1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800
|
/* regcomp.c
*/
/*
* 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
*
* [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
*/
/* This file contains functions for compiling a regular expression. See
* also regexec.c which funnily enough, contains functions for executing
* a regular expression.
*
* This file is also copied at build time to ext/re/re_comp.c, where
* it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
* This causes the main functions to be compiled under new names and with
* debugging support added, which makes "use re 'debug'" work.
*/
/* NOTE: this is derived from Henry Spencer's regexp code, and should not
* confused with the original package (see point 3 below). Thanks, Henry!
*/
/* Additional note: this code is very heavily munged from Henry's version
* in places. In some spots I've traded clarity for efficiency, so don't
* blame Henry for some of the lack of readability.
*/
/* The names of the functions have been changed from regcomp and
* regexec to pregcomp and pregexec in order to avoid conflicts
* with the POSIX routines of the same names.
*/
#ifdef PERL_EXT_RE_BUILD
#include "re_top.h"
#endif
/*
* pregcomp and pregexec -- regsub and regerror are not used in perl
*
* Copyright (c) 1986 by University of Toronto.
* Written by Henry Spencer. Not derived from licensed software.
*
* Permission is granted to anyone to use this software for any
* purpose on any computer system, and to redistribute it freely,
* subject to the following restrictions:
*
* 1. The author is not responsible for the consequences of use of
* this software, no matter how awful, even if they arise
* from defects in it.
*
* 2. The origin of this software must not be misrepresented, either
* by explicit claim or by omission.
*
* 3. Altered versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
*
*
**** Alterations to Henry's code are...
****
**** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
**** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
**** by Larry Wall and others
****
**** You may distribute under the terms of either the GNU General Public
**** License or the Artistic License, as specified in the README file.
*
* Beware that some of this code is subtly aware of the way operator
* precedence is structured in regular expressions. Serious changes in
* regular-expression syntax might require a total rethink.
*/
#include "EXTERN.h"
#define PERL_IN_REGCOMP_C
#include "perl.h"
#ifndef PERL_IN_XSUB_RE
# include "INTERN.h"
#endif
#define REG_COMP_C
#ifdef PERL_IN_XSUB_RE
# include "re_comp.h"
EXTERN_C const struct regexp_engine my_reg_engine;
#else
# include "regcomp.h"
#endif
#include "dquote_static.c"
#include "charclass_invlists.h"
#include "inline_invlist.c"
#include "unicode_constants.h"
#define HAS_NONLATIN1_FOLD_CLOSURE(i) \
_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
#ifndef STATIC
#define STATIC static
#endif
struct RExC_state_t {
U32 flags; /* RXf_* are we folding, multilining? */
U32 pm_flags; /* PMf_* stuff from the calling PMOP */
char *precomp; /* uncompiled string. */
REGEXP *rx_sv; /* The SV that is the regexp. */
regexp *rx; /* perl core regexp structure */
regexp_internal *rxi; /* internal data for regexp object
pprivate field */
char *start; /* Start of input for compile */
char *end; /* End of input for compile */
char *parse; /* Input-scan pointer. */
SSize_t whilem_seen; /* number of WHILEM in this expr */
regnode *emit_start; /* Start of emitted-code area */
regnode *emit_bound; /* First regnode outside of the
allocated space */
regnode *emit; /* Code-emit pointer; if = &emit_dummy,
implies compiling, so don't emit */
regnode_ssc emit_dummy; /* placeholder for emit to point to;
large enough for the largest
non-EXACTish node, so can use it as
scratch in pass1 */
I32 naughty; /* How bad is this pattern? */
I32 sawback; /* Did we see \1, ...? */
U32 seen;
SSize_t size; /* Code size. */
I32 npar; /* Capture buffer count, (OPEN) plus
one. ("par" 0 is the whole
pattern)*/
I32 nestroot; /* root parens we are in - used by
accept */
I32 extralen;
I32 seen_zerolen;
regnode **open_parens; /* pointers to open parens */
regnode **close_parens; /* pointers to close parens */
regnode *opend; /* END node in program */
I32 utf8; /* whether the pattern is utf8 or not */
I32 orig_utf8; /* whether the pattern was originally in utf8 */
/* XXX use this for future optimisation of case
* where pattern must be upgraded to utf8. */
I32 uni_semantics; /* If a d charset modifier should use unicode
rules, even if the pattern is not in
utf8 */
HV *paren_names; /* Paren names */
regnode **recurse; /* Recurse regops */
I32 recurse_count; /* Number of recurse regops */
U8 *study_chunk_recursed; /* bitmap of which parens we have moved
through */
U32 study_chunk_recursed_bytes; /* bytes in bitmap */
I32 in_lookbehind;
I32 contains_locale;
I32 contains_i;
I32 override_recoding;
I32 in_multi_char_class;
struct reg_code_block *code_blocks; /* positions of literal (?{})
within pattern */
int num_code_blocks; /* size of code_blocks[] */
int code_index; /* next code_blocks[] slot */
SSize_t maxlen; /* mininum possible number of chars in string to match */
#ifdef ADD_TO_REGEXEC
char *starttry; /* -Dr: where regtry was called. */
#define RExC_starttry (pRExC_state->starttry)
#endif
SV *runtime_code_qr; /* qr with the runtime code blocks */
#ifdef DEBUGGING
const char *lastparse;
I32 lastnum;
AV *paren_name_list; /* idx -> name */
#define RExC_lastparse (pRExC_state->lastparse)
#define RExC_lastnum (pRExC_state->lastnum)
#define RExC_paren_name_list (pRExC_state->paren_name_list)
#endif
};
#define RExC_flags (pRExC_state->flags)
#define RExC_pm_flags (pRExC_state->pm_flags)
#define RExC_precomp (pRExC_state->precomp)
#define RExC_rx_sv (pRExC_state->rx_sv)
#define RExC_rx (pRExC_state->rx)
#define RExC_rxi (pRExC_state->rxi)
#define RExC_start (pRExC_state->start)
#define RExC_end (pRExC_state->end)
#define RExC_parse (pRExC_state->parse)
#define RExC_whilem_seen (pRExC_state->whilem_seen)
#ifdef RE_TRACK_PATTERN_OFFSETS
#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
others */
#endif
#define RExC_emit (pRExC_state->emit)
#define RExC_emit_dummy (pRExC_state->emit_dummy)
#define RExC_emit_start (pRExC_state->emit_start)
#define RExC_emit_bound (pRExC_state->emit_bound)
#define RExC_naughty (pRExC_state->naughty)
#define RExC_sawback (pRExC_state->sawback)
#define RExC_seen (pRExC_state->seen)
#define RExC_size (pRExC_state->size)
#define RExC_maxlen (pRExC_state->maxlen)
#define RExC_npar (pRExC_state->npar)
#define RExC_nestroot (pRExC_state->nestroot)
#define RExC_extralen (pRExC_state->extralen)
#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
#define RExC_utf8 (pRExC_state->utf8)
#define RExC_uni_semantics (pRExC_state->uni_semantics)
#define RExC_orig_utf8 (pRExC_state->orig_utf8)
#define RExC_open_parens (pRExC_state->open_parens)
#define RExC_close_parens (pRExC_state->close_parens)
#define RExC_opend (pRExC_state->opend)
#define RExC_paren_names (pRExC_state->paren_names)
#define RExC_recurse (pRExC_state->recurse)
#define RExC_recurse_count (pRExC_state->recurse_count)
#define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
#define RExC_study_chunk_recursed_bytes \
(pRExC_state->study_chunk_recursed_bytes)
#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
#define RExC_contains_locale (pRExC_state->contains_locale)
#define RExC_contains_i (pRExC_state->contains_i)
#define RExC_override_recoding (pRExC_state->override_recoding)
#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
((*s) == '{' && regcurly(s, FALSE)))
/*
* Flags to be passed up and down.
