
pos++;
}
}
}
trie->lasttrans = pos + 1;
trie->states = (reg_trie_state *)
PerlMemShared_realloc( trie->states, laststate
* sizeof(reg_trie_state) );
DEBUG_TRIE_COMPILE_MORE_r(
PerlIO_printf( Perl_debug_log,
"%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
(int)depth * 2 + 2,"",
(int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
(IV)next_alloc,
(IV)pos,
( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
);
} /* end table compress */
}
DEBUG_TRIE_COMPILE_MORE_r(
PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
(int)depth * 2 + 2, "",
(UV)trie->statecount,
(UV)trie->lasttrans)
);
/* resize the trans array to remove unused space */
trie->trans = (reg_trie_trans *)
PerlMemShared_realloc( trie->trans, trie->lasttrans
* sizeof(reg_trie_trans) );
{ /* Modify the program and insert the new TRIE node */
U8 nodetype =(U8)(flags & 0xFF);
char *str=NULL;
#ifdef DEBUGGING
regnode *optimize = NULL;
#ifdef RE_TRACK_PATTERN_OFFSETS
U32 mjd_offset = 0;
U32 mjd_nodelen = 0;
#endif /* RE_TRACK_PATTERN_OFFSETS */
#endif /* DEBUGGING */
/*
This means we convert either the first branch or the first Exact,
depending on whether the thing following (in 'last') is a branch
or not and whther first is the startbranch (ie is it a sub part of
the alternation or is it the whole thing.)
Assuming its a sub part we convert the EXACT otherwise we convert
the whole branch sequence, including the first.
*/
/* Find the node we are going to overwrite */
if ( first != startbranch || OP( last ) == BRANCH ) {
/* branch sub-chain */
NEXT_OFF( first ) = (U16)(last - first);
#ifdef RE_TRACK_PATTERN_OFFSETS
DEBUG_r({
mjd_offset= Node_Offset((convert));
mjd_nodelen= Node_Length((convert));
});
#endif
/* whole branch chain */
}
#ifdef RE_TRACK_PATTERN_OFFSETS
else {
DEBUG_r({
const regnode *nop = NEXTOPER( convert );
mjd_offset= Node_Offset((nop));
mjd_nodelen= Node_Length((nop));
});
}
DEBUG_OPTIMISE_r(
PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
(int)depth * 2 + 2, "",
(UV)mjd_offset, (UV)mjd_nodelen)
);
#endif
/* But first we check to see if there is a common prefix we can
split out as an EXACT and put in front of the TRIE node. */
trie->startstate= 1;
if ( trie->bitmap && !widecharmap && !trie->jump ) {
U32 state;
for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
U32 ofs = 0;
I32 idx = -1;
U32 count = 0;
const U32 base = trie->states[ state ].trans.base;
if ( trie->states[state].wordnum )
count = 1;
for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
if ( ( base + ofs >= trie->uniquecharcount ) &&
( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
{
if ( ++count > 1 ) {
SV **tmp = av_fetch( revcharmap, ofs, 0);
const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
if ( state == 1 ) break;
if ( count == 2 ) {
Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
DEBUG_OPTIMISE_r(
PerlIO_printf(Perl_debug_log,
"%*sNew Start State=%"UVuf" Class: [",
(int)depth * 2 + 2, "",
(UV)state));
if (idx >= 0) {
SV ** const tmp = av_fetch( revcharmap, idx, 0);
const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
TRIE_BITMAP_SET(trie,*ch);
if ( folder )
TRIE_BITMAP_SET(trie, folder[ *ch ]);
DEBUG_OPTIMISE_r(
PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
);
}
}
TRIE_BITMAP_SET(trie,*ch);
if ( folder )
TRIE_BITMAP_SET(trie,folder[ *ch ]);
DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
}
idx = ofs;
}
}
if ( count == 1 ) {
SV **tmp = av_fetch( revcharmap, idx, 0);
STRLEN len;
char *ch = SvPV( *tmp, len );
DEBUG_OPTIMISE_r({
SV *sv=sv_newmortal();
PerlIO_printf( Perl_debug_log,
"%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
(int)depth * 2 + 2, "",
(UV)state, (UV)idx,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_ESCAPE_FIRSTCHAR
)
);
});
if ( state==1 ) {
OP( convert ) = nodetype;
str=STRING(convert);
STR_LEN(convert)=0;
}
STR_LEN(convert) += len;
while (len--)
*str++ = *ch++;
} else {
#ifdef DEBUGGING
if (state>1)
DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
#endif
break;
}
}
trie->prefixlen = (state-1);
if (str) {
regnode *n = convert+NODE_SZ_STR(convert);
NEXT_OFF(convert) = NODE_SZ_STR(convert);
trie->startstate = state;
trie->minlen -= (state - 1);
trie->maxlen -= (state - 1);
#ifdef DEBUGGING
/* At least the UNICOS C compiler choked on this
* being argument to DEBUG_r(), so let's just have
* it right here. */
if (
#ifdef PERL_EXT_RE_BUILD
1
#else
DEBUG_r_TEST
#endif
) {
regnode *fix = convert;
U32 word = trie->wordcount;
mjd_nodelen++;
Set_Node_Offset_Length(convert, mjd_offset, state - 1);
while( ++fix < n ) {
Set_Node_Offset_Length(fix, 0, 0);
}
while (word--) {
SV ** const tmp = av_fetch( trie_words, word, 0 );
if (tmp) {
if ( STR_LEN(convert) <= SvCUR(*tmp) )
sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
else
sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
}
}
}
#endif
if (trie->maxlen) {
convert = n;
} else {
NEXT_OFF(convert) = (U16)(tail - convert);
DEBUG_r(optimize= n);
}
}
}
if (!jumper)
jumper = last;
if ( trie->maxlen ) {
NEXT_OFF( convert ) = (U16)(tail - convert);
ARG_SET( convert, data_slot );
/* Store the offset to the first unabsorbed branch in
jump[0], which is otherwise unused by the jump logic.
We use this when dumping a trie and during optimisation. */
if (trie->jump)
trie->jump[0] = (U16)(nextbranch - convert);
/* If the start state is not accepting (meaning there is no empty string/NOTHING)
* and there is a bitmap
* and the first "jump target" node we found leaves enough room
* then convert the TRIE node into a TRIEC node, with the bitmap
* embedded inline in the opcode - this is hypothetically faster.
*/
if ( !trie->states[trie->startstate].wordnum
&& trie->bitmap
&& ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
{
OP( convert ) = TRIEC;
Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
PerlMemShared_free(trie->bitmap);
trie->bitmap= NULL;
} else
OP( convert ) = TRIE;
/* store the type in the flags */
convert->flags = nodetype;
DEBUG_r({
optimize = convert
+ NODE_STEP_REGNODE
+ regarglen[ OP( convert ) ];
});
/* XXX We really should free up the resource in trie now,
as we won't use them - (which resources?) dmq */
}
/* needed for dumping*/
DEBUG_r(if (optimize) {
regnode *opt = convert;
while ( ++opt < optimize) {
Set_Node_Offset_Length(opt,0,0);
}
/*
Try to clean up some of the debris left after the
optimisation.
*/
while( optimize < jumper ) {
mjd_nodelen += Node_Length((optimize));
OP( optimize ) = OPTIMIZED;
Set_Node_Offset_Length(optimize,0,0);
optimize++;
}
Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
});
} /* end node insert */
/* Finish populating the prev field of the wordinfo array. Walk back
* from each accept state until we find another accept state, and if
* so, point the first word's .prev field at the second word. If the
* second already has a .prev field set, stop now. This will be the
* case either if we've already processed that word's accept state,
* or that state had multiple words, and the overspill words were
* already linked up earlier.
*/
{
U16 word;
U32 state;
U16 prev;
for (word=1; word <= trie->wordcount; word++) {
prev = 0;
if (trie->wordinfo[word].prev)
continue;
state = trie->wordinfo[word].accept;
while (state) {
state = prev_states[state];
if (!state)
break;
prev = trie->states[state].wordnum;
if (prev)
break;
}
trie->wordinfo[word].prev = prev;
}
Safefree(prev_states);
}
/* and now dump out the compressed format */
DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
#ifdef DEBUGGING
RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
#else
SvREFCNT_dec(revcharmap);
#endif
return trie->jump
? MADE_JUMP_TRIE
: trie->startstate>1
? MADE_EXACT_TRIE
: MADE_TRIE;
}
STATIC void
S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
{
/* The Trie is constructed and compressed now so we can build a fail array if it's needed
This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
"Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
ISBN 0-201-10088-6
We find the fail state for each state in the trie, this state is the longest proper
suffix of the current state's 'word' that is also a proper prefix of another word in our
trie. State 1 represents the word '' and is thus the default fail state. This allows
the DFA not to have to restart after its tried and failed a word at a given point, it
simply continues as though it had been matching the other word in the first place.
Consider
'abcdgu'=~/abcdefg|cdgu/
When we get to 'd' we are still matching the first word, we would encounter 'g' which would
fail, which would bring us to the state representing 'd' in the second word where we would
try 'g' and succeed, proceeding to match 'cdgu'.
*/
/* add a fail transition */
const U32 trie_offset = ARG(source);
reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
U32 *q;
const U32 ucharcount = trie->uniquecharcount;
const U32 numstates = trie->statecount;
const U32 ubound = trie->lasttrans + ucharcount;
U32 q_read = 0;
U32 q_write = 0;
U32 charid;
U32 base = trie->states[ 1 ].trans.base;
U32 *fail;
reg_ac_data *aho;
const U32 data_slot = add_data( pRExC_state, 1, "T" );
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
ARG_SET( stclass, data_slot );
aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
RExC_rxi->data->data[ data_slot ] = (void*)aho;
aho->trie=trie_offset;
aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
Copy( trie->states, aho->states, numstates, reg_trie_state );
Newxz( q, numstates, U32);
aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
aho->refcount = 1;
fail = aho->fail;
/* initialize fail[0..1] to be 1 so that we always have
a valid final fail state */
fail[ 0 ] = fail[ 1 ] = 1;
for ( charid = 0; charid < ucharcount ; charid++ ) {
const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
if ( newstate ) {
q[ q_write ] = newstate;
/* set to point at the root */
fail[ q[ q_write++ ] ]=1;
}
}
while ( q_read < q_write) {
const U32 cur = q[ q_read++ % numstates ];
base = trie->states[ cur ].trans.base;
for ( charid = 0 ; charid < ucharcount ; charid++ ) {
const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
if (ch_state) {
U32 fail_state = cur;
U32 fail_base;
do {
fail_state = fail[ fail_state ];
fail_base = aho->states[ fail_state ].trans.base;
} while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
fail[ ch_state ] = fail_state;
if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
{
aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
}
q[ q_write++ % numstates] = ch_state;
}
}
}
/* restore fail[0..1] to 0 so that we "fall out" of the AC loop
when we fail in state 1, this allows us to use the
charclass scan to find a valid start char. This is based on the principle
that theres a good chance the string being searched contains lots of stuff
that cant be a start char.
*/
fail[ 0 ] = fail[ 1 ] = 0;
DEBUG_TRIE_COMPILE_r({
PerlIO_printf(Perl_debug_log,
"%*sStclass Failtable (%"UVuf" states): 0",
(int)(depth * 2), "", (UV)numstates
);
for( q_read=1; q_read<numstates; q_read++ ) {
PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
}
PerlIO_printf(Perl_debug_log, "\n");
});
Safefree(q);
/*RExC_seen |= REG_SEEN_TRIEDFA;*/
}
/*
* There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
* These need to be revisited when a newer toolchain becomes available.
*/
#if defined(__sparc64__) && defined(__GNUC__)
# if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
# undef SPARC64_GCC_WORKAROUND
# define SPARC64_GCC_WORKAROUND 1
# endif
#endif
#define DEBUG_PEEP(str,scan,depth) \
DEBUG_OPTIMISE_r({if (scan){ \
SV * const mysv=sv_newmortal(); \
regnode *Next = regnext(scan); \
regprop(RExC_rx, mysv, scan); \
PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
(int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
Next ? (REG_NODE_NUM(Next)) : 0 ); \
}});
#define JOIN_EXACT(scan,min,flags) \
if (PL_regkind[OP(scan)] == EXACT) \
join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
STATIC U32
S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
/* Merge several consecutive EXACTish nodes into one. */
regnode *n = regnext(scan);
U32 stringok = 1;
regnode *next = scan + NODE_SZ_STR(scan);
U32 merged = 0;
U32 stopnow = 0;
#ifdef DEBUGGING
regnode *stop = scan;
GET_RE_DEBUG_FLAGS_DECL;
#else
PERL_UNUSED_ARG(depth);
#endif
PERL_ARGS_ASSERT_JOIN_EXACT;
#ifndef EXPERIMENTAL_INPLACESCAN
PERL_UNUSED_ARG(flags);
PERL_UNUSED_ARG(val);
#endif
DEBUG_PEEP("join",scan,depth);
/* Skip NOTHING, merge EXACT*. */
while (n &&
( PL_regkind[OP(n)] == NOTHING ||
(stringok && (OP(n) == OP(scan))))
&& NEXT_OFF(n)
&& NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
if (OP(n) == TAIL || n > next)
stringok = 0;
if (PL_regkind[OP(n)] == NOTHING) {
DEBUG_PEEP("skip:",n,depth);
NEXT_OFF(scan) += NEXT_OFF(n);
next = n + NODE_STEP_REGNODE;
#ifdef DEBUGGING
if (stringok)
stop = n;
#endif
n = regnext(n);
}
else if (stringok) {
const unsigned int oldl = STR_LEN(scan);
regnode * const nnext = regnext(n);
DEBUG_PEEP("merg",n,depth);
merged++;
if (oldl + STR_LEN(n) > U8_MAX)
break;
NEXT_OFF(scan) += NEXT_OFF(n);
STR_LEN(scan) += STR_LEN(n);
next = n + NODE_SZ_STR(n);
/* Now we can overwrite *n : */
Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
#ifdef DEBUGGING
stop = next - 1;
#endif
n = nnext;
if (stopnow) break;
}
#ifdef EXPERIMENTAL_INPLACESCAN
if (flags && !NEXT_OFF(n)) {
DEBUG_PEEP("atch", val, depth);
if (reg_off_by_arg[OP(n)]) {
ARG_SET(n, val - n);
}
else {
NEXT_OFF(n) = val - n;
}
stopnow = 1;
}
#endif
}
#define GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS 0x0390
#define IOTA_D_T GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS
#define GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS 0x03B0
#define UPSILON_D_T GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS
if (UTF
&& ( OP(scan) == EXACTF || OP(scan) == EXACTFU || OP(scan) == EXACTFA)
&& ( STR_LEN(scan) >= 6 ) )
{
/*
Two problematic code points in Unicode casefolding of EXACT nodes:
U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
which casefold to
Unicode UTF-8
U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
This means that in case-insensitive matching (or "loose matching",
as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
length of the above casefolded versions) can match a target string
of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
This would rather mess up the minimum length computation.
What we'll do is to look for the tail four bytes, and then peek
at the preceding two bytes to see whether we need to decrease
the minimum length by four (six minus two).
Thanks to the design of UTF-8, there cannot be false matches:
A sequence of valid UTF-8 bytes cannot be a subsequence of
another valid sequence of UTF-8 bytes.
*/
char * const s0 = STRING(scan), *s, *t;
char * const s1 = s0 + STR_LEN(scan) - 1;
char * const s2 = s1 - 4;
#ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
const char t0[] = "\xaf\x49\xaf\x42";
#else
const char t0[] = "\xcc\x88\xcc\x81";
#endif
const char * const t1 = t0 + 3;
for (s = s0 + 2;
s < s2 && (t = ninstr(s, s1, t0, t1));
s = t + 4) {
#ifdef EBCDIC
if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
#else
if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
#endif
*min -= 4;
}
}
#ifdef DEBUGGING
/* Allow dumping but overwriting the collection of skipped
* ops and/or strings with fake optimized ops */
n = scan + NODE_SZ_STR(scan);
while (n <= stop) {
OP(n) = OPTIMIZED;
FLAGS(n) = 0;
NEXT_OFF(n) = 0;
n++;
}
#endif
DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
return stopnow;
}
/* REx optimizer. Converts nodes into quicker variants "in place".
Finds fixed substrings. */
/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
to the position after last scanned or to NULL. */
#define INIT_AND_WITHP \
assert(!and_withp); \
Newx(and_withp,1,struct regnode_charclass_class); \
SAVEFREEPV(and_withp)
/* this is a chain of data about sub patterns we are processing that
need to be handled separately/specially in study_chunk. Its so
we can simulate recursion without losing state. */
struct scan_frame;
typedef struct scan_frame {
regnode *last; /* last node to process in this frame */
regnode *next; /* next node to process when last is reached */
struct scan_frame *prev; /*previous frame*/
I32 stop; /* what stopparen do we use */
} scan_frame;
#define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
#define CASE_SYNST_FNC(nAmE) \
case nAmE: \
if (flags & SCF_DO_STCLASS_AND) { \
for (value = 0; value < 256; value++) \
if (!is_ ## nAmE ## _cp(value)) \
ANYOF_BITMAP_CLEAR(data->start_class, value); \
} \
else { \
for (value = 0; value < 256; value++) \
if (is_ ## nAmE ## _cp(value)) \
ANYOF_BITMAP_SET(data->start_class, value); \
} \
break; \
case N ## nAmE: \
if (flags & SCF_DO_STCLASS_AND) { \
for (value = 0; value < 256; value++) \
if (is_ ## nAmE ## _cp(value)) \
ANYOF_BITMAP_CLEAR(data->start_class, value); \
} \
else { \
for (value = 0; value < 256; value++) \
if (!is_ ## nAmE ## _cp(value)) \
ANYOF_BITMAP_SET(data->start_class, value); \
} \
break
STATIC I32
S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
I32 *minlenp, I32 *deltap,
regnode *last,
scan_data_t *data,
I32 stopparen,
U8* recursed,
struct regnode_charclass_class *and_withp,
U32 flags, U32 depth)
/* scanp: Start here (read-write). */
/* deltap: Write maxlen-minlen here. */
/* last: Stop before this one. */
/* data: string data about the pattern */
/* stopparen: treat close N as END */
/* recursed: which subroutines have we recursed into */
/* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
{
dVAR;
I32 min = 0, pars = 0, code;
regnode *scan = *scanp, *next;
I32 delta = 0;
int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
int is_inf_internal = 0; /* The studied chunk is infinite */
I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
scan_data_t data_fake;
SV *re_trie_maxbuff = NULL;
regnode *first_non_open = scan;
I32 stopmin = I32_MAX;
scan_frame *frame = NULL;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_STUDY_CHUNK;
#ifdef DEBUGGING
StructCopy(&zero_scan_data, &data_fake, scan_data_t);
#endif
if ( depth == 0 ) {
while (first_non_open && OP(first_non_open) == OPEN)
first_non_open=regnext(first_non_open);
}
fake_study_recurse:
while ( scan && OP(scan) != END && scan < last ){
/* Peephole optimizer: */
DEBUG_STUDYDATA("Peep:", data,depth);
DEBUG_PEEP("Peep",scan,depth);
JOIN_EXACT(scan,&min,0);
/* Follow the next-chain of the current node and optimize
away all the NOTHINGs from it. */
if (OP(scan) != CURLYX) {
const int max = (reg_off_by_arg[OP(scan)]
? I32_MAX
/* I32 may be smaller than U16 on CRAYs! */
: (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
int noff;
regnode *n = scan;
/* Skip NOTHING and LONGJMP. */
while ((n = regnext(n))
&& ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
|| ((OP(n) == LONGJMP) && (noff = ARG(n))))
&& off + noff < max)
off += noff;
if (reg_off_by_arg[OP(scan)])
ARG(scan) = off;
else
NEXT_OFF(scan) = off;
}
/* The principal pseudo-switch. Cannot be a switch, since we
look into several different things. */
if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
|| OP(scan) == IFTHEN) {
next = regnext(scan);
code = OP(scan);
/* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
if (OP(next) == code || code == IFTHEN) {
/* NOTE - There is similar code to this block below for handling
TRIE nodes on a re-study. If you change stuff here check there
too. */
I32 max1 = 0, min1 = I32_MAX, num = 0;
struct regnode_charclass_class accum;
regnode * const startbranch=scan;
if (flags & SCF_DO_SUBSTR)
SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
if (flags & SCF_DO_STCLASS)
cl_init_zero(pRExC_state, &accum);
while (OP(scan) == code) {
I32 deltanext, minnext, f = 0, fake;
struct regnode_charclass_class this_class;
num++;
data_fake.flags = 0;
if (data) {
data_fake.whilem_c = data->whilem_c;
data_fake.last_closep = data->last_closep;
}
else
data_fake.last_closep = &fake;
data_fake.pos_delta = delta;
next = regnext(scan);
scan = NEXTOPER(scan);
if (code != BRANCH)
scan = NEXTOPER(scan);
if (flags & SCF_DO_STCLASS) {
cl_init(pRExC_state, &this_class);
data_fake.start_class = &this_class;
f = SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
/* we suppose the run is continuous, last=next...*/
minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
next, &data_fake,
stopparen, recursed, NULL, f,depth+1);
if (min1 > minnext)
min1 = minnext;
if (max1 < minnext + deltanext)
max1 = minnext + deltanext;
if (deltanext == I32_MAX)
is_inf = is_inf_internal = 1;
scan = next;
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SCF_SEEN_ACCEPT) {
if ( stopmin > minnext)
stopmin = min + min1;
flags &= ~SCF_DO_SUBSTR;
if (data)
data->flags |= SCF_SEEN_ACCEPT;
}
if (data) {
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
}
if (flags & SCF_DO_STCLASS)
cl_or(pRExC_state, &accum, &this_class);
}
if (code == IFTHEN && num < 2) /* Empty ELSE branch */
min1 = 0;
if (flags & SCF_DO_SUBSTR) {
data->pos_min += min1;
data->pos_delta += max1 - min1;
if (max1 != min1 || is_inf)
data->longest = &(data->longest_float);
}
min += min1;
delta += max1 - min1;
if (flags & SCF_DO_STCLASS_OR) {
cl_or(pRExC_state, data->start_class, &accum);
if (min1) {
cl_and(data->start_class, and_withp);
flags &= ~SCF_DO_STCLASS;
}
}
else if (flags & SCF_DO_STCLASS_AND) {
if (min1) {
cl_and(data->start_class, &accum);
flags &= ~SCF_DO_STCLASS;
}
else {
/* Switch to OR mode: cache the old value of
* data->start_class */
INIT_AND_WITHP;
StructCopy(data->start_class, and_withp,
struct regnode_charclass_class);
flags &= ~SCF_DO_STCLASS_AND;
StructCopy(&accum, data->start_class,
struct regnode_charclass_class);
flags |= SCF_DO_STCLASS_OR;
data->start_class->flags |= ANYOF_EOS;
}
}
if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
/* demq.
Assuming this was/is a branch we are dealing with: 'scan' now
points at the item that follows the branch sequence, whatever
it is. We now start at the beginning of the sequence and look
for subsequences of
BRANCH->EXACT=>x1
BRANCH->EXACT=>x2
tail
which would be constructed from a pattern like /A|LIST|OF|WORDS/
If we can find such a subsequence we need to turn the first
element into a trie and then add the subsequent branch exact
strings to the trie.
We have two cases
1. patterns where the whole set of branches can be converted.
2. patterns where only a subset can be converted.
In case 1 we can replace the whole set with a single regop
for the trie. In case 2 we need to keep the start and end
branches so
'BRANCH EXACT; BRANCH EXACT; BRANCH X'
becomes BRANCH TRIE; BRANCH X;
There is an additional case, that being where there is a
common prefix, which gets split out into an EXACT like node
preceding the TRIE node.
If x(1..n)==tail then we can do a simple trie, if not we make
a "jump" trie, such that when we match the appropriate word
we "jump" to the appropriate tail node. Essentially we turn
a nested if into a case structure of sorts.
*/
int made=0;
if (!re_trie_maxbuff) {
re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
if (!SvIOK(re_trie_maxbuff))
sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
}
if ( SvIV(re_trie_maxbuff)>=0 ) {
regnode *cur;
regnode *first = (regnode *)NULL;
regnode *last = (regnode *)NULL;
regnode *tail = scan;
U8 optype = 0;
U32 count=0;
#ifdef DEBUGGING
SV * const mysv = sv_newmortal(); /* for dumping */
#endif
/* var tail is used because there may be a TAIL
regop in the way. Ie, the exacts will point to the
thing following the TAIL, but the last branch will
point at the TAIL. So we advance tail. If we
have nested (?:) we may have to move through several
tails.
*/
while ( OP( tail ) == TAIL ) {
/* this is the TAIL generated by (?:) */
tail = regnext( tail );
}
DEBUG_OPTIMISE_r({
regprop(RExC_rx, mysv, tail );
PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
(int)depth * 2 + 2, "",
"Looking for TRIE'able sequences. Tail node is: ",
SvPV_nolen_const( mysv )
);
});
/*
step through the branches, cur represents each
branch, noper is the first thing to be matched
as part of that branch and noper_next is the
regnext() of that node. if noper is an EXACT
and noper_next is the same as scan (our current
position in the regex) then the EXACT branch is
a possible optimization target. Once we have
two or more consecutive such branches we can
create a trie of the EXACT's contents and stich
it in place. If the sequence represents all of
the branches we eliminate the whole thing and
replace it with a single TRIE. If it is a
subsequence then we need to stitch it in. This
means the first branch has to remain, and needs
to be repointed at the item on the branch chain
following the last branch optimized. This could
be either a BRANCH, in which case the
subsequence is internal, or it could be the
item following the branch sequence in which
case the subsequence is at the end.
*/
/* dont use tail as the end marker for this traverse */
for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
regnode * const noper = NEXTOPER( cur );
#if defined(DEBUGGING) || defined(NOJUMPTRIE)
regnode * const noper_next = regnext( noper );
#endif
DEBUG_OPTIMISE_r({
regprop(RExC_rx, mysv, cur);
PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
(int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
regprop(RExC_rx, mysv, noper);
PerlIO_printf( Perl_debug_log, " -> %s",
SvPV_nolen_const(mysv));
if ( noper_next ) {
regprop(RExC_rx, mysv, noper_next );
PerlIO_printf( Perl_debug_log,"\t=> %s\t",
SvPV_nolen_const(mysv));
}
PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
});
if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
: PL_regkind[ OP( noper ) ] == EXACT )
|| OP(noper) == NOTHING )
#ifdef NOJUMPTRIE
&& noper_next == tail
#endif
&& count < U16_MAX)
{
count++;
if ( !first || optype == NOTHING ) {
if (!first) first = cur;
optype = OP( noper );
} else {
last = cur;
}
} else {
/*
Currently the trie logic handles case insensitive matching properly only
when the pattern is UTF-8 and the node is EXACTFU (thus forcing unicode
semantics).
If/when this is fixed the following define can be swapped
in below to fully enable trie logic.
#define TRIE_TYPE_IS_SAFE 1
*/
#define TRIE_TYPE_IS_SAFE ((UTF && optype == EXACTFU) || optype==EXACT)
if ( last && TRIE_TYPE_IS_SAFE ) {
make_trie( pRExC_state,
startbranch, first, cur, tail, count,
optype, depth+1 );
}
if ( PL_regkind[ OP( noper ) ] == EXACT
#ifdef NOJUMPTRIE
&& noper_next == tail
#endif
){
count = 1;
first = cur;
optype = OP( noper );
} else {
count = 0;
first = NULL;
optype = 0;
}
last = NULL;
}
}
DEBUG_OPTIMISE_r({
regprop(RExC_rx, mysv, cur);
PerlIO_printf( Perl_debug_log,
"%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
"", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
});
if ( last && TRIE_TYPE_IS_SAFE ) {
made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
#ifdef TRIE_STUDY_OPT
if ( ((made == MADE_EXACT_TRIE &&
startbranch == first)
|| ( first_non_open == first )) &&
depth==0 ) {
flags |= SCF_TRIE_RESTUDY;
if ( startbranch == first
&& scan == tail )
{
RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
}
}
#endif
}
}
} /* do trie */
}
else if ( code == BRANCHJ ) { /* single branch is optimized. */
scan = NEXTOPER(NEXTOPER(scan));
} else /* single branch is optimized. */
scan = NEXTOPER(scan);
continue;
} else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
scan_frame *newframe = NULL;
I32 paren;
regnode *start;
regnode *end;
if (OP(scan) != SUSPEND) {
/* set the pointer */
if (OP(scan) == GOSUB) {
paren = ARG(scan);
RExC_recurse[ARG2L(scan)] = scan;
start = RExC_open_parens[paren-1];
end = RExC_close_parens[paren-1];
} else {
paren = 0;
start = RExC_rxi->program + 1;
end = RExC_opend;
}
if (!recursed) {
Newxz(recursed, (((RExC_npar)>>3) +1), U8);
SAVEFREEPV(recursed);
}
if (!PAREN_TEST(recursed,paren+1)) {
PAREN_SET(recursed,paren+1);
Newx(newframe,1,scan_frame);
} else {
if (flags & SCF_DO_SUBSTR) {
SCAN_COMMIT(pRExC_state,data,minlenp);
data->longest = &(data->longest_float);
}
is_inf = is_inf_internal = 1;
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
cl_anything(pRExC_state, data->start_class);
flags &= ~SCF_DO_STCLASS;
}
} else {
Newx(newframe,1,scan_frame);
paren = stopparen;
start = scan+2;
end = regnext(scan);
}
if (newframe) {
assert(start);
assert(end);
SAVEFREEPV(newframe);
newframe->next = regnext(scan);
newframe->last = last;
newframe->stop = stopparen;
newframe->prev = frame;
frame = newframe;
scan = start;
stopparen = paren;
last = end;
continue;
}
}
else if (OP(scan) == EXACT) {
I32 l = STR_LEN(scan);
UV uc;
if (UTF) {
const U8 * const s = (U8*)STRING(scan);
l = utf8_length(s, s + l);
uc = utf8_to_uvchr(s, NULL);
} else {
uc = *((U8*)STRING(scan));
}
min += l;
if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
/* The code below prefers earlier match for fixed
offset, later match for variable offset. */
if (data->last_end == -1) { /* Update the start info. */
data->last_start_min = data->pos_min;
data->last_start_max = is_inf
? I32_MAX : data->pos_min + data->pos_delta;
}
sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
if (UTF)
SvUTF8_on(data->last_found);
{
SV * const sv = data->last_found;
MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
mg_find(sv, PERL_MAGIC_utf8) : NULL;
if (mg && mg->mg_len >= 0)
mg->mg_len += utf8_length((U8*)STRING(scan),
(U8*)STRING(scan)+STR_LEN(scan));
}
data->last_end = data->pos_min + l;
data->pos_min += l; /* As in the first entry. */
data->flags &= ~SF_BEFORE_EOL;
}
if (flags & SCF_DO_STCLASS_AND) {
/* Check whether it is compatible with what we know already! */
int compat = 1;
/* If compatible, we or it in below. It is compatible if is
* in the bitmp and either 1) its bit or its fold is set, or 2)
* it's for a locale. Even if there isn't unicode semantics
* here, at runtime there may be because of matching against a
* utf8 string, so accept a possible false positive for
* latin1-range folds */
if (uc >= 0x100 ||
(!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
&& !ANYOF_BITMAP_TEST(data->start_class, uc)
&& (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
|| !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
)
{
compat = 0;
}
ANYOF_CLASS_ZERO(data->start_class);
ANYOF_BITMAP_ZERO(data->start_class);
if (compat)
ANYOF_BITMAP_SET(data->start_class, uc);
else if (uc >= 0x100) {
int i;
/* Some Unicode code points fold to the Latin1 range; as
* XXX temporary code, instead of figuring out if this is
* one, just assume it is and set all the start class bits
* that could be some such above 255 code point's fold
* which will generate fals positives. As the code
* elsewhere that does compute the fold settles down, it
* can be extracted out and re-used here */
for (i = 0; i < 256; i++){
if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
ANYOF_BITMAP_SET(data->start_class, i);
}
}
}
data->start_class->flags &= ~ANYOF_EOS;
if (uc < 0x100)
data->start_class->flags &= ~ANYOF_UNICODE_ALL;
}
else if (flags & SCF_DO_STCLASS_OR) {
/* false positive possible if the class is case-folded */
if (uc < 0x100)
ANYOF_BITMAP_SET(data->start_class, uc);
else
data->start_class->flags |= ANYOF_UNICODE_ALL;
data->start_class->flags &= ~ANYOF_EOS;
cl_and(data->start_class, and_withp);
}
flags &= ~SCF_DO_STCLASS;
}
else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
I32 l = STR_LEN(scan);
UV uc = *((U8*)STRING(scan));
/* Search for fixed substrings supports EXACT only. */
if (flags & SCF_DO_SUBSTR) {
assert(data);
SCAN_COMMIT(pRExC_state, data, minlenp);
}
if (UTF) {
const U8 * const s = (U8 *)STRING(scan);
l = utf8_length(s, s + l);
uc = utf8_to_uvchr(s, NULL);
}
min += l;
if (flags & SCF_DO_SUBSTR)
data->pos_min += l;
if (flags & SCF_DO_STCLASS_AND) {
/* Check whether it is compatible with what we know already! */
int compat = 1;
if (uc >= 0x100 ||
(!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
&& !ANYOF_BITMAP_TEST(data->start_class, uc)
&& !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
{
compat = 0;
}
ANYOF_CLASS_ZERO(data->start_class);
ANYOF_BITMAP_ZERO(data->start_class);
if (compat) {
ANYOF_BITMAP_SET(data->start_class, uc);
data->start_class->flags &= ~ANYOF_EOS;
data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
if (OP(scan) == EXACTFL) {
/* XXX This set is probably no longer necessary, and
* probably wrong as LOCALE now is on in the initial
* state */
data->start_class->flags |= ANYOF_LOCALE;
}
else {
/* Also set the other member of the fold pair. In case
* that unicode semantics is called for at runtime, use
* the full latin1 fold. (Can't do this for locale,
* because not known until runtime */
ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
}
}
else if (uc >= 0x100) {
int i;
for (i = 0; i < 256; i++){
if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
ANYOF_BITMAP_SET(data->start_class, i);
}
}
}
}
else if (flags & SCF_DO_STCLASS_OR) {
if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
/* false positive possible if the class is case-folded.