*/
#define WORST 0 /* Worst case. */
#define HASWIDTH 0x01 /* Known to match non-null strings. */
/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
* character. (There needs to be a case: in the switch statement in regexec.c
* for any node marked SIMPLE.) Note that this is not the same thing as
* REGNODE_SIMPLE */
#define SIMPLE 0x02
#define SPSTART 0x04 /* Starts with * or + */
#define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
#define TRYAGAIN 0x10 /* Weeded out a declaration. */
#define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
/* whether trie related optimizations are enabled */
#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
#define TRIE_STUDY_OPT
#define FULL_TRIE_STUDY
#define TRIE_STCLASS
#endif
#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
#define PBITVAL(paren) (1 << ((paren) & 7))
#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
#define REQUIRE_UTF8 STMT_START { \
if (!UTF) { \
*flagp = RESTART_UTF8; \
return NULL; \
} \
} STMT_END
/* This converts the named class defined in regcomp.h to its equivalent class
* number defined in handy.h. */
#define namedclass_to_classnum(class) ((int) ((class) / 2))
#define classnum_to_namedclass(classnum) ((classnum) * 2)
#define _invlist_union_complement_2nd(a, b, output) \
_invlist_union_maybe_complement_2nd(a, b, TRUE, output)
#define _invlist_intersection_complement_2nd(a, b, output) \
_invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
/* About scan_data_t.
During optimisation we recurse through the regexp program performing
various inplace (keyhole style) optimisations. In addition study_chunk
and scan_commit populate this data structure with information about
what strings MUST appear in the pattern. We look for the longest
string that must appear at a fixed location, and we look for the
longest string that may appear at a floating location. So for instance
in the pattern:
/FOO[xX]A.*B[xX]BAR/
Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
strings (because they follow a .* construct). study_chunk will identify
both FOO and BAR as being the longest fixed and floating strings respectively.
The strings can be composites, for instance
/(f)(o)(o)/
will result in a composite fixed substring 'foo'.
For each string some basic information is maintained:
- offset or min_offset
This is the position the string must appear at, or not before.
It also implicitly (when combined with minlenp) tells us how many
characters must match before the string we are searching for.
Likewise when combined with minlenp and the length of the string it
tells us how many characters must appear after the string we have
found.
- max_offset
Only used for floating strings. This is the rightmost point that
the string can appear at. If set to SSize_t_MAX it indicates that the
string can occur infinitely far to the right.
- minlenp
A pointer to the minimum number of characters of the pattern that the
string was found inside. This is important as in the case of positive
lookahead or positive lookbehind we can have multiple patterns
involved. Consider
/(?=FOO).*F/
The minimum length of the pattern overall is 3, the minimum length
of the lookahead part is 3, but the minimum length of the part that
will actually match is 1. So 'FOO's minimum length is 3, but the
minimum length for the F is 1. This is important as the minimum length
is used to determine offsets in front of and behind the string being
looked for. Since strings can be composites this is the length of the
pattern at the time it was committed with a scan_commit. Note that
the length is calculated by study_chunk, so that the minimum lengths
are not known until the full pattern has been compiled, thus the
pointer to the value.
- lookbehind
In the case of lookbehind the string being searched for can be
offset past the start point of the final matching string.
If this value was just blithely removed from the min_offset it would
invalidate some of the calculations for how many chars must match
before or after (as they are derived from min_offset and minlen and
the length of the string being searched for).
When the final pattern is compiled and the data is moved from the
scan_data_t structure into the regexp structure the information
about lookbehind is factored in, with the information that would
have been lost precalculated in the end_shift field for the
associated string.
The fields pos_min and pos_delta are used to store the minimum offset
and the delta to the maximum offset at the current point in the pattern.
*/
typedef struct scan_data_t {
/*I32 len_min; unused */
/*I32 len_delta; unused */
SSize_t pos_min;
SSize_t pos_delta;
SV *last_found;
SSize_t last_end; /* min value, <0 unless valid. */
SSize_t last_start_min;
SSize_t last_start_max;
SV **longest; /* Either &l_fixed, or &l_float. */
SV *longest_fixed; /* longest fixed string found in pattern */
SSize_t offset_fixed; /* offset where it starts */
SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
I32 lookbehind_fixed; /* is the position of the string modfied by LB */
SV *longest_float; /* longest floating string found in pattern */
SSize_t offset_float_min; /* earliest point in string it can appear */
SSize_t offset_float_max; /* latest point in string it can appear */
SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
SSize_t lookbehind_float; /* is the pos of the string modified by LB */
I32 flags;
I32 whilem_c;
SSize_t *last_closep;
regnode_ssc *start_class;
} scan_data_t;
/* The below is perhaps overboard, but this allows us to save a test at the
* expense of a mask. This is because on both EBCDIC and ASCII machines, 'A'
* and 'a' differ by a single bit; the same with the upper and lower case of
* all other ASCII-range alphabetics. On ASCII platforms, they are 32 apart;
* on EBCDIC, they are 64. This uses an exclusive 'or' to find that bit and
* then inverts it to form a mask, with just a single 0, in the bit position
* where the upper- and lowercase differ. XXX There are about 40 other
* instances in the Perl core where this micro-optimization could be used.
* Should decide if maintenance cost is worse, before changing those
*
* Returns a boolean as to whether or not 'v' is either a lowercase or
* uppercase instance of 'c', where 'c' is in [A-Za-z]. If 'c' is a
* compile-time constant, the generated code is better than some optimizing
* compilers figure out, amounting to a mask and test. The results are
* meaningless if 'c' is not one of [A-Za-z] */
#define isARG2_lower_or_UPPER_ARG1(c, v) \
(((v) & ~('A' ^ 'a')) == ((c) & ~('A' ^ 'a')))
/*
* Forward declarations for pregcomp()'s friends.
*/
static const scan_data_t zero_scan_data =
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
#define SF_BEFORE_SEOL 0x0001
#define SF_BEFORE_MEOL 0x0002
#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
#define SF_FIX_SHIFT_EOL (+2)
#define SF_FL_SHIFT_EOL (+4)
#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
#define SF_IS_INF 0x0040
#define SF_HAS_PAR 0x0080
#define SF_IN_PAR 0x0100
#define SF_HAS_EVAL 0x0200
#define SCF_DO_SUBSTR 0x0400
#define SCF_DO_STCLASS_AND 0x0800
#define SCF_DO_STCLASS_OR 0x1000
#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
#define SCF_WHILEM_VISITED_POS 0x2000
#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
#define SCF_SEEN_ACCEPT 0x8000
#define SCF_TRIE_DOING_RESTUDY 0x10000
#define UTF cBOOL(RExC_utf8)
/* The enums for all these are ordered so things work out correctly */
#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
== REGEX_DEPENDS_CHARSET)
#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
>= REGEX_UNICODE_CHARSET)
#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
== REGEX_ASCII_RESTRICTED_CHARSET)
#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
>= REGEX_ASCII_RESTRICTED_CHARSET)
#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
== REGEX_ASCII_MORE_RESTRICTED_CHARSET)
#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
/* For programs that want to be strictly Unicode compatible by dying if any
* attempt is made to match a non-Unicode code point against a Unicode
* property. */
#define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
#define OOB_NAMEDCLASS -1
/* There is no code point that is out-of-bounds, so this is problematic. But
* its only current use is to initialize a variable that is always set before
* looked at. */
#define OOB_UNICODE 0xDEADBEEF
#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
/* length of regex to show in messages that don't mark a position within */
#define RegexLengthToShowInErrorMessages 127
/*
* If MARKER[12] are adjusted, be sure to adjust the constants at the top
* of t/op/regmesg.t, the tests in t/op/re_tests, and those in
* op/pragma/warn/regcomp.
*/
#define MARKER1 "<-- HERE" /* marker as it appears in the description */
#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
#define REPORT_LOCATION " in regex; marked by " MARKER1 \
" in m/%"UTF8f MARKER2 "%"UTF8f"/"
#define REPORT_LOCATION_ARGS(offset) \
UTF8fARG(UTF, offset, RExC_precomp), \
UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
/*
* Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
* arg. Show regex, up to a maximum length. If it's too long, chop and add
* "...".
*/
#define _FAIL(code) STMT_START { \
const char *ellipses = ""; \
IV len = RExC_end - RExC_precomp; \
\
if (!SIZE_ONLY) \
SAVEFREESV(RExC_rx_sv); \
if (len > RegexLengthToShowInErrorMessages) { \
/* chop 10 shorter than the max, to ensure meaning of "..." */ \
len = RegexLengthToShowInErrorMessages - 10; \
ellipses = "..."; \
} \
code; \
} STMT_END
#define FAIL(msg) _FAIL( \
Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
#define FAIL2(msg,arg) _FAIL( \
Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
/*
* Simple_vFAIL -- like FAIL, but marks the current location in the scan
*/
#define Simple_vFAIL(m) STMT_START { \
const IV offset = RExC_parse - RExC_precomp; \
Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
m, REPORT_LOCATION_ARGS(offset)); \
} STMT_END
/*
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
*/
#define vFAIL(m) STMT_START { \
if (!SIZE_ONLY) \
SAVEFREESV(RExC_rx_sv); \
Simple_vFAIL(m); \
} STMT_END
/*
* Like Simple_vFAIL(), but accepts two arguments.
*/
#define Simple_vFAIL2(m,a1) STMT_START { \
const IV offset = RExC_parse - RExC_precomp; \
S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
REPORT_LOCATION_ARGS(offset)); \
} STMT_END
/*
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
*/
#define vFAIL2(m,a1) STMT_START { \
if (!SIZE_ONLY) \
SAVEFREESV(RExC_rx_sv); \
Simple_vFAIL2(m, a1); \
} STMT_END
/*
* Like Simple_vFAIL(), but accepts three arguments.
*/
#define Simple_vFAIL3(m, a1, a2) STMT_START { \
const IV offset = RExC_parse - RExC_precomp; \
S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
REPORT_LOCATION_ARGS(offset)); \
} STMT_END
/*
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
*/
#define vFAIL3(m,a1,a2) STMT_START { \
if (!SIZE_ONLY) \
SAVEFREESV(RExC_rx_sv); \
Simple_vFAIL3(m, a1, a2); \
} STMT_END
/*
* Like Simple_vFAIL(), but accepts four arguments.