Assume that the locale settings are the same... */
if (uc < 0x100) {
ANYOF_BITMAP_SET(data->start_class, uc);
if (OP(scan) != EXACTFL) {
/* And set the other member of the fold pair, but
* can't do that in locale because not known until
* run-time */
ANYOF_BITMAP_SET(data->start_class,
PL_fold_latin1[uc]);
}
}
data->start_class->flags &= ~ANYOF_EOS;
}
cl_and(data->start_class, and_withp);
}
flags &= ~SCF_DO_STCLASS;
}
else if (REGNODE_VARIES(OP(scan))) {
I32 mincount, maxcount, minnext, deltanext, fl = 0;
I32 f = flags, pos_before = 0;
regnode * const oscan = scan;
struct regnode_charclass_class this_class;
struct regnode_charclass_class *oclass = NULL;
I32 next_is_eval = 0;
switch (PL_regkind[OP(scan)]) {
case WHILEM: /* End of (?:...)* . */
scan = NEXTOPER(scan);
goto finish;
case PLUS:
if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
next = NEXTOPER(scan);
if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
mincount = 1;
maxcount = REG_INFTY;
next = regnext(scan);
scan = NEXTOPER(scan);
goto do_curly;
}
}
if (flags & SCF_DO_SUBSTR)
data->pos_min++;
min++;
/* Fall through. */
case STAR:
if (flags & SCF_DO_STCLASS) {
mincount = 0;
maxcount = REG_INFTY;
next = regnext(scan);
scan = NEXTOPER(scan);
goto do_curly;
}
is_inf = is_inf_internal = 1;
scan = regnext(scan);
if (flags & SCF_DO_SUBSTR) {
SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
data->longest = &(data->longest_float);
}
goto optimize_curly_tail;
case CURLY:
if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
&& (scan->flags == stopparen))
{
mincount = 1;
maxcount = 1;
} else {
mincount = ARG1(scan);
maxcount = ARG2(scan);
}
next = regnext(scan);
if (OP(scan) == CURLYX) {
I32 lp = (data ? *(data->last_closep) : 0);
scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
}
scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
next_is_eval = (OP(scan) == EVAL);
do_curly:
if (flags & SCF_DO_SUBSTR) {
if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
pos_before = data->pos_min;
}
if (data) {
fl = data->flags;
data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
if (is_inf)
data->flags |= SF_IS_INF;
}
if (flags & SCF_DO_STCLASS) {
cl_init(pRExC_state, &this_class);
oclass = data->start_class;
data->start_class = &this_class;
f |= SCF_DO_STCLASS_AND;
f &= ~SCF_DO_STCLASS_OR;
}
/* Exclude from super-linear cache processing any {n,m}
regops for which the combination of input pos and regex
pos is not enough information to determine if a match
will be possible.
For example, in the regex /foo(bar\s*){4,8}baz/ with the
regex pos at the \s*, the prospects for a match depend not
only on the input position but also on how many (bar\s*)
repeats into the {4,8} we are. */
if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
f &= ~SCF_WHILEM_VISITED_POS;
/* This will finish on WHILEM, setting scan, or on NULL: */
minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
last, data, stopparen, recursed, NULL,
(mincount == 0
? (f & ~SCF_DO_SUBSTR) : f),depth+1);
if (flags & SCF_DO_STCLASS)
data->start_class = oclass;
if (mincount == 0 || minnext == 0) {
if (flags & SCF_DO_STCLASS_OR) {
cl_or(pRExC_state, data->start_class, &this_class);
}
else if (flags & SCF_DO_STCLASS_AND) {
/* Switch to OR mode: cache the old value of
* data->start_class */
INIT_AND_WITHP;
StructCopy(data->start_class, and_withp,
struct regnode_charclass_class);
flags &= ~SCF_DO_STCLASS_AND;
StructCopy(&this_class, data->start_class,
struct regnode_charclass_class);
flags |= SCF_DO_STCLASS_OR;
data->start_class->flags |= ANYOF_EOS;
}
} else { /* Non-zero len */
if (flags & SCF_DO_STCLASS_OR) {
cl_or(pRExC_state, data->start_class, &this_class);
cl_and(data->start_class, and_withp);
}
else if (flags & SCF_DO_STCLASS_AND)
cl_and(data->start_class, &this_class);
flags &= ~SCF_DO_STCLASS;
}
if (!scan) /* It was not CURLYX, but CURLY. */
scan = next;
if ( /* ? quantifier ok, except for (?{ ... }) */
(next_is_eval || !(mincount == 0 && maxcount == 1))
&& (minnext == 0) && (deltanext == 0)
&& data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
&& maxcount <= REG_INFTY/3) /* Complement check for big count */
{
ckWARNreg(RExC_parse,
"Quantifier unexpected on zero-length expression");
}
min += minnext * mincount;
is_inf_internal |= ((maxcount == REG_INFTY
&& (minnext + deltanext) > 0)
|| deltanext == I32_MAX);
is_inf |= is_inf_internal;
delta += (minnext + deltanext) * maxcount - minnext * mincount;
/* Try powerful optimization CURLYX => CURLYN. */
if ( OP(oscan) == CURLYX && data
&& data->flags & SF_IN_PAR
&& !(data->flags & SF_HAS_EVAL)
&& !deltanext && minnext == 1 ) {
/* Try to optimize to CURLYN. */
regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
regnode * const nxt1 = nxt;
#ifdef DEBUGGING
regnode *nxt2;
#endif
/* Skip open. */
nxt = regnext(nxt);
if (!REGNODE_SIMPLE(OP(nxt))
&& !(PL_regkind[OP(nxt)] == EXACT
&& STR_LEN(nxt) == 1))
goto nogo;
#ifdef DEBUGGING
nxt2 = nxt;
#endif
nxt = regnext(nxt);
if (OP(nxt) != CLOSE)
goto nogo;
if (RExC_open_parens) {
RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
}
/* Now we know that nxt2 is the only contents: */
oscan->flags = (U8)ARG(nxt);
OP(oscan) = CURLYN;
OP(nxt1) = NOTHING; /* was OPEN. */
#ifdef DEBUGGING
OP(nxt1 + 1) = OPTIMIZED; /* was count. */
NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
OP(nxt) = OPTIMIZED; /* was CLOSE. */
OP(nxt + 1) = OPTIMIZED; /* was count. */
NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
#endif
}
nogo:
/* Try optimization CURLYX => CURLYM. */
if ( OP(oscan) == CURLYX && data
&& !(data->flags & SF_HAS_PAR)
&& !(data->flags & SF_HAS_EVAL)
&& !deltanext /* atom is fixed width */
&& minnext != 0 /* CURLYM can't handle zero width */
) {
/* XXXX How to optimize if data == 0? */
/* Optimize to a simpler form. */
regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
regnode *nxt2;
OP(oscan) = CURLYM;
while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
&& (OP(nxt2) != WHILEM))
nxt = nxt2;
OP(nxt2) = SUCCEED; /* Whas WHILEM */
/* Need to optimize away parenths. */
if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
/* Set the parenth number. */
regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
oscan->flags = (U8)ARG(nxt);
if (RExC_open_parens) {
RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
}
OP(nxt1) = OPTIMIZED; /* was OPEN. */
OP(nxt) = OPTIMIZED; /* was CLOSE. */
#ifdef DEBUGGING
OP(nxt1 + 1) = OPTIMIZED; /* was count. */
OP(nxt + 1) = OPTIMIZED; /* was count. */
NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
#endif
#if 0
while ( nxt1 && (OP(nxt1) != WHILEM)) {
regnode *nnxt = regnext(nxt1);
if (nnxt == nxt) {
if (reg_off_by_arg[OP(nxt1)])
ARG_SET(nxt1, nxt2 - nxt1);
else if (nxt2 - nxt1 < U16_MAX)
NEXT_OFF(nxt1) = nxt2 - nxt1;
else
OP(nxt) = NOTHING; /* Cannot beautify */
}
nxt1 = nnxt;
}
#endif
/* Optimize again: */
study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
NULL, stopparen, recursed, NULL, 0,depth+1);
}
else
oscan->flags = 0;
}
else if ((OP(oscan) == CURLYX)
&& (flags & SCF_WHILEM_VISITED_POS)
/* See the comment on a similar expression above.
However, this time it's not a subexpression
we care about, but the expression itself. */
&& (maxcount == REG_INFTY)
&& data && ++data->whilem_c < 16) {
/* This stays as CURLYX, we can put the count/of pair. */
/* Find WHILEM (as in regexec.c) */
regnode *nxt = oscan + NEXT_OFF(oscan);
if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
nxt += ARG(nxt);
PREVOPER(nxt)->flags = (U8)(data->whilem_c
| (RExC_whilem_seen << 4)); /* On WHILEM */
}
if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (flags & SCF_DO_SUBSTR) {
SV *last_str = NULL;
int counted = mincount != 0;
if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
#if defined(SPARC64_GCC_WORKAROUND)
I32 b = 0;
STRLEN l = 0;
const char *s = NULL;
I32 old = 0;
if (pos_before >= data->last_start_min)
b = pos_before;
else
b = data->last_start_min;
l = 0;
s = SvPV_const(data->last_found, l);
old = b - data->last_start_min;
#else
I32 b = pos_before >= data->last_start_min
? pos_before : data->last_start_min;
STRLEN l;
const char * const s = SvPV_const(data->last_found, l);
I32 old = b - data->last_start_min;
#endif
if (UTF)
old = utf8_hop((U8*)s, old) - (U8*)s;
l -= old;
/* Get the added string: */
last_str = newSVpvn_utf8(s + old, l, UTF);
if (deltanext == 0 && pos_before == b) {
/* What was added is a constant string */
if (mincount > 1) {
SvGROW(last_str, (mincount * l) + 1);
repeatcpy(SvPVX(last_str) + l,
SvPVX_const(last_str), l, mincount - 1);
SvCUR_set(last_str, SvCUR(last_str) * mincount);
/* Add additional parts. */
SvCUR_set(data->last_found,
SvCUR(data->last_found) - l);
sv_catsv(data->last_found, last_str);
{
SV * sv = data->last_found;
MAGIC *mg =
SvUTF8(sv) && SvMAGICAL(sv) ?
mg_find(sv, PERL_MAGIC_utf8) : NULL;
if (mg && mg->mg_len >= 0)
mg->mg_len += CHR_SVLEN(last_str) - l;
}
data->last_end += l * (mincount - 1);
}
} else {
/* start offset must point into the last copy */
data->last_start_min += minnext * (mincount - 1);
data->last_start_max += is_inf ? I32_MAX
: (maxcount - 1) * (minnext + data->pos_delta);
}
}
/* It is counted once already... */
data->pos_min += minnext * (mincount - counted);
data->pos_delta += - counted * deltanext +
(minnext + deltanext) * maxcount - minnext * mincount;
if (mincount != maxcount) {
/* Cannot extend fixed substrings found inside
the group. */
SCAN_COMMIT(pRExC_state,data,minlenp);
if (mincount && last_str) {
SV * const sv = data->last_found;
MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
mg_find(sv, PERL_MAGIC_utf8) : NULL;
if (mg)
mg->mg_len = -1;
sv_setsv(sv, last_str);
data->last_end = data->pos_min;
data->last_start_min =
data->pos_min - CHR_SVLEN(last_str);
data->last_start_max = is_inf
? I32_MAX
: data->pos_min + data->pos_delta
- CHR_SVLEN(last_str);
}
data->longest = &(data->longest_float);
}
SvREFCNT_dec(last_str);
}
if (data && (fl & SF_HAS_EVAL))
data->flags |= SF_HAS_EVAL;
optimize_curly_tail:
if (OP(oscan) != CURLYX) {
while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
&& NEXT_OFF(next))
NEXT_OFF(oscan) += NEXT_OFF(next);
}
continue;
default: /* REF, ANYOFV, and CLUMP only? */
if (flags & SCF_DO_SUBSTR) {
SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
data->longest = &(data->longest_float);
}
is_inf = is_inf_internal = 1;
if (flags & SCF_DO_STCLASS_OR)
cl_anything(pRExC_state, data->start_class);
flags &= ~SCF_DO_STCLASS;
break;
}
}
else if (OP(scan) == LNBREAK) {
if (flags & SCF_DO_STCLASS) {
int value = 0;
data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
if (flags & SCF_DO_STCLASS_AND) {
for (value = 0; value < 256; value++)
if (!is_VERTWS_cp(value))
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
else {
for (value = 0; value < 256; value++)
if (is_VERTWS_cp(value))
ANYOF_BITMAP_SET(data->start_class, value);
}
if (flags & SCF_DO_STCLASS_OR)
cl_and(data->start_class, and_withp);
flags &= ~SCF_DO_STCLASS;
}
min += 1;
delta += 1;
if (flags & SCF_DO_SUBSTR) {
SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
data->pos_min += 1;
data->pos_delta += 1;
data->longest = &(data->longest_float);
}
}
else if (OP(scan) == FOLDCHAR) {
int d = ARG(scan) == LATIN_SMALL_LETTER_SHARP_S ? 1 : 2;
flags &= ~SCF_DO_STCLASS;
min += 1;
delta += d;
if (flags & SCF_DO_SUBSTR) {
SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
data->pos_min += 1;
data->pos_delta += d;
data->longest = &(data->longest_float);
}
}
else if (REGNODE_SIMPLE(OP(scan))) {
int value = 0;
if (flags & SCF_DO_SUBSTR) {
SCAN_COMMIT(pRExC_state,data,minlenp);
data->pos_min++;
}
min++;
if (flags & SCF_DO_STCLASS) {
data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
/* Some of the logic below assumes that switching
locale on will only add false positives. */
switch (PL_regkind[OP(scan)]) {
case SANY:
default:
do_default:
/* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
cl_anything(pRExC_state, data->start_class);
break;
case REG_ANY:
if (OP(scan) == SANY)
goto do_default;
if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
|| ANYOF_CLASS_TEST_ANY_SET(data->start_class));
cl_anything(pRExC_state, data->start_class);
}
if (flags & SCF_DO_STCLASS_AND || !value)
ANYOF_BITMAP_CLEAR(data->start_class,'\n');
break;
case ANYOF:
if (flags & SCF_DO_STCLASS_AND)
cl_and(data->start_class,
(struct regnode_charclass_class*)scan);
else
cl_or(pRExC_state, data->start_class,
(struct regnode_charclass_class*)scan);
break;
case ALNUM:
if (flags & SCF_DO_STCLASS_AND) {
if (!(data->start_class->flags & ANYOF_LOCALE)) {
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
if (OP(scan) == ALNUMU) {
for (value = 0; value < 256; value++) {
if (!isWORDCHAR_L1(value)) {
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
}
} else {
for (value = 0; value < 256; value++) {
if (!isALNUM(value)) {
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
}
}
}
}
else {
if (data->start_class->flags & ANYOF_LOCALE)
ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
/* Even if under locale, set the bits for non-locale
* in case it isn't a true locale-node. This will
* create false positives if it truly is locale */
if (OP(scan) == ALNUMU) {
for (value = 0; value < 256; value++) {
if (isWORDCHAR_L1(value)) {
ANYOF_BITMAP_SET(data->start_class, value);
}
}
} else {
for (value = 0; value < 256; value++) {
if (isALNUM(value)) {
ANYOF_BITMAP_SET(data->start_class, value);
}
}
}
}
break;
case NALNUM:
if (flags & SCF_DO_STCLASS_AND) {
if (!(data->start_class->flags & ANYOF_LOCALE)) {
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
if (OP(scan) == NALNUMU) {
for (value = 0; value < 256; value++) {
if (isWORDCHAR_L1(value)) {
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
}
} else {
for (value = 0; value < 256; value++) {
if (isALNUM(value)) {
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
}
}
}
}
else {
if (data->start_class->flags & ANYOF_LOCALE)
ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
/* Even if under locale, set the bits for non-locale in
* case it isn't a true locale-node. This will create
* false positives if it truly is locale */
if (OP(scan) == NALNUMU) {
for (value = 0; value < 256; value++) {
if (! isWORDCHAR_L1(value)) {
ANYOF_BITMAP_SET(data->start_class, value);
}
}
} else {
for (value = 0; value < 256; value++) {
if (! isALNUM(value)) {
ANYOF_BITMAP_SET(data->start_class, value);
}
}
}
}
break;
case SPACE:
if (flags & SCF_DO_STCLASS_AND) {
if (!(data->start_class->flags & ANYOF_LOCALE)) {
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
if (OP(scan) == SPACEU) {
for (value = 0; value < 256; value++) {
if (!isSPACE_L1(value)) {
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
}
} else {
for (value = 0; value < 256; value++) {
if (!isSPACE(value)) {
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
}
}
}
}
else {
if (data->start_class->flags & ANYOF_LOCALE) {
ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
}
if (OP(scan) == SPACEU) {
for (value = 0; value < 256; value++) {
if (isSPACE_L1(value)) {
ANYOF_BITMAP_SET(data->start_class, value);
}
}
} else {
for (value = 0; value < 256; value++) {
if (isSPACE(value)) {
ANYOF_BITMAP_SET(data->start_class, value);
}
}
}
}
break;
case NSPACE:
if (flags & SCF_DO_STCLASS_AND) {
if (!(data->start_class->flags & ANYOF_LOCALE)) {
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
if (OP(scan) == NSPACEU) {
for (value = 0; value < 256; value++) {
if (isSPACE_L1(value)) {
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
}
} else {
for (value = 0; value < 256; value++) {
if (isSPACE(value)) {
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
}
}
}
}
else {
if (data->start_class->flags & ANYOF_LOCALE)
ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
if (OP(scan) == NSPACEU) {
for (value = 0; value < 256; value++) {
if (!isSPACE_L1(value)) {
ANYOF_BITMAP_SET(data->start_class, value);
}
}
}
else {
for (value = 0; value < 256; value++) {
if (!isSPACE(value)) {
ANYOF_BITMAP_SET(data->start_class, value);
}
}
}
}
break;
case DIGIT:
if (flags & SCF_DO_STCLASS_AND) {
if (!(data->start_class->flags & ANYOF_LOCALE)) {
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
for (value = 0; value < 256; value++)
if (!isDIGIT(value))
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
}
else {
if (data->start_class->flags & ANYOF_LOCALE)
ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
for (value = 0; value < 256; value++)
if (isDIGIT(value))
ANYOF_BITMAP_SET(data->start_class, value);
}
break;
case NDIGIT:
if (flags & SCF_DO_STCLASS_AND) {
if (!(data->start_class->flags & ANYOF_LOCALE))
ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
for (value = 0; value < 256; value++)
if (isDIGIT(value))
ANYOF_BITMAP_CLEAR(data->start_class, value);
}
else {
if (data->start_class->flags & ANYOF_LOCALE)
ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
for (value = 0; value < 256; value++)
if (!isDIGIT(value))
ANYOF_BITMAP_SET(data->start_class, value);
}
break;
CASE_SYNST_FNC(VERTWS);
CASE_SYNST_FNC(HORIZWS);
}
if (flags & SCF_DO_STCLASS_OR)
cl_and(data->start_class, and_withp);
flags &= ~SCF_DO_STCLASS;
}
}
else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
data->flags |= (OP(scan) == MEOL
? SF_BEFORE_MEOL
: SF_BEFORE_SEOL);
}
else if ( PL_regkind[OP(scan)] == BRANCHJ
/* Lookbehind, or need to calculate parens/evals/stclass: */
&& (scan->flags || data || (flags & SCF_DO_STCLASS))
&& (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
|| OP(scan) == UNLESSM )
{
/* Negative Lookahead/lookbehind
In this case we can't do fixed string optimisation.
*/
I32 deltanext, minnext, fake = 0;
regnode *nscan;
struct regnode_charclass_class intrnl;
int f = 0;
data_fake.flags = 0;
if (data) {
data_fake.whilem_c = data->whilem_c;
data_fake.last_closep = data->last_closep;
}
else
data_fake.last_closep = &fake;
data_fake.pos_delta = delta;
if ( flags & SCF_DO_STCLASS && !scan->flags
&& OP(scan) == IFMATCH ) { /* Lookahead */
cl_init(pRExC_state, &intrnl);
data_fake.start_class = &intrnl;
f |= SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
next = regnext(scan);
nscan = NEXTOPER(NEXTOPER(scan));
minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
last, &data_fake, stopparen, recursed, NULL, f, depth+1);
if (scan->flags) {
if (deltanext) {
FAIL("Variable length lookbehind not implemented");
}
else if (minnext > (I32)U8_MAX) {
FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
}
scan->flags = (U8)minnext;
}
if (data) {
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
}
if (f & SCF_DO_STCLASS_AND) {
if (flags & SCF_DO_STCLASS_OR) {
/* OR before, AND after: ideally we would recurse with
* data_fake to get the AND applied by study of the
* remainder of the pattern, and then derecurse;
* *** HACK *** for now just treat as "no information".
* See [perl #56690].
*/
cl_init(pRExC_state, data->start_class);
} else {
/* AND before and after: combine and continue */
const int was = (data->start_class->flags & ANYOF_EOS);
cl_and(data->start_class, &intrnl);
if (was)
data->start_class->flags |= ANYOF_EOS;
}
}
}
#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
else {
/* Positive Lookahead/lookbehind
In this case we can do fixed string optimisation,
but we must be careful about it. Note in the case of
lookbehind the positions will be offset by the minimum
length of the pattern, something we won't know about
until after the recurse.
*/
I32 deltanext, fake = 0;
regnode *nscan;
struct regnode_charclass_class intrnl;
int f = 0;
/* We use SAVEFREEPV so that when the full compile
is finished perl will clean up the allocated
minlens when it's all done. This way we don't
have to worry about freeing them when we know
they wont be used, which would be a pain.
*/
I32 *minnextp;
Newx( minnextp, 1, I32 );
SAVEFREEPV(minnextp);
if (data) {
StructCopy(data, &data_fake, scan_data_t);
if ((flags & SCF_DO_SUBSTR) && data->last_found) {
f |= SCF_DO_SUBSTR;
if (scan->flags)
SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
data_fake.last_found=newSVsv(data->last_found);
}
}
else
data_fake.last_closep = &fake;
data_fake.flags = 0;
data_fake.pos_delta = delta;
if (is_inf)
data_fake.flags |= SF_IS_INF;
if ( flags & SCF_DO_STCLASS && !scan->flags
&& OP(scan) == IFMATCH ) { /* Lookahead */
cl_init(pRExC_state, &intrnl);
data_fake.start_class = &intrnl;
f |= SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
next = regnext(scan);
nscan = NEXTOPER(NEXTOPER(scan));
*minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
last, &data_fake, stopparen, recursed, NULL, f,depth+1);
if (scan->flags) {
if (deltanext) {
FAIL("Variable length lookbehind not implemented");
}
else if (*minnextp > (I32)U8_MAX) {
FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
}
scan->flags = (U8)*minnextp;
}
*minnextp += min;
if (f & SCF_DO_STCLASS_AND) {
const int was = (data->start_class->flags & ANYOF_EOS);
cl_and(data->start_class, &intrnl);
if (was)
data->start_class->flags |= ANYOF_EOS;
}
if (data) {
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
if (RExC_rx->minlen<*minnextp)
RExC_rx->minlen=*minnextp;
SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
SvREFCNT_dec(data_fake.last_found);
if ( data_fake.minlen_fixed != minlenp )
{
data->offset_fixed= data_fake.offset_fixed;
data->minlen_fixed= data_fake.minlen_fixed;
data->lookbehind_fixed+= scan->flags;
}
if ( data_fake.minlen_float != minlenp )
{
data->minlen_float= data_fake.minlen_float;
data->offset_float_min=data_fake.offset_float_min;
data->offset_float_max=data_fake.offset_float_max;
data->lookbehind_float+= scan->flags;
}
}
}
}
#endif
}
else if (OP(scan) == OPEN) {
if (stopparen != (I32)ARG(scan))
pars++;
}
else if (OP(scan) == CLOSE) {
if (stopparen == (I32)ARG(scan)) {
break;
}
if ((I32)ARG(scan) == is_par) {
next = regnext(scan);
if ( next && (OP(next) != WHILEM) && next < last)
is_par = 0; /* Disable optimization */
}
if (data)
*(data->last_closep) = ARG(scan);
}
else if (OP(scan) == EVAL) {
if (data)
data->flags |= SF_HAS_EVAL;
}
else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
if (flags & SCF_DO_SUBSTR) {
SCAN_COMMIT(pRExC_state,data,minlenp);
flags &= ~SCF_DO_SUBSTR;
}
if (data && OP(scan)==ACCEPT) {
data->flags |= SCF_SEEN_ACCEPT;
if (stopmin > min)
stopmin = min;
}
}
else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
{
if (flags & SCF_DO_SUBSTR) {
SCAN_COMMIT(pRExC_state,data,minlenp);
data->longest = &(data->longest_float);
}
is_inf = is_inf_internal = 1;
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
cl_anything(pRExC_state, data->start_class);
flags &= ~SCF_DO_STCLASS;
}
else if (OP(scan) == GPOS) {
if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
!(delta || is_inf || (data && data->pos_delta)))
{
if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
RExC_rx->extflags |= RXf_ANCH_GPOS;
if (RExC_rx->gofs < (U32)min)
RExC_rx->gofs = min;
} else {
RExC_rx->extflags |= RXf_GPOS_FLOAT;
RExC_rx->gofs = 0;
}
}
#ifdef TRIE_STUDY_OPT
#ifdef FULL_TRIE_STUDY
else if (PL_regkind[OP(scan)] == TRIE) {
/* NOTE - There is similar code to this block above for handling
BRANCH nodes on the initial study. If you change stuff here
check there too. */
regnode *trie_node= scan;
regnode *tail= regnext(scan);
reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
I32 max1 = 0, min1 = I32_MAX;
struct regnode_charclass_class accum;
if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
if (flags & SCF_DO_STCLASS)
cl_init_zero(pRExC_state, &accum);
if (!trie->jump) {
min1= trie->minlen;
max1= trie->maxlen;
} else {
const regnode *nextbranch= NULL;
U32 word;
for ( word=1 ; word <= trie->wordcount ; word++)
{
I32 deltanext=0, minnext=0, f = 0, fake;
struct regnode_charclass_class this_class;
data_fake.flags = 0;
if (data) {
data_fake.whilem_c = data->whilem_c;
data_fake.last_closep = data->last_closep;
}
else
data_fake.last_closep = &fake;
data_fake.pos_delta = delta;
if (flags & SCF_DO_STCLASS) {
cl_init(pRExC_state, &this_class);
data_fake.start_class = &this_class;
f = SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
if (trie->jump[word]) {
if (!nextbranch)
nextbranch = trie_node + trie->jump[0];
scan= trie_node + trie->jump[word];
/* We go from the jump point to the branch that follows
it. Note this means we need the vestigal unused branches
even though they arent otherwise used.
*/
minnext = study_chunk(pRExC_state, &scan, minlenp,
&deltanext, (regnode *)nextbranch, &data_fake,
stopparen, recursed, NULL, f,depth+1);
}
if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
nextbranch= regnext((regnode*)nextbranch);
if (min1 > (I32)(minnext + trie->minlen))
min1 = minnext + trie->minlen;
if (max1 < (I32)(minnext + deltanext + trie->maxlen))
max1 = minnext + deltanext + trie->maxlen;
if (deltanext == I32_MAX)
is_inf = is_inf_internal = 1;
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SCF_SEEN_ACCEPT) {
if ( stopmin > min + min1)
stopmin = min + min1;
flags &= ~SCF_DO_SUBSTR;
if (data)
data->flags |= SCF_SEEN_ACCEPT;
}
if (data) {
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
}
if (flags & SCF_DO_STCLASS)
cl_or(pRExC_state, &accum, &this_class);
}
}
if (flags & SCF_DO_SUBSTR) {
data->pos_min += min1;
data->pos_delta += max1 - min1;
if (max1 != min1 || is_inf)
data->longest = &(data->longest_float);
}
min += min1;
delta += max1 - min1;
if (flags & SCF_DO_STCLASS_OR) {
cl_or(pRExC_state, data->start_class, &accum);
if (min1) {
cl_and(data->start_class, and_withp);
flags &= ~SCF_DO_STCLASS;
}
}
else if (flags & SCF_DO_STCLASS_AND) {
if (min1) {
cl_and(data->start_class, &accum);
flags &= ~SCF_DO_STCLASS;
}
else {
/* Switch to OR mode: cache the old value of
* data->start_class */
INIT_AND_WITHP;
StructCopy(data->start_class, and_withp,
struct regnode_charclass_class);
flags &= ~SCF_DO_STCLASS_AND;
StructCopy(&accum, data->start_class,
struct regnode_charclass_class);
flags |= SCF_DO_STCLASS_OR;
data->start_class->flags |= ANYOF_EOS;
}
}
scan= tail;
continue;
}
#else
else if (PL_regkind[OP(scan)] == TRIE) {
reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
U8*bang=NULL;
min += trie->minlen;
delta += (trie->maxlen - trie->minlen);
flags &= ~SCF_DO_STCLASS; /* xxx */
if (flags & SCF_DO_SUBSTR) {
SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
data->pos_min += trie->minlen;
data->pos_delta += (trie->maxlen - trie->minlen);
if (trie->maxlen != trie->minlen)
data->longest = &(data->longest_float);
}
if (trie->jump) /* no more substrings -- for now /grr*/
flags &= ~SCF_DO_SUBSTR;
}
#endif /* old or new */
#endif /* TRIE_STUDY_OPT */
/* Else: zero-length, ignore. */
scan = regnext(scan);
}
if (frame) {
last = frame->last;
scan = frame->next;
stopparen = frame->stop;
frame = frame->prev;
goto fake_study_recurse;
}
finish:
assert(!frame);
DEBUG_STUDYDATA("pre-fin:",data,depth);
*scanp = scan;
*deltap = is_inf_internal ? I32_MAX : delta;
if (flags & SCF_DO_SUBSTR && is_inf)
data->pos_delta = I32_MAX - data->pos_min;
if (is_par > (I32)U8_MAX)
is_par = 0;
if (is_par && pars==1 && data) {
data->flags |= SF_IN_PAR;
data->flags &= ~SF_HAS_PAR;
}
else if (pars && data) {
data->flags |= SF_HAS_PAR;
data->flags &= ~SF_IN_PAR;
}
if (flags & SCF_DO_STCLASS_OR)
cl_and(data->start_class, and_withp);
if (flags & SCF_TRIE_RESTUDY)
data->flags |= SCF_TRIE_RESTUDY;
DEBUG_STUDYDATA("post-fin:",data,depth);
return min < stopmin ? min : stopmin;
}
STATIC U32
S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
{
U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
PERL_ARGS_ASSERT_ADD_DATA;
Renewc(RExC_rxi->data,
sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
char, struct reg_data);
if(count)
Renew(RExC_rxi->data->what, count + n, U8);
else
Newx(RExC_rxi->data->what, n, U8);
RExC_rxi->data->count = count + n;
Copy(s, RExC_rxi->data->what + count, n, U8);
return count;
}
/*XXX: todo make this not included in a non debugging perl */
#ifndef PERL_IN_XSUB_RE
void
Perl_reginitcolors(pTHX)
{
dVAR;
const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
if (s) {
char *t = savepv(s);
int i = 0;
PL_colors[0] = t;
while (++i < 6) {
t = strchr(t, '\t');
if (t) {
*t = '\0';
PL_colors[i] = ++t;
}
else
PL_colors[i] = t = (char *)"";
}
} else {
int i = 0;
while (i < 6)
PL_colors[i++] = (char *)"";
}
PL_colorset = 1;
}
#endif
#ifdef TRIE_STUDY_OPT
#define CHECK_RESTUDY_GOTO \
if ( \
(data.flags & SCF_TRIE_RESTUDY) \
&& ! restudied++ \
) goto reStudy
#else
#define CHECK_RESTUDY_GOTO
#endif
/*
- pregcomp - compile a regular expression into internal code
*
* We can't allocate space until we know how big the compiled form will be,
* but we can't compile it (and thus know how big it is) until we've got a
* place to put the code. So we cheat: we compile it twice, once with code
* generation turned off and size counting turned on, and once "for real".
* This also means that we don't allocate space until we are sure that the
* thing really will compile successfully, and we never have to move the
* code and thus invalidate pointers into it. (Note that it has to be in
* one piece because free() must be able to free it all.) [NB: not true in perl]
*
* Beware that the optimization-preparation code in here knows about some
* of the structure of the compiled regexp. [I'll say.]