*/
#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
const IV offset = RExC_parse - RExC_precomp; \
S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define vFAIL4(m,a1,a2,a3) STMT_START { \
if (!SIZE_ONLY) \
SAVEFREESV(RExC_rx_sv); \
Simple_vFAIL4(m, a1, a2, a3); \
} STMT_END
/* A specialized version of vFAIL2 that works with UTF8f */
#define vFAIL2utf8f(m, a1) STMT_START { \
const IV offset = RExC_parse - RExC_precomp; \
if (!SIZE_ONLY) \
SAVEFREESV(RExC_rx_sv); \
S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
REPORT_LOCATION_ARGS(offset)); \
} STMT_END
/* m is not necessarily a "literal string", in this macro */
#define reg_warn_non_literal_string(loc, m) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
m, REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define ckWARNreg(loc,m) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define vWARN_dep(loc, m) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define ckWARNdep(loc,m) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
m REPORT_LOCATION, \
REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define ckWARNregdep(loc,m) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
m REPORT_LOCATION, \
REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define ckWARN2reg_d(loc,m, a1) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
m REPORT_LOCATION, \
a1, REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define ckWARN2reg(loc, m, a1) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define vWARN3(loc, m, a1, a2) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, a2, REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, a2, REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
} STMT_END
#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
const IV offset = loc - RExC_precomp; \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
} STMT_END
/* Allow for side effects in s */
#define REGC(c,s) STMT_START { \
if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
} STMT_END
/* Macros for recording node offsets. 20001227 mjd@plover.com
* Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
* element 2*n-1 of the array. Element #2n holds the byte length node #n.
* Element 0 holds the number n.
* Position is 1 indexed.
*/
#ifndef RE_TRACK_PATTERN_OFFSETS
#define Set_Node_Offset_To_R(node,byte)
#define Set_Node_Offset(node,byte)
#define Set_Cur_Node_Offset
#define Set_Node_Length_To_R(node,len)
#define Set_Node_Length(node,len)
#define Set_Node_Cur_Length(node,start)
#define Node_Offset(n)
#define Node_Length(n)
#define Set_Node_Offset_Length(node,offset,len)
#define ProgLen(ri) ri->u.proglen
#define SetProgLen(ri,x) ri->u.proglen = x
#else
#define ProgLen(ri) ri->u.offsets[0]
#define SetProgLen(ri,x) ri->u.offsets[0] = x
#define Set_Node_Offset_To_R(node,byte) STMT_START { \
if (! SIZE_ONLY) { \
MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
__LINE__, (int)(node), (int)(byte))); \
if((node) < 0) { \
Perl_croak(aTHX_ "value of node is %d in Offset macro", \
(int)(node)); \
} else { \
RExC_offsets[2*(node)-1] = (byte); \
} \
} \
} STMT_END
#define Set_Node_Offset(node,byte) \
Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
#define Set_Node_Length_To_R(node,len) STMT_START { \
if (! SIZE_ONLY) { \
MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
__LINE__, (int)(node), (int)(len))); \
if((node) < 0) { \
Perl_croak(aTHX_ "value of node is %d in Length macro", \
(int)(node)); \
} else { \
RExC_offsets[2*(node)] = (len); \
} \
} \
} STMT_END
#define Set_Node_Length(node,len) \
Set_Node_Length_To_R((node)-RExC_emit_start, len)
#define Set_Node_Cur_Length(node, start) \
Set_Node_Length(node, RExC_parse - start)
/* Get offsets and lengths */
#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
} STMT_END
#endif
#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
#define EXPERIMENTAL_INPLACESCAN
#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
#define DEBUG_RExC_seen() \
DEBUG_OPTIMISE_MORE_r({ \
PerlIO_printf(Perl_debug_log,"RExC_seen: "); \
\
if (RExC_seen & REG_ZERO_LEN_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN "); \
\
if (RExC_seen & REG_LOOKBEHIND_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN "); \
\
if (RExC_seen & REG_GPOS_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN "); \
\
if (RExC_seen & REG_CANY_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_CANY_SEEN "); \
\
if (RExC_seen & REG_RECURSE_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN "); \
\
if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN "); \
\
if (RExC_seen & REG_VERBARG_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN "); \
\
if (RExC_seen & REG_CUTGROUP_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN "); \
\
if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN "); \
\
if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN "); \
\
if (RExC_seen & REG_GOSTART_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN "); \
\
if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN "); \
\
PerlIO_printf(Perl_debug_log,"\n"); \
});
#define DEBUG_STUDYDATA(str,data,depth) \
DEBUG_OPTIMISE_MORE_r(if(data){ \
PerlIO_printf(Perl_debug_log, \
"%*s" str "Pos:%"IVdf"/%"IVdf \
" Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
(int)(depth)*2, "", \
(IV)((data)->pos_min), \
(IV)((data)->pos_delta), \
(UV)((data)->flags), \
(IV)((data)->whilem_c), \
(IV)((data)->last_closep ? *((data)->last_closep) : -1), \
is_inf ? "INF " : "" \
); \
if ((data)->last_found) \
PerlIO_printf(Perl_debug_log, \
"Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
" %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
SvPVX_const((data)->last_found), \
(IV)((data)->last_end), \
(IV)((data)->last_start_min), \
(IV)((data)->last_start_max), \
((data)->longest && \
(data)->longest==&((data)->longest_fixed)) ? "*" : "", \
SvPVX_const((data)->longest_fixed), \
(IV)((data)->offset_fixed), \
((data)->longest && \
(data)->longest==&((data)->longest_float)) ? "*" : "", \
SvPVX_const((data)->longest_float), \
(IV)((data)->offset_float_min), \
(IV)((data)->offset_float_max) \
); \
PerlIO_printf(Perl_debug_log,"\n"); \
});
/* Mark that we cannot extend a found fixed substring at this point.