*/
#ifndef PERL_IN_XSUB_RE
#define RE_ENGINE_PTR &PL_core_reg_engine
#else
extern const struct regexp_engine my_reg_engine;
#define RE_ENGINE_PTR &my_reg_engine
#endif
#ifndef PERL_IN_XSUB_RE
REGEXP *
Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
{
dVAR;
HV * const table = GvHV(PL_hintgv);
PERL_ARGS_ASSERT_PREGCOMP;
/* Dispatch a request to compile a regexp to correct
regexp engine. */
if (table) {
SV **ptr= hv_fetchs(table, "regcomp", FALSE);
GET_RE_DEBUG_FLAGS_DECL;
if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
DEBUG_COMPILE_r({
PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
SvIV(*ptr));
});
return CALLREGCOMP_ENG(eng, pattern, flags);
}
}
return Perl_re_compile(aTHX_ pattern, flags);
}
#endif
REGEXP *
Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
{
dVAR;
REGEXP *rx;
struct regexp *r;
register regexp_internal *ri;
STRLEN plen;
char *exp;
char* xend;
regnode *scan;
I32 flags;
I32 minlen = 0;
U32 pm_flags;
/* these are all flags - maybe they should be turned
* into a single int with different bit masks */
I32 sawlookahead = 0;
I32 sawplus = 0;
I32 sawopen = 0;
bool used_setjump = FALSE;
regex_charset initial_charset = get_regex_charset(orig_pm_flags);
U8 jump_ret = 0;
dJMPENV;
scan_data_t data;
RExC_state_t RExC_state;
RExC_state_t * const pRExC_state = &RExC_state;
#ifdef TRIE_STUDY_OPT
int restudied;
RExC_state_t copyRExC_state;
#endif
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_RE_COMPILE;
DEBUG_r(if (!PL_colorset) reginitcolors());
RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
RExC_uni_semantics = 0;
RExC_contains_locale = 0;
/****************** LONG JUMP TARGET HERE***********************/
/* Longjmp back to here if have to switch in midstream to utf8 */
if (! RExC_orig_utf8) {
JMPENV_PUSH(jump_ret);
used_setjump = TRUE;
}
if (jump_ret == 0) { /* First time through */
exp = SvPV(pattern, plen);
xend = exp + plen;
/* ignore the utf8ness if the pattern is 0 length */
if (plen == 0) {
RExC_utf8 = RExC_orig_utf8 = 0;
}
DEBUG_COMPILE_r({
SV *dsv= sv_newmortal();
RE_PV_QUOTED_DECL(s, RExC_utf8,
dsv, exp, plen, 60);
PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
PL_colors[4],PL_colors[5],s);
});
}
else { /* longjumped back */
STRLEN len = plen;
/* If the cause for the longjmp was other than changing to utf8, pop
* our own setjmp, and longjmp to the correct handler */
if (jump_ret != UTF8_LONGJMP) {
JMPENV_POP;
JMPENV_JUMP(jump_ret);
}
GET_RE_DEBUG_FLAGS;
/* It's possible to write a regexp in ascii that represents Unicode
codepoints outside of the byte range, such as via \x{100}. If we
detect such a sequence we have to convert the entire pattern to utf8
and then recompile, as our sizing calculation will have been based
on 1 byte == 1 character, but we will need to use utf8 to encode
at least some part of the pattern, and therefore must convert the whole
thing.
-- dmq */
DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
"UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
exp = (char*)Perl_bytes_to_utf8(aTHX_ (U8*)SvPV(pattern, plen), &len);
xend = exp + len;
RExC_orig_utf8 = RExC_utf8 = 1;
SAVEFREEPV(exp);
}
#ifdef TRIE_STUDY_OPT
restudied = 0;
#endif
pm_flags = orig_pm_flags;
if (initial_charset == REGEX_LOCALE_CHARSET) {
RExC_contains_locale = 1;
}
else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
/* Set to use unicode semantics if the pattern is in utf8 and has the
* 'depends' charset specified, as it means unicode when utf8 */
set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
}
RExC_precomp = exp;
RExC_flags = pm_flags;
RExC_sawback = 0;
RExC_seen = 0;
RExC_in_lookbehind = 0;
RExC_seen_zerolen = *exp == '^' ? -1 : 0;
RExC_seen_evals = 0;
RExC_extralen = 0;
RExC_override_recoding = 0;
/* First pass: determine size, legality. */
RExC_parse = exp;
RExC_start = exp;
RExC_end = xend;
RExC_naughty = 0;
RExC_npar = 1;
RExC_nestroot = 0;
RExC_size = 0L;
RExC_emit = &PL_regdummy;
RExC_whilem_seen = 0;
RExC_open_parens = NULL;
RExC_close_parens = NULL;
RExC_opend = NULL;
RExC_paren_names = NULL;
#ifdef DEBUGGING
RExC_paren_name_list = NULL;
#endif
RExC_recurse = NULL;
RExC_recurse_count = 0;
#if 0 /* REGC() is (currently) a NOP at the first pass.
* Clever compilers notice this and complain. --jhi */
REGC((U8)REG_MAGIC, (char*)RExC_emit);
#endif
DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"));
if (reg(pRExC_state, 0, &flags,1) == NULL) {
RExC_precomp = NULL;
return(NULL);
}
/* Here, finished first pass. Get rid of any added setjmp */
if (used_setjump) {
JMPENV_POP;
}
DEBUG_PARSE_r({
PerlIO_printf(Perl_debug_log,
"Required size %"IVdf" nodes\n"
"Starting second pass (creation)\n",
(IV)RExC_size);
RExC_lastnum=0;
RExC_lastparse=NULL;
});
/* The first pass could have found things that force Unicode semantics */
if ((RExC_utf8 || RExC_uni_semantics)
&& get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
{
set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
}
/* Small enough for pointer-storage convention?
If extralen==0, this means that we will not need long jumps. */
if (RExC_size >= 0x10000L && RExC_extralen)
RExC_size += RExC_extralen;
else
RExC_extralen = 0;
if (RExC_whilem_seen > 15)
RExC_whilem_seen = 15;
/* Allocate space and zero-initialize. Note, the two step process
of zeroing when in debug mode, thus anything assigned has to
happen after that */
rx = (REGEXP*) newSV_type(SVt_REGEXP);
r = (struct regexp*)SvANY(rx);
Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
char, regexp_internal);
if ( r == NULL || ri == NULL )
FAIL("Regexp out of space");
#ifdef DEBUGGING
/* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
#else
/* bulk initialize base fields with 0. */
Zero(ri, sizeof(regexp_internal), char);
#endif
/* non-zero initialization begins here */
RXi_SET( r, ri );
r->engine= RE_ENGINE_PTR;
r->extflags = pm_flags;
{
bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
/* The caret is output if there are any defaults: if not all the STD
* flags are set, or if no character set specifier is needed */
bool has_default =
(((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
|| ! has_charset);
bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
>> RXf_PMf_STD_PMMOD_SHIFT);
const char *fptr = STD_PAT_MODS; /*"msix"*/
char *p;
/* Allocate for the worst case, which is all the std flags are turned
* on. If more precision is desired, we could do a population count of
* the flags set. This could be done with a small lookup table, or by
* shifting, masking and adding, or even, when available, assembly
* language for a machine-language population count.
* We never output a minus, as all those are defaults, so are
* covered by the caret */
const STRLEN wraplen = plen + has_p + has_runon
+ has_default /* If needs a caret */
/* If needs a character set specifier */
+ ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ (sizeof(STD_PAT_MODS) - 1)
+ (sizeof("(?:)") - 1);
p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
SvPOK_on(rx);
SvFLAGS(rx) |= SvUTF8(pattern);
*p++='('; *p++='?';
/* If a default, cover it using the caret */
if (has_default) {
*p++= DEFAULT_PAT_MOD;
}
if (has_charset) {
STRLEN len;
const char* const name = get_regex_charset_name(r->extflags, &len);
Copy(name, p, len, char);
p += len;
}
if (has_p)
*p++ = KEEPCOPY_PAT_MOD; /*'p'*/
{
char ch;
while((ch = *fptr++)) {
if(reganch & 1)
*p++ = ch;
reganch >>= 1;
}
}
*p++ = ':';
Copy(RExC_precomp, p, plen, char);
assert ((RX_WRAPPED(rx) - p) < 16);
r->pre_prefix = p - RX_WRAPPED(rx);
p += plen;
if (has_runon)
*p++ = '\n';
*p++ = ')';
*p = 0;
SvCUR_set(rx, p - SvPVX_const(rx));
}
r->intflags = 0;
r->nparens = RExC_npar - 1; /* set early to validate backrefs */
if (RExC_seen & REG_SEEN_RECURSE) {
Newxz(RExC_open_parens, RExC_npar,regnode *);
SAVEFREEPV(RExC_open_parens);
Newxz(RExC_close_parens,RExC_npar,regnode *);
SAVEFREEPV(RExC_close_parens);
}
/* Useful during FAIL. */
#ifdef RE_TRACK_PATTERN_OFFSETS
Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
"%s %"UVuf" bytes for offset annotations.\n",
ri->u.offsets ? "Got" : "Couldn't get",
(UV)((2*RExC_size+1) * sizeof(U32))));
#endif
SetProgLen(ri,RExC_size);
RExC_rx_sv = rx;
RExC_rx = r;
RExC_rxi = ri;
/* Second pass: emit code. */
RExC_flags = pm_flags; /* don't let top level (?i) bleed */
RExC_parse = exp;
RExC_end = xend;
RExC_naughty = 0;
RExC_npar = 1;
RExC_emit_start = ri->program;
RExC_emit = ri->program;
RExC_emit_bound = ri->program + RExC_size + 1;
/* Store the count of eval-groups for security checks: */
RExC_rx->seen_evals = RExC_seen_evals;
REGC((U8)REG_MAGIC, (char*) RExC_emit++);
if (reg(pRExC_state, 0, &flags,1) == NULL) {
ReREFCNT_dec(rx);
return(NULL);
}
/* XXXX To minimize changes to RE engine we always allocate
3-units-long substrs field. */
Newx(r->substrs, 1, struct reg_substr_data);
if (RExC_recurse_count) {
Newxz(RExC_recurse,RExC_recurse_count,regnode *);
SAVEFREEPV(RExC_recurse);
}
reStudy:
r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
Zero(r->substrs, 1, struct reg_substr_data);
#ifdef TRIE_STUDY_OPT
if (!restudied) {
StructCopy(&zero_scan_data, &data, scan_data_t);
copyRExC_state = RExC_state;
} else {
U32 seen=RExC_seen;
DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
RExC_state = copyRExC_state;
if (seen & REG_TOP_LEVEL_BRANCHES)
RExC_seen |= REG_TOP_LEVEL_BRANCHES;
else
RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
if (data.last_found) {
SvREFCNT_dec(data.longest_fixed);
SvREFCNT_dec(data.longest_float);
SvREFCNT_dec(data.last_found);
}
StructCopy(&zero_scan_data, &data, scan_data_t);
}
#else
StructCopy(&zero_scan_data, &data, scan_data_t);
#endif
/* Dig out information for optimizations. */
r->extflags = RExC_flags; /* was pm_op */
/*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
if (UTF)
SvUTF8_on(rx); /* Unicode in it? */
ri->regstclass = NULL;
if (RExC_naughty >= 10) /* Probably an expensive pattern. */
r->intflags |= PREGf_NAUGHTY;
scan = ri->program + 1; /* First BRANCH. */
/* testing for BRANCH here tells us whether there is "must appear"
data in the pattern. If there is then we can use it for optimisations */
if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
I32 fake;
STRLEN longest_float_length, longest_fixed_length;
struct regnode_charclass_class ch_class; /* pointed to by data */
int stclass_flag;
I32 last_close = 0; /* pointed to by data */
regnode *first= scan;
regnode *first_next= regnext(first);
/*
* Skip introductions and multiplicators >= 1
* so that we can extract the 'meat' of the pattern that must
* match in the large if() sequence following.
* NOTE that EXACT is NOT covered here, as it is normally
* picked up by the optimiser separately.
*
* This is unfortunate as the optimiser isnt handling lookahead
* properly currently.
*
*/
while ((OP(first) == OPEN && (sawopen = 1)) ||
/* An OR of *one* alternative - should not happen now. */
(OP(first) == BRANCH && OP(first_next) != BRANCH) ||
/* for now we can't handle lookbehind IFMATCH*/
(OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
(OP(first) == PLUS) ||
(OP(first) == MINMOD) ||
/* An {n,m} with n>0 */
(PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
(OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
{
/*
* the only op that could be a regnode is PLUS, all the rest
* will be regnode_1 or regnode_2.
*
*/
if (OP(first) == PLUS)
sawplus = 1;
else
first += regarglen[OP(first)];
first = NEXTOPER(first);
first_next= regnext(first);
}
/* Starting-point info. */
again:
DEBUG_PEEP("first:",first,0);
/* Ignore EXACT as we deal with it later. */
if (PL_regkind[OP(first)] == EXACT) {
if (OP(first) == EXACT)
NOOP; /* Empty, get anchored substr later. */
else
ri->regstclass = first;
}
#ifdef TRIE_STCLASS
else if (PL_regkind[OP(first)] == TRIE &&
((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
{
regnode *trie_op;
/* this can happen only on restudy */
if ( OP(first) == TRIE ) {
struct regnode_1 *trieop = (struct regnode_1 *)
PerlMemShared_calloc(1, sizeof(struct regnode_1));
StructCopy(first,trieop,struct regnode_1);
trie_op=(regnode *)trieop;
} else {
struct regnode_charclass *trieop = (struct regnode_charclass *)
PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
StructCopy(first,trieop,struct regnode_charclass);
trie_op=(regnode *)trieop;
}
OP(trie_op)+=2;
make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
ri->regstclass = trie_op;
}
#endif
else if (REGNODE_SIMPLE(OP(first)))
ri->regstclass = first;
else if (PL_regkind[OP(first)] == BOUND ||
PL_regkind[OP(first)] == NBOUND)
ri->regstclass = first;
else if (PL_regkind[OP(first)] == BOL) {
r->extflags |= (OP(first) == MBOL
? RXf_ANCH_MBOL
: (OP(first) == SBOL
? RXf_ANCH_SBOL
: RXf_ANCH_BOL));
first = NEXTOPER(first);
goto again;
}
else if (OP(first) == GPOS) {
r->extflags |= RXf_ANCH_GPOS;
first = NEXTOPER(first);
goto again;
}
else if ((!sawopen || !RExC_sawback) &&
(OP(first) == STAR &&
PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
!(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
{
/* turn .* into ^.* with an implied $*=1 */
const int type =
(OP(NEXTOPER(first)) == REG_ANY)
? RXf_ANCH_MBOL
: RXf_ANCH_SBOL;
r->extflags |= type;
r->intflags |= PREGf_IMPLICIT;
first = NEXTOPER(first);
goto again;
}
if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
&& !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
/* x+ must match at the 1st pos of run of x's */
r->intflags |= PREGf_SKIP;
/* Scan is after the zeroth branch, first is atomic matcher. */
#ifdef TRIE_STUDY_OPT
DEBUG_PARSE_r(
if (!restudied)
PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
(IV)(first - scan + 1))
);
#else
DEBUG_PARSE_r(
PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
(IV)(first - scan + 1))
);
#endif
/*
* If there's something expensive in the r.e., find the
* longest literal string that must appear and make it the
* regmust. Resolve ties in favor of later strings, since
* the regstart check works with the beginning of the r.e.
* and avoiding duplication strengthens checking. Not a
* strong reason, but sufficient in the absence of others.
* [Now we resolve ties in favor of the earlier string if
* it happens that c_offset_min has been invalidated, since the
* earlier string may buy us something the later one won't.]
*/
data.longest_fixed = newSVpvs("");
data.longest_float = newSVpvs("");
data.last_found = newSVpvs("");
data.longest = &(data.longest_fixed);
first = scan;
if (!ri->regstclass) {
cl_init(pRExC_state, &ch_class);
data.start_class = &ch_class;
stclass_flag = SCF_DO_STCLASS_AND;
} else /* XXXX Check for BOUND? */
stclass_flag = 0;
data.last_closep = &last_close;
minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
&data, -1, NULL, NULL,
SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
CHECK_RESTUDY_GOTO;
if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
&& data.last_start_min == 0 && data.last_end > 0
&& !RExC_seen_zerolen
&& !(RExC_seen & REG_SEEN_VERBARG)
&& (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
r->extflags |= RXf_CHECK_ALL;
scan_commit(pRExC_state, &data,&minlen,0);
SvREFCNT_dec(data.last_found);
/* Note that code very similar to this but for anchored string
follows immediately below, changes may need to be made to both.
Be careful.
*/
longest_float_length = CHR_SVLEN(data.longest_float);
if (longest_float_length
|| (data.flags & SF_FL_BEFORE_EOL
&& (!(data.flags & SF_FL_BEFORE_MEOL)
|| (RExC_flags & RXf_PMf_MULTILINE))))
{
I32 t,ml;
if (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
&& data.offset_fixed == data.offset_float_min
&& SvCUR(data.longest_fixed) == SvCUR(data.longest_float))
goto remove_float; /* As in (a)+. */
/* copy the information about the longest float from the reg_scan_data
over to the program. */
if (SvUTF8(data.longest_float)) {
r->float_utf8 = data.longest_float;
r->float_substr = NULL;
} else {
r->float_substr = data.longest_float;
r->float_utf8 = NULL;
}
/* float_end_shift is how many chars that must be matched that
follow this item. We calculate it ahead of time as once the
lookbehind offset is added in we lose the ability to correctly
calculate it.*/
ml = data.minlen_float ? *(data.minlen_float)
: (I32)longest_float_length;
r->float_end_shift = ml - data.offset_float_min
- longest_float_length + (SvTAIL(data.longest_float) != 0)
+ data.lookbehind_float;
r->float_min_offset = data.offset_float_min - data.lookbehind_float;
r->float_max_offset = data.offset_float_max;
if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
r->float_max_offset -= data.lookbehind_float;
t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
&& (!(data.flags & SF_FL_BEFORE_MEOL)
|| (RExC_flags & RXf_PMf_MULTILINE)));
fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
}
else {
remove_float:
r->float_substr = r->float_utf8 = NULL;
SvREFCNT_dec(data.longest_float);
longest_float_length = 0;
}
/* Note that code very similar to this but for floating string
is immediately above, changes may need to be made to both.
Be careful.
*/
longest_fixed_length = CHR_SVLEN(data.longest_fixed);
if (longest_fixed_length
|| (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
&& (!(data.flags & SF_FIX_BEFORE_MEOL)
|| (RExC_flags & RXf_PMf_MULTILINE))))
{
I32 t,ml;
/* copy the information about the longest fixed
from the reg_scan_data over to the program. */
if (SvUTF8(data.longest_fixed)) {
r->anchored_utf8 = data.longest_fixed;
r->anchored_substr = NULL;
} else {
r->anchored_substr = data.longest_fixed;
r->anchored_utf8 = NULL;
}
/* fixed_end_shift is how many chars that must be matched that
follow this item. We calculate it ahead of time as once the
lookbehind offset is added in we lose the ability to correctly
calculate it.*/
ml = data.minlen_fixed ? *(data.minlen_fixed)
: (I32)longest_fixed_length;
r->anchored_end_shift = ml - data.offset_fixed
- longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
+ data.lookbehind_fixed;
r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
&& (!(data.flags & SF_FIX_BEFORE_MEOL)
|| (RExC_flags & RXf_PMf_MULTILINE)));
fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
}
else {
r->anchored_substr = r->anchored_utf8 = NULL;
SvREFCNT_dec(data.longest_fixed);
longest_fixed_length = 0;
}
if (ri->regstclass
&& (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
ri->regstclass = NULL;
if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
&& stclass_flag
&& !(data.start_class->flags & ANYOF_EOS)
&& !cl_is_anything(data.start_class))
{
const U32 n = add_data(pRExC_state, 1, "f");
data.start_class->flags |= ANYOF_IS_SYNTHETIC;
Newx(RExC_rxi->data->data[n], 1,
struct regnode_charclass_class);
StructCopy(data.start_class,
(struct regnode_charclass_class*)RExC_rxi->data->data[n],
struct regnode_charclass_class);
ri->regstclass = (regnode*)RExC_rxi->data->data[n];
r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
regprop(r, sv, (regnode*)data.start_class);
PerlIO_printf(Perl_debug_log,
"synthetic stclass \"%s\".\n",
SvPVX_const(sv));});
}
/* A temporary algorithm prefers floated substr to fixed one to dig more info. */
if (longest_fixed_length > longest_float_length) {
r->check_end_shift = r->anchored_end_shift;
r->check_substr = r->anchored_substr;
r->check_utf8 = r->anchored_utf8;
r->check_offset_min = r->check_offset_max = r->anchored_offset;
if (r->extflags & RXf_ANCH_SINGLE)
r->extflags |= RXf_NOSCAN;
}
else {
r->check_end_shift = r->float_end_shift;
r->check_substr = r->float_substr;
r->check_utf8 = r->float_utf8;
r->check_offset_min = r->float_min_offset;
r->check_offset_max = r->float_max_offset;
}
/* XXXX Currently intuiting is not compatible with ANCH_GPOS.
This should be changed ASAP! */
if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
r->extflags |= RXf_USE_INTUIT;
if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
r->extflags |= RXf_INTUIT_TAIL;
}
/* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
if ( (STRLEN)minlen < longest_float_length )
minlen= longest_float_length;
if ( (STRLEN)minlen < longest_fixed_length )
minlen= longest_fixed_length;
*/
}
else {
/* Several toplevels. Best we can is to set minlen. */
I32 fake;
struct regnode_charclass_class ch_class;
I32 last_close = 0;
DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
scan = ri->program + 1;
cl_init(pRExC_state, &ch_class);
data.start_class = &ch_class;
data.last_closep = &last_close;
minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
&data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
CHECK_RESTUDY_GOTO;
r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
= r->float_substr = r->float_utf8 = NULL;
if (!(data.start_class->flags & ANYOF_EOS)
&& !cl_is_anything(data.start_class))
{
const U32 n = add_data(pRExC_state, 1, "f");
data.start_class->flags |= ANYOF_IS_SYNTHETIC;
Newx(RExC_rxi->data->data[n], 1,
struct regnode_charclass_class);
StructCopy(data.start_class,
(struct regnode_charclass_class*)RExC_rxi->data->data[n],
struct regnode_charclass_class);
ri->regstclass = (regnode*)RExC_rxi->data->data[n];
r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
regprop(r, sv, (regnode*)data.start_class);
PerlIO_printf(Perl_debug_log,
"synthetic stclass \"%s\".\n",
SvPVX_const(sv));});
}
}
/* Guard against an embedded (?=) or (?<=) with a longer minlen than
the "real" pattern. */
DEBUG_OPTIMISE_r({
PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
(IV)minlen, (IV)r->minlen);
});
r->minlenret = minlen;
if (r->minlen < minlen)
r->minlen = minlen;
if (RExC_seen & REG_SEEN_GPOS)
r->extflags |= RXf_GPOS_SEEN;
if (RExC_seen & REG_SEEN_LOOKBEHIND)
r->extflags |= RXf_LOOKBEHIND_SEEN;
if (RExC_seen & REG_SEEN_EVAL)
r->extflags |= RXf_EVAL_SEEN;
if (RExC_seen & REG_SEEN_CANY)
r->extflags |= RXf_CANY_SEEN;
if (RExC_seen & REG_SEEN_VERBARG)
r->intflags |= PREGf_VERBARG_SEEN;
if (RExC_seen & REG_SEEN_CUTGROUP)
r->intflags |= PREGf_CUTGROUP_SEEN;
if (RExC_paren_names)
RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
else
RXp_PAREN_NAMES(r) = NULL;
#ifdef STUPID_PATTERN_CHECKS
if (RX_PRELEN(rx) == 0)
r->extflags |= RXf_NULL;
if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
/* XXX: this should happen BEFORE we compile */
r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
r->extflags |= RXf_WHITE;
else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
r->extflags |= RXf_START_ONLY;
#else
if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
/* XXX: this should happen BEFORE we compile */
r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
else {
regnode *first = ri->program + 1;
U8 fop = OP(first);
if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
r->extflags |= RXf_NULL;
else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
r->extflags |= RXf_START_ONLY;
else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
&& OP(regnext(first)) == END)
r->extflags |= RXf_WHITE;
}
#endif
#ifdef DEBUGGING
if (RExC_paren_names) {
ri->name_list_idx = add_data( pRExC_state, 1, "a" );
ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
} else
#endif
ri->name_list_idx = 0;
if (RExC_recurse_count) {
for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
const regnode *scan = RExC_recurse[RExC_recurse_count-1];
ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
}
}
Newxz(r->offs, RExC_npar, regexp_paren_pair);
/* assume we don't need to swap parens around before we match */
DEBUG_DUMP_r({
PerlIO_printf(Perl_debug_log,"Final program:\n");
regdump(r);
});
#ifdef RE_TRACK_PATTERN_OFFSETS
DEBUG_OFFSETS_r(if (ri->u.offsets) {
const U32 len = ri->u.offsets[0];
U32 i;
GET_RE_DEBUG_FLAGS_DECL;
PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
for (i = 1; i <= len; i++) {
if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
(UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
}
PerlIO_printf(Perl_debug_log, "\n");
});
#endif
return rx;
}
#undef RE_ENGINE_PTR
SV*
Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
const U32 flags)
{
PERL_ARGS_ASSERT_REG_NAMED_BUFF;
PERL_UNUSED_ARG(value);
if (flags & RXapif_FETCH) {
return reg_named_buff_fetch(rx, key, flags);
} else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
Perl_croak_no_modify(aTHX);
return NULL;
} else if (flags & RXapif_EXISTS) {
return reg_named_buff_exists(rx, key, flags)
? &PL_sv_yes
: &PL_sv_no;
} else if (flags & RXapif_REGNAMES) {
return reg_named_buff_all(rx, flags);
} else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
return reg_named_buff_scalar(rx, flags);
} else {
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
return NULL;
}
}
SV*
Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
const U32 flags)
{
PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
PERL_UNUSED_ARG(lastkey);
if (flags & RXapif_FIRSTKEY)
return reg_named_buff_firstkey(rx, flags);
else if (flags & RXapif_NEXTKEY)
return reg_named_buff_nextkey(rx, flags);
else {
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
return NULL;
}
}
SV*
Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
const U32 flags)
{
AV *retarray = NULL;
SV *ret;
struct regexp *const rx = (struct regexp *)SvANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
if (flags & RXapif_ALL)
retarray=newAV();
if (rx && RXp_PAREN_NAMES(rx)) {
HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
if (he_str) {
IV i;
SV* sv_dat=HeVAL(he_str);
I32 *nums=(I32*)SvPVX(sv_dat);
for ( i=0; i<SvIVX(sv_dat); i++ ) {
if ((I32)(rx->nparens) >= nums[i]
&& rx->offs[nums[i]].start != -1
&& rx->offs[nums[i]].end != -1)
{
ret = newSVpvs("");
CALLREG_NUMBUF_FETCH(r,nums[i],ret);
if (!retarray)
return ret;
} else {
ret = newSVsv(&PL_sv_undef);
}
if (retarray)
av_push(retarray, ret);
}
if (retarray)
return newRV_noinc(MUTABLE_SV(retarray));
}
}
return NULL;
}
bool
Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
const U32 flags)
{
struct regexp *const rx = (struct regexp *)SvANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
if (rx && RXp_PAREN_NAMES(rx)) {
if (flags & RXapif_ALL) {
return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
} else {
SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
if (sv) {
SvREFCNT_dec(sv);
return TRUE;
} else {
return FALSE;
}
}
} else {
return FALSE;
}
}
SV*
Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = (struct regexp *)SvANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
if ( rx && RXp_PAREN_NAMES(rx) ) {
(void)hv_iterinit(RXp_PAREN_NAMES(rx));
return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
} else {
return FALSE;
}
}
SV*
Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = (struct regexp *)SvANY(r);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
if (rx && RXp_PAREN_NAMES(rx)) {
HV *hv = RXp_PAREN_NAMES(rx);
HE *temphe;
while ( (temphe = hv_iternext_flags(hv,0)) ) {
IV i;
IV parno = 0;
SV* sv_dat = HeVAL(temphe);
I32 *nums = (I32*)SvPVX(sv_dat);
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
if ((I32)(rx->lastparen) >= nums[i] &&
rx->offs[nums[i]].start != -1 &&
rx->offs[nums[i]].end != -1)
{
parno = nums[i];
break;
}
}
if (parno || flags & RXapif_ALL) {
return newSVhek(HeKEY_hek(temphe));
}
}
}
return NULL;
}
SV*
Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
{
SV *ret;
AV *av;
I32 length;
struct regexp *const rx = (struct regexp *)SvANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
if (rx && RXp_PAREN_NAMES(rx)) {
if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
} else if (flags & RXapif_ONE) {
ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
av = MUTABLE_AV(SvRV(ret));
length = av_len(av);
SvREFCNT_dec(ret);
return newSViv(length + 1);
} else {
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
return NULL;
}
}
return &PL_sv_undef;
}
SV*
Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = (struct regexp *)SvANY(r);
AV *av = newAV();
PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
if (rx && RXp_PAREN_NAMES(rx)) {
HV *hv= RXp_PAREN_NAMES(rx);
HE *temphe;
(void)hv_iterinit(hv);
while ( (temphe = hv_iternext_flags(hv,0)) ) {
IV i;
IV parno = 0;
SV* sv_dat = HeVAL(temphe);
I32 *nums = (I32*)SvPVX(sv_dat);
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
if ((I32)(rx->lastparen) >= nums[i] &&
rx->offs[nums[i]].start != -1 &&
rx->offs[nums[i]].end != -1)
{
parno = nums[i];
break;
}
}
if (parno || flags & RXapif_ALL) {
av_push(av, newSVhek(HeKEY_hek(temphe)));
}
}
}
return newRV_noinc(MUTABLE_SV(av));
}
void
Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
SV * const sv)
{
struct regexp *const rx = (struct regexp *)SvANY(r);
char *s = NULL;
I32 i = 0;
I32 s1, t1;
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
if (!rx->subbeg) {
sv_setsv(sv,&PL_sv_undef);
return;
}
else
if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
/* $` */
i = rx->offs[0].start;
s = rx->subbeg;
}
else
if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
/* $' */
s = rx->subbeg + rx->offs[0].end;
i = rx->sublen - rx->offs[0].end;
}
else
if ( 0 <= paren && paren <= (I32)rx->nparens &&
(s1 = rx->offs[paren].start) != -1 &&
(t1 = rx->offs[paren].end) != -1)
{
/* $& $1 ... */
i = t1 - s1;
s = rx->subbeg + s1;
} else {
sv_setsv(sv,&PL_sv_undef);
return;
}
assert(rx->sublen >= (s - rx->subbeg) + i );
if (i >= 0) {
const int oldtainted = PL_tainted;
TAINT_NOT;
sv_setpvn(sv, s, i);
PL_tainted = oldtainted;
if ( (rx->extflags & RXf_CANY_SEEN)
? (RXp_MATCH_UTF8(rx)
&& (!i || is_utf8_string((U8*)s, i)))
: (RXp_MATCH_UTF8(rx)) )
{
SvUTF8_on(sv);
}
else
SvUTF8_off(sv);
if (PL_tainting) {
if (RXp_MATCH_TAINTED(rx)) {
if (SvTYPE(sv) >= SVt_PVMG) {
MAGIC* const mg = SvMAGIC(sv);
MAGIC* mgt;
PL_tainted = 1;
SvMAGIC_set(sv, mg->mg_moremagic);
SvTAINT(sv);
if ((mgt = SvMAGIC(sv))) {
mg->mg_moremagic = mgt;
SvMAGIC_set(sv, mg);
}
} else {
PL_tainted = 1;
SvTAINT(sv);
}
} else
SvTAINTED_off(sv);
}
} else {
sv_setsv(sv,&PL_sv_undef);
return;
}
}
void
Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
SV const * const value)
{
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
PERL_UNUSED_ARG(rx);
PERL_UNUSED_ARG(paren);
PERL_UNUSED_ARG(value);
if (!PL_localizing)
Perl_croak_no_modify(aTHX);
}
I32
Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
const I32 paren)
{
struct regexp *const rx = (struct regexp *)SvANY(r);
I32 i;
I32 s1, t1;
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
/* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
switch (paren) {
/* $` / ${^PREMATCH} */
case RX_BUFF_IDX_PREMATCH:
if (rx->offs[0].start != -1) {
i = rx->offs[0].start;
if (i > 0) {
s1 = 0;
t1 = i;
goto getlen;
}
}
return 0;
/* $' / ${^POSTMATCH} */
case RX_BUFF_IDX_POSTMATCH:
if (rx->offs[0].end != -1) {
i = rx->sublen - rx->offs[0].end;
if (i > 0) {
s1 = rx->offs[0].end;
t1 = rx->sublen;
goto getlen;
}
}
return 0;
/* $& / ${^MATCH}, $1, $2, ... */
default:
if (paren <= (I32)rx->nparens &&
(s1 = rx->offs[paren].start) != -1 &&
(t1 = rx->offs[paren].end) != -1)
{
i = t1 - s1;
goto getlen;
} else {
if (ckWARN(WARN_UNINITIALIZED))
report_uninit((const SV *)sv);
return 0;
}
}
getlen:
if (i > 0 && RXp_MATCH_UTF8(rx)) {
const char * const s = rx->subbeg + s1;
const U8 *ep;
STRLEN el;
i = t1 - s1;
if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
i = el;
}
return i;
}
SV*
Perl_reg_qr_package(pTHX_ REGEXP * const rx)
{
PERL_ARGS_ASSERT_REG_QR_PACKAGE;
PERL_UNUSED_ARG(rx);
if (0)
return NULL;
else
return newSVpvs("Regexp");
}
/* Scans the name of a named buffer from the pattern.
* If flags is REG_RSN_RETURN_NULL returns null.
* If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
* If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
* to the parsed name as looked up in the RExC_paren_names hash.
* If there is an error throws a vFAIL().. type exception.