Update the longest found anchored substring and the longest found
floating substrings if needed. */
STATIC void
S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
SSize_t *minlenp, int is_inf)
{
const STRLEN l = CHR_SVLEN(data->last_found);
const STRLEN old_l = CHR_SVLEN(*data->longest);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_SCAN_COMMIT;
if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
SvSetMagicSV(*data->longest, data->last_found);
if (*data->longest == data->longest_fixed) {
data->offset_fixed = l ? data->last_start_min : data->pos_min;
if (data->flags & SF_BEFORE_EOL)
data->flags
|= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
else
data->flags &= ~SF_FIX_BEFORE_EOL;
data->minlen_fixed=minlenp;
data->lookbehind_fixed=0;
}
else { /* *data->longest == data->longest_float */
data->offset_float_min = l ? data->last_start_min : data->pos_min;
data->offset_float_max = (l
? data->last_start_max
: (data->pos_delta == SSize_t_MAX
? SSize_t_MAX
: data->pos_min + data->pos_delta));
if (is_inf
|| (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
data->offset_float_max = SSize_t_MAX;
if (data->flags & SF_BEFORE_EOL)
data->flags
|= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
else
data->flags &= ~SF_FL_BEFORE_EOL;
data->minlen_float=minlenp;
data->lookbehind_float=0;
}
}
SvCUR_set(data->last_found, 0);
{
SV * const sv = data->last_found;
if (SvUTF8(sv) && SvMAGICAL(sv)) {
MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
if (mg)
mg->mg_len = 0;
}
}
data->last_end = -1;
data->flags &= ~SF_BEFORE_EOL;
DEBUG_STUDYDATA("commit: ",data,0);
}
/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
* list that describes which code points it matches */
STATIC void
S_ssc_anything(pTHX_ regnode_ssc *ssc)
{
/* Set the SSC 'ssc' to match an empty string or any code point */
PERL_ARGS_ASSERT_SSC_ANYTHING;
assert(is_ANYOF_SYNTHETIC(ssc));
ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
_append_range_to_invlist(ssc->invlist, 0, UV_MAX);
ANYOF_FLAGS(ssc) |= ANYOF_EMPTY_STRING; /* Plus match empty string */
}
STATIC int
S_ssc_is_anything(pTHX_ const regnode_ssc *ssc)
{
/* Returns TRUE if the SSC 'ssc' can match the empty string and any code
* point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
* us anything: if the function returns TRUE, 'ssc' hasn't been restricted
* in any way, so there's no point in using it */
UV start, end;
bool ret;
PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
assert(is_ANYOF_SYNTHETIC(ssc));
if (! (ANYOF_FLAGS(ssc) & ANYOF_EMPTY_STRING)) {
return FALSE;
}
/* See if the list consists solely of the range 0 - Infinity */
invlist_iterinit(ssc->invlist);
ret = invlist_iternext(ssc->invlist, &start, &end)
&& start == 0
&& end == UV_MAX;
invlist_iterfinish(ssc->invlist);
if (ret) {
return TRUE;
}
/* If e.g., both \w and \W are set, matches everything */
if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
int i;
for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
return TRUE;
}
}
}
return FALSE;
}
STATIC void
S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
{
/* Initializes the SSC 'ssc'. This includes setting it to match an empty
* string, any code point, or any posix class under locale */
PERL_ARGS_ASSERT_SSC_INIT;
Zero(ssc, 1, regnode_ssc);
set_ANYOF_SYNTHETIC(ssc);
ARG_SET(ssc, ANYOF_NONBITMAP_EMPTY);
ssc_anything(ssc);
/* If any portion of the regex is to operate under locale rules,
* initialization includes it. The reason this isn't done for all regexes
* is that the optimizer was written under the assumption that locale was
* all-or-nothing. Given the complexity and lack of documentation in the
* optimizer, and that there are inadequate test cases for locale, many
* parts of it may not work properly, it is safest to avoid locale unless
* necessary. */
if (RExC_contains_locale) {
ANYOF_POSIXL_SETALL(ssc);
}
else {
ANYOF_POSIXL_ZERO(ssc);
}
}
STATIC int
S_ssc_is_cp_posixl_init(pTHX_ const RExC_state_t *pRExC_state,
const regnode_ssc *ssc)
{
/* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
* to the list of code points matched, and locale posix classes; hence does
* not check its flags) */
UV start, end;
bool ret;
PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
assert(is_ANYOF_SYNTHETIC(ssc));
invlist_iterinit(ssc->invlist);
ret = invlist_iternext(ssc->invlist, &start, &end)
&& start == 0
&& end == UV_MAX;
invlist_iterfinish(ssc->invlist);
if (! ret) {
return FALSE;
}
if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
return FALSE;
}
return TRUE;
}
STATIC SV*
S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
const regnode_charclass* const node)
{
/* Returns a mortal inversion list defining which code points are matched
* by 'node', which is of type ANYOF. Handles complementing the result if
* appropriate. If some code points aren't knowable at this time, the
* returned list must, and will, contain every code point that is a
* possibility. */
SV* invlist = sv_2mortal(_new_invlist(0));
SV* only_utf8_locale_invlist = NULL;
unsigned int i;
const U32 n = ARG(node);
bool new_node_has_latin1 = FALSE;
PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
/* Look at the data structure created by S_set_ANYOF_arg() */
if (n != ANYOF_NONBITMAP_EMPTY) {
SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
AV * const av = MUTABLE_AV(SvRV(rv));
SV **const ary = AvARRAY(av);
assert(RExC_rxi->data->what[n] == 's');
if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
}
else if (ary[0] && ary[0] != &PL_sv_undef) {
/* Here, no compile-time swash, and there are things that won't be
* known until runtime -- we have to assume it could be anything */
return _add_range_to_invlist(invlist, 0, UV_MAX);
}
else if (ary[3] && ary[3] != &PL_sv_undef) {
/* Here no compile-time swash, and no run-time only data. Use the
* node's inversion list */
invlist = sv_2mortal(invlist_clone(ary[3]));
}
/* Get the code points valid only under UTF-8 locales */
if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
&& ary[2] && ary[2] != &PL_sv_undef)
{
only_utf8_locale_invlist = ary[2];
}
}
/* An ANYOF node contains a bitmap for the first 256 code points, and an
* inversion list for the others, but if there are code points that should
* match only conditionally on the target string being UTF-8, those are
* placed in the inversion list, and not the bitmap. Since there are