*/
#define REG_RSN_RETURN_NULL 0
#define REG_RSN_RETURN_NAME 1
#define REG_RSN_RETURN_DATA 2
STATIC SV*
S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
{
char *name_start = RExC_parse;
PERL_ARGS_ASSERT_REG_SCAN_NAME;
if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
/* skip IDFIRST by using do...while */
if (UTF)
do {
RExC_parse += UTF8SKIP(RExC_parse);
} while (isALNUM_utf8((U8*)RExC_parse));
else
do {
RExC_parse++;
} while (isALNUM(*RExC_parse));
}
if ( flags ) {
SV* sv_name
= newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
SVs_TEMP | (UTF ? SVf_UTF8 : 0));
if ( flags == REG_RSN_RETURN_NAME)
return sv_name;
else if (flags==REG_RSN_RETURN_DATA) {
HE *he_str = NULL;
SV *sv_dat = NULL;
if ( ! sv_name ) /* should not happen*/
Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
if (RExC_paren_names)
he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
if ( he_str )
sv_dat = HeVAL(he_str);
if ( ! sv_dat )
vFAIL("Reference to nonexistent named group");
return sv_dat;
}
else {
Perl_croak(aTHX_ "panic: bad flag in reg_scan_name");
}
/* NOT REACHED */
}
return NULL;
}
#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
int rem=(int)(RExC_end - RExC_parse); \
int cut; \
int num; \
int iscut=0; \
if (rem>10) { \
rem=10; \
iscut=1; \
} \
cut=10-rem; \
if (RExC_lastparse!=RExC_parse) \
PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
rem, RExC_parse, \
cut + 4, \
iscut ? "..." : "<" \
); \
else \
PerlIO_printf(Perl_debug_log,"%16s",""); \
\
if (SIZE_ONLY) \
num = RExC_size + 1; \
else \
num=REG_NODE_NUM(RExC_emit); \
if (RExC_lastnum!=num) \
PerlIO_printf(Perl_debug_log,"|%4d",num); \
else \
PerlIO_printf(Perl_debug_log,"|%4s",""); \
PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
(int)((depth*2)), "", \
(funcname) \
); \
RExC_lastnum=num; \
RExC_lastparse=RExC_parse; \
})
#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
DEBUG_PARSE_MSG((funcname)); \
PerlIO_printf(Perl_debug_log,"%4s","\n"); \
})
#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
DEBUG_PARSE_MSG((funcname)); \
PerlIO_printf(Perl_debug_log,fmt "\n",args); \
})
/* This section of code defines the inversion list object and its methods. The
* interfaces are highly subject to change, so as much as possible is static to
* this file. An inversion list is here implemented as a malloc'd C array with
* some added info. More will be coming when functionality is added later.
*
* It is currently implemented as an HV to the outside world, but is actually
* an SV pointing to an array of UVs that the SV thinks are bytes. This allows
* us to have an array of UV whose memory management is automatically handled
* by the existing facilities for SV's.
*
* Some of the methods should always be private to the implementation, and some
* should eventually be made public */
#define INVLIST_INITIAL_LEN 10
PERL_STATIC_INLINE UV*
S_invlist_array(pTHX_ HV* const invlist)
{
/* Returns the pointer to the inversion list's array. Every time the
* length changes, this needs to be called in case malloc or realloc moved
* it */
PERL_ARGS_ASSERT_INVLIST_ARRAY;
return (UV *) SvPVX(invlist);
}
PERL_STATIC_INLINE UV
S_invlist_len(pTHX_ HV* const invlist)
{
/* Returns the current number of elements in the inversion list's array */
PERL_ARGS_ASSERT_INVLIST_LEN;
return SvCUR(invlist) / sizeof(UV);
}
PERL_STATIC_INLINE UV
S_invlist_max(pTHX_ HV* const invlist)
{
/* Returns the maximum number of elements storable in the inversion list's
* array, without having to realloc() */
PERL_ARGS_ASSERT_INVLIST_MAX;
return SvLEN(invlist) / sizeof(UV);
}
PERL_STATIC_INLINE void
S_invlist_set_len(pTHX_ HV* const invlist, const UV len)
{
/* Sets the current number of elements stored in the inversion list */
PERL_ARGS_ASSERT_INVLIST_SET_LEN;
SvCUR_set(invlist, len * sizeof(UV));
}
PERL_STATIC_INLINE void
S_invlist_set_max(pTHX_ HV* const invlist, const UV max)
{
/* Sets the maximum number of elements storable in the inversion list
* without having to realloc() */
PERL_ARGS_ASSERT_INVLIST_SET_MAX;
if (max < invlist_len(invlist)) {
Perl_croak(aTHX_ "panic: Can't make max size '%"UVuf"' less than current length %"UVuf" in inversion list", invlist_max(invlist), invlist_len(invlist));
}
SvLEN_set(invlist, max * sizeof(UV));
}
#ifndef PERL_IN_XSUB_RE
HV*
Perl__new_invlist(pTHX_ IV initial_size)
{
/* Return a pointer to a newly constructed inversion list, with enough
* space to store 'initial_size' elements. If that number is negative, a
* system default is used instead */
if (initial_size < 0) {
initial_size = INVLIST_INITIAL_LEN;
}
/* Allocate the initial space */
return (HV *) newSV(initial_size * sizeof(UV));
}
#endif
PERL_STATIC_INLINE void
S_invlist_destroy(pTHX_ HV* const invlist)
{
/* Inversion list destructor */
PERL_ARGS_ASSERT_INVLIST_DESTROY;
SvREFCNT_dec(invlist);
}
STATIC void
S_invlist_extend(pTHX_ HV* const invlist, const UV new_max)
{
/* Grow the maximum size of an inversion list */
PERL_ARGS_ASSERT_INVLIST_EXTEND;
SvGROW((SV *)invlist, new_max * sizeof(UV));
}
PERL_STATIC_INLINE void
S_invlist_trim(pTHX_ HV* const invlist)
{
PERL_ARGS_ASSERT_INVLIST_TRIM;
/* Change the length of the inversion list to how many entries it currently
* has */
SvPV_shrink_to_cur((SV *) invlist);
}
/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
* etc */
#define ELEMENT_IN_INVLIST_SET(i) (! ((i) & 1))
#ifndef PERL_IN_XSUB_RE
void
Perl__append_range_to_invlist(pTHX_ HV* const invlist, const UV start, const UV end)
{
/* Subject to change or removal. Append the range from 'start' to 'end' at
* the end of the inversion list. The range must be above any existing
* ones. */
UV* array = invlist_array(invlist);
UV max = invlist_max(invlist);
UV len = invlist_len(invlist);
PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
if (len > 0) {
/* Here, the existing list is non-empty. The current max entry in the
* list is generally the first value not in the set, except when the
* set extends to the end of permissible values, in which case it is
* the first entry in that final set, and so this call is an attempt to
* append out-of-order */
UV final_element = len - 1;
if (array[final_element] > start
|| ELEMENT_IN_INVLIST_SET(final_element))
{
Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list");
}
/* Here, it is a legal append. If the new range begins with the first
* value not in the set, it is extending the set, so the new first
* value not in the set is one greater than the newly extended range.
* */
if (array[final_element] == start) {
if (end != UV_MAX) {
array[final_element] = end + 1;
}
else {
/* But if the end is the maximum representable on the machine,
* just let the range that this would extend have no end */
invlist_set_len(invlist, len - 1);
}
return;
}
}
/* Here the new range doesn't extend any existing set. Add it */
len += 2; /* Includes an element each for the start and end of range */
/* If overflows the existing space, extend, which may cause the array to be
* moved */
if (max < len) {
invlist_extend(invlist, len);
array = invlist_array(invlist);
}
invlist_set_len(invlist, len);
/* The next item on the list starts the range, the one after that is
* one past the new range. */
array[len - 2] = start;
if (end != UV_MAX) {
array[len - 1] = end + 1;
}
else {
/* But if the end is the maximum representable on the machine, just let
* the range have no end */
invlist_set_len(invlist, len - 1);
}
}
#endif
STATIC HV*
S_invlist_union(pTHX_ HV* const a, HV* const b)
{
/* Return a new inversion list which is the union of two inversion lists.
* The basis for this comes from "Unicode Demystified" Chapter 13 by
* Richard Gillam, published by Addison-Wesley, and explained at some
* length there. The preface says to incorporate its examples into your
* code at your own risk.
*
* The algorithm is like a merge sort.
*
* XXX A potential performance improvement is to keep track as we go along
* if only one of the inputs contributes to the result, meaning the other
* is a subset of that one. In that case, we can skip the final copy and
* return the larger of the input lists */
UV* array_a = invlist_array(a); /* a's array */
UV* array_b = invlist_array(b);
UV len_a = invlist_len(a); /* length of a's array */
UV len_b = invlist_len(b);
HV* u; /* the resulting union */
UV* array_u;
UV len_u;
UV i_a = 0; /* current index into a's array */
UV i_b = 0;
UV i_u = 0;
/* running count, as explained in the algorithm source book; items are
* stopped accumulating and are output when the count changes to/from 0.
* The count is incremented when we start a range that's in the set, and
* decremented when we start a range that's not in the set. So its range
* is 0 to 2. Only when the count is zero is something not in the set.
*/
UV count = 0;
PERL_ARGS_ASSERT_INVLIST_UNION;
/* Size the union for the worst case: that the sets are completely
* disjoint */
u = _new_invlist(len_a + len_b);
array_u = invlist_array(u);
/* Go through each list item by item, stopping when exhausted one of
* them */
while (i_a < len_a && i_b < len_b) {
UV cp; /* The element to potentially add to the union's array */
bool cp_in_set; /* is it in the the input list's set or not */
/* We need to take one or the other of the two inputs for the union.
* Since we are merging two sorted lists, we take the smaller of the
* next items. In case of a tie, we take the one that is in its set
* first. If we took one not in the set first, it would decrement the
* count, possibly to 0 which would cause it to be output as ending the
* range, and the next time through we would take the same number, and
* output it again as beginning the next range. By doing it the
* opposite way, there is no possibility that the count will be
* momentarily decremented to 0, and thus the two adjoining ranges will
* be seamlessly merged. (In a tie and both are in the set or both not
* in the set, it doesn't matter which we take first.) */
if (array_a[i_a] < array_b[i_b]
|| (array_a[i_a] == array_b[i_b] && ELEMENT_IN_INVLIST_SET(i_a)))
{
cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
cp= array_a[i_a++];
}
else {
cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
cp= array_b[i_b++];
}
/* Here, have chosen which of the two inputs to look at. Only output
* if the running count changes to/from 0, which marks the
* beginning/end of a range in that's in the set */
if (cp_in_set) {
if (count == 0) {
array_u[i_u++] = cp;
}
count++;
}
else {
count--;
if (count == 0) {
array_u[i_u++] = cp;
}
}
}
/* Here, we are finished going through at least one of the lists, which
* means there is something remaining in at most one. We check if the list
* that hasn't been exhausted is positioned such that we are in the middle
* of a range in its set or not. (We are in the set if the next item in
* the array marks the beginning of something not in the set) If in the
* set, we decrement 'count'; if 0, there is potentially more to output.
* There are four cases:
* 1) Both weren't in their sets, count is 0, and remains 0. What's left
* in the union is entirely from the non-exhausted set.
* 2) Both were in their sets, count is 2. Nothing further should
* be output, as everything that remains will be in the exhausted
* list's set, hence in the union; decrementing to 1 but not 0 insures
* that
* 3) the exhausted was in its set, non-exhausted isn't, count is 1.
* Nothing further should be output because the union includes
* everything from the exhausted set. Not decrementing insures that.
* 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
* decrementing to 0 insures that we look at the remainder of the
* non-exhausted set */
if ((i_a != len_a && ! ELEMENT_IN_INVLIST_SET(i_a))
|| (i_b != len_b && ! ELEMENT_IN_INVLIST_SET(i_b)))
{
count--;
}
/* The final length is what we've output so far, plus what else is about to
* be output. (If 'count' is non-zero, then the input list we exhausted
* has everything remaining up to the machine's limit in its set, and hence
* in the union, so there will be no further output. */
len_u = i_u;
if (count == 0) {
/* At most one of the subexpressions will be non-zero */
len_u += (len_a - i_a) + (len_b - i_b);
}
/* Set result to final length, which can change the pointer to array_u, so
* re-find it */
if (len_u != invlist_len(u)) {
invlist_set_len(u, len_u);
invlist_trim(u);
array_u = invlist_array(u);
}
/* When 'count' is 0, the list that was exhausted (if one was shorter than
* the other) ended with everything above it not in its set. That means
* that the remaining part of the union is precisely the same as the
* non-exhausted list, so can just copy it unchanged. (If both list were
* exhausted at the same time, then the operations below will be both 0.)
*/
if (count == 0) {
IV copy_count; /* At most one will have a non-zero copy count */
if ((copy_count = len_a - i_a) > 0) {
Copy(array_a + i_a, array_u + i_u, copy_count, UV);
}
else if ((copy_count = len_b - i_b) > 0) {
Copy(array_b + i_b, array_u + i_u, copy_count, UV);
}
}
return u;
}
STATIC HV*
S_invlist_intersection(pTHX_ HV* const a, HV* const b)
{
/* Return the intersection of two inversion lists. The basis for this
* comes from "Unicode Demystified" Chapter 13 by Richard Gillam, published
* by Addison-Wesley, and explained at some length there. The preface says
* to incorporate its examples into your code at your own risk.
*
* The algorithm is like a merge sort, and is essentially the same as the
* union above
*/
UV* array_a = invlist_array(a); /* a's array */
UV* array_b = invlist_array(b);
UV len_a = invlist_len(a); /* length of a's array */
UV len_b = invlist_len(b);
HV* r; /* the resulting intersection */
UV* array_r;
UV len_r;
UV i_a = 0; /* current index into a's array */
UV i_b = 0;
UV i_r = 0;
/* running count, as explained in the algorithm source book; items are
* stopped accumulating and are output when the count changes to/from 2.
* The count is incremented when we start a range that's in the set, and
* decremented when we start a range that's not in the set. So its range
* is 0 to 2. Only when the count is 2 is something in the intersection.
*/
UV count = 0;
PERL_ARGS_ASSERT_INVLIST_INTERSECTION;
/* Size the intersection for the worst case: that the intersection ends up
* fragmenting everything to be completely disjoint */
r= _new_invlist(len_a + len_b);
array_r = invlist_array(r);
/* Go through each list item by item, stopping when exhausted one of
* them */
while (i_a < len_a && i_b < len_b) {
UV cp; /* The element to potentially add to the intersection's
array */
bool cp_in_set; /* Is it in the input list's set or not */
/* We need to take one or the other of the two inputs for the union.
* Since we are merging two sorted lists, we take the smaller of the
* next items. In case of a tie, we take the one that is not in its
* set first (a difference from the union algorithm). If we took one
* in the set first, it would increment the count, possibly to 2 which
* would cause it to be output as starting a range in the intersection,
* and the next time through we would take that same number, and output
* it again as ending the set. By doing it the opposite of this, we
* there is no possibility that the count will be momentarily
* incremented to 2. (In a tie and both are in the set or both not in
* the set, it doesn't matter which we take first.) */
if (array_a[i_a] < array_b[i_b]
|| (array_a[i_a] == array_b[i_b] && ! ELEMENT_IN_INVLIST_SET(i_a)))
{
cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
cp= array_a[i_a++];
}
else {
cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
cp= array_b[i_b++];
}
/* Here, have chosen which of the two inputs to look at. Only output
* if the running count changes to/from 2, which marks the
* beginning/end of a range that's in the intersection */
if (cp_in_set) {
count++;
if (count == 2) {
array_r[i_r++] = cp;
}
}
else {
if (count == 2) {
array_r[i_r++] = cp;
}
count--;
}
}
/* Here, we are finished going through at least one of the sets, which
* means there is something remaining in at most one. See the comments in
* the union code */
if ((i_a != len_a && ! ELEMENT_IN_INVLIST_SET(i_a))
|| (i_b != len_b && ! ELEMENT_IN_INVLIST_SET(i_b)))
{
count--;
}
/* The final length is what we've output so far plus what else is in the
* intersection. Only one of the subexpressions below will be non-zero */
len_r = i_r;
if (count == 2) {
len_r += (len_a - i_a) + (len_b - i_b);
}
/* Set result to final length, which can change the pointer to array_r, so
* re-find it */
if (len_r != invlist_len(r)) {
invlist_set_len(r, len_r);
invlist_trim(r);
array_r = invlist_array(r);
}
/* Finish outputting any remaining */
if (count == 2) { /* Only one of will have a non-zero copy count */
IV copy_count;
if ((copy_count = len_a - i_a) > 0) {
Copy(array_a + i_a, array_r + i_r, copy_count, UV);
}
else if ((copy_count = len_b - i_b) > 0) {
Copy(array_b + i_b, array_r + i_r, copy_count, UV);
}
}
return r;
}
STATIC HV*
S_add_range_to_invlist(pTHX_ HV* invlist, const UV start, const UV end)
{
/* Add the range from 'start' to 'end' inclusive to the inversion list's
* set. A pointer to the inversion list is returned. This may actually be
* a new list, in which case the passed in one has been destroyed. The
* passed in inversion list can be NULL, in which case a new one is created
* with just the one range in it */
HV* range_invlist;
HV* added_invlist;
UV len;
if (invlist == NULL) {
invlist = _new_invlist(2);
len = 0;
}
else {
len = invlist_len(invlist);
}
/* If comes after the final entry, can just append it to the end */
if (len == 0
|| start >= invlist_array(invlist)
[invlist_len(invlist) - 1])
{
_append_range_to_invlist(invlist, start, end);
return invlist;
}
/* Here, can't just append things, create and return a new inversion list
* which is the union of this range and the existing inversion list */
range_invlist = _new_invlist(2);
_append_range_to_invlist(range_invlist, start, end);
added_invlist = invlist_union(invlist, range_invlist);
/* The passed in list can be freed, as well as our temporary */
invlist_destroy(range_invlist);
if (invlist != added_invlist) {
invlist_destroy(invlist);
}
return added_invlist;
}
PERL_STATIC_INLINE HV*
S_add_cp_to_invlist(pTHX_ HV* invlist, const UV cp) {
return add_range_to_invlist(invlist, cp, cp);
}
/* End of inversion list object */
/*
- reg - regular expression, i.e. main body or parenthesized thing
*
* Caller must absorb opening parenthesis.
*
* Combining parenthesis handling with the base level of regular expression
* is a trifle forced, but the need to tie the tails of the branches to what
* follows makes it hard to avoid.
*/
#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
#ifdef DEBUGGING
#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
#else
#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
#endif
STATIC regnode *
S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
/* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
{
dVAR;
register regnode *ret; /* Will be the head of the group. */
register regnode *br;
register regnode *lastbr;
register regnode *ender = NULL;
register I32 parno = 0;
I32 flags;
U32 oregflags = RExC_flags;
bool have_branch = 0;
bool is_open = 0;
I32 freeze_paren = 0;
I32 after_freeze = 0;
/* for (?g), (?gc), and (?o) warnings; warning
about (?c) will warn about (?g) -- japhy */
#define WASTED_O 0x01
#define WASTED_G 0x02
#define WASTED_C 0x04
#define WASTED_GC (0x02|0x04)
I32 wastedflags = 0x00;
char * parse_start = RExC_parse; /* MJD */
char * const oregcomp_parse = RExC_parse;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REG;
DEBUG_PARSE("reg ");
*flagp = 0; /* Tentatively. */
/* Make an OPEN node, if parenthesized. */
if (paren) {
if ( *RExC_parse == '*') { /* (*VERB:ARG) */
char *start_verb = RExC_parse;
STRLEN verb_len = 0;
char *start_arg = NULL;
unsigned char op = 0;
int argok = 1;
int internal_argval = 0; /* internal_argval is only useful if !argok */
while ( *RExC_parse && *RExC_parse != ')' ) {
if ( *RExC_parse == ':' ) {
start_arg = RExC_parse + 1;
break;
}
RExC_parse++;
}
++start_verb;
verb_len = RExC_parse - start_verb;
if ( start_arg ) {
RExC_parse++;
while ( *RExC_parse && *RExC_parse != ')' )
RExC_parse++;
if ( *RExC_parse != ')' )
vFAIL("Unterminated verb pattern argument");
if ( RExC_parse == start_arg )
start_arg = NULL;
} else {
if ( *RExC_parse != ')' )
vFAIL("Unterminated verb pattern");
}
switch ( *start_verb ) {
case 'A': /* (*ACCEPT) */
if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
op = ACCEPT;
internal_argval = RExC_nestroot;
}
break;
case 'C': /* (*COMMIT) */
if ( memEQs(start_verb,verb_len,"COMMIT") )
op = COMMIT;
break;
case 'F': /* (*FAIL) */
if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
op = OPFAIL;
argok = 0;
}
break;
case ':': /* (*:NAME) */
case 'M': /* (*MARK:NAME) */
if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
op = MARKPOINT;
argok = -1;
}
break;
case 'P': /* (*PRUNE) */
if ( memEQs(start_verb,verb_len,"PRUNE") )
op = PRUNE;
break;
case 'S': /* (*SKIP) */
if ( memEQs(start_verb,verb_len,"SKIP") )
op = SKIP;
break;
case 'T': /* (*THEN) */
/* [19:06] <TimToady> :: is then */
if ( memEQs(start_verb,verb_len,"THEN") ) {
op = CUTGROUP;
RExC_seen |= REG_SEEN_CUTGROUP;
}
break;
}
if ( ! op ) {
RExC_parse++;
vFAIL3("Unknown verb pattern '%.*s'",
verb_len, start_verb);
}
if ( argok ) {
if ( start_arg && internal_argval ) {
vFAIL3("Verb pattern '%.*s' may not have an argument",
verb_len, start_verb);
} else if ( argok < 0 && !start_arg ) {
vFAIL3("Verb pattern '%.*s' has a mandatory argument",
verb_len, start_verb);
} else {
ret = reganode(pRExC_state, op, internal_argval);
if ( ! internal_argval && ! SIZE_ONLY ) {
if (start_arg) {
SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
ARG(ret) = add_data( pRExC_state, 1, "S" );
RExC_rxi->data->data[ARG(ret)]=(void*)sv;
ret->flags = 0;
} else {
ret->flags = 1;
}
}
}
if (!internal_argval)
RExC_seen |= REG_SEEN_VERBARG;
} else if ( start_arg ) {
vFAIL3("Verb pattern '%.*s' may not have an argument",
verb_len, start_verb);
} else {
ret = reg_node(pRExC_state, op);
}
nextchar(pRExC_state);
return ret;
} else
if (*RExC_parse == '?') { /* (?...) */
bool is_logical = 0;
const char * const seqstart = RExC_parse;
bool has_use_defaults = FALSE;
RExC_parse++;
paren = *RExC_parse++;
ret = NULL; /* For look-ahead/behind. */
switch (paren) {
case 'P': /* (?P...) variants for those used to PCRE/Python */
paren = *RExC_parse++;
if ( paren == '<') /* (?P<...>) named capture */
goto named_capture;
else if (paren == '>') { /* (?P>name) named recursion */
goto named_recursion;
}
else if (paren == '=') { /* (?P=...) named backref */
/* this pretty much dupes the code for \k<NAME> in regatom(), if
you change this make sure you change that */
char* name_start = RExC_parse;
U32 num = 0;
SV *sv_dat = reg_scan_name(pRExC_state,
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
if (RExC_parse == name_start || *RExC_parse != ')')
vFAIL2("Sequence %.3s... not terminated",parse_start);
if (!SIZE_ONLY) {
num = add_data( pRExC_state, 1, "S" );
RExC_rxi->data->data[num]=(void*)sv_dat;
SvREFCNT_inc_simple_void(sv_dat);
}
RExC_sawback = 1;
ret = reganode(pRExC_state,
((! FOLD)
? NREF
: (MORE_ASCII_RESTRICTED)
? NREFFA
: (AT_LEAST_UNI_SEMANTICS)
? NREFFU
: (LOC)
? NREFFL
: NREFF),
num);
*flagp |= HASWIDTH;
Set_Node_Offset(ret, parse_start+1);
Set_Node_Cur_Length(ret); /* MJD */
nextchar(pRExC_state);
return ret;
}
RExC_parse++;
vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
/*NOTREACHED*/
case '<': /* (?<...) */
if (*RExC_parse == '!')
paren = ',';
else if (*RExC_parse != '=')
named_capture:
{ /* (?<...>) */
char *name_start;
SV *svname;
paren= '>';
case '\'': /* (?'...') */
name_start= RExC_parse;
svname = reg_scan_name(pRExC_state,
SIZE_ONLY ? /* reverse test from the others */
REG_RSN_RETURN_NAME :
REG_RSN_RETURN_NULL);
if (RExC_parse == name_start) {
RExC_parse++;
vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
/*NOTREACHED*/
}
if (*RExC_parse != paren)
vFAIL2("Sequence (?%c... not terminated",
paren=='>' ? '<' : paren);
if (SIZE_ONLY) {
HE *he_str;
SV *sv_dat = NULL;
if (!svname) /* shouldn't happen */
Perl_croak(aTHX_
"panic: reg_scan_name returned NULL");
if (!RExC_paren_names) {
RExC_paren_names= newHV();
sv_2mortal(MUTABLE_SV(RExC_paren_names));
#ifdef DEBUGGING
RExC_paren_name_list= newAV();
sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
#endif
}
he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
if ( he_str )
sv_dat = HeVAL(he_str);
if ( ! sv_dat ) {
/* croak baby croak */
Perl_croak(aTHX_
"panic: paren_name hash element allocation failed");
} else if ( SvPOK(sv_dat) ) {
/* (?|...) can mean we have dupes so scan to check
its already been stored. Maybe a flag indicating
we are inside such a construct would be useful,
but the arrays are likely to be quite small, so
for now we punt -- dmq */
IV count = SvIV(sv_dat);
I32 *pv = (I32*)SvPVX(sv_dat);
IV i;
for ( i = 0 ; i < count ; i++ ) {
if ( pv[i] == RExC_npar ) {
count = 0;
break;
}
}
if ( count ) {
pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
pv[count] = RExC_npar;
SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
}
} else {
(void)SvUPGRADE(sv_dat,SVt_PVNV);
sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
SvIOK_on(sv_dat);
SvIV_set(sv_dat, 1);
}
#ifdef DEBUGGING
if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
SvREFCNT_dec(svname);
#endif
/*sv_dump(sv_dat);*/
}
nextchar(pRExC_state);
paren = 1;
goto capturing_parens;
}
RExC_seen |= REG_SEEN_LOOKBEHIND;
RExC_in_lookbehind++;
RExC_parse++;
case '=': /* (?=...) */
RExC_seen_zerolen++;
break;
case '!': /* (?!...) */
RExC_seen_zerolen++;
if (*RExC_parse == ')') {
ret=reg_node(pRExC_state, OPFAIL);
nextchar(pRExC_state);
return ret;
}
break;
case '|': /* (?|...) */
/* branch reset, behave like a (?:...) except that
buffers in alternations share the same numbers */
paren = ':';
after_freeze = freeze_paren = RExC_npar;
break;
case ':': /* (?:...) */
case '>': /* (?>...) */
break;
case '$': /* (?$...) */
case '@': /* (?@...) */
vFAIL2("Sequence (?%c...) not implemented", (int)paren);
break;
case '#': /* (?#...) */
while (*RExC_parse && *RExC_parse != ')')
RExC_parse++;
if (*RExC_parse != ')')
FAIL("Sequence (?#... not terminated");
nextchar(pRExC_state);
*flagp = TRYAGAIN;
return NULL;
case '0' : /* (?0) */
case 'R' : /* (?R) */
if (*RExC_parse != ')')
FAIL("Sequence (?R) not terminated");
ret = reg_node(pRExC_state, GOSTART);
*flagp |= POSTPONED;
nextchar(pRExC_state);
return ret;
/*notreached*/
{ /* named and numeric backreferences */
I32 num;
case '&': /* (?&NAME) */
parse_start = RExC_parse - 1;
named_recursion:
{
SV *sv_dat = reg_scan_name(pRExC_state,
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
}
goto gen_recurse_regop;
/* NOT REACHED */
case '+':
if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
RExC_parse++;
vFAIL("Illegal pattern");
}
goto parse_recursion;
/* NOT REACHED*/
case '-': /* (?-1) */
if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
RExC_parse--; /* rewind to let it be handled later */
goto parse_flags;
}
/*FALLTHROUGH */
case '1': case '2': case '3': case '4': /* (?1) */
case '5': case '6': case '7': case '8': case '9':
RExC_parse--;
parse_recursion:
num = atoi(RExC_parse);
parse_start = RExC_parse - 1; /* MJD */
if (*RExC_parse == '-')
RExC_parse++;
while (isDIGIT(*RExC_parse))
RExC_parse++;
if (*RExC_parse!=')')
vFAIL("Expecting close bracket");
gen_recurse_regop:
if ( paren == '-' ) {
/*
Diagram of capture buffer numbering.
Top line is the normal capture buffer numbers
Bottom line is the negative indexing as from
the X (the (?-2))
+ 1 2 3 4 5 X 6 7
/(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
- 5 4 3 2 1 X x x
*/
num = RExC_npar + num;
if (num < 1) {
RExC_parse++;
vFAIL("Reference to nonexistent group");
}
} else if ( paren == '+' ) {
num = RExC_npar + num - 1;
}
ret = reganode(pRExC_state, GOSUB, num);
if (!SIZE_ONLY) {
if (num > (I32)RExC_rx->nparens) {
RExC_parse++;
vFAIL("Reference to nonexistent group");
}
ARG2L_SET( ret, RExC_recurse_count++);
RExC_emit++;
DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
"Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
} else {
RExC_size++;
}
RExC_seen |= REG_SEEN_RECURSE;
Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
Set_Node_Offset(ret, parse_start); /* MJD */
*flagp |= POSTPONED;
nextchar(pRExC_state);
return ret;
} /* named and numeric backreferences */
/* NOT REACHED */
case '?': /* (??...) */
is_logical = 1;
if (*RExC_parse != '{') {
RExC_parse++;
vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
/*NOTREACHED*/
}
*flagp |= POSTPONED;
paren = *RExC_parse++;
/* FALL THROUGH */
case '{': /* (?{...}) */
{
I32 count = 1;
U32 n = 0;
char c;
char *s = RExC_parse;
RExC_seen_zerolen++;
RExC_seen |= REG_SEEN_EVAL;
while (count && (c = *RExC_parse)) {
if (c == '\\') {
if (RExC_parse[1])
RExC_parse++;
}
else if (c == '{')
count++;
else if (c == '}')
count--;
RExC_parse++;
}
if (*RExC_parse != ')') {
RExC_parse = s;
vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
}
if (!SIZE_ONLY) {
PAD *pad;
OP_4tree *sop, *rop;
SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
ENTER;
Perl_save_re_context(aTHX);
rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
sop->op_private |= OPpREFCOUNTED;
/* re_dup will OpREFCNT_inc */
OpREFCNT_set(sop, 1);
LEAVE;
n = add_data(pRExC_state, 3, "nop");
RExC_rxi->data->data[n] = (void*)rop;
RExC_rxi->data->data[n+1] = (void*)sop;
RExC_rxi->data->data[n+2] = (void*)pad;
SvREFCNT_dec(sv);
}
else { /* First pass */
if (PL_reginterp_cnt < ++RExC_seen_evals
&& IN_PERL_RUNTIME)
/* No compiled RE interpolated, has runtime
components ===> unsafe. */
FAIL("Eval-group not allowed at runtime, use re 'eval'");
if (PL_tainting && PL_tainted)
FAIL("Eval-group in insecure regular expression");
#if PERL_VERSION > 8
if (IN_PERL_COMPILETIME)
PL_cv_has_eval = 1;
#endif
}
nextchar(pRExC_state);
if (is_logical) {
ret = reg_node(pRExC_state, LOGICAL);
if (!SIZE_ONLY)
ret->flags = 2;
REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
/* deal with the length of this later - MJD */
return ret;
}
ret = reganode(pRExC_state, EVAL, n);
Set_Node_Length(ret, RExC_parse - parse_start + 1);
Set_Node_Offset(ret, parse_start);
return ret;
}
case '(': /* (?(?{...})...) and (?(?=...)...) */
{
int is_define= 0;
if (RExC_parse[0] == '?') { /* (?(?...)) */
if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
|| RExC_parse[1] == '<'
|| RExC_parse[1] == '{') { /* Lookahead or eval. */
I32 flag;
ret = reg_node(pRExC_state, LOGICAL);
if (!SIZE_ONLY)
ret->flags = 1;
REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
goto insert_if;
}
}
else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
|| RExC_parse[0] == '\'' ) /* (?('NAME')...) */
{
char ch = RExC_parse[0] == '<' ? '>' : '\'';
char *name_start= RExC_parse++;
U32 num = 0;
SV *sv_dat=reg_scan_name(pRExC_state,
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
if (RExC_parse == name_start || *RExC_parse != ch)
vFAIL2("Sequence (?(%c... not terminated",
(ch == '>' ? '<' : ch));
RExC_parse++;
if (!SIZE_ONLY) {
num = add_data( pRExC_state, 1, "S" );
RExC_rxi->data->data[num]=(void*)sv_dat;
SvREFCNT_inc_simple_void(sv_dat);
}
ret = reganode(pRExC_state,NGROUPP,num);
goto insert_if_check_paren;
}
else if (RExC_parse[0] == 'D' &&
RExC_parse[1] == 'E' &&
RExC_parse[2] == 'F' &&
RExC_parse[3] == 'I' &&
RExC_parse[4] == 'N' &&
RExC_parse[5] == 'E')
{
ret = reganode(pRExC_state,DEFINEP,0);
RExC_parse +=6 ;
is_define = 1;
goto insert_if_check_paren;
}
else if (RExC_parse[0] == 'R') {
RExC_parse++;
parno = 0;
if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
parno = atoi(RExC_parse++);
while (isDIGIT(*RExC_parse))
RExC_parse++;
} else if (RExC_parse[0] == '&') {
SV *sv_dat;
RExC_parse++;
sv_dat = reg_scan_name(pRExC_state,
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
}
ret = reganode(pRExC_state,INSUBP,parno);
goto insert_if_check_paren;
}
else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
/* (?(1)...) */
char c;
parno = atoi(RExC_parse++);
while (isDIGIT(*RExC_parse))
RExC_parse++;
ret = reganode(pRExC_state, GROUPP, parno);
insert_if_check_paren:
if ((c = *nextchar(pRExC_state)) != ')')
vFAIL("Switch condition not recognized");
insert_if:
REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
br = regbranch(pRExC_state, &flags, 1,depth+1);
if (br == NULL)
br = reganode(pRExC_state, LONGJMP, 0);
else
REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
c = *nextchar(pRExC_state);
if (flags&HASWIDTH)
*flagp |= HASWIDTH;
if (c == '|') {
if (is_define)
vFAIL("(?(DEFINE)....) does not allow branches");
lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
regbranch(pRExC_state, &flags, 1,depth+1);
REGTAIL(pRExC_state, ret, lastbr);
if (flags&HASWIDTH)
*flagp |= HASWIDTH;
c = *nextchar(pRExC_state);
}
else
lastbr = NULL;
if (c != ')')
vFAIL("Switch (?(condition)... contains too many branches");
ender = reg_node(pRExC_state, TAIL);
REGTAIL(pRExC_state, br, ender);
if (lastbr) {
REGTAIL(pRExC_state, lastbr, ender);
REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
}
else
REGTAIL(pRExC_state, ret, ender);
RExC_size++; /* XXX WHY do we need this?!!
For large programs it seems to be required
but I can't figure out why. -- dmq*/
return ret;
}
else {
vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
}
}
case 0:
RExC_parse--; /* for vFAIL to print correctly */
vFAIL("Sequence (? incomplete");
break;
case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
that follow */
has_use_defaults = TRUE;
STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
? REGEX_UNICODE_CHARSET
: REGEX_DEPENDS_CHARSET);
goto parse_flags;
default:
--RExC_parse;
parse_flags: /* (?i) */
{
U32 posflags = 0, negflags = 0;
U32 *flagsp = &posflags;
char has_charset_modifier = '\0';
regex_charset cs = (RExC_utf8 || RExC_uni_semantics)
? REGEX_UNICODE_CHARSET
: REGEX_DEPENDS_CHARSET;
while (*RExC_parse) {
/* && strchr("iogcmsx", *RExC_parse) */
/* (?g), (?gc) and (?o) are useless here
and must be globally applied -- japhy */
switch (*RExC_parse) {
CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
case LOCALE_PAT_MOD:
if (has_charset_modifier) {
goto excess_modifier;
}
else if (flagsp == &negflags) {
goto neg_modifier;
}
cs = REGEX_LOCALE_CHARSET;
has_charset_modifier = LOCALE_PAT_MOD;
RExC_contains_locale = 1;
break;
case UNICODE_PAT_MOD:
if (has_charset_modifier) {
goto excess_modifier;
}
else if (flagsp == &negflags) {
goto neg_modifier;
}
cs = REGEX_UNICODE_CHARSET;
has_charset_modifier = UNICODE_PAT_MOD;
break;
case ASCII_RESTRICT_PAT_MOD:
if (flagsp == &negflags) {
goto neg_modifier;
}
if (has_charset_modifier) {
if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
goto excess_modifier;
}
/* Doubled modifier implies more restricted */
cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
}
else {
cs = REGEX_ASCII_RESTRICTED_CHARSET;
}
has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
break;
case DEPENDS_PAT_MOD:
if (has_use_defaults) {
goto fail_modifiers;
}
else if (flagsp == &negflags) {
goto neg_modifier;
}
else if (has_charset_modifier) {
goto excess_modifier;
}
/* The dual charset means unicode semantics if the
* pattern (or target, not known until runtime) are
* utf8, or something in the pattern indicates unicode
* semantics */
cs = (RExC_utf8 || RExC_uni_semantics)
? REGEX_UNICODE_CHARSET
: REGEX_DEPENDS_CHARSET;
has_charset_modifier = DEPENDS_PAT_MOD;
break;
excess_modifier:
RExC_parse++;
if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
}
else if (has_charset_modifier == *(RExC_parse - 1)) {
vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
}
else {
vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
}
/*NOTREACHED*/
neg_modifier:
RExC_parse++;
vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
/*NOTREACHED*/
case ONCE_PAT_MOD: /* 'o' */
case GLOBAL_PAT_MOD: /* 'g' */
if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
if (! (wastedflags & wflagbit) ) {
wastedflags |= wflagbit;
vWARN5(
RExC_parse + 1,
"Useless (%s%c) - %suse /%c modifier",
flagsp == &negflags ? "?-" : "?",
*RExC_parse,
flagsp == &negflags ? "don't " : "",
*RExC_parse
);
}
}
break;
case CONTINUE_PAT_MOD: /* 'c' */
if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
if (! (wastedflags & WASTED_C) ) {
wastedflags |= WASTED_GC;
vWARN3(
RExC_parse + 1,
"Useless (%sc) - %suse /gc modifier",
flagsp == &negflags ? "?-" : "?",
flagsp == &negflags ? "don't " : ""
);
}
}
break;
case KEEPCOPY_PAT_MOD: /* 'p' */
if (flagsp == &negflags) {
if (SIZE_ONLY)
ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
} else {
*flagsp |= RXf_PMf_KEEPCOPY;
}
break;
case '-':
/* A flag is a default iff it is following a minus, so
* if there is a minus, it means will be trying to
* re-specify a default which is an error */
if (has_use_defaults || flagsp == &negflags) {
fail_modifiers:
RExC_parse++;
vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
/*NOTREACHED*/
}
flagsp = &negflags;
wastedflags = 0; /* reset so (?g-c) warns twice */
break;
case ':':
paren = ':';
/*FALLTHROUGH*/
case ')':
RExC_flags |= posflags;
RExC_flags &= ~negflags;
set_regex_charset(&RExC_flags, cs);
if (paren != ':') {
oregflags |= posflags;
oregflags &= ~negflags;
set_regex_charset(&oregflags, cs);
}
nextchar(pRExC_state);
if (paren != ':') {
*flagp = TRYAGAIN;
return NULL;
} else {
ret = NULL;
goto parse_rest;
}
/*NOTREACHED*/
default:
RExC_parse++;
vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
/*NOTREACHED*/
}
++RExC_parse;
}
}} /* one for the default block, one for the switch */
}
else { /* (...) */
capturing_parens:
parno = RExC_npar;
RExC_npar++;
ret = reganode(pRExC_state, OPEN, parno);
if (!SIZE_ONLY ){
if (!RExC_nestroot)
RExC_nestroot = parno;
if (RExC_seen & REG_SEEN_RECURSE
&& !RExC_open_parens[parno-1])
{
DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
"Setting open paren #%"IVdf" to %d\n",
(IV)parno, REG_NODE_NUM(ret)));
RExC_open_parens[parno-1]= ret;
}
}
Set_Node_Length(ret, 1); /* MJD */
Set_Node_Offset(ret, RExC_parse); /* MJD */
is_open = 1;
}
}
else /* ! paren */
ret = NULL;
parse_rest:
/* Pick up the branches, linking them together. */
parse_start = RExC_parse; /* MJD */
br = regbranch(pRExC_state, &flags, 1,depth+1);
/* branch_len = (paren != 0); */
if (br == NULL)
return(NULL);
if (*RExC_parse == '|') {
if (!SIZE_ONLY && RExC_extralen) {
reginsert(pRExC_state, BRANCHJ, br, depth+1);
}
else { /* MJD */
reginsert(pRExC_state, BRANCH, br, depth+1);
Set_Node_Length(br, paren != 0);
Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
}
have_branch = 1;
if (SIZE_ONLY)
RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
}
else if (paren == ':') {
*flagp |= flags&SIMPLE;
}
if (is_open) { /* Starts with OPEN. */
REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
}
else if (paren != '?') /* Not Conditional */
ret = br;
*flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
lastbr = br;
while (*RExC_parse == '|') {
if (!SIZE_ONLY && RExC_extralen) {
ender = reganode(pRExC_state, LONGJMP,0);
REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
}
if (SIZE_ONLY)
RExC_extralen += 2; /* Account for LONGJMP. */
nextchar(pRExC_state);
if (freeze_paren) {
if (RExC_npar > after_freeze)
after_freeze = RExC_npar;
RExC_npar = freeze_paren;
}
br = regbranch(pRExC_state, &flags, 0, depth+1);
if (br == NULL)
return(NULL);
REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
lastbr = br;
*flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
}
if (have_branch || paren != ':') {
/* Make a closing node, and hook it on the end. */
switch (paren) {
case ':':
ender = reg_node(pRExC_state, TAIL);
break;
case 1:
ender = reganode(pRExC_state, CLOSE, parno);
if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
"Setting close paren #%"IVdf" to %d\n",
(IV)parno, REG_NODE_NUM(ender)));
RExC_close_parens[parno-1]= ender;
if (RExC_nestroot == parno)
RExC_nestroot = 0;
}
Set_Node_Offset(ender,RExC_parse+1); /* MJD */
Set_Node_Length(ender,1); /* MJD */
break;
case '<':
case ',':
case '=':
case '!':
*flagp &= ~HASWIDTH;
/* FALL THROUGH */
case '>':
ender = reg_node(pRExC_state, SUCCEED);
break;
case 0:
ender = reg_node(pRExC_state, END);
if (!SIZE_ONLY) {
assert(!RExC_opend); /* there can only be one! */
RExC_opend = ender;
}
break;
}
REGTAIL(pRExC_state, lastbr, ender);
if (have_branch && !SIZE_ONLY) {
if (depth==1)
RExC_seen |= REG_TOP_LEVEL_BRANCHES;
/* Hook the tails of the branches to the closing node. */
for (br = ret; br; br = regnext(br)) {
const U8 op = PL_regkind[OP(br)];
if (op == BRANCH) {
REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
}
else if (op == BRANCHJ) {
REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
}
}
}
}
{
const char *p;
static const char parens[] = "=!<,>";
if (paren && (p = strchr(parens, paren))) {
U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
int flag = (p - parens) > 1;
if (paren == '>')
node = SUSPEND, flag = 0;
reginsert(pRExC_state, node,ret, depth+1);
Set_Node_Cur_Length(ret);
Set_Node_Offset(ret, parse_start + 1);
ret->flags = flag;
REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
}
}
/* Check for proper termination. */
if (paren) {
RExC_flags = oregflags;
if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
RExC_parse = oregcomp_parse;
vFAIL("Unmatched (");
}
}
else if (!paren && RExC_parse < RExC_end) {
if (*RExC_parse == ')') {
RExC_parse++;
vFAIL("Unmatched )");
}
else
FAIL("Junk on end of regexp"); /* "Can't happen". */
/* NOTREACHED */
}
if (RExC_in_lookbehind) {
RExC_in_lookbehind--;
}
if (after_freeze > RExC_npar)
RExC_npar = after_freeze;
return(ret);
}
/*
- regbranch - one alternative of an | operator
*
* Implements the concatenation operator.
*/
STATIC regnode *
S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
{
dVAR;
register regnode *ret;
register regnode *chain = NULL;
register regnode *latest;
I32 flags = 0, c = 0;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGBRANCH;
DEBUG_PARSE("brnc");
if (first)
ret = NULL;
else {
if (!SIZE_ONLY && RExC_extralen)
ret = reganode(pRExC_state, BRANCHJ,0);
else {
ret = reg_node(pRExC_state, BRANCH);
Set_Node_Length(ret, 1);
}
}
if (!first && SIZE_ONLY)
RExC_extralen += 1; /* BRANCHJ */
*flagp = WORST; /* Tentatively. */
RExC_parse--;
nextchar(pRExC_state);
while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
flags &= ~TRYAGAIN;
latest = regpiece(pRExC_state, &flags,depth+1);
if (latest == NULL) {
if (flags & TRYAGAIN)
continue;
return(NULL);
}
else if (ret == NULL)
ret = latest;
*flagp |= flags&(HASWIDTH|POSTPONED);
if (chain == NULL) /* First piece. */
*flagp |= flags&SPSTART;
else {
RExC_naughty++;
REGTAIL(pRExC_state, chain, latest);
}
chain = latest;
c++;
}
if (chain == NULL) { /* Loop ran zero times. */
chain = reg_node(pRExC_state, NOTHING);
if (ret == NULL)
ret = chain;
}
if (c == 1) {
*flagp |= flags&SIMPLE;
}
return ret;
}
/*
- regpiece - something followed by possible [*+?]
*
* Note that the branching code sequences used for ? and the general cases
* of * and + are somewhat optimized: they use the same NOTHING node as
* both the endmarker for their branch list and the body of the last branch.
* It might seem that this node could be dispensed with entirely, but the
* endmarker role is not redundant.
*/
STATIC regnode *
S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
{
dVAR;
register regnode *ret;
register char op;
register char *next;
I32 flags;
const char * const origparse = RExC_parse;
I32 min;
I32 max = REG_INFTY;
char *parse_start;
const char *maxpos = NULL;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGPIECE;
DEBUG_PARSE("piec");
ret = regatom(pRExC_state, &flags,depth+1);
if (ret == NULL) {
if (flags & TRYAGAIN)
*flagp |= TRYAGAIN;
return(NULL);
}
op = *RExC_parse;
if (op == '{' && regcurly(RExC_parse)) {
maxpos = NULL;
parse_start = RExC_parse; /* MJD */
next = RExC_parse + 1;
while (isDIGIT(*next) || *next == ',') {
if (*next == ',') {
if (maxpos)
break;
else
maxpos = next;
}
next++;
}
if (*next == '}') { /* got one */
if (!maxpos)
maxpos = next;
RExC_parse++;
min = atoi(RExC_parse);
if (*maxpos == ',')
maxpos++;
else
maxpos = RExC_parse;
max = atoi(maxpos);
if (!max && *maxpos != '0')
max = REG_INFTY; /* meaning "infinity" */
else if (max >= REG_INFTY)
vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
RExC_parse = next;
nextchar(pRExC_state);
do_curly:
if ((flags&SIMPLE)) {
RExC_naughty += 2 + RExC_naughty / 2;
reginsert(pRExC_state, CURLY, ret, depth+1);
Set_Node_Offset(ret, parse_start+1); /* MJD */
Set_Node_Cur_Length(ret);
}
else {
regnode * const w = reg_node(pRExC_state, WHILEM);
w->flags = 0;
REGTAIL(pRExC_state, ret, w);
if (!SIZE_ONLY && RExC_extralen) {
reginsert(pRExC_state, LONGJMP,ret, depth+1);
reginsert(pRExC_state, NOTHING,ret, depth+1);
NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
}
reginsert(pRExC_state, CURLYX,ret, depth+1);
/* MJD hk */
Set_Node_Offset(ret, parse_start+1);
Set_Node_Length(ret,
op == '{' ? (RExC_parse - parse_start) : 1);
if (!SIZE_ONLY && RExC_extralen)
NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
if (SIZE_ONLY)
RExC_whilem_seen++, RExC_extralen += 3;
RExC_naughty += 4 + RExC_naughty; /* compound interest */
}
ret->flags = 0;
if (min > 0)
*flagp = WORST;
if (max > 0)
*flagp |= HASWIDTH;
if (max < min)
vFAIL("Can't do {n,m} with n > m");
if (!SIZE_ONLY) {
ARG1_SET(ret, (U16)min);
ARG2_SET(ret, (U16)max);
}
goto nest_check;
}
}
if (!ISMULT1(op)) {
*flagp = flags;
return(ret);
}
#if 0 /* Now runtime fix should be reliable. */
/* if this is reinstated, don't forget to put this back into perldiag:
=item Regexp *+ operand could be empty at {#} in regex m/%s/
(F) The part of the regexp subject to either the * or + quantifier
could match an empty string. The {#} shows in the regular
expression about where the problem was discovered.
*/
if (!(flags&HASWIDTH) && op != '?')
vFAIL("Regexp *+ operand could be empty");
#endif
parse_start = RExC_parse;
nextchar(pRExC_state);
*flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
if (op == '*' && (flags&SIMPLE)) {
reginsert(pRExC_state, STAR, ret, depth+1);
ret->flags = 0;
RExC_naughty += 4;
}
else if (op == '*') {
min = 0;
goto do_curly;
}
else if (op == '+' && (flags&SIMPLE)) {
reginsert(pRExC_state, PLUS, ret, depth+1);
ret->flags = 0;
RExC_naughty += 3;
}
else if (op == '+') {
min = 1;
goto do_curly;
}
else if (op == '?') {
min = 0; max = 1;
goto do_curly;
}
nest_check:
if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
ckWARN3reg(RExC_parse,
"%.*s matches null string many times",
(int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
origparse);
}
if (RExC_parse < RExC_end && *RExC_parse == '?') {
nextchar(pRExC_state);
reginsert(pRExC_state, MINMOD, ret, depth+1);
REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
}
#ifndef REG_ALLOW_MINMOD_SUSPEND
else
#endif
if (RExC_parse < RExC_end && *RExC_parse == '+') {
regnode *ender;
nextchar(pRExC_state);
ender = reg_node(pRExC_state, SUCCEED);
REGTAIL(pRExC_state, ret, ender);
reginsert(pRExC_state, SUSPEND, ret, depth+1);
ret->flags = 0;
ender = reg_node(pRExC_state, TAIL);
REGTAIL(pRExC_state, ret, ender);
/*ret= ender;*/
}
if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
RExC_parse++;
vFAIL("Nested quantifiers");
}
return(ret);
}
/* reg_namedseq(pRExC_state,UVp, UV depth)
This is expected to be called by a parser routine that has
recognized '\N' and needs to handle the rest. RExC_parse is
expected to point at the first char following the N at the time
of the call.
The \N may be inside (indicated by valuep not being NULL) or outside a
character class.
\N may begin either a named sequence, or if outside a character class, mean
to match a non-newline. For non single-quoted regexes, the tokenizer has
attempted to decide which, and in the case of a named sequence converted it
into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
where c1... are the characters in the sequence. For single-quoted regexes,
the tokenizer passes the \N sequence through unchanged; this code will not
attempt to determine this nor expand those. The net effect is that if the
beginning of the passed-in pattern isn't '{U+' or there is no '}', it
signals that this \N occurrence means to match a non-newline.
Only the \N{U+...} form should occur in a character class, for the same
reason that '.' inside a character class means to just match a period: it
just doesn't make sense.
If valuep is non-null then it is assumed that we are parsing inside
of a charclass definition and the first codepoint in the resolved
string is returned via *valuep and the routine will return NULL.
In this mode if a multichar string is returned from the charnames
handler, a warning will be issued, and only the first char in the
sequence will be examined. If the string returned is zero length
then the value of *valuep is undefined and NON-NULL will
be returned to indicate failure. (This will NOT be a valid pointer
to a regnode.)
If valuep is null then it is assumed that we are parsing normal text and a
new EXACT node is inserted into the program containing the resolved string,
and a pointer to the new node is returned. But if the string is zero length
a NOTHING node is emitted instead.
On success RExC_parse is set to the char following the endbrace.
Parsing failures will generate a fatal error via vFAIL(...)
*/
STATIC regnode *
S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
{
char * endbrace; /* '}' following the name */
regnode *ret = NULL;
char* p;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REG_NAMEDSEQ;
GET_RE_DEBUG_FLAGS;
/* The [^\n] meaning of \N ignores spaces and comments under the /x
* modifier. The other meaning does not */
p = (RExC_flags & RXf_PMf_EXTENDED)
? regwhite( pRExC_state, RExC_parse )
: RExC_parse;
/* Disambiguate between \N meaning a named character versus \N meaning
* [^\n]. The former is assumed when it can't be the latter. */
if (*p != '{' || regcurly(p)) {
RExC_parse = p;
if (valuep) {
/* no bare \N in a charclass */
vFAIL("\\N in a character class must be a named character: \\N{...}");
}
nextchar(pRExC_state);
ret = reg_node(pRExC_state, REG_ANY);
*flagp |= HASWIDTH|SIMPLE;
RExC_naughty++;
RExC_parse--;
Set_Node_Length(ret, 1); /* MJD */
return ret;
}
/* Here, we have decided it should be a named sequence */
/* The test above made sure that the next real character is a '{', but
* under the /x modifier, it could be separated by space (or a comment and
* \n) and this is not allowed (for consistency with \x{...} and the
* tokenizer handling of \N{NAME}). */
if (*RExC_parse != '{') {
vFAIL("Missing braces on \\N{}");
}
RExC_parse++; /* Skip past the '{' */
if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
|| ! (endbrace == RExC_parse /* nothing between the {} */
|| (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
&& strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
{
if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
vFAIL("\\N{NAME} must be resolved by the lexer");
}
if (endbrace == RExC_parse) { /* empty: \N{} */
if (! valuep) {
RExC_parse = endbrace + 1;
return reg_node(pRExC_state,NOTHING);
}
if (SIZE_ONLY) {
ckWARNreg(RExC_parse,
"Ignoring zero length \\N{} in character class"
);
RExC_parse = endbrace + 1;
}
*valuep = 0;
return (regnode *) &RExC_parse; /* Invalid regnode pointer */
}
REQUIRE_UTF8; /* named sequences imply Unicode semantics */
RExC_parse += 2; /* Skip past the 'U+' */
if (valuep) { /* In a bracketed char class */
/* We only pay attention to the first char of
multichar strings being returned. I kinda wonder
if this makes sense as it does change the behaviour
from earlier versions, OTOH that behaviour was broken
as well. XXX Solution is to recharacterize as
[rest-of-class]|multi1|multi2... */
STRLEN length_of_hex;
I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
| PERL_SCAN_DISALLOW_PREFIX
| (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
if (endchar < endbrace) {
ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
}
length_of_hex = (STRLEN)(endchar - RExC_parse);
*valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
/* The tokenizer should have guaranteed validity, but it's possible to
* bypass it by using single quoting, so check */
if (length_of_hex == 0
|| length_of_hex != (STRLEN)(endchar - RExC_parse) )
{
RExC_parse += length_of_hex; /* Includes all the valid */
RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
? UTF8SKIP(RExC_parse)
: 1;
/* Guard against malformed utf8 */
if (RExC_parse >= endchar) RExC_parse = endchar;
vFAIL("Invalid hexadecimal number in \\N{U+...}");
}
RExC_parse = endbrace + 1;
if (endchar == endbrace) return NULL;
ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
}
else { /* Not a char class */
/* What is done here is to convert this to a sub-pattern of the form
* (?:\x{char1}\x{char2}...)
* and then call reg recursively. That way, it retains its atomicness,
* while not having to worry about special handling that some code
* points may have. toke.c has converted the original Unicode values
* to native, so that we can just pass on the hex values unchanged. We
* do have to set a flag to keep recoding from happening in the
* recursion */
SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
STRLEN len;
char *endchar; /* Points to '.' or '}' ending cur char in the input
stream */
char *orig_end = RExC_end;
while (RExC_parse < endbrace) {
/* Code points are separated by dots. If none, there is only one
* code point, and is terminated by the brace */
endchar = RExC_parse + strcspn(RExC_parse, ".}");
/* Convert to notation the rest of the code understands */
sv_catpv(substitute_parse, "\\x{");
sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
sv_catpv(substitute_parse, "}");
/* Point to the beginning of the next character in the sequence. */
RExC_parse = endchar + 1;
}
sv_catpv(substitute_parse, ")");
RExC_parse = SvPV(substitute_parse, len);
/* Don't allow empty number */
if (len < 8) {
vFAIL("Invalid hexadecimal number in \\N{U+...}");
}
RExC_end = RExC_parse + len;
/* The values are Unicode, and therefore not subject to recoding */
RExC_override_recoding = 1;
ret = reg(pRExC_state, 1, flagp, depth+1);
RExC_parse = endbrace;
RExC_end = orig_end;
RExC_override_recoding = 0;
nextchar(pRExC_state);
}
return ret;
}
/*
* reg_recode
*
* It returns the code point in utf8 for the value in *encp.
* value: a code value in the source encoding
* encp: a pointer to an Encode object
*
* If the result from Encode is not a single character,
* it returns U+FFFD (Replacement character) and sets *encp to NULL.
*/
STATIC UV
S_reg_recode(pTHX_ const char value, SV **encp)
{
STRLEN numlen = 1;
SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
const STRLEN newlen = SvCUR(sv);
UV uv = UNICODE_REPLACEMENT;
PERL_ARGS_ASSERT_REG_RECODE;
if (newlen)
uv = SvUTF8(sv)
? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
: *(U8*)s;
if (!newlen || numlen != newlen) {
uv = UNICODE_REPLACEMENT;
*encp = NULL;
}
return uv;
}
/*
- regatom - the lowest level
Try to identify anything special at the start of the pattern. If there
is, then handle it as required. This may involve generating a single regop,
such as for an assertion; or it may involve recursing, such as to
handle a () structure.
If the string doesn't start with something special then we gobble up
as much literal text as we can.
Once we have been able to handle whatever type of thing started the
sequence, we return.
Note: we have to be careful with escapes, as they can be both literal
and special, and in the case of \10 and friends can either, depending
on context. Specifically there are two separate switches for handling
escape sequences, with the one for handling literal escapes requiring
a dummy entry for all of the special escapes that are actually handled
by the other.
*/
STATIC regnode *
S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
{
dVAR;
register regnode *ret = NULL;
I32 flags;
char *parse_start = RExC_parse;
U8 op;
GET_RE_DEBUG_FLAGS_DECL;
DEBUG_PARSE("atom");
*flagp = WORST; /* Tentatively. */
PERL_ARGS_ASSERT_REGATOM;
tryagain:
switch ((U8)*RExC_parse) {
case '^':
RExC_seen_zerolen++;
nextchar(pRExC_state);
if (RExC_flags & RXf_PMf_MULTILINE)
ret = reg_node(pRExC_state, MBOL);
else if (RExC_flags & RXf_PMf_SINGLELINE)
ret = reg_node(pRExC_state, SBOL);
else
ret = reg_node(pRExC_state, BOL);
Set_Node_Length(ret, 1); /* MJD */
break;
case '$':
nextchar(pRExC_state);
if (*RExC_parse)
RExC_seen_zerolen++;
if (RExC_flags & RXf_PMf_MULTILINE)
ret = reg_node(pRExC_state, MEOL);
else if (RExC_flags & RXf_PMf_SINGLELINE)
ret = reg_node(pRExC_state, SEOL);
else
ret = reg_node(pRExC_state, EOL);
Set_Node_Length(ret, 1); /* MJD */
break;
case '.':
nextchar(pRExC_state);
if (RExC_flags & RXf_PMf_SINGLELINE)
ret = reg_node(pRExC_state, SANY);
else
ret = reg_node(pRExC_state, REG_ANY);
*flagp |= HASWIDTH|SIMPLE;
RExC_naughty++;
Set_Node_Length(ret, 1); /* MJD */
break;
case '[':
{
char * const oregcomp_parse = ++RExC_parse;
ret = regclass(pRExC_state,depth+1);
if (*RExC_parse != ']') {
RExC_parse = oregcomp_parse;
vFAIL("Unmatched [");
}
nextchar(pRExC_state);
*flagp |= HASWIDTH|SIMPLE;
Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
break;
}
case '(':
nextchar(pRExC_state);
ret = reg(pRExC_state, 1, &flags,depth+1);
if (ret == NULL) {
if (flags & TRYAGAIN) {
if (RExC_parse == RExC_end) {
/* Make parent create an empty node if needed. */
*flagp |= TRYAGAIN;
return(NULL);
}
goto tryagain;
}
return(NULL);
}
*flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
break;
case '|':
case ')':
if (flags & TRYAGAIN) {
*flagp |= TRYAGAIN;
return NULL;
}
vFAIL("Internal urp");
/* Supposed to be caught earlier. */
break;
case '{':
if (!regcurly(RExC_parse)) {
RExC_parse++;
goto defchar;
}
/* FALL THROUGH */
case '?':
case '+':
case '*':
RExC_parse++;
vFAIL("Quantifier follows nothing");
break;
case '\\':
/* Special Escapes
This switch handles escape sequences that resolve to some kind
of special regop and not to literal text. Escape sequnces that
resolve to literal text are handled below in the switch marked
"Literal Escapes".
Every entry in this switch *must* have a corresponding entry
in the literal escape switch. However, the opposite is not
required, as the default for this switch is to jump to the
literal text handling code.
*/
switch ((U8)*++RExC_parse) {
/* Special Escapes */
case 'A':
RExC_seen_zerolen++;
ret = reg_node(pRExC_state, SBOL);
*flagp |= SIMPLE;
goto finish_meta_pat;
case 'G':
ret = reg_node(pRExC_state, GPOS);
RExC_seen |= REG_SEEN_GPOS;
*flagp |= SIMPLE;
goto finish_meta_pat;
case 'K':
RExC_seen_zerolen++;
ret = reg_node(pRExC_state, KEEPS);
*flagp |= SIMPLE;
/* XXX:dmq : disabling in-place substitution seems to
* be necessary here to avoid cases of memory corruption, as
* with: C<$_="x" x 80; s/x\K/y/> -- rgs
*/
RExC_seen |= REG_SEEN_LOOKBEHIND;
goto finish_meta_pat;
case 'Z':
ret = reg_node(pRExC_state, SEOL);
*flagp |= SIMPLE;
RExC_seen_zerolen++; /* Do not optimize RE away */
goto finish_meta_pat;
case 'z':
ret = reg_node(pRExC_state, EOS);
*flagp |= SIMPLE;
RExC_seen_zerolen++; /* Do not optimize RE away */
goto finish_meta_pat;
case 'C':
ret = reg_node(pRExC_state, CANY);
RExC_seen |= REG_SEEN_CANY;
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'X':
ret = reg_node(pRExC_state, CLUMP);
*flagp |= HASWIDTH;
goto finish_meta_pat;
case 'w':
switch (get_regex_charset(RExC_flags)) {
case REGEX_LOCALE_CHARSET:
op = ALNUML;
break;
case REGEX_UNICODE_CHARSET:
op = ALNUMU;
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
op = ALNUMA;
break;
case REGEX_DEPENDS_CHARSET:
op = ALNUM;
break;
default:
goto bad_charset;
}
ret = reg_node(pRExC_state, op);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'W':
switch (get_regex_charset(RExC_flags)) {
case REGEX_LOCALE_CHARSET:
op = NALNUML;
break;
case REGEX_UNICODE_CHARSET:
op = NALNUMU;
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
op = NALNUMA;
break;
case REGEX_DEPENDS_CHARSET:
op = NALNUM;
break;
default:
goto bad_charset;
}
ret = reg_node(pRExC_state, op);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'b':
RExC_seen_zerolen++;
RExC_seen |= REG_SEEN_LOOKBEHIND;
switch (get_regex_charset(RExC_flags)) {
case REGEX_LOCALE_CHARSET:
op = BOUNDL;
break;
case REGEX_UNICODE_CHARSET:
op = BOUNDU;
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
op = BOUNDA;
break;
case REGEX_DEPENDS_CHARSET:
op = BOUND;
break;
default:
goto bad_charset;
}
ret = reg_node(pRExC_state, op);
FLAGS(ret) = get_regex_charset(RExC_flags);
*flagp |= SIMPLE;
if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
ckWARNregdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" instead");
}
goto finish_meta_pat;
case 'B':
RExC_seen_zerolen++;
RExC_seen |= REG_SEEN_LOOKBEHIND;
switch (get_regex_charset(RExC_flags)) {
case REGEX_LOCALE_CHARSET:
op = NBOUNDL;
break;
case REGEX_UNICODE_CHARSET:
op = NBOUNDU;
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
op = NBOUNDA;
break;
case REGEX_DEPENDS_CHARSET:
op = NBOUND;
break;
default:
goto bad_charset;
}
ret = reg_node(pRExC_state, op);
FLAGS(ret) = get_regex_charset(RExC_flags);
*flagp |= SIMPLE;
if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
ckWARNregdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" instead");
}
goto finish_meta_pat;
case 's':
switch (get_regex_charset(RExC_flags)) {
case REGEX_LOCALE_CHARSET:
op = SPACEL;
break;
case REGEX_UNICODE_CHARSET:
op = SPACEU;
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
op = SPACEA;
break;
case REGEX_DEPENDS_CHARSET:
op = SPACE;
break;
default:
goto bad_charset;
}
ret = reg_node(pRExC_state, op);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'S':
switch (get_regex_charset(RExC_flags)) {
case REGEX_LOCALE_CHARSET:
op = NSPACEL;
break;
case REGEX_UNICODE_CHARSET:
op = NSPACEU;
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
op = NSPACEA;
break;
case REGEX_DEPENDS_CHARSET:
op = NSPACE;
break;
default:
goto bad_charset;
}
ret = reg_node(pRExC_state, op);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'd':
switch (get_regex_charset(RExC_flags)) {
case REGEX_LOCALE_CHARSET:
op = DIGITL;
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
op = DIGITA;
break;
case REGEX_DEPENDS_CHARSET: /* No difference between these */
case REGEX_UNICODE_CHARSET:
op = DIGIT;
break;
default:
goto bad_charset;
}
ret = reg_node(pRExC_state, op);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'D':
switch (get_regex_charset(RExC_flags)) {
case REGEX_LOCALE_CHARSET:
op = NDIGITL;
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
op = NDIGITA;
break;
case REGEX_DEPENDS_CHARSET: /* No difference between these */
case REGEX_UNICODE_CHARSET:
op = NDIGIT;
break;
default:
goto bad_charset;
}
ret = reg_node(pRExC_state, op);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'R':
ret = reg_node(pRExC_state, LNBREAK);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'h':
ret = reg_node(pRExC_state, HORIZWS);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'H':
ret = reg_node(pRExC_state, NHORIZWS);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'v':
ret = reg_node(pRExC_state, VERTWS);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'V':
ret = reg_node(pRExC_state, NVERTWS);
*flagp |= HASWIDTH|SIMPLE;
finish_meta_pat:
nextchar(pRExC_state);
Set_Node_Length(ret, 2); /* MJD */
break;
case 'p':
case 'P':
{
char* const oldregxend = RExC_end;
#ifdef DEBUGGING
char* parse_start = RExC_parse - 2;
#endif
if (RExC_parse[1] == '{') {
/* a lovely hack--pretend we saw [\pX] instead */
RExC_end = strchr(RExC_parse, '}');
if (!RExC_end) {
const U8 c = (U8)*RExC_parse;
RExC_parse += 2;
RExC_end = oldregxend;
vFAIL2("Missing right brace on \\%c{}", c);
}
RExC_end++;
}
else {
RExC_end = RExC_parse + 2;
if (RExC_end > oldregxend)
RExC_end = oldregxend;
}
RExC_parse--;
ret = regclass(pRExC_state,depth+1);
RExC_end = oldregxend;
RExC_parse--;
Set_Node_Offset(ret, parse_start + 2);
Set_Node_Cur_Length(ret);
nextchar(pRExC_state);
*flagp |= HASWIDTH|SIMPLE;
}
break;
case 'N':
/* Handle \N and \N{NAME} here and not below because it can be
multicharacter. join_exact() will join them up later on.