* circumstances under which they could match, they are included in the
* SSC. But if the ANYOF node is to be inverted, we have to exclude them
* here, so that when we invert below, the end result actually does include
* them. (Think about "\xe0" =~ /[^\xc0]/di;). We have to do this here
* before we add the unconditionally matched code points */
if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
_invlist_intersection_complement_2nd(invlist,
PL_UpperLatin1,
&invlist);
}
/* Add in the points from the bit map */
for (i = 0; i < 256; i++) {
if (ANYOF_BITMAP_TEST(node, i)) {
invlist = add_cp_to_invlist(invlist, i);
new_node_has_latin1 = TRUE;
}
}
/* If this can match all upper Latin1 code points, have to add them
* as well */
if (ANYOF_FLAGS(node) & ANYOF_NON_UTF8_NON_ASCII_ALL) {
_invlist_union(invlist, PL_UpperLatin1, &invlist);
}
/* Similarly for these */
if (ANYOF_FLAGS(node) & ANYOF_ABOVE_LATIN1_ALL) {
invlist = _add_range_to_invlist(invlist, 256, UV_MAX);
}
if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
_invlist_invert(invlist);
}
else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
/* Under /li, any 0-255 could fold to any other 0-255, depending on the
* locale. We can skip this if there are no 0-255 at all. */
_invlist_union(invlist, PL_Latin1, &invlist);
}
/* Similarly add the UTF-8 locale possible matches. These have to be
* deferred until after the non-UTF-8 locale ones are taken care of just
* above, or it leads to wrong results under ANYOF_INVERT */
if (only_utf8_locale_invlist) {
_invlist_union_maybe_complement_2nd(invlist,
only_utf8_locale_invlist,
ANYOF_FLAGS(node) & ANYOF_INVERT,
&invlist);
}
return invlist;
}
/* These two functions currently do the exact same thing */
#define ssc_init_zero ssc_init
#define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
/* 'AND' a given class with another one. Can create false positives. 'ssc'
* should not be inverted. 'and_with->flags & ANYOF_POSIXL' should be 0 if
* 'and_with' is a regnode_charclass instead of a regnode_ssc. */
STATIC void
S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
const regnode_charclass *and_with)
{
/* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
* another SSC or a regular ANYOF class. Can create false positives. */
SV* anded_cp_list;
U8 anded_flags;
PERL_ARGS_ASSERT_SSC_AND;
assert(is_ANYOF_SYNTHETIC(ssc));
/* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
* the code point inversion list and just the relevant flags */
if (is_ANYOF_SYNTHETIC(and_with)) {
anded_cp_list = ((regnode_ssc *)and_with)->invlist;
anded_flags = ANYOF_FLAGS(and_with);
/* XXX This is a kludge around what appears to be deficiencies in the
* optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
* there are paths through the optimizer where it doesn't get weeded
* out when it should. And if we don't make some extra provision for
* it like the code just below, it doesn't get added when it should.
* This solution is to add it only when AND'ing, which is here, and
* only when what is being AND'ed is the pristine, original node
* matching anything. Thus it is like adding it to ssc_anything() but
* only when the result is to be AND'ed. Probably the same solution
* could be adopted for the same problem we have with /l matching,
* which is solved differently in S_ssc_init(), and that would lead to
* fewer false positives than that solution has. But if this solution
* creates bugs, the consequences are only that a warning isn't raised
* that should be; while the consequences for having /l bugs is
* incorrect matches */
if (ssc_is_anything((regnode_ssc *)and_with)) {
anded_flags |= ANYOF_WARN_SUPER;
}
}
else {
anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
}
ANYOF_FLAGS(ssc) &= anded_flags;
/* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
* C2 is the list of code points in 'and-with'; P2, its posix classes.
* 'and_with' may be inverted. When not inverted, we have the situation of
* computing:
* (C1 | P1) & (C2 | P2)
* = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
* = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
* <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
* <= ((C1 & C2) | P1 | P2)
* Alternatively, the last few steps could be:
* = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
* <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
* <= (C1 | C2 | (P1 & P2))
* We favor the second approach if either P1 or P2 is non-empty. This is
* because these components are a barrier to doing optimizations, as what
* they match cannot be known until the moment of matching as they are
* dependent on the current locale, 'AND"ing them likely will reduce or
* eliminate them.
* But we can do better if we know that C1,P1 are in their initial state (a
* frequent occurrence), each matching everything:
* (<everything>) & (C2 | P2) = C2 | P2
* Similarly, if C2,P2 are in their initial state (again a frequent
* occurrence), the result is a no-op
* (C1 | P1) & (<everything>) = C1 | P1
*
* Inverted, we have
* (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
* = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
* <= (C1 & ~C2) | (P1 & ~P2)
* */
if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
&& ! is_ANYOF_SYNTHETIC(and_with))
{
unsigned int i;
ssc_intersection(ssc,
anded_cp_list,
FALSE /* Has already been inverted */
);
/* If either P1 or P2 is empty, the intersection will be also; can skip
* the loop */
if (! (ANYOF_FLAGS(and_with) & ANYOF_POSIXL)) {
ANYOF_POSIXL_ZERO(ssc);
}
else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
/* Note that the Posix class component P from 'and_with' actually
* looks like:
* P = Pa | Pb | ... | Pn
* where each component is one posix class, such as in [\w\s].
* Thus
* ~P = ~(Pa | Pb | ... | Pn)
* = ~Pa & ~Pb & ... & ~Pn
* <= ~Pa | ~Pb | ... | ~Pn
* The last is something we can easily calculate, but unfortunately
* is likely to have many false positives. We could do better
* in some (but certainly not all) instances if two classes in
* P have known relationships. For example
* :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
* So
* :lower: & :print: = :lower:
* And similarly for classes that must be disjoint. For example,
* since \s and \w can have no elements in common based on rules in
* the POSIX standard,
* \w & ^\S = nothing
* Unfortunately, some vendor locales do not meet the Posix
* standard, in particular almost everything by Microsoft.