Also this makes sure that things like /\N{BLAH}+/ and
\N{BLAH} being multi char Just Happen. dmq*/
++RExC_parse;
ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
break;
case 'k': /* Handle \k<NAME> and \k'NAME' */
parse_named_seq:
{
char ch= RExC_parse[1];
if (ch != '<' && ch != '\'' && ch != '{') {
RExC_parse++;
vFAIL2("Sequence %.2s... not terminated",parse_start);
} else {
/* this pretty much dupes the code for (?P=...) in reg(), if
you change this make sure you change that */
char* name_start = (RExC_parse += 2);
U32 num = 0;
SV *sv_dat = reg_scan_name(pRExC_state,
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
if (RExC_parse == name_start || *RExC_parse != ch)
vFAIL2("Sequence %.3s... not terminated",parse_start);
if (!SIZE_ONLY) {
num = add_data( pRExC_state, 1, "S" );
RExC_rxi->data->data[num]=(void*)sv_dat;
SvREFCNT_inc_simple_void(sv_dat);
}
RExC_sawback = 1;
ret = reganode(pRExC_state,
((! FOLD)
? NREF
: (MORE_ASCII_RESTRICTED)
? NREFFA
: (AT_LEAST_UNI_SEMANTICS)
? NREFFU
: (LOC)
? NREFFL
: NREFF),
num);
*flagp |= HASWIDTH;
/* override incorrect value set in reganode MJD */
Set_Node_Offset(ret, parse_start+1);
Set_Node_Cur_Length(ret); /* MJD */
nextchar(pRExC_state);
}
break;
}
case 'g':
case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{
I32 num;
bool isg = *RExC_parse == 'g';
bool isrel = 0;
bool hasbrace = 0;
if (isg) {
RExC_parse++;
if (*RExC_parse == '{') {
RExC_parse++;
hasbrace = 1;
}
if (*RExC_parse == '-') {
RExC_parse++;
isrel = 1;
}
if (hasbrace && !isDIGIT(*RExC_parse)) {
if (isrel) RExC_parse--;
RExC_parse -= 2;
goto parse_named_seq;
} }
num = atoi(RExC_parse);
if (isg && num == 0)
vFAIL("Reference to invalid group 0");
if (isrel) {
num = RExC_npar - num;
if (num < 1)
vFAIL("Reference to nonexistent or unclosed group");
}
if (!isg && num > 9 && num >= RExC_npar)
goto defchar;
else {
char * const parse_start = RExC_parse - 1; /* MJD */
while (isDIGIT(*RExC_parse))
RExC_parse++;
if (parse_start == RExC_parse - 1)
vFAIL("Unterminated \\g... pattern");
if (hasbrace) {
if (*RExC_parse != '}')
vFAIL("Unterminated \\g{...} pattern");
RExC_parse++;
}
if (!SIZE_ONLY) {
if (num > (I32)RExC_rx->nparens)
vFAIL("Reference to nonexistent group");
}
RExC_sawback = 1;
ret = reganode(pRExC_state,
((! FOLD)
? REF
: (MORE_ASCII_RESTRICTED)
? REFFA
: (AT_LEAST_UNI_SEMANTICS)
? REFFU
: (LOC)
? REFFL
: REFF),
num);
*flagp |= HASWIDTH;
/* override incorrect value set in reganode MJD */
Set_Node_Offset(ret, parse_start+1);
Set_Node_Cur_Length(ret); /* MJD */
RExC_parse--;
nextchar(pRExC_state);
}
}
break;
case '\0':
if (RExC_parse >= RExC_end)
FAIL("Trailing \\");
/* FALL THROUGH */
default:
/* Do not generate "unrecognized" warnings here, we fall
back into the quick-grab loop below */
parse_start--;
goto defchar;
}
break;
case '#':
if (RExC_flags & RXf_PMf_EXTENDED) {
if ( reg_skipcomment( pRExC_state ) )
goto tryagain;
}
/* FALL THROUGH */
default:
parse_start = RExC_parse - 1;
RExC_parse++;
defchar: {
typedef enum {
generic_char = 0,
char_s,
upsilon_1,
upsilon_2,
iota_1,
iota_2,
} char_state;
char_state latest_char_state = generic_char;
register STRLEN len;
register UV ender;
register char *p;
char *s;
STRLEN foldlen;
U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
regnode * orig_emit;
ender = 0;
orig_emit = RExC_emit; /* Save the original output node position in
case we need to output a different node
type */
ret = reg_node(pRExC_state,
(U8) ((! FOLD) ? EXACT
: (LOC)
? EXACTFL
: (MORE_ASCII_RESTRICTED)
? EXACTFA
: (AT_LEAST_UNI_SEMANTICS)
? EXACTFU
: EXACTF)
);
s = STRING(ret);
for (len = 0, p = RExC_parse - 1;
len < 127 && p < RExC_end;
len++)
{
char * const oldp = p;
if (RExC_flags & RXf_PMf_EXTENDED)
p = regwhite( pRExC_state, p );
switch ((U8)*p) {
case '^':
case '$':
case '.':
case '[':
case '(':
case ')':
case '|':
goto loopdone;
case '\\':
/* Literal Escapes Switch
This switch is meant to handle escape sequences that
resolve to a literal character.
Every escape sequence that represents something
else, like an assertion or a char class, is handled
in the switch marked 'Special Escapes' above in this
routine, but also has an entry here as anything that
isn't explicitly mentioned here will be treated as
an unescaped equivalent literal.
*/
switch ((U8)*++p) {
/* These are all the special escapes. */
case 'A': /* Start assertion */
case 'b': case 'B': /* Word-boundary assertion*/
case 'C': /* Single char !DANGEROUS! */
case 'd': case 'D': /* digit class */
case 'g': case 'G': /* generic-backref, pos assertion */
case 'h': case 'H': /* HORIZWS */
case 'k': case 'K': /* named backref, keep marker */
case 'N': /* named char sequence */
case 'p': case 'P': /* Unicode property */
case 'R': /* LNBREAK */
case 's': case 'S': /* space class */
case 'v': case 'V': /* VERTWS */
case 'w': case 'W': /* word class */
case 'X': /* eXtended Unicode "combining character sequence" */
case 'z': case 'Z': /* End of line/string assertion */
--p;
goto loopdone;
/* Anything after here is an escape that resolves to a
literal. (Except digits, which may or may not)
*/
case 'n':
ender = '\n';
p++;
break;
case 'r':
ender = '\r';
p++;
break;
case 't':
ender = '\t';
p++;
break;
case 'f':
ender = '\f';
p++;
break;
case 'e':
ender = ASCII_TO_NATIVE('\033');
p++;
break;
case 'a':
ender = ASCII_TO_NATIVE('\007');
p++;
break;
case 'o':
{
STRLEN brace_len = len;
UV result;
const char* error_msg;
bool valid = grok_bslash_o(p,
&result,
&brace_len,
&error_msg,
1);
p += brace_len;
if (! valid) {
RExC_parse = p; /* going to die anyway; point
to exact spot of failure */
vFAIL(error_msg);
}
else
{
ender = result;
}
if (PL_encoding && ender < 0x100) {
goto recode_encoding;
}
if (ender > 0xff) {
REQUIRE_UTF8;
}
break;
}
case 'x':
if (*++p == '{') {
char* const e = strchr(p, '}');
if (!e) {
RExC_parse = p + 1;
vFAIL("Missing right brace on \\x{}");
}
else {
I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
| PERL_SCAN_DISALLOW_PREFIX;
STRLEN numlen = e - p - 1;
ender = grok_hex(p + 1, &numlen, &flags, NULL);
if (ender > 0xff)
REQUIRE_UTF8;
p = e + 1;
}
}
else {
I32 flags = PERL_SCAN_DISALLOW_PREFIX;
STRLEN numlen = 2;
ender = grok_hex(p, &numlen, &flags, NULL);
p += numlen;
}
if (PL_encoding && ender < 0x100)
goto recode_encoding;
break;
case 'c':
p++;
ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
break;
case '0': case '1': case '2': case '3':case '4':
case '5': case '6': case '7': case '8':case '9':
if (*p == '0' ||
(isDIGIT(p[1]) && atoi(p) >= RExC_npar))
{
I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
STRLEN numlen = 3;
ender = grok_oct(p, &numlen, &flags, NULL);
if (ender > 0xff) {
REQUIRE_UTF8;
}
p += numlen;
}
else {
--p;
goto loopdone;
}
if (PL_encoding && ender < 0x100)
goto recode_encoding;
break;
recode_encoding:
if (! RExC_override_recoding) {
SV* enc = PL_encoding;
ender = reg_recode((const char)(U8)ender, &enc);
if (!enc && SIZE_ONLY)
ckWARNreg(p, "Invalid escape in the specified encoding");
REQUIRE_UTF8;
}
break;
case '\0':
if (p >= RExC_end)
FAIL("Trailing \\");
/* FALL THROUGH */
default:
if (!SIZE_ONLY&& isALPHA(*p)) {
/* Include any { following the alpha to emphasize
* that it could be part of an escape at some point
* in the future */
int len = (*(p + 1) == '{') ? 2 : 1;
ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
}
goto normal_default;
}
break;
default:
normal_default:
if (UTF8_IS_START(*p) && UTF) {
STRLEN numlen;
ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
&numlen, UTF8_ALLOW_DEFAULT);
p += numlen;
}
else
ender = (U8) *p++;
break;
} /* End of switch on the literal */
/* Certain characters are problematic because their folded
* length is so different from their original length that it
* isn't handleable by the optimizer. They are therefore not
* placed in an EXACTish node; and are here handled specially.
* (Even if the optimizer handled LATIN_SMALL_LETTER_SHARP_S,
* putting it in a special node keeps regexec from having to
* deal with a non-utf8 multi-char fold */
if (FOLD
&& (ender > 255 || (! MORE_ASCII_RESTRICTED && ! LOC)))
{
/* We look for either side of the fold. For example \xDF
* folds to 'ss'. We look for both the single character
* \xDF and the sequence 'ss'. When we find something that
* could be one of those, we stop and flush whatever we
* have output so far into the EXACTish node that was being
* built. Then restore the input pointer to what it was.
* regatom will return that EXACT node, and will be called
* again, positioned so the first character is the one in
* question, which we return in a different node type.
* The multi-char folds are a sequence, so the occurrence
* of the first character in that sequence doesn't
* necessarily mean that what follows is the rest of the
* sequence. We keep track of that with a state machine,
* with the state being set to the latest character
* processed before the current one. Most characters will
* set the state to 0, but if one occurs that is part of a
* potential tricky fold sequence, the state is set to that
* character, and the next loop iteration sees if the state
* should progress towards the final folded-from character,
* or if it was a false alarm. If it turns out to be a
* false alarm, the character(s) will be output in a new
* EXACTish node, and join_exact() will later combine them.
* In the case of the 'ss' sequence, which is more common
* and more easily checked, some look-ahead is done to
* save time by ruling-out some false alarms */
switch (ender) {
default:
latest_char_state = generic_char;
break;
case 's':
case 'S':
case 0x17F: /* LATIN SMALL LETTER LONG S */
if (AT_LEAST_UNI_SEMANTICS) {
if (latest_char_state == char_s) { /* 'ss' */
ender = LATIN_SMALL_LETTER_SHARP_S;
goto do_tricky;
}
else if (p < RExC_end) {
/* Look-ahead at the next character. If it
* is also an s, we handle as a sharp s
* tricky regnode. */
if (*p == 's' || *p == 'S') {
/* But first flush anything in the
* EXACTish buffer */
if (len != 0) {
p = oldp;
goto loopdone;
}
p++; /* Account for swallowing this
's' up */
ender = LATIN_SMALL_LETTER_SHARP_S;
goto do_tricky;
}
/* Here, the next character is not a
* literal 's', but still could
* evaluate to one if part of a \o{},
* \x or \OCTAL-DIGIT. The minimum
* length required for that is 4, eg
* \x53 or \123 */
else if (*p == '\\'
&& p < RExC_end - 4
&& (isDIGIT(*(p + 1))
|| *(p + 1) == 'x'
|| *(p + 1) == 'o' ))
{
/* Here, it could be an 's', too much
* bother to figure it out here. Flush
* the buffer if any; when come back
* here, set the state so know that the
* previous char was an 's' */
if (len != 0) {
latest_char_state = generic_char;
p = oldp;
goto loopdone;
}
latest_char_state = char_s;
break;
}
}
}
/* Here, can't be an 'ss' sequence, or at least not
* one that could fold to/from the sharp ss */
latest_char_state = generic_char;
break;
case 0x03C5: /* First char in upsilon series */
if (p < RExC_end - 4) { /* Need >= 4 bytes left */
latest_char_state = upsilon_1;
if (len != 0) {
p = oldp;
goto loopdone;
}
}
else {
latest_char_state = generic_char;
}
break;
case 0x03B9: /* First char in iota series */
if (p < RExC_end - 4) {
latest_char_state = iota_1;
if (len != 0) {
p = oldp;
goto loopdone;
}
}
else {
latest_char_state = generic_char;
}
break;
case 0x0308:
if (latest_char_state == upsilon_1) {
latest_char_state = upsilon_2;
}
else if (latest_char_state == iota_1) {
latest_char_state = iota_2;
}
else {
latest_char_state = generic_char;
}
break;
case 0x301:
if (latest_char_state == upsilon_2) {
ender = GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS;
goto do_tricky;
}
else if (latest_char_state == iota_2) {
ender = GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS;
goto do_tricky;
}
latest_char_state = generic_char;
break;
/* These are the tricky fold characters. Flush any
* buffer first. */
case GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS:
case GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS:
case LATIN_SMALL_LETTER_SHARP_S:
case LATIN_CAPITAL_LETTER_SHARP_S:
case 0x1FD3:
case 0x1FE3:
if (len != 0) {
p = oldp;
goto loopdone;
}
/* FALL THROUGH */
do_tricky: {
char* const oldregxend = RExC_end;
U8 tmpbuf[UTF8_MAXBYTES+1];
/* Here, we know we need to generate a special
* regnode, and 'ender' contains the tricky
* character. What's done is to pretend it's in a
* [bracketed] class, and let the code that deals
* with those handle it, as that code has all the
* intelligence necessary. First save the current
* parse state, get rid of the already allocated
* but empty EXACT node that the ANYOFV node will
* replace, and point the parse to a buffer which
* we fill with the character we want the regclass
* code to think is being parsed */
RExC_emit = orig_emit;
RExC_parse = (char *) tmpbuf;
if (UTF) {
U8 *d = uvchr_to_utf8(tmpbuf, ender);
*d = '\0';
RExC_end = (char *) d;
}
else { /* ender above 255 already excluded */
tmpbuf[0] = (U8) ender;
tmpbuf[1] = '\0';
RExC_end = RExC_parse + 1;
}
ret = regclass(pRExC_state,depth+1);
/* Here, have parsed the buffer. Reset the parse to
* the actual input, and return */
RExC_end = oldregxend;
RExC_parse = p - 1;
Set_Node_Offset(ret, RExC_parse);
Set_Node_Cur_Length(ret);
nextchar(pRExC_state);
*flagp |= HASWIDTH|SIMPLE;
return ret;
}
}
}
if ( RExC_flags & RXf_PMf_EXTENDED)
p = regwhite( pRExC_state, p );
if (UTF && FOLD) {
/* Prime the casefolded buffer. Locale rules, which apply
* only to code points < 256, aren't known until execution,
* so for them, just output the original character using
* utf8 */
if (LOC && ender < 256) {
if (UNI_IS_INVARIANT(ender)) {
*tmpbuf = (U8) ender;
foldlen = 1;
} else {
*tmpbuf = UTF8_TWO_BYTE_HI(ender);
*(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
foldlen = 2;
}
}
else if (isASCII(ender)) { /* Note: Here can't also be LOC
*/
ender = toLOWER(ender);
*tmpbuf = (U8) ender;
foldlen = 1;
}
else if (! MORE_ASCII_RESTRICTED && ! LOC) {
/* Locale and /aa require more selectivity about the
* fold, so are handled below. Otherwise, here, just
* use the fold */
ender = toFOLD_uni(ender, tmpbuf, &foldlen);
}
else {
/* Under locale rules or /aa we are not to mix,
* respectively, ords < 256 or ASCII with non-. So
* reject folds that mix them, using only the
* non-folded code point. So do the fold to a
* temporary, and inspect each character in it. */
U8 trialbuf[UTF8_MAXBYTES_CASE+1];
U8* s = trialbuf;
UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
U8* e = s + foldlen;
bool fold_ok = TRUE;
while (s < e) {
if (isASCII(*s)
|| (LOC && (UTF8_IS_INVARIANT(*s)
|| UTF8_IS_DOWNGRADEABLE_START(*s))))
{
fold_ok = FALSE;
break;
}
s += UTF8SKIP(s);
}
if (fold_ok) {
Copy(trialbuf, tmpbuf, foldlen, U8);
ender = tmpender;
}
else {
uvuni_to_utf8(tmpbuf, ender);
foldlen = UNISKIP(ender);
}
}
}
if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
if (len)
p = oldp;
else if (UTF) {
if (FOLD) {
/* Emit all the Unicode characters. */
STRLEN numlen;
for (foldbuf = tmpbuf;
foldlen;
foldlen -= numlen) {
ender = utf8_to_uvchr(foldbuf, &numlen);
if (numlen > 0) {
const STRLEN unilen = reguni(pRExC_state, ender, s);
s += unilen;
len += unilen;
/* In EBCDIC the numlen
* and unilen can differ. */
foldbuf += numlen;
if (numlen >= foldlen)
break;
}
else
break; /* "Can't happen." */
}
}
else {
const STRLEN unilen = reguni(pRExC_state, ender, s);
if (unilen > 0) {
s += unilen;
len += unilen;
}
}
}
else {
len++;
REGC((char)ender, s++);
}
break;
}
if (UTF) {
if (FOLD) {
/* Emit all the Unicode characters. */
STRLEN numlen;
for (foldbuf = tmpbuf;
foldlen;
foldlen -= numlen) {
ender = utf8_to_uvchr(foldbuf, &numlen);
if (numlen > 0) {
const STRLEN unilen = reguni(pRExC_state, ender, s);
len += unilen;
s += unilen;
/* In EBCDIC the numlen
* and unilen can differ. */
foldbuf += numlen;
if (numlen >= foldlen)
break;
}
else
break;
}
}
else {
const STRLEN unilen = reguni(pRExC_state, ender, s);
if (unilen > 0) {
s += unilen;
len += unilen;
}
}
len--;
}
else {
REGC((char)ender, s++);
}
}
loopdone: /* Jumped to when encounters something that shouldn't be in
the node */
RExC_parse = p - 1;
Set_Node_Cur_Length(ret); /* MJD */
nextchar(pRExC_state);
{
/* len is STRLEN which is unsigned, need to copy to signed */
IV iv = len;
if (iv < 0)
vFAIL("Internal disaster");
}
if (len > 0)
*flagp |= HASWIDTH;
if (len == 1 && UNI_IS_INVARIANT(ender))
*flagp |= SIMPLE;
if (SIZE_ONLY)
RExC_size += STR_SZ(len);
else {
STR_LEN(ret) = len;
RExC_emit += STR_SZ(len);
}
}
break;
}
return(ret);
/* Jumped to when an unrecognized character set is encountered */
bad_charset:
Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
return(NULL);
}
STATIC char *
S_regwhite( RExC_state_t *pRExC_state, char *p )
{
const char *e = RExC_end;
PERL_ARGS_ASSERT_REGWHITE;
while (p < e) {
if (isSPACE(*p))
++p;
else if (*p == '#') {
bool ended = 0;
do {
if (*p++ == '\n') {
ended = 1;
break;
}
} while (p < e);
if (!ended)
RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
}
else
break;
}
return p;
}
/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
Character classes ([:foo:]) can also be negated ([:^foo:]).
Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
but trigger failures because they are currently unimplemented. */
#define POSIXCC_DONE(c) ((c) == ':')
#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
STATIC I32
S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
{
dVAR;
I32 namedclass = OOB_NAMEDCLASS;
PERL_ARGS_ASSERT_REGPPOSIXCC;
if (value == '[' && RExC_parse + 1 < RExC_end &&
/* I smell either [: or [= or [. -- POSIX has been here, right? */
POSIXCC(UCHARAT(RExC_parse))) {
const char c = UCHARAT(RExC_parse);
char* const s = RExC_parse++;
while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
RExC_parse++;
if (RExC_parse == RExC_end)
/* Grandfather lone [:, [=, [. */
RExC_parse = s;
else {
const char* const t = RExC_parse++; /* skip over the c */
assert(*t == c);
if (UCHARAT(RExC_parse) == ']') {
const char *posixcc = s + 1;
RExC_parse++; /* skip over the ending ] */
if (*s == ':') {
const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
const I32 skip = t - posixcc;
/* Initially switch on the length of the name. */
switch (skip) {
case 4:
if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
break;
case 5:
/* Names all of length 5. */
/* alnum alpha ascii blank cntrl digit graph lower
print punct space upper */
/* Offset 4 gives the best switch position. */
switch (posixcc[4]) {
case 'a':
if (memEQ(posixcc, "alph", 4)) /* alpha */
namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
break;
case 'e':
if (memEQ(posixcc, "spac", 4)) /* space */
namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
break;
case 'h':
if (memEQ(posixcc, "grap", 4)) /* graph */
namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
break;
case 'i':
if (memEQ(posixcc, "asci", 4)) /* ascii */
namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
break;
case 'k':
if (memEQ(posixcc, "blan", 4)) /* blank */
namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
break;
case 'l':
if (memEQ(posixcc, "cntr", 4)) /* cntrl */
namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
break;
case 'm':
if (memEQ(posixcc, "alnu", 4)) /* alnum */
namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
break;
case 'r':
if (memEQ(posixcc, "lowe", 4)) /* lower */
namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
else if (memEQ(posixcc, "uppe", 4)) /* upper */
namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
break;
case 't':
if (memEQ(posixcc, "digi", 4)) /* digit */
namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
else if (memEQ(posixcc, "prin", 4)) /* print */
namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
else if (memEQ(posixcc, "punc", 4)) /* punct */
namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
break;
}
break;
case 6:
if (memEQ(posixcc, "xdigit", 6))
namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
break;
}
if (namedclass == OOB_NAMEDCLASS)
Simple_vFAIL3("POSIX class [:%.*s:] unknown",
t - s - 1, s + 1);
assert (posixcc[skip] == ':');
assert (posixcc[skip+1] == ']');
} else if (!SIZE_ONLY) {
/* [[=foo=]] and [[.foo.]] are still future. */
/* adjust RExC_parse so the warning shows after
the class closes */
while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
RExC_parse++;
Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
}
} else {
/* Maternal grandfather:
* "[:" ending in ":" but not in ":]" */
RExC_parse = s;
}
}
}
return namedclass;
}
STATIC void
S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
{
dVAR;
PERL_ARGS_ASSERT_CHECKPOSIXCC;
if (POSIXCC(UCHARAT(RExC_parse))) {
const char *s = RExC_parse;
const char c = *s++;
while (isALNUM(*s))
s++;
if (*s && c == *s && s[1] == ']') {
ckWARN3reg(s+2,
"POSIX syntax [%c %c] belongs inside character classes",
c, c);
/* [[=foo=]] and [[.foo.]] are still future. */
if (POSIXCC_NOTYET(c)) {
/* adjust RExC_parse so the error shows after
the class closes */
while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
NOOP;
Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
}
}
}
}
/* No locale test, and always Unicode semantics, no ignore-case differences */
#define _C_C_T_NOLOC_(NAME,TEST,WORD) \
ANYOF_##NAME: \
for (value = 0; value < 256; value++) \
if (TEST) \
stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
yesno = '+'; \
what = WORD; \
break; \
case ANYOF_N##NAME: \
for (value = 0; value < 256; value++) \
if (!TEST) \
stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
yesno = '!'; \
what = WORD; \
break
/* Like the above, but there are differences if we are in uni-8-bit or not, so
* there are two tests passed in, to use depending on that. There aren't any
* cases where the label is different from the name, so no need for that
* parameter.
* Sets 'what' to WORD which is the property name for non-bitmap code points;
* But, uses FOLD_WORD instead if /i has been selected, to allow a different
* property name */
#define _C_C_T_(NAME, TEST_8, TEST_7, WORD, FOLD_WORD) \
ANYOF_##NAME: \
if (LOC) ANYOF_CLASS_SET(ret, ANYOF_##NAME); \
else if (UNI_SEMANTICS) { \
for (value = 0; value < 256; value++) { \
if (TEST_8(value)) stored += \
set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
} \
} \
else { \
for (value = 0; value < 128; value++) { \
if (TEST_7(UNI_TO_NATIVE(value))) stored += \
set_regclass_bit(pRExC_state, ret, \
(U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
} \
} \
yesno = '+'; \
if (FOLD) { \
what = FOLD_WORD; \
} \
else { \
what = WORD; \
} \
break; \
case ANYOF_N##NAME: \
if (LOC) ANYOF_CLASS_SET(ret, ANYOF_N##NAME); \
else if (UNI_SEMANTICS) { \
for (value = 0; value < 256; value++) { \
if (! TEST_8(value)) stored += \
set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
} \
} \
else { \
for (value = 0; value < 128; value++) { \
if (! TEST_7(UNI_TO_NATIVE(value))) stored += set_regclass_bit( \
pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
} \
if (AT_LEAST_ASCII_RESTRICTED) { \
for (value = 128; value < 256; value++) { \
stored += set_regclass_bit( \
pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
} \
ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL; \
} \
else { \
/* For a non-ut8 target string with DEPENDS semantics, all above \
* ASCII Latin1 code points match the complement of any of the \
* classes. But in utf8, they have their Unicode semantics, so \
* can't just set them in the bitmap, or else regexec.c will think \
* they matched when they shouldn't. */ \
ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; \
} \
} \
yesno = '!'; \
if (FOLD) { \
what = FOLD_WORD; \
} \
else { \
what = WORD; \
} \
break
STATIC U8
S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, HV** invlist_ptr, AV** alternate_ptr)
{
/* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
* Locale folding is done at run-time, so this function should not be
* called for nodes that are for locales.
*
* This function sets the bit corresponding to the fold of the input
* 'value', if not already set. The fold of 'f' is 'F', and the fold of
* 'F' is 'f'.
*
* It also knows about the characters that are in the bitmap that have
* folds that are matchable only outside it, and sets the appropriate lists
* and flags.
*
* It returns the number of bits that actually changed from 0 to 1 */
U8 stored = 0;
U8 fold;
PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
: PL_fold[value];
/* It assumes the bit for 'value' has already been set */
if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
ANYOF_BITMAP_SET(node, fold);
stored++;
}
if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
/* Certain Latin1 characters have matches outside the bitmap. To get
* here, 'value' is one of those characters. None of these matches is
* valid for ASCII characters under /aa, which have been excluded by
* the 'if' above. The matches fall into three categories:
* 1) They are singly folded-to or -from an above 255 character, as
* LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
* WITH DIAERESIS;
* 2) They are part of a multi-char fold with another character in the
* bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
* 3) They are part of a multi-char fold with a character not in the
* bitmap, such as various ligatures.
* We aren't dealing fully with multi-char folds, except we do deal
* with the pattern containing a character that has a multi-char fold
* (not so much the inverse).
* For types 1) and 3), the matches only happen when the target string
* is utf8; that's not true for 2), and we set a flag for it.
*
* The code below adds to the passed in inversion list the single fold
* closures for 'value'. The values are hard-coded here so that an
* innocent-looking character class, like /[ks]/i won't have to go out
* to disk to find the possible matches. XXX It would be better to
* generate these via regen, in case a new version of the Unicode
* standard adds new mappings, though that is not really likely. */
switch (value) {
case 'k':
case 'K':
/* KELVIN SIGN */
*invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
break;
case 's':
case 'S':
/* LATIN SMALL LETTER LONG S */
*invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
break;
case MICRO_SIGN:
*invlist_ptr = add_cp_to_invlist(*invlist_ptr,
GREEK_SMALL_LETTER_MU);
*invlist_ptr = add_cp_to_invlist(*invlist_ptr,
GREEK_CAPITAL_LETTER_MU);
break;
case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
/* ANGSTROM SIGN */
*invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
*invlist_ptr = add_cp_to_invlist(*invlist_ptr,
PL_fold_latin1[value]);
}
break;
case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
*invlist_ptr = add_cp_to_invlist(*invlist_ptr,
LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
break;
case LATIN_SMALL_LETTER_SHARP_S:
*invlist_ptr = add_cp_to_invlist(*invlist_ptr,
LATIN_CAPITAL_LETTER_SHARP_S);
/* Under /a, /d, and /u, this can match the two chars "ss" */
if (! MORE_ASCII_RESTRICTED) {
add_alternate(alternate_ptr, (U8 *) "ss", 2);
/* And under /u or /a, it can match even if the target is
* not utf8 */
if (AT_LEAST_UNI_SEMANTICS) {
ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
}
}
break;
case 'F': case 'f':
case 'I': case 'i':
case 'L': case 'l':
case 'T': case 't':
case 'A': case 'a':
case 'H': case 'h':
case 'J': case 'j':
case 'N': case 'n':
case 'W': case 'w':
case 'Y': case 'y':
/* These all are targets of multi-character folds from code
* points that require UTF8 to express, so they can't match
* unless the target string is in UTF-8, so no action here is
* necessary, as regexec.c properly handles the general case
* for UTF-8 matching */
break;
default:
/* Use deprecated warning to increase the chances of this
* being output */
ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
break;
}
}
else if (DEPENDS_SEMANTICS
&& ! isASCII(value)
&& PL_fold_latin1[value] != value)
{
/* Under DEPENDS rules, non-ASCII Latin1 characters match their
* folds only when the target string is in UTF-8. We add the fold
* here to the list of things to match outside the bitmap, which
* won't be looked at unless it is UTF8 (or else if something else
* says to look even if not utf8, but those things better not happen
* under DEPENDS semantics. */
*invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
}
return stored;
}
PERL_STATIC_INLINE U8
S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, HV** invlist_ptr, AV** alternate_ptr)
{
/* This inline function sets a bit in the bitmap if not already set, and if
* appropriate, its fold, returning the number of bits that actually
* changed from 0 to 1 */
U8 stored;
PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
return 0;
}
ANYOF_BITMAP_SET(node, value);
stored = 1;
if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
}
return stored;
}
STATIC void
S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
{
/* Adds input 'string' with length 'len' to the ANYOF node's unicode
* alternate list, pointed to by 'alternate_ptr'. This is an array of
* the multi-character folds of characters in the node */
SV *sv;
PERL_ARGS_ASSERT_ADD_ALTERNATE;
if (! *alternate_ptr) {
*alternate_ptr = newAV();
}
sv = newSVpvn_utf8((char*)string, len, TRUE);
av_push(*alternate_ptr, sv);
return;
}
/*
parse a class specification and produce either an ANYOF node that
matches the pattern or perhaps will be optimized into an EXACTish node
instead. The node contains a bit map for the first 256 characters, with the
corresponding bit set if that character is in the list. For characters
above 255, a range list is used */
STATIC regnode *
S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
{
dVAR;
register UV nextvalue;
register IV prevvalue = OOB_UNICODE;
register IV range = 0;
UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
register regnode *ret;
STRLEN numlen;
IV namedclass;
char *rangebegin = NULL;
bool need_class = 0;
bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
SV *listsv = NULL;
STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
than just initialized. */
UV n;
/* code points this node matches that can't be stored in the bitmap */
HV* nonbitmap = NULL;
/* The items that are to match that aren't stored in the bitmap, but are a
* result of things that are stored there. This is the fold closure of
* such a character, either because it has DEPENDS semantics and shouldn't
* be matched unless the target string is utf8, or is a code point that is
* too large for the bit map, as for example, the fold of the MICRO SIGN is
* above 255. This all is solely for performance reasons. By having this
* code know the outside-the-bitmap folds that the bitmapped characters are
* involved with, we don't have to go out to disk to find the list of
* matches, unless the character class includes code points that aren't
* storable in the bit map. That means that a character class with an 's'
* in it, for example, doesn't need to go out to disk to find everything
* that matches. A 2nd list is used so that the 'nonbitmap' list is kept
* empty unless there is something whose fold we don't know about, and will
* have to go out to the disk to find. */
HV* l1_fold_invlist = NULL;
/* List of multi-character folds that are matched by this node */
AV* unicode_alternate = NULL;
#ifdef EBCDIC
UV literal_endpoint = 0;
#endif
UV stored = 0; /* how many chars stored in the bitmap */
regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
case we need to change the emitted regop to an EXACT. */
const char * orig_parse = RExC_parse;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGCLASS;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
DEBUG_PARSE("clas");
/* Assume we are going to generate an ANYOF node. */
ret = reganode(pRExC_state, ANYOF, 0);
if (!SIZE_ONLY) {
ANYOF_FLAGS(ret) = 0;
}
if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
RExC_naughty++;
RExC_parse++;
if (!SIZE_ONLY)
ANYOF_FLAGS(ret) |= ANYOF_INVERT;
/* We have decided to not allow multi-char folds in inverted character
* classes, due to the confusion that can happen, even with classes
* that are designed for a non-Unicode world: You have the peculiar
* case that:
"s s" =~ /^[^\xDF]+$/i => Y
"ss" =~ /^[^\xDF]+$/i => N
*
* See [perl #89750] */
allow_full_fold = FALSE;
}
if (SIZE_ONLY) {
RExC_size += ANYOF_SKIP;
listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
}
else {
RExC_emit += ANYOF_SKIP;
if (LOC) {
ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
}
ANYOF_BITMAP_ZERO(ret);
listsv = newSVpvs("# comment\n");
initial_listsv_len = SvCUR(listsv);
}
nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
if (!SIZE_ONLY && POSIXCC(nextvalue))
checkposixcc(pRExC_state);
/* allow 1st char to be ] (allowing it to be - is dealt with later) */
if (UCHARAT(RExC_parse) == ']')
goto charclassloop;
parseit:
while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
charclassloop:
namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
if (!range)
rangebegin = RExC_parse;
if (UTF) {
value = utf8n_to_uvchr((U8*)RExC_parse,
RExC_end - RExC_parse,
&numlen, UTF8_ALLOW_DEFAULT);
RExC_parse += numlen;
}
else
value = UCHARAT(RExC_parse++);
nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
if (value == '[' && POSIXCC(nextvalue))
namedclass = regpposixcc(pRExC_state, value);
else if (value == '\\') {
if (UTF) {
value = utf8n_to_uvchr((U8*)RExC_parse,
RExC_end - RExC_parse,
&numlen, UTF8_ALLOW_DEFAULT);
RExC_parse += numlen;
}
else
value = UCHARAT(RExC_parse++);
/* Some compilers cannot handle switching on 64-bit integer
* values, therefore value cannot be an UV. Yes, this will
* be a problem later if we want switch on Unicode.