* The loop below just changes e.g., \w into \W and vice versa */
regnode_charclass_posixl temp;
int add = 1; /* To calculate the index of the complement */
ANYOF_POSIXL_ZERO(&temp);
for (i = 0; i < ANYOF_MAX; i++) {
assert(i % 2 != 0
|| ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
|| ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
ANYOF_POSIXL_SET(&temp, i + add);
}
add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
}
ANYOF_POSIXL_AND(&temp, ssc);
} /* else ssc already has no posixes */
} /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
in its initial state */
else if (! is_ANYOF_SYNTHETIC(and_with)
|| ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
{
/* But if 'ssc' is in its initial state, the result is just 'and_with';
* copy it over 'ssc' */
if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
if (is_ANYOF_SYNTHETIC(and_with)) {
StructCopy(and_with, ssc, regnode_ssc);
}
else {
ssc->invlist = anded_cp_list;
ANYOF_POSIXL_ZERO(ssc);
if (ANYOF_FLAGS(and_with) & ANYOF_POSIXL) {
ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
}
}
}
else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
|| (ANYOF_FLAGS(and_with) & ANYOF_POSIXL))
{
/* One or the other of P1, P2 is non-empty. */
if (ANYOF_FLAGS(and_with) & ANYOF_POSIXL) {
ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
}
ssc_union(ssc, anded_cp_list, FALSE);
}
else { /* P1 = P2 = empty */
ssc_intersection(ssc, anded_cp_list, FALSE);
}
}
}
STATIC void
S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
const regnode_charclass *or_with)
{
/* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
* another SSC or a regular ANYOF class. Can create false positives if
* 'or_with' is to be inverted. */
SV* ored_cp_list;
U8 ored_flags;
PERL_ARGS_ASSERT_SSC_OR;
assert(is_ANYOF_SYNTHETIC(ssc));
/* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
* the code point inversion list and just the relevant flags */
if (is_ANYOF_SYNTHETIC(or_with)) {
ored_cp_list = ((regnode_ssc*) or_with)->invlist;
ored_flags = ANYOF_FLAGS(or_with);
}
else {
ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
}
ANYOF_FLAGS(ssc) |= ored_flags;
/* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
* C2 is the list of code points in 'or-with'; P2, its posix classes.
* 'or_with' may be inverted. When not inverted, we have the simple
* situation of computing:
* (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
* If P1|P2 yields a situation with both a class and its complement are
* set, like having both \w and \W, this matches all code points, and we
* can delete these from the P component of the ssc going forward. XXX We
* might be able to delete all the P components, but I (khw) am not certain
* about this, and it is better to be safe.
*
* Inverted, we have
* (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
* <= (C1 | P1) | ~C2
* <= (C1 | ~C2) | P1
* (which results in actually simpler code than the non-inverted case)
* */
if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
&& ! is_ANYOF_SYNTHETIC(or_with))
{
/* We ignore P2, leaving P1 going forward */
} /* else Not inverted */
else if (ANYOF_FLAGS(or_with) & ANYOF_POSIXL) {
ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
unsigned int i;
for (i = 0; i < ANYOF_MAX; i += 2) {
if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
{
ssc_match_all_cp(ssc);
ANYOF_POSIXL_CLEAR(ssc, i);
ANYOF_POSIXL_CLEAR(ssc, i+1);
}
}
}
}
ssc_union(ssc,
ored_cp_list,
FALSE /* Already has been inverted */
);
}
PERL_STATIC_INLINE void
S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
{
PERL_ARGS_ASSERT_SSC_UNION;
assert(is_ANYOF_SYNTHETIC(ssc));
_invlist_union_maybe_complement_2nd(ssc->invlist,
invlist,
invert2nd,
&ssc->invlist);
}
PERL_STATIC_INLINE void
S_ssc_intersection(pTHX_ regnode_ssc *ssc,
SV* const invlist,
const bool invert2nd)
{
PERL_ARGS_ASSERT_SSC_INTERSECTION;
assert(is_ANYOF_SYNTHETIC(ssc));
_invlist_intersection_maybe_complement_2nd(ssc->invlist,
invlist,
invert2nd,
&ssc->invlist);
}
PERL_STATIC_INLINE void
S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
{
PERL_ARGS_ASSERT_SSC_ADD_RANGE;
assert(is_ANYOF_SYNTHETIC(ssc));
ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
}
PERL_STATIC_INLINE void
S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
{
/* AND just the single code point 'cp' into the SSC 'ssc' */
SV* cp_list = _new_invlist(2);
PERL_ARGS_ASSERT_SSC_CP_AND;
assert(is_ANYOF_SYNTHETIC(ssc));
cp_list = add_cp_to_invlist(cp_list, cp);
ssc_intersection(ssc, cp_list,
FALSE /* Not inverted */
);
SvREFCNT_dec_NN(cp_list);
}
PERL_STATIC_INLINE void
S_ssc_clear_locale(pTHX_ regnode_ssc *ssc)
{
/* Set the SSC 'ssc' to not match any locale things */
PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
assert(is_ANYOF_SYNTHETIC(ssc));
ANYOF_POSIXL_ZERO(ssc);
ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
}
STATIC void
S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
{
/* The inversion list in the SSC is marked mortal; now we need a more
* permanent copy, which is stored the same way that is done in a regular
* ANYOF node, with the first 256 code points in a bit map */
SV* invlist = invlist_clone(ssc->invlist);
PERL_ARGS_ASSERT_SSC_FINALIZE;
assert(is_ANYOF_SYNTHETIC(ssc));
/* The code in this file assumes that all but these flags aren't relevant
* to the SSC, except ANYOF_EMPTY_STRING, which should be cleared by the
* time we reach here */
assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
NULL, NULL, NULL, FALSE);
/* Make sure is clone-safe */
ssc->invlist = NULL;
if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
ANYOF_FLAGS(ssc) |= ANYOF_POSIXL;
}
assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
}
#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
? (TRIE_LIST_CUR( idx ) - 1) \
: 0 )
#ifdef DEBUGGING
/*
dump_trie(trie,widecharmap,revcharmap)
dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
These routines dump out a trie in a somewhat readable format.
The _interim_ variants are used for debugging the interim
tables that are used to generate the final compressed
representation which is what dump_trie expects.
Part of the reason for their existence is to provide a form
of documentation as to how the different representations function.
*/
/*
Dumps the final compressed table form of the trie to Perl_debug_log.
Used for debugging make_trie().