* A similar issue a little bit later when switching on
* namedclass. --jhi */
switch ((I32)value) {
case 'w': namedclass = ANYOF_ALNUM; break;
case 'W': namedclass = ANYOF_NALNUM; break;
case 's': namedclass = ANYOF_SPACE; break;
case 'S': namedclass = ANYOF_NSPACE; break;
case 'd': namedclass = ANYOF_DIGIT; break;
case 'D': namedclass = ANYOF_NDIGIT; break;
case 'v': namedclass = ANYOF_VERTWS; break;
case 'V': namedclass = ANYOF_NVERTWS; break;
case 'h': namedclass = ANYOF_HORIZWS; break;
case 'H': namedclass = ANYOF_NHORIZWS; break;
case 'N': /* Handle \N{NAME} in class */
{
/* We only pay attention to the first char of
multichar strings being returned. I kinda wonder
if this makes sense as it does change the behaviour
from earlier versions, OTOH that behaviour was broken
as well. */
UV v; /* value is register so we cant & it /grrr */
if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
goto parseit;
}
value= v;
}
break;
case 'p':
case 'P':
{
char *e;
if (RExC_parse >= RExC_end)
vFAIL2("Empty \\%c{}", (U8)value);
if (*RExC_parse == '{') {
const U8 c = (U8)value;
e = strchr(RExC_parse++, '}');
if (!e)
vFAIL2("Missing right brace on \\%c{}", c);
while (isSPACE(UCHARAT(RExC_parse)))
RExC_parse++;
if (e == RExC_parse)
vFAIL2("Empty \\%c{}", c);
n = e - RExC_parse;
while (isSPACE(UCHARAT(RExC_parse + n - 1)))
n--;
}
else {
e = RExC_parse;
n = 1;
}
if (!SIZE_ONLY) {
if (UCHARAT(RExC_parse) == '^') {
RExC_parse++;
n--;
value = value == 'p' ? 'P' : 'p'; /* toggle */
while (isSPACE(UCHARAT(RExC_parse))) {
RExC_parse++;
n--;
}
}
/* Add the property name to the list. If /i matching, give
* a different name which consists of the normal name
* sandwiched between two underscores and '_i'. The design
* is discussed in the commit message for this. */
Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s%.*s%s\n",
(value=='p' ? '+' : '!'),
(FOLD) ? "__" : "",
(int)n,
RExC_parse,
(FOLD) ? "_i" : ""
);
}
RExC_parse = e + 1;
/* The \p could match something in the Latin1 range, hence
* something that isn't utf8 */
ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
namedclass = ANYOF_MAX; /* no official name, but it's named */
/* \p means they want Unicode semantics */
RExC_uni_semantics = 1;
}
break;
case 'n': value = '\n'; break;
case 'r': value = '\r'; break;
case 't': value = '\t'; break;
case 'f': value = '\f'; break;
case 'b': value = '\b'; break;
case 'e': value = ASCII_TO_NATIVE('\033');break;
case 'a': value = ASCII_TO_NATIVE('\007');break;
case 'o':
RExC_parse--; /* function expects to be pointed at the 'o' */
{
const char* error_msg;
bool valid = grok_bslash_o(RExC_parse,
&value,
&numlen,
&error_msg,
SIZE_ONLY);
RExC_parse += numlen;
if (! valid) {
vFAIL(error_msg);
}
}
if (PL_encoding && value < 0x100) {
goto recode_encoding;
}
break;
case 'x':
if (*RExC_parse == '{') {
I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
| PERL_SCAN_DISALLOW_PREFIX;
char * const e = strchr(RExC_parse++, '}');
if (!e)
vFAIL("Missing right brace on \\x{}");
numlen = e - RExC_parse;
value = grok_hex(RExC_parse, &numlen, &flags, NULL);
RExC_parse = e + 1;
}
else {
I32 flags = PERL_SCAN_DISALLOW_PREFIX;
numlen = 2;
value = grok_hex(RExC_parse, &numlen, &flags, NULL);
RExC_parse += numlen;
}
if (PL_encoding && value < 0x100)
goto recode_encoding;
break;
case 'c':
value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7':
{
/* Take 1-3 octal digits */
I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
numlen = 3;
value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
RExC_parse += numlen;
if (PL_encoding && value < 0x100)
goto recode_encoding;
break;
}
recode_encoding:
if (! RExC_override_recoding) {
SV* enc = PL_encoding;
value = reg_recode((const char)(U8)value, &enc);
if (!enc && SIZE_ONLY)
ckWARNreg(RExC_parse,
"Invalid escape in the specified encoding");
break;
}
default:
/* Allow \_ to not give an error */
if (!SIZE_ONLY && isALNUM(value) && value != '_') {
ckWARN2reg(RExC_parse,
"Unrecognized escape \\%c in character class passed through",
(int)value);
}
break;
}
} /* end of \blah */
#ifdef EBCDIC
else
literal_endpoint++;
#endif
if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
/* What matches in a locale is not known until runtime, so need to
* (one time per class) allocate extra space to pass to regexec.
* The space will contain a bit for each named class that is to be
* matched against. This isn't needed for \p{} and pseudo-classes,
* as they are not affected by locale, and hence are dealt with
* separately */
if (LOC && namedclass < ANYOF_MAX && ! need_class) {
need_class = 1;
if (SIZE_ONLY) {
RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
}
else {
RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
ANYOF_CLASS_ZERO(ret);
}
ANYOF_FLAGS(ret) |= ANYOF_CLASS;
}
/* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
* literal, as is the character that began the false range, i.e.
* the 'a' in the examples */
if (range) {
if (!SIZE_ONLY) {
const int w =
RExC_parse >= rangebegin ?
RExC_parse - rangebegin : 0;
ckWARN4reg(RExC_parse,
"False [] range \"%*.*s\"",
w, w, rangebegin);
stored +=
set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
if (prevvalue < 256) {
stored +=
set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
}
else {
nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
}
}
range = 0; /* this was not a true range */
}
if (!SIZE_ONLY) {
const char *what = NULL;
char yesno = 0;
/* Possible truncation here but in some 64-bit environments
* the compiler gets heartburn about switch on 64-bit values.
* A similar issue a little earlier when switching on value.
* --jhi */
switch ((I32)namedclass) {
case _C_C_T_(ALNUMC, isALNUMC_L1, isALNUMC, "XPosixAlnum", "XPosixAlnum");
case _C_C_T_(ALPHA, isALPHA_L1, isALPHA, "XPosixAlpha", "XPosixAlpha");
case _C_C_T_(BLANK, isBLANK_L1, isBLANK, "XPosixBlank", "XPosixBlank");
case _C_C_T_(CNTRL, isCNTRL_L1, isCNTRL, "XPosixCntrl", "XPosixCntrl");
case _C_C_T_(GRAPH, isGRAPH_L1, isGRAPH, "XPosixGraph", "XPosixGraph");
case _C_C_T_(LOWER, isLOWER_L1, isLOWER, "XPosixLower", "__XPosixLower_i");
case _C_C_T_(PRINT, isPRINT_L1, isPRINT, "XPosixPrint", "XPosixPrint");
case _C_C_T_(PSXSPC, isPSXSPC_L1, isPSXSPC, "XPosixSpace", "XPosixSpace");
case _C_C_T_(PUNCT, isPUNCT_L1, isPUNCT, "XPosixPunct", "XPosixPunct");
case _C_C_T_(UPPER, isUPPER_L1, isUPPER, "XPosixUpper", "__XPosixUpper_i");
/* \s, \w match all unicode if utf8. */
case _C_C_T_(SPACE, isSPACE_L1, isSPACE, "SpacePerl", "SpacePerl");
case _C_C_T_(ALNUM, isWORDCHAR_L1, isALNUM, "Word", "Word");
case _C_C_T_(XDIGIT, isXDIGIT_L1, isXDIGIT, "XPosixXDigit", "XPosixXDigit");
case _C_C_T_NOLOC_(VERTWS, is_VERTWS_latin1(&value), "VertSpace");
case _C_C_T_NOLOC_(HORIZWS, is_HORIZWS_latin1(&value), "HorizSpace");
case ANYOF_ASCII:
if (LOC)
ANYOF_CLASS_SET(ret, ANYOF_ASCII);
else {
for (value = 0; value < 128; value++)
stored +=
set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
}
yesno = '+';
what = NULL; /* Doesn't match outside ascii, so
don't want to add +utf8:: */
break;
case ANYOF_NASCII:
if (LOC)
ANYOF_CLASS_SET(ret, ANYOF_NASCII);
else {
for (value = 128; value < 256; value++)
stored +=
set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
}
ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
yesno = '!';
what = "ASCII";
break;
case ANYOF_DIGIT:
if (LOC)
ANYOF_CLASS_SET(ret, ANYOF_DIGIT);
else {
/* consecutive digits assumed */
for (value = '0'; value <= '9'; value++)
stored +=
set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
}
yesno = '+';
what = "Digit";
break;
case ANYOF_NDIGIT:
if (LOC)
ANYOF_CLASS_SET(ret, ANYOF_NDIGIT);
else {
/* consecutive digits assumed */
for (value = 0; value < '0'; value++)
stored +=
set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
for (value = '9' + 1; value < 256; value++)
stored +=
set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
}
yesno = '!';
what = "Digit";
if (AT_LEAST_ASCII_RESTRICTED ) {
ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
}
break;
case ANYOF_MAX:
/* this is to handle \p and \P */
break;
default:
vFAIL("Invalid [::] class");
break;
}
if (what && ! (AT_LEAST_ASCII_RESTRICTED)) {
/* Strings such as "+utf8::isWord\n" */
Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n", yesno, what);
}
continue;
}
} /* end of namedclass \blah */
if (range) {
if (prevvalue > (IV)value) /* b-a */ {
const int w = RExC_parse - rangebegin;
Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
range = 0; /* not a valid range */
}
}
else {
prevvalue = value; /* save the beginning of the range */
if (RExC_parse+1 < RExC_end
&& *RExC_parse == '-'
&& RExC_parse[1] != ']')
{
RExC_parse++;
/* a bad range like \w-, [:word:]- ? */
if (namedclass > OOB_NAMEDCLASS) {
if (ckWARN(WARN_REGEXP)) {
const int w =
RExC_parse >= rangebegin ?
RExC_parse - rangebegin : 0;
vWARN4(RExC_parse,
"False [] range \"%*.*s\"",
w, w, rangebegin);
}
if (!SIZE_ONLY)
stored +=
set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
} else
range = 1; /* yeah, it's a range! */
continue; /* but do it the next time */
}
}
/* non-Latin1 code point implies unicode semantics. Must be set in
* pass1 so is there for the whole of pass 2 */
if (value > 255) {
RExC_uni_semantics = 1;
}
/* now is the next time */
if (!SIZE_ONLY) {
if (prevvalue < 256) {
const IV ceilvalue = value < 256 ? value : 255;
IV i;
#ifdef EBCDIC
/* In EBCDIC [\x89-\x91] should include
* the \x8e but [i-j] should not. */
if (literal_endpoint == 2 &&
((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
(isUPPER(prevvalue) && isUPPER(ceilvalue))))
{
if (isLOWER(prevvalue)) {
for (i = prevvalue; i <= ceilvalue; i++)
if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
stored +=
set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
}
} else {
for (i = prevvalue; i <= ceilvalue; i++)
if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
stored +=
set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
}
}
}
else
#endif
for (i = prevvalue; i <= ceilvalue; i++) {
stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
}
}
if (value > 255) {
const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
const UV natvalue = NATIVE_TO_UNI(value);
nonbitmap = add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
}
#ifdef EBCDIC
literal_endpoint = 0;
#endif
}
range = 0; /* this range (if it was one) is done now */
}
if (SIZE_ONLY)
return ret;
/****** !SIZE_ONLY AFTER HERE *********/
/* If folding and there are code points above 255, we calculate all
* characters that could fold to or from the ones already on the list */
if (FOLD && nonbitmap) {
UV i;
HV* fold_intersection;
UV* fold_list;
/* This is a list of all the characters that participate in folds
* (except marks, etc in multi-char folds */
if (! PL_utf8_foldable) {
SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
PL_utf8_foldable = _swash_to_invlist(swash);
}
/* This is a hash that for a particular fold gives all characters
* that are involved in it */
if (! PL_utf8_foldclosures) {
/* If we were unable to find any folds, then we likely won't be
* able to find the closures. So just create an empty list.
* Folding will effectively be restricted to the non-Unicode rules
* hard-coded into Perl. (This case happens legitimately during
* compilation of Perl itself before the Unicode tables are
* generated) */
if (invlist_len(PL_utf8_foldable) == 0) {
PL_utf8_foldclosures = _new_invlist(0);
} else {
/* If the folds haven't been read in, call a fold function
* to force that */
if (! PL_utf8_tofold) {
U8 dummy[UTF8_MAXBYTES+1];
STRLEN dummy_len;
to_utf8_fold((U8*) "A", dummy, &dummy_len);
}
PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
}
}
/* Only the characters in this class that participate in folds need
* be checked. Get the intersection of this class and all the
* possible characters that are foldable. This can quickly narrow
* down a large class */
fold_intersection = invlist_intersection(PL_utf8_foldable, nonbitmap);
/* Now look at the foldable characters in this class individually */
fold_list = invlist_array(fold_intersection);
for (i = 0; i < invlist_len(fold_intersection); i++) {
UV j;
/* The next entry is the beginning of the range that is in the
* class */
UV start = fold_list[i++];
/* The next entry is the beginning of the next range, which
* isn't in the class, so the end of the current range is one
* less than that */
UV end = fold_list[i] - 1;
/* Look at every character in the range */
for (j = start; j <= end; j++) {
/* Get its fold */
U8 foldbuf[UTF8_MAXBYTES_CASE+1];
STRLEN foldlen;
const UV f =
_to_uni_fold_flags(j, foldbuf, &foldlen, allow_full_fold);
if (foldlen > (STRLEN)UNISKIP(f)) {
/* Any multicharacter foldings (disallowed in
* lookbehind patterns) require the following
* transform: [ABCDEF] -> (?:[ABCabcDEFd]|pq|rst) where
* E folds into "pq" and F folds into "rst", all other
* characters fold to single characters. We save away
* these multicharacter foldings, to be later saved as
* part of the additional "s" data. */
if (! RExC_in_lookbehind) {
U8* loc = foldbuf;
U8* e = foldbuf + foldlen;
/* If any of the folded characters of this are in
* the Latin1 range, tell the regex engine that
* this can match a non-utf8 target string. The
* only multi-byte fold whose source is in the
* Latin1 range (U+00DF) applies only when the
* target string is utf8, or under unicode rules */
if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
while (loc < e) {
/* Can't mix ascii with non- under /aa */
if (MORE_ASCII_RESTRICTED
&& (isASCII(*loc) != isASCII(j)))
{
goto end_multi_fold;
}
if (UTF8_IS_INVARIANT(*loc)
|| UTF8_IS_DOWNGRADEABLE_START(*loc))
{
/* Can't mix above and below 256 under
* LOC */
if (LOC) {
goto end_multi_fold;
}
ANYOF_FLAGS(ret)
|= ANYOF_NONBITMAP_NON_UTF8;
break;
}
loc += UTF8SKIP(loc);
}
}
add_alternate(&unicode_alternate, foldbuf, foldlen);
end_multi_fold: ;
}
/* This is special-cased, as it is the only letter which
* has both a multi-fold and single-fold in Latin1. All
* the other chars that have single and multi-folds are
* always in utf8, and the utf8 folding algorithm catches
* them */
if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
stored += set_regclass_bit(pRExC_state,
ret,
LATIN_SMALL_LETTER_SHARP_S,
&l1_fold_invlist, &unicode_alternate);
}
}
else {
/* Single character fold. Add everything in its fold
* closure to the list that this node should match */
SV** listp;
/* The fold closures data structure is a hash with the
* keys being every character that is folded to, like
* 'k', and the values each an array of everything that
* folds to its key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
if ((listp = hv_fetch(PL_utf8_foldclosures,
(char *) foldbuf, foldlen, FALSE)))
{
AV* list = (AV*) *listp;
IV k;
for (k = 0; k <= av_len(list); k++) {
SV** c_p = av_fetch(list, k, FALSE);
UV c;
if (c_p == NULL) {
Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
}
c = SvUV(*c_p);
/* /aa doesn't allow folds between ASCII and
* non-; /l doesn't allow them between above
* and below 256 */
if ((MORE_ASCII_RESTRICTED
&& (isASCII(c) != isASCII(j)))
|| (LOC && ((c < 256) != (j < 256))))
{
continue;
}
if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
stored += set_regclass_bit(pRExC_state,
ret,
(U8) c,
&l1_fold_invlist, &unicode_alternate);
}
/* It may be that the code point is already
* in this range or already in the bitmap,
* in which case we need do nothing */
else if ((c < start || c > end)
&& (c > 255
|| ! ANYOF_BITMAP_TEST(ret, c)))
{
nonbitmap = add_cp_to_invlist(nonbitmap, c);
}
}
}
}
}
}
invlist_destroy(fold_intersection);
}
/* Combine the two lists into one. */
if (l1_fold_invlist) {
if (nonbitmap) {
HV* temp = invlist_union(nonbitmap, l1_fold_invlist);
invlist_destroy(nonbitmap);
nonbitmap = temp;
invlist_destroy(l1_fold_invlist);
}
else {
nonbitmap = l1_fold_invlist;
}
}
/* Here, we have calculated what code points should be in the character
* class. Now we can see about various optimizations. Fold calculation
* needs to take place before inversion. Otherwise /[^k]/i would invert to
* include K, which under /i would match k. */
/* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
* set the FOLD flag yet, so this this does optimize those. It doesn't
* optimize locale. Doing so perhaps could be done as long as there is
* nothing like \w in it; some thought also would have to be given to the
* interaction with above 0x100 chars */
if (! LOC
&& (ANYOF_FLAGS(ret) & ANYOF_FLAGS_ALL) == ANYOF_INVERT
&& ! unicode_alternate
&& ! nonbitmap
&& SvCUR(listsv) == initial_listsv_len)
{
for (value = 0; value < ANYOF_BITMAP_SIZE; ++value)
ANYOF_BITMAP(ret)[value] ^= 0xFF;
stored = 256 - stored;
/* The inversion means that everything above 255 is matched; and at the
* same time we clear the invert flag */
ANYOF_FLAGS(ret) = ANYOF_UNICODE_ALL;
}
/* Folding in the bitmap is taken care of above, but not for locale (for
* which we have to wait to see what folding is in effect at runtime), and
* for things not in the bitmap. Set run-time fold flag for these */
if (FOLD && (LOC || nonbitmap || unicode_alternate)) {
ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
}
/* A single character class can be "optimized" into an EXACTish node.
* Note that since we don't currently count how many characters there are
* outside the bitmap, we are XXX missing optimization possibilities for
* them. This optimization can't happen unless this is a truly single
* character class, which means that it can't be an inversion into a
* many-character class, and there must be no possibility of there being
* things outside the bitmap. 'stored' (only) for locales doesn't include
* \w, etc, so have to make a special test that they aren't present
*
* Similarly A 2-character class of the very special form like [bB] can be
* optimized into an EXACTFish node, but only for non-locales, and for
* characters which only have the two folds; so things like 'fF' and 'Ii'
* wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
* FI'. */
if (! nonbitmap
&& ! unicode_alternate
&& SvCUR(listsv) == initial_listsv_len
&& ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
&& (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
|| (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
|| (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
&& (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
/* If the latest code point has a fold whose
* bit is set, it must be the only other one */
&& ((prevvalue = PL_fold_latin1[value]) != (IV)value)
&& ANYOF_BITMAP_TEST(ret, prevvalue)))))
{
/* Note that the information needed to decide to do this optimization
* is not currently available until the 2nd pass, and that the actually
* used EXACTish node takes less space than the calculated ANYOF node,
* and hence the amount of space calculated in the first pass is larger
* than actually used, so this optimization doesn't gain us any space.
* But an EXACT node is faster than an ANYOF node, and can be combined
* with any adjacent EXACT nodes later by the optimizer for further
* gains. The speed of executing an EXACTF is similar to an ANYOF
* node, so the optimization advantage comes from the ability to join
* it to adjacent EXACT nodes */
const char * cur_parse= RExC_parse;
U8 op;
RExC_emit = (regnode *)orig_emit;
RExC_parse = (char *)orig_parse;
if (stored == 1) {
/* A locale node with one point can be folded; all the other cases
* with folding will have two points, since we calculate them above
*/
if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
op = EXACTFL;
}
else {
op = EXACT;
}
} /* else 2 chars in the bit map: the folds of each other */
else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
/* To join adjacent nodes, they must be the exact EXACTish type.
* Try to use the most likely type, by using EXACTFU if the regex
* calls for them, or is required because the character is
* non-ASCII */
op = EXACTFU;
}
else { /* Otherwise, more likely to be EXACTF type */
op = EXACTF;
}
ret = reg_node(pRExC_state, op);
RExC_parse = (char *)cur_parse;
if (UTF && ! NATIVE_IS_INVARIANT(value)) {
*STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
*(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
STR_LEN(ret)= 2;
RExC_emit += STR_SZ(2);
}
else {
*STRING(ret)= (char)value;
STR_LEN(ret)= 1;
RExC_emit += STR_SZ(1);
}
SvREFCNT_dec(listsv);
return ret;
}
if (nonbitmap) {
UV* nonbitmap_array = invlist_array(nonbitmap);
UV nonbitmap_len = invlist_len(nonbitmap);
UV i;
/* Here have the full list of items to match that aren't in the
* bitmap. Convert to the structure that the rest of the code is
* expecting. XXX That rest of the code should convert to this
* structure */
for (i = 0; i < nonbitmap_len; i++) {
/* The next entry is the beginning of the range that is in the
* class */
UV start = nonbitmap_array[i++];
UV end;
/* The next entry is the beginning of the next range, which isn't
* in the class, so the end of the current range is one less than
* that. But if there is no next range, it means that the range
* begun by 'start' extends to infinity, which for this platform
* ends at UV_MAX */
if (i == nonbitmap_len) {
end = UV_MAX;
}
else {
end = nonbitmap_array[i] - 1;
}
if (start == end) {
Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\n", start);
}
else {
/* The \t sets the whole range */
Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\t%04"UVxf"\n",
/* XXX EBCDIC */
start, end);
}
}
invlist_destroy(nonbitmap);
}
if (SvCUR(listsv) == initial_listsv_len && ! unicode_alternate) {
ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
SvREFCNT_dec(listsv);
SvREFCNT_dec(unicode_alternate);
}
else {
AV * const av = newAV();
SV *rv;
/* The 0th element stores the character class description
* in its textual form: used later (regexec.c:Perl_regclass_swash())
* to initialize the appropriate swash (which gets stored in
* the 1st element), and also useful for dumping the regnode.
* The 2nd element stores the multicharacter foldings,
* used later (regexec.c:S_reginclass()). */
av_store(av, 0, listsv);
av_store(av, 1, NULL);
/* Store any computed multi-char folds only if we are allowing
* them */
if (allow_full_fold) {
av_store(av, 2, MUTABLE_SV(unicode_alternate));
if (unicode_alternate) { /* This node is variable length */
OP(ret) = ANYOFV;
}
}
else {
av_store(av, 2, NULL);
}
rv = newRV_noinc(MUTABLE_SV(av));
n = add_data(pRExC_state, 1, "s");
RExC_rxi->data->data[n] = (void*)rv;
ARG_SET(ret, n);
}
return ret;
}
#undef _C_C_T_
/* reg_skipcomment()
Absorbs an /x style # comments from the input stream.
Returns true if there is more text remaining in the stream.
Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
terminates the pattern without including a newline.
Note its the callers responsibility to ensure that we are
actually in /x mode
*/
STATIC bool
S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
{
bool ended = 0;
PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
while (RExC_parse < RExC_end)
if (*RExC_parse++ == '\n') {
ended = 1;
break;
}
if (!ended) {
/* we ran off the end of the pattern without ending
the comment, so we have to add an \n when wrapping */
RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
return 0;
} else
return 1;
}
/* nextchar()
Advances the parse position, and optionally absorbs
"whitespace" from the inputstream.
Without /x "whitespace" means (?#...) style comments only,
with /x this means (?#...) and # comments and whitespace proper.
Returns the RExC_parse point from BEFORE the scan occurs.
This is the /x friendly way of saying RExC_parse++.
*/
STATIC char*
S_nextchar(pTHX_ RExC_state_t *pRExC_state)
{
char* const retval = RExC_parse++;
PERL_ARGS_ASSERT_NEXTCHAR;
for (;;) {
if (*RExC_parse == '(' && RExC_parse[1] == '?' &&
RExC_parse[2] == '#') {
while (*RExC_parse != ')') {
if (RExC_parse == RExC_end)
FAIL("Sequence (?#... not terminated");
RExC_parse++;
}
RExC_parse++;
continue;
}
if (RExC_flags & RXf_PMf_EXTENDED) {
if (isSPACE(*RExC_parse)) {
RExC_parse++;
continue;
}
else if (*RExC_parse == '#') {
if ( reg_skipcomment( pRExC_state ) )
continue;
}
}
return retval;
}
}
/*
- reg_node - emit a node
*/
STATIC regnode * /* Location. */
S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
{
dVAR;
register regnode *ptr;
regnode * const ret = RExC_emit;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REG_NODE;
if (SIZE_ONLY) {
SIZE_ALIGN(RExC_size);
RExC_size += 1;
return(ret);
}
if (RExC_emit >= RExC_emit_bound)
Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
NODE_ALIGN_FILL(ret);
ptr = ret;
FILL_ADVANCE_NODE(ptr, op);
#ifdef RE_TRACK_PATTERN_OFFSETS
if (RExC_offsets) { /* MJD */
MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
"reg_node", __LINE__,
PL_reg_name[op],
(UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
? "Overwriting end of array!\n" : "OK",
(UV)(RExC_emit - RExC_emit_start),
(UV)(RExC_parse - RExC_start),
(UV)RExC_offsets[0]));
Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
}
#endif
RExC_emit = ptr;
return(ret);
}
/*
- reganode - emit a node with an argument
*/
STATIC regnode * /* Location. */
S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
{
dVAR;
register regnode *ptr;
regnode * const ret = RExC_emit;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGANODE;
if (SIZE_ONLY) {
SIZE_ALIGN(RExC_size);
RExC_size += 2;
/*
We can't do this:
assert(2==regarglen[op]+1);
Anything larger than this has to allocate the extra amount.
If we changed this to be:
RExC_size += (1 + regarglen[op]);
then it wouldn't matter. Its not clear what side effect
might come from that so its not done so far.
-- dmq
*/
return(ret);
}
if (RExC_emit >= RExC_emit_bound)
Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
NODE_ALIGN_FILL(ret);
ptr = ret;
FILL_ADVANCE_NODE_ARG(ptr, op, arg);
#ifdef RE_TRACK_PATTERN_OFFSETS
if (RExC_offsets) { /* MJD */
MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
"reganode",
__LINE__,
PL_reg_name[op],
(UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
"Overwriting end of array!\n" : "OK",
(UV)(RExC_emit - RExC_emit_start),
(UV)(RExC_parse - RExC_start),
(UV)RExC_offsets[0]));
Set_Cur_Node_Offset;
}
#endif
RExC_emit = ptr;
return(ret);
}
/*
- reguni - emit (if appropriate) a Unicode character
*/
STATIC STRLEN
S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
{
dVAR;
PERL_ARGS_ASSERT_REGUNI;
return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
}
/*
- reginsert - insert an operator in front of already-emitted operand
*
* Means relocating the operand.
*/
STATIC void
S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
{
dVAR;
register regnode *src;
register regnode *dst;
register regnode *place;
const int offset = regarglen[(U8)op];
const int size = NODE_STEP_REGNODE + offset;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGINSERT;
PERL_UNUSED_ARG(depth);
/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
if (SIZE_ONLY) {
RExC_size += size;
return;
}
src = RExC_emit;
RExC_emit += size;
dst = RExC_emit;
if (RExC_open_parens) {
int paren;
/*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
for ( paren=0 ; paren < RExC_npar ; paren++ ) {
if ( RExC_open_parens[paren] >= opnd ) {
/*DEBUG_PARSE_FMT("open"," - %d",size);*/
RExC_open_parens[paren] += size;
} else {
/*DEBUG_PARSE_FMT("open"," - %s","ok");*/
}
if ( RExC_close_parens[paren] >= opnd ) {
/*DEBUG_PARSE_FMT("close"," - %d",size);*/
RExC_close_parens[paren] += size;
} else {
/*DEBUG_PARSE_FMT("close"," - %s","ok");*/
}
}
}
while (src > opnd) {
StructCopy(--src, --dst, regnode);
#ifdef RE_TRACK_PATTERN_OFFSETS
if (RExC_offsets) { /* MJD 20010112 */
MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
"reg_insert",
__LINE__,
PL_reg_name[op],
(UV)(dst - RExC_emit_start) > RExC_offsets[0]
? "Overwriting end of array!\n" : "OK",
(UV)(src - RExC_emit_start),
(UV)(dst - RExC_emit_start),
(UV)RExC_offsets[0]));
Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
}
#endif
}
place = opnd; /* Op node, where operand used to be. */
#ifdef RE_TRACK_PATTERN_OFFSETS
if (RExC_offsets) { /* MJD */
MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
"reginsert",
__LINE__,
PL_reg_name[op],
(UV)(place - RExC_emit_start) > RExC_offsets[0]
? "Overwriting end of array!\n" : "OK",
(UV)(place - RExC_emit_start),
(UV)(RExC_parse - RExC_start),
(UV)RExC_offsets[0]));
Set_Node_Offset(place, RExC_parse);
Set_Node_Length(place, 1);
}
#endif
src = NEXTOPER(place);
FILL_ADVANCE_NODE(place, op);
Zero(src, offset, regnode);
}
/*
- regtail - set the next-pointer at the end of a node chain of p to val.
- SEE ALSO: regtail_study
*/
/* TODO: All three parms should be const */
STATIC void
S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
{
dVAR;
register regnode *scan;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGTAIL;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
if (SIZE_ONLY)
return;
/* Find last node. */
scan = p;
for (;;) {
regnode * const temp = regnext(scan);
DEBUG_PARSE_r({
SV * const mysv=sv_newmortal();
DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
regprop(RExC_rx, mysv, scan);
PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
(temp == NULL ? "->" : ""),
(temp == NULL ? PL_reg_name[OP(val)] : "")
);
});
if (temp == NULL)
break;
scan = temp;
}
if (reg_off_by_arg[OP(scan)]) {
ARG_SET(scan, val - scan);
}
else {
NEXT_OFF(scan) = val - scan;
}
}
#ifdef DEBUGGING
/*
- regtail_study - set the next-pointer at the end of a node chain of p to val.
- Look for optimizable sequences at the same time.
- currently only looks for EXACT chains.
This is experimental code. The idea is to use this routine to perform
in place optimizations on branches and groups as they are constructed,
with the long term intention of removing optimization from study_chunk so
that it is purely analytical.
Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
to control which is which.