*/
STATIC void
S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
AV *revcharmap, U32 depth)
{
U32 state;
SV *sv=sv_newmortal();
int colwidth= widecharmap ? 6 : 4;
U16 word;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_DUMP_TRIE;
PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
(int)depth * 2 + 2,"",
"Match","Base","Ofs" );
for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
SV ** const tmp = av_fetch( revcharmap, state, 0);
if ( tmp ) {
PerlIO_printf( Perl_debug_log, "%*s",
colwidth,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_ESCAPE_FIRSTCHAR
)
);
}
}
PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
(int)depth * 2 + 2,"");
for( state = 0 ; state < trie->uniquecharcount ; state++ )
PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
PerlIO_printf( Perl_debug_log, "\n");
for( state = 1 ; state < trie->statecount ; state++ ) {
const U32 base = trie->states[ state ].trans.base;
PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
(int)depth * 2 + 2,"", (UV)state);
if ( trie->states[ state ].wordnum ) {
PerlIO_printf( Perl_debug_log, " W%4X",
trie->states[ state ].wordnum );
} else {
PerlIO_printf( Perl_debug_log, "%6s", "" );
}
PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
if ( base ) {
U32 ofs = 0;
while( ( base + ofs < trie->uniquecharcount ) ||
( base + ofs - trie->uniquecharcount < trie->lasttrans
&& trie->trans[ base + ofs - trie->uniquecharcount ].check
!= state))
ofs++;
PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
if ( ( base + ofs >= trie->uniquecharcount )
&& ( base + ofs - trie->uniquecharcount
< trie->lasttrans )
&& trie->trans[ base + ofs
- trie->uniquecharcount ].check == state )
{
PerlIO_printf( Perl_debug_log, "%*"UVXf,
colwidth,
(UV)trie->trans[ base + ofs
- trie->uniquecharcount ].next );
} else {
PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
}
}
PerlIO_printf( Perl_debug_log, "]");
}
PerlIO_printf( Perl_debug_log, "\n" );
}
PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
(int)depth*2, "");
for (word=1; word <= trie->wordcount; word++) {
PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
(int)word, (int)(trie->wordinfo[word].prev),
(int)(trie->wordinfo[word].len));
}
PerlIO_printf(Perl_debug_log, "\n" );
}
/*
Dumps a fully constructed but uncompressed trie in list form.
List tries normally only are used for construction when the number of
possible chars (trie->uniquecharcount) is very high.
Used for debugging make_trie().
*/
STATIC void
S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
HV *widecharmap, AV *revcharmap, U32 next_alloc,
U32 depth)
{
U32 state;
SV *sv=sv_newmortal();
int colwidth= widecharmap ? 6 : 4;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
/* print out the table precompression. */
PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
(int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
"------:-----+-----------------\n" );
for( state=1 ; state < next_alloc ; state ++ ) {
U16 charid;
PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
(int)depth * 2 + 2,"", (UV)state );
if ( ! trie->states[ state ].wordnum ) {
PerlIO_printf( Perl_debug_log, "%5s| ","");
} else {
PerlIO_printf( Perl_debug_log, "W%4x| ",
trie->states[ state ].wordnum
);
}
for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
SV ** const tmp = av_fetch( revcharmap,
TRIE_LIST_ITEM(state,charid).forid, 0);
if ( tmp ) {
PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
colwidth,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
colwidth,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
| PERL_PV_ESCAPE_FIRSTCHAR
) ,
TRIE_LIST_ITEM(state,charid).forid,
(UV)TRIE_LIST_ITEM(state,charid).newstate
);
if (!(charid % 10))
PerlIO_printf(Perl_debug_log, "\n%*s| ",
(int)((depth * 2) + 14), "");
}
}
PerlIO_printf( Perl_debug_log, "\n");
}
}
/*
Dumps a fully constructed but uncompressed trie in table form.
This is the normal DFA style state transition table, with a few
twists to facilitate compression later.
Used for debugging make_trie().
*/
STATIC void
S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
HV *widecharmap, AV *revcharmap, U32 next_alloc,
U32 depth)
{
U32 state;
U16 charid;
SV *sv=sv_newmortal();
int colwidth= widecharmap ? 6 : 4;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
/*
print out the table precompression so that we can do a visual check
that they are identical.
*/
PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
SV ** const tmp = av_fetch( revcharmap, charid, 0);
if ( tmp ) {
PerlIO_printf( Perl_debug_log, "%*s",
colwidth,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_ESCAPE_FIRSTCHAR
)
);
}
}
PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
}
PerlIO_printf( Perl_debug_log, "\n" );
for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
(int)depth * 2 + 2,"",
(UV)TRIE_NODENUM( state ) );
for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
if (v)
PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
else
PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
}
if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
(UV)trie->trans[ state ].check );
} else {
PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
(UV)trie->trans[ state ].check,
trie->states[ TRIE_NODENUM( state ) ].wordnum );
}
}
}
#endif
/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
startbranch: the first branch in the whole branch sequence
first : start branch of sequence of branch-exact nodes.
May be the same as startbranch
last : Thing following the last branch.
May be the same as tail.
tail : item following the branch sequence
count : words in the sequence
flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
depth : indent depth
Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
A trie is an N'ary tree where the branches are determined by digital
decomposition of the key. IE, at the root node you look up the 1st character and
follow that branch repeat until you find the end of the branches. Nodes can be
marked as "accepting" meaning they represent a complete word. Eg:
/he|she|his|hers/
would convert into the following structure. Numbers represent states, letters
following numbers represent valid transitions on the letter from that state, if
the number is in square brackets it represents an accepting state, otherwise it
will be in parenthesis.
+-h->+-e->[3]-+-r->(8)-+-s->[9]
| |
| (2)
| |
(1) +-i->(6)-+-s->[7]
|
+-s->(3)-+-h->(4)-+-e->[5]
Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
This shows that when matching against the string 'hers' we will begin at state 1
read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
is also accepting. Thus we know that we can match both 'he' and 'hers' with a
single traverse. We store a mapping from accepting to state to which word was
matched, and then when we have multiple possibilities we try to complete the
rest of the regex in the order in which they occured in the alternation.
The only prior NFA like behaviour that would be changed by the TRIE support is
the silent ignoring of duplicate alternations which are of the form:
/ (DUPE|DUPE) X? (?{ ... }) Y /x
Thus EVAL blocks following a trie may be called a different number of times with
and without the optimisation. With the optimisations dupes will be silently
ignored. This inconsistent behaviour of EVAL type nodes is well established as
the following demonstrates:
'words'=~/(word|word|word)(?{ print $1 })[xyz]/
which prints out 'word' three times, but
'words'=~/(word|word|word)(?{ print $1 })S/
which doesnt print it out at all. This is due to other optimisations kicking in.
Example of what happens on a structural level:
The regexp /(ac|ad|ab)+/ will produce the following debug