*/
/* TODO: All four parms should be const */
STATIC U8
S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
{
dVAR;
register regnode *scan;
U8 exact = PSEUDO;
#ifdef EXPERIMENTAL_INPLACESCAN
I32 min = 0;
#endif
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGTAIL_STUDY;
if (SIZE_ONLY)
return exact;
/* Find last node. */
scan = p;
for (;;) {
regnode * const temp = regnext(scan);
#ifdef EXPERIMENTAL_INPLACESCAN
if (PL_regkind[OP(scan)] == EXACT)
if (join_exact(pRExC_state,scan,&min,1,val,depth+1))
return EXACT;
#endif
if ( exact ) {
switch (OP(scan)) {
case EXACT:
case EXACTF:
case EXACTFA:
case EXACTFU:
case EXACTFL:
if( exact == PSEUDO )
exact= OP(scan);
else if ( exact != OP(scan) )
exact= 0;
case NOTHING:
break;
default:
exact= 0;
}
}
DEBUG_PARSE_r({
SV * const mysv=sv_newmortal();
DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
regprop(RExC_rx, mysv, scan);
PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
SvPV_nolen_const(mysv),
REG_NODE_NUM(scan),
PL_reg_name[exact]);
});
if (temp == NULL)
break;
scan = temp;
}
DEBUG_PARSE_r({
SV * const mysv_val=sv_newmortal();
DEBUG_PARSE_MSG("");
regprop(RExC_rx, mysv_val, val);
PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
SvPV_nolen_const(mysv_val),
(IV)REG_NODE_NUM(val),
(IV)(val - scan)
);
});
if (reg_off_by_arg[OP(scan)]) {
ARG_SET(scan, val - scan);
}
else {
NEXT_OFF(scan) = val - scan;
}
return exact;
}
#endif
/*
- regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
*/
#ifdef DEBUGGING
static void
S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
{
int bit;
int set=0;
regex_charset cs;
for (bit=0; bit<32; bit++) {
if (flags & (1<<bit)) {
if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
continue;
}
if (!set++ && lead)
PerlIO_printf(Perl_debug_log, "%s",lead);
PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
}
}
if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
if (!set++ && lead) {
PerlIO_printf(Perl_debug_log, "%s",lead);
}
switch (cs) {
case REGEX_UNICODE_CHARSET:
PerlIO_printf(Perl_debug_log, "UNICODE");
break;
case REGEX_LOCALE_CHARSET:
PerlIO_printf(Perl_debug_log, "LOCALE");
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
break;
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
break;
default:
PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
break;
}
}
if (lead) {
if (set)
PerlIO_printf(Perl_debug_log, "\n");
else
PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
}
}
#endif
void
Perl_regdump(pTHX_ const regexp *r)
{
#ifdef DEBUGGING
dVAR;
SV * const sv = sv_newmortal();
SV *dsv= sv_newmortal();
RXi_GET_DECL(r,ri);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGDUMP;
(void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
/* Header fields of interest. */
if (r->anchored_substr) {
RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
RE_SV_DUMPLEN(r->anchored_substr), 30);
PerlIO_printf(Perl_debug_log,
"anchored %s%s at %"IVdf" ",
s, RE_SV_TAIL(r->anchored_substr),
(IV)r->anchored_offset);
} else if (r->anchored_utf8) {
RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
RE_SV_DUMPLEN(r->anchored_utf8), 30);
PerlIO_printf(Perl_debug_log,
"anchored utf8 %s%s at %"IVdf" ",
s, RE_SV_TAIL(r->anchored_utf8),
(IV)r->anchored_offset);
}
if (r->float_substr) {
RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
RE_SV_DUMPLEN(r->float_substr), 30);
PerlIO_printf(Perl_debug_log,
"floating %s%s at %"IVdf"..%"UVuf" ",
s, RE_SV_TAIL(r->float_substr),
(IV)r->float_min_offset, (UV)r->float_max_offset);
} else if (r->float_utf8) {
RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
RE_SV_DUMPLEN(r->float_utf8), 30);
PerlIO_printf(Perl_debug_log,
"floating utf8 %s%s at %"IVdf"..%"UVuf" ",
s, RE_SV_TAIL(r->float_utf8),
(IV)r->float_min_offset, (UV)r->float_max_offset);
}
if (r->check_substr || r->check_utf8)
PerlIO_printf(Perl_debug_log,
(const char *)
(r->check_substr == r->float_substr
&& r->check_utf8 == r->float_utf8
? "(checking floating" : "(checking anchored"));
if (r->extflags & RXf_NOSCAN)
PerlIO_printf(Perl_debug_log, " noscan");
if (r->extflags & RXf_CHECK_ALL)
PerlIO_printf(Perl_debug_log, " isall");
if (r->check_substr || r->check_utf8)
PerlIO_printf(Perl_debug_log, ") ");
if (ri->regstclass) {
regprop(r, sv, ri->regstclass);
PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
}
if (r->extflags & RXf_ANCH) {
PerlIO_printf(Perl_debug_log, "anchored");
if (r->extflags & RXf_ANCH_BOL)
PerlIO_printf(Perl_debug_log, "(BOL)");
if (r->extflags & RXf_ANCH_MBOL)
PerlIO_printf(Perl_debug_log, "(MBOL)");
if (r->extflags & RXf_ANCH_SBOL)
PerlIO_printf(Perl_debug_log, "(SBOL)");
if (r->extflags & RXf_ANCH_GPOS)
PerlIO_printf(Perl_debug_log, "(GPOS)");
PerlIO_putc(Perl_debug_log, ' ');
}
if (r->extflags & RXf_GPOS_SEEN)
PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
if (r->intflags & PREGf_SKIP)
PerlIO_printf(Perl_debug_log, "plus ");
if (r->intflags & PREGf_IMPLICIT)
PerlIO_printf(Perl_debug_log, "implicit ");
PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
if (r->extflags & RXf_EVAL_SEEN)
PerlIO_printf(Perl_debug_log, "with eval ");
PerlIO_printf(Perl_debug_log, "\n");
DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
#else
PERL_ARGS_ASSERT_REGDUMP;
PERL_UNUSED_CONTEXT;
PERL_UNUSED_ARG(r);
#endif /* DEBUGGING */
}
/*
- regprop - printable representation of opcode
*/
#define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
STMT_START { \
if (do_sep) { \
Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
if (flags & ANYOF_INVERT) \
/*make sure the invert info is in each */ \
sv_catpvs(sv, "^"); \
do_sep = 0; \
} \
} STMT_END
void
Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
{
#ifdef DEBUGGING
dVAR;
register int k;
RXi_GET_DECL(prog,progi);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGPROP;
sv_setpvs(sv, "");
if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
/* It would be nice to FAIL() here, but this may be called from
regexec.c, and it would be hard to supply pRExC_state. */
Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
k = PL_regkind[OP(o)];
if (k == EXACT) {
sv_catpvs(sv, " ");
/* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
* is a crude hack but it may be the best for now since
* we have no flag "this EXACTish node was UTF-8"
* --jhi */
pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
PERL_PV_ESCAPE_UNI_DETECT |
PERL_PV_ESCAPE_NONASCII |
PERL_PV_PRETTY_ELLIPSES |
PERL_PV_PRETTY_LTGT |
PERL_PV_PRETTY_NOCLEAR
);
} else if (k == TRIE) {
/* print the details of the trie in dumpuntil instead, as
* progi->data isn't available here */
const char op = OP(o);
const U32 n = ARG(o);
const reg_ac_data * const ac = IS_TRIE_AC(op) ?
(reg_ac_data *)progi->data->data[n] :
NULL;
const reg_trie_data * const trie
= (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
DEBUG_TRIE_COMPILE_r(
Perl_sv_catpvf(aTHX_ sv,
"<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
(UV)trie->startstate,
(IV)trie->statecount-1, /* -1 because of the unused 0 element */
(UV)trie->wordcount,
(UV)trie->minlen,
(UV)trie->maxlen,
(UV)TRIE_CHARCOUNT(trie),
(UV)trie->uniquecharcount
)
);
if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
int i;
int rangestart = -1;
U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
sv_catpvs(sv, "[");
for (i = 0; i <= 256; i++) {
if (i < 256 && BITMAP_TEST(bitmap,i)) {
if (rangestart == -1)
rangestart = i;
} else if (rangestart != -1) {
if (i <= rangestart + 3)
for (; rangestart < i; rangestart++)
put_byte(sv, rangestart);
else {
put_byte(sv, rangestart);
sv_catpvs(sv, "-");
put_byte(sv, i - 1);
}
rangestart = -1;
}
}
sv_catpvs(sv, "]");
}
} else if (k == CURLY) {
if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
}
else if (k == WHILEM && o->flags) /* Ordinal/of */
Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
if ( RXp_PAREN_NAMES(prog) ) {
if ( k != REF || (OP(o) < NREF)) {
AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
SV **name= av_fetch(list, ARG(o), 0 );
if (name)
Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
}
else {
AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
I32 *nums=(I32*)SvPVX(sv_dat);
SV **name= av_fetch(list, nums[0], 0 );
I32 n;
if (name) {
for ( n=0; n<SvIVX(sv_dat); n++ ) {
Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
(n ? "," : ""), (IV)nums[n]);
}
Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
}
}
}
} else if (k == GOSUB)
Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
else if (k == VERB) {
if (!o->flags)
Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
} else if (k == LOGICAL)
Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
else if (k == FOLDCHAR)
Perl_sv_catpvf(aTHX_ sv, "[0x%"UVXf"]", PTR2UV(ARG(o)) );
else if (k == ANYOF) {
int i, rangestart = -1;
const U8 flags = ANYOF_FLAGS(o);
int do_sep = 0;
/* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
static const char * const anyofs[] = {
"\\w",
"\\W",
"\\s",
"\\S",
"\\d",
"\\D",
"[:alnum:]",
"[:^alnum:]",
"[:alpha:]",
"[:^alpha:]",
"[:ascii:]",
"[:^ascii:]",
"[:cntrl:]",
"[:^cntrl:]",
"[:graph:]",
"[:^graph:]",
"[:lower:]",
"[:^lower:]",
"[:print:]",
"[:^print:]",
"[:punct:]",
"[:^punct:]",
"[:upper:]",
"[:^upper:]",
"[:xdigit:]",
"[:^xdigit:]",
"[:space:]",
"[:^space:]",
"[:blank:]",
"[:^blank:]"
};
if (flags & ANYOF_LOCALE)
sv_catpvs(sv, "{loc}");
if (flags & ANYOF_LOC_NONBITMAP_FOLD)
sv_catpvs(sv, "{i}");
Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
if (flags & ANYOF_INVERT)
sv_catpvs(sv, "^");
/* output what the standard cp 0-255 bitmap matches */
for (i = 0; i <= 256; i++) {
if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
if (rangestart == -1)
rangestart = i;
} else if (rangestart != -1) {
if (i <= rangestart + 3)
for (; rangestart < i; rangestart++)
put_byte(sv, rangestart);
else {
put_byte(sv, rangestart);
sv_catpvs(sv, "-");
put_byte(sv, i - 1);
}
do_sep = 1;
rangestart = -1;
}
}
EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
/* output any special charclass tests (used entirely under use locale) */
if (ANYOF_CLASS_TEST_ANY_SET(o))
for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
if (ANYOF_CLASS_TEST(o,i)) {
sv_catpv(sv, anyofs[i]);
do_sep = 1;
}
EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
sv_catpvs(sv, "{non-utf8-latin1-all}");
}
/* output information about the unicode matching */
if (flags & ANYOF_UNICODE_ALL)
sv_catpvs(sv, "{unicode_all}");
else if (ANYOF_NONBITMAP(o))
sv_catpvs(sv, "{unicode}");
if (flags & ANYOF_NONBITMAP_NON_UTF8)
sv_catpvs(sv, "{outside bitmap}");
if (ANYOF_NONBITMAP(o)) {
SV *lv;
SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
if (lv) {
if (sw) {
U8 s[UTF8_MAXBYTES_CASE+1];
for (i = 0; i <= 256; i++) { /* just the first 256 */
uvchr_to_utf8(s, i);
if (i < 256 && swash_fetch(sw, s, TRUE)) {
if (rangestart == -1)
rangestart = i;
} else if (rangestart != -1) {
if (i <= rangestart + 3)
for (; rangestart < i; rangestart++) {
const U8 * const e = uvchr_to_utf8(s,rangestart);
U8 *p;
for(p = s; p < e; p++)
put_byte(sv, *p);
}
else {
const U8 *e = uvchr_to_utf8(s,rangestart);
U8 *p;
for (p = s; p < e; p++)
put_byte(sv, *p);
sv_catpvs(sv, "-");
e = uvchr_to_utf8(s, i-1);
for (p = s; p < e; p++)
put_byte(sv, *p);
}
rangestart = -1;
}
}
sv_catpvs(sv, "..."); /* et cetera */
}
{
char *s = savesvpv(lv);
char * const origs = s;
while (*s && *s != '\n')
s++;
if (*s == '\n') {
const char * const t = ++s;
while (*s) {
if (*s == '\n')
*s = ' ';
s++;
}
if (s[-1] == ' ')
s[-1] = 0;
sv_catpv(sv, t);
}
Safefree(origs);
}
}
}
Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
}
else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
#else
PERL_UNUSED_CONTEXT;
PERL_UNUSED_ARG(sv);
PERL_UNUSED_ARG(o);
PERL_UNUSED_ARG(prog);
#endif /* DEBUGGING */
}
SV *
Perl_re_intuit_string(pTHX_ REGEXP * const r)
{ /* Assume that RE_INTUIT is set */
dVAR;
struct regexp *const prog = (struct regexp *)SvANY(r);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_RE_INTUIT_STRING;
PERL_UNUSED_CONTEXT;
DEBUG_COMPILE_r(
{
const char * const s = SvPV_nolen_const(prog->check_substr
? prog->check_substr : prog->check_utf8);
if (!PL_colorset) reginitcolors();
PerlIO_printf(Perl_debug_log,
"%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
PL_colors[4],
prog->check_substr ? "" : "utf8 ",
PL_colors[5],PL_colors[0],
s,
PL_colors[1],
(strlen(s) > 60 ? "..." : ""));
} );
return prog->check_substr ? prog->check_substr : prog->check_utf8;
}
/*
pregfree()
handles refcounting and freeing the perl core regexp structure. When
it is necessary to actually free the structure the first thing it
does is call the 'free' method of the regexp_engine associated to
the regexp, allowing the handling of the void *pprivate; member
first. (This routine is not overridable by extensions, which is why
the extensions free is called first.)
See regdupe and regdupe_internal if you change anything here.
*/
#ifndef PERL_IN_XSUB_RE
void
Perl_pregfree(pTHX_ REGEXP *r)
{
SvREFCNT_dec(r);
}
void
Perl_pregfree2(pTHX_ REGEXP *rx)
{
dVAR;
struct regexp *const r = (struct regexp *)SvANY(rx);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_PREGFREE2;
if (r->mother_re) {
ReREFCNT_dec(r->mother_re);
} else {
CALLREGFREE_PVT(rx); /* free the private data */
SvREFCNT_dec(RXp_PAREN_NAMES(r));
}
if (r->substrs) {
SvREFCNT_dec(r->anchored_substr);
SvREFCNT_dec(r->anchored_utf8);
SvREFCNT_dec(r->float_substr);
SvREFCNT_dec(r->float_utf8);
Safefree(r->substrs);
}
RX_MATCH_COPY_FREE(rx);
#ifdef PERL_OLD_COPY_ON_WRITE
SvREFCNT_dec(r->saved_copy);
#endif
Safefree(r->offs);
}
/* reg_temp_copy()
This is a hacky workaround to the structural issue of match results
being stored in the regexp structure which is in turn stored in
PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
could be PL_curpm in multiple contexts, and could require multiple
result sets being associated with the pattern simultaneously, such
as when doing a recursive match with (??{$qr})
The solution is to make a lightweight copy of the regexp structure
when a qr// is returned from the code executed by (??{$qr}) this
lightweight copy doesn't actually own any of its data except for
the starp/end and the actual regexp structure itself.
*/
REGEXP *
Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
{
struct regexp *ret;
struct regexp *const r = (struct regexp *)SvANY(rx);
register const I32 npar = r->nparens+1;
PERL_ARGS_ASSERT_REG_TEMP_COPY;
if (!ret_x)
ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
ret = (struct regexp *)SvANY(ret_x);
(void)ReREFCNT_inc(rx);
/* We can take advantage of the existing "copied buffer" mechanism in SVs
by pointing directly at the buffer, but flagging that the allocated
space in the copy is zero. As we've just done a struct copy, it's now
a case of zero-ing that, rather than copying the current length. */
SvPV_set(ret_x, RX_WRAPPED(rx));
SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
memcpy(&(ret->xpv_cur), &(r->xpv_cur),
sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
SvLEN_set(ret_x, 0);
SvSTASH_set(ret_x, NULL);
SvMAGIC_set(ret_x, NULL);
Newx(ret->offs, npar, regexp_paren_pair);
Copy(r->offs, ret->offs, npar, regexp_paren_pair);
if (r->substrs) {
Newx(ret->substrs, 1, struct reg_substr_data);
StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
SvREFCNT_inc_void(ret->anchored_substr);
SvREFCNT_inc_void(ret->anchored_utf8);
SvREFCNT_inc_void(ret->float_substr);
SvREFCNT_inc_void(ret->float_utf8);
/* check_substr and check_utf8, if non-NULL, point to either their
anchored or float namesakes, and don't hold a second reference. */
}
RX_MATCH_COPIED_off(ret_x);
#ifdef PERL_OLD_COPY_ON_WRITE
ret->saved_copy = NULL;
#endif
ret->mother_re = rx;
return ret_x;
}
#endif
/* regfree_internal()
Free the private data in a regexp. This is overloadable by
extensions. Perl takes care of the regexp structure in pregfree(),
this covers the *pprivate pointer which technically perl doesn't
know about, however of course we have to handle the
regexp_internal structure when no extension is in use.
Note this is called before freeing anything in the regexp
structure.
*/
void
Perl_regfree_internal(pTHX_ REGEXP * const rx)
{
dVAR;
struct regexp *const r = (struct regexp *)SvANY(rx);
RXi_GET_DECL(r,ri);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGFREE_INTERNAL;
DEBUG_COMPILE_r({
if (!PL_colorset)
reginitcolors();
{
SV *dsv= sv_newmortal();
RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
PL_colors[4],PL_colors[5],s);
}
});
#ifdef RE_TRACK_PATTERN_OFFSETS
if (ri->u.offsets)
Safefree(ri->u.offsets); /* 20010421 MJD */
#endif
if (ri->data) {
int n = ri->data->count;
PAD* new_comppad = NULL;
PAD* old_comppad;
PADOFFSET refcnt;
while (--n >= 0) {
/* If you add a ->what type here, update the comment in regcomp.h */
switch (ri->data->what[n]) {
case 'a':
case 's':
case 'S':
case 'u':
SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
break;
case 'f':
Safefree(ri->data->data[n]);
break;
case 'p':
new_comppad = MUTABLE_AV(ri->data->data[n]);
break;
case 'o':
if (new_comppad == NULL)
Perl_croak(aTHX_ "panic: pregfree comppad");
PAD_SAVE_LOCAL(old_comppad,
/* Watch out for global destruction's random ordering. */
(SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
);
OP_REFCNT_LOCK;
refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
OP_REFCNT_UNLOCK;
if (!refcnt)
op_free((OP_4tree*)ri->data->data[n]);
PAD_RESTORE_LOCAL(old_comppad);
SvREFCNT_dec(MUTABLE_SV(new_comppad));
new_comppad = NULL;
break;
case 'n':
break;
case 'T':
{ /* Aho Corasick add-on structure for a trie node.
Used in stclass optimization only */
U32 refcount;
reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
OP_REFCNT_LOCK;
refcount = --aho->refcount;
OP_REFCNT_UNLOCK;
if ( !refcount ) {
PerlMemShared_free(aho->states);
PerlMemShared_free(aho->fail);
/* do this last!!!! */
PerlMemShared_free(ri->data->data[n]);
PerlMemShared_free(ri->regstclass);
}
}
break;
case 't':
{
/* trie structure. */
U32 refcount;
reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
OP_REFCNT_LOCK;
refcount = --trie->refcount;
OP_REFCNT_UNLOCK;
if ( !refcount ) {
PerlMemShared_free(trie->charmap);
PerlMemShared_free(trie->states);
PerlMemShared_free(trie->trans);
if (trie->bitmap)
PerlMemShared_free(trie->bitmap);
if (trie->jump)
PerlMemShared_free(trie->jump);
PerlMemShared_free(trie->wordinfo);
/* do this last!!!! */
PerlMemShared_free(ri->data->data[n]);
}
}
break;
default:
Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
}
}
Safefree(ri->data->what);
Safefree(ri->data);
}
Safefree(ri);
}
#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
/*
re_dup - duplicate a regexp.
This routine is expected to clone a given regexp structure. It is only
compiled under USE_ITHREADS.
After all of the core data stored in struct regexp is duplicated
the regexp_engine.dupe method is used to copy any private data
stored in the *pprivate pointer. This allows extensions to handle
any duplication it needs to do.
See pregfree() and regfree_internal() if you change anything here.
*/
#if defined(USE_ITHREADS)
#ifndef PERL_IN_XSUB_RE
void
Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
{
dVAR;
I32 npar;
const struct regexp *r = (const struct regexp *)SvANY(sstr);
struct regexp *ret = (struct regexp *)SvANY(dstr);
PERL_ARGS_ASSERT_RE_DUP_GUTS;
npar = r->nparens+1;
Newx(ret->offs, npar, regexp_paren_pair);
Copy(r->offs, ret->offs, npar, regexp_paren_pair);
if(ret->swap) {
/* no need to copy these */
Newx(ret->swap, npar, regexp_paren_pair);
}
if (ret->substrs) {
/* Do it this way to avoid reading from *r after the StructCopy().
That way, if any of the sv_dup_inc()s dislodge *r from the L1
cache, it doesn't matter. */
const bool anchored = r->check_substr
? r->check_substr == r->anchored_substr
: r->check_utf8 == r->anchored_utf8;
Newx(ret->substrs, 1, struct reg_substr_data);
StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
ret->float_substr = sv_dup_inc(ret->float_substr, param);
ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
/* check_substr and check_utf8, if non-NULL, point to either their
anchored or float namesakes, and don't hold a second reference. */
if (ret->check_substr) {
if (anchored) {
assert(r->check_utf8 == r->anchored_utf8);
ret->check_substr = ret->anchored_substr;
ret->check_utf8 = ret->anchored_utf8;
} else {
assert(r->check_substr == r->float_substr);
assert(r->check_utf8 == r->float_utf8);
ret->check_substr = ret->float_substr;
ret->check_utf8 = ret->float_utf8;
}
} else if (ret->check_utf8) {
if (anchored) {
ret->check_utf8 = ret->anchored_utf8;
} else {
ret->check_utf8 = ret->float_utf8;
}
}
}
RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
if (ret->pprivate)
RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
if (RX_MATCH_COPIED(dstr))
ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
else
ret->subbeg = NULL;
#ifdef PERL_OLD_COPY_ON_WRITE
ret->saved_copy = NULL;
#endif
if (ret->mother_re) {
if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
/* Our storage points directly to our mother regexp, but that's
1: a buffer in a different thread
2: something we no longer hold a reference on
so we need to copy it locally. */
/* Note we need to sue SvCUR() on our mother_re, because it, in
turn, may well be pointing to its own mother_re. */
SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
SvCUR(ret->mother_re)+1));
SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
}
ret->mother_re = NULL;
}
ret->gofs = 0;
}
#endif /* PERL_IN_XSUB_RE */
/*
regdupe_internal()
This is the internal complement to regdupe() which is used to copy
the structure pointed to by the *pprivate pointer in the regexp.
This is the core version of the extension overridable cloning hook.
The regexp structure being duplicated will be copied by perl prior
to this and will be provided as the regexp *r argument, however
with the /old/ structures pprivate pointer value. Thus this routine
may override any copying normally done by perl.
It returns a pointer to the new regexp_internal structure.
*/
void *
Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
{
dVAR;
struct regexp *const r = (struct regexp *)SvANY(rx);
regexp_internal *reti;
int len, npar;
RXi_GET_DECL(r,ri);
PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
npar = r->nparens+1;
len = ProgLen(ri);
Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
Copy(ri->program, reti->program, len+1, regnode);
reti->regstclass = NULL;
if (ri->data) {
struct reg_data *d;
const int count = ri->data->count;
int i;
Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
char, struct reg_data);
Newx(d->what, count, U8);
d->count = count;
for (i = 0; i < count; i++) {
d->what[i] = ri->data->what[i];
switch (d->what[i]) {
/* legal options are one of: sSfpontTua
see also regcomp.h and pregfree() */
case 'a': /* actually an AV, but the dup function is identical. */
case 's':
case 'S':
case 'p': /* actually an AV, but the dup function is identical. */
case 'u': /* actually an HV, but the dup function is identical. */
d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
break;
case 'f':
/* This is cheating. */
Newx(d->data[i], 1, struct regnode_charclass_class);
StructCopy(ri->data->data[i], d->data[i],
struct regnode_charclass_class);
reti->regstclass = (regnode*)d->data[i];
break;
case 'o':
/* Compiled op trees are readonly and in shared memory,
and can thus be shared without duplication. */
OP_REFCNT_LOCK;
d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
OP_REFCNT_UNLOCK;
break;
case 'T':
/* Trie stclasses are readonly and can thus be shared
* without duplication. We free the stclass in pregfree
* when the corresponding reg_ac_data struct is freed.
*/
reti->regstclass= ri->regstclass;
/* Fall through */
case 't':
OP_REFCNT_LOCK;
((reg_trie_data*)ri->data->data[i])->refcount++;
OP_REFCNT_UNLOCK;
/* Fall through */
case 'n':
d->data[i] = ri->data->data[i];
break;
default:
Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
}
}
reti->data = d;
}
else
reti->data = NULL;
reti->name_list_idx = ri->name_list_idx;
#ifdef RE_TRACK_PATTERN_OFFSETS
if (ri->u.offsets) {
Newx(reti->u.offsets, 2*len+1, U32);
Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
}
#else
SetProgLen(reti,len);
#endif
return (void*)reti;
}
#endif /* USE_ITHREADS */
#ifndef PERL_IN_XSUB_RE
/*
- regnext - dig the "next" pointer out of a node
*/
regnode *
Perl_regnext(pTHX_ register regnode *p)
{
dVAR;
register I32 offset;
if (!p)
return(NULL);
if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
}
offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
if (offset == 0)
return(NULL);
return(p+offset);
}
#endif
STATIC void
S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
{
va_list args;
STRLEN l1 = strlen(pat1);
STRLEN l2 = strlen(pat2);
char buf[512];
SV *msv;
const char *message;
PERL_ARGS_ASSERT_RE_CROAK2;
if (l1 > 510)
l1 = 510;
if (l1 + l2 > 510)
l2 = 510 - l1;
Copy(pat1, buf, l1 , char);
Copy(pat2, buf + l1, l2 , char);
buf[l1 + l2] = '\n';
buf[l1 + l2 + 1] = '\0';
#ifdef I_STDARG
/* ANSI variant takes additional second argument */
va_start(args, pat2);
#else
va_start(args);
#endif
msv = vmess(buf, &args);
va_end(args);
message = SvPV_const(msv,l1);
if (l1 > 512)
l1 = 512;
Copy(message, buf, l1 , char);
buf[l1-1] = '\0'; /* Overwrite \n */
Perl_croak(aTHX_ "%s", buf);
}
/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
#ifndef PERL_IN_XSUB_RE
void
Perl_save_re_context(pTHX)
{
dVAR;
struct re_save_state *state;
SAVEVPTR(PL_curcop);
SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
SSPUSHUV(SAVEt_RE_STATE);
Copy(&PL_reg_state, state, 1, struct re_save_state);
PL_reg_start_tmp = 0;
PL_reg_start_tmpl = 0;
PL_reg_oldsaved = NULL;
PL_reg_oldsavedlen = 0;
PL_reg_maxiter = 0;
PL_reg_leftiter = 0;
PL_reg_poscache = NULL;
PL_reg_poscache_size = 0;
#ifdef PERL_OLD_COPY_ON_WRITE
PL_nrs = NULL;
#endif
/* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
if (PL_curpm) {
const REGEXP * const rx = PM_GETRE(PL_curpm);
if (rx) {
U32 i;
for (i = 1; i <= RX_NPARENS(rx); i++) {
char digits[TYPE_CHARS(long)];
const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
GV *const *const gvp
= (GV**)hv_fetch(PL_defstash, digits, len, 0);
if (gvp) {
GV * const gv = *gvp;
if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
save_scalar(gv);
}
}
}
}
}
#endif
static void
clear_re(pTHX_ void *r)
{
dVAR;
ReREFCNT_dec((REGEXP *)r);
}
#ifdef DEBUGGING
STATIC void
S_put_byte(pTHX_ SV *sv, int c)
{
PERL_ARGS_ASSERT_PUT_BYTE;
/* Our definition of isPRINT() ignores locales, so only bytes that are
not part of UTF-8 are considered printable. I assume that the same
holds for UTF-EBCDIC.
Also, code point 255 is not printable in either (it's E0 in EBCDIC,
which Wikipedia says:
EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
ones (binary 1111 1111, hexadecimal FF). It is similar, but not
identical, to the ASCII delete (DEL) or rubout control character.
) So the old condition can be simplified to !isPRINT(c) */
if (!isPRINT(c)) {
if (c < 256) {
Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
}
else {
Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
}
}
else {
const char string = c;
if (c == '-' || c == ']' || c == '\\' || c == '^')
sv_catpvs(sv, "\\");
sv_catpvn(sv, &string, 1);
}
}
#define CLEAR_OPTSTART \
if (optstart) STMT_START { \
DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
optstart=NULL; \
} STMT_END
#define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
STATIC const regnode *
S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
const regnode *last, const regnode *plast,
SV* sv, I32 indent, U32 depth)
{
dVAR;
register U8 op = PSEUDO; /* Arbitrary non-END op. */
register const regnode *next;
const regnode *optstart= NULL;
RXi_GET_DECL(r,ri);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_DUMPUNTIL;
#ifdef DEBUG_DUMPUNTIL
PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
last ? last-start : 0,plast ? plast-start : 0);
#endif
if (plast && plast < last)
last= plast;
while (PL_regkind[op] != END && (!last || node < last)) {
/* While that wasn't END last time... */
NODE_ALIGN(node);
op = OP(node);
if (op == CLOSE || op == WHILEM)
indent--;
next = regnext((regnode *)node);
/* Where, what. */
if (OP(node) == OPTIMIZED) {
if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
optstart = node;
else
goto after_print;
} else
CLEAR_OPTSTART;
regprop(r, sv, node);
PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
(int)(2*indent + 1), "", SvPVX_const(sv));
if (OP(node) != OPTIMIZED) {
if (next == NULL) /* Next ptr. */
PerlIO_printf(Perl_debug_log, " (0)");
else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
PerlIO_printf(Perl_debug_log, " (FAIL)");
else
PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
(void)PerlIO_putc(Perl_debug_log, '\n');
}
after_print:
if (PL_regkind[(U8)op] == BRANCHJ) {
assert(next);
{
register const regnode *nnode = (OP(next) == LONGJMP
? regnext((regnode *)next)
: next);
if (last && nnode > last)
nnode = last;
DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
}
}
else if (PL_regkind[(U8)op] == BRANCH) {
assert(next);
DUMPUNTIL(NEXTOPER(node), next);
}
else if ( PL_regkind[(U8)op] == TRIE ) {
const regnode *this_trie = node;
const char op = OP(node);
const U32 n = ARG(node);
const reg_ac_data * const ac = op>=AHOCORASICK ?
(reg_ac_data *)ri->data->data[n] :
NULL;
const reg_trie_data * const trie =
(reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
#ifdef DEBUGGING
AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
#endif
const regnode *nextbranch= NULL;
I32 word_idx;
sv_setpvs(sv, "");
for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
PerlIO_printf(Perl_debug_log, "%*s%s ",
(int)(2*(indent+3)), "",
elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
PL_colors[0], PL_colors[1],
(SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_PRETTY_ELLIPSES |
PERL_PV_PRETTY_LTGT
)
: "???"
);
if (trie->jump) {
U16 dist= trie->jump[word_idx+1];
PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
(UV)((dist ? this_trie + dist : next) - start));
if (dist) {
if (!nextbranch)
nextbranch= this_trie + trie->jump[0];
DUMPUNTIL(this_trie + dist, nextbranch);
}
if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
nextbranch= regnext((regnode *)nextbranch);
} else {
PerlIO_printf(Perl_debug_log, "\n");
}
}
if (last && next > last)
node= last;
else
node= next;
}
else if ( op == CURLY ) { /* "next" might be very big: optimizer */
DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
}
else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
assert(next);
DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
}
else if ( op == PLUS || op == STAR) {
DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
}
else if (PL_regkind[(U8)op] == ANYOF) {
/* arglen 1 + class block */
node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
? ANYOF_CLASS_SKIP : ANYOF_SKIP);
node = NEXTOPER(node);
}
else if (PL_regkind[(U8)op] == EXACT) {
/* Literal string, where present. */
node += NODE_SZ_STR(node) - 1;
node = NEXTOPER(node);
}
else {
node = NEXTOPER(node);
node += regarglen[(U8)op];
}
if (op == CURLYX || op == OPEN)
indent++;
}
CLEAR_OPTSTART;
#ifdef DEBUG_DUMPUNTIL
PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
#endif
return node;
}
#endif /* DEBUGGING */
/*
* Local variables:
* c-indentation-style: bsd
* c-basic-offset: 4
* indent-tabs-mode: t
* End:
*
* ex: set ts=8 sts=4 sw=4 noet:
*/
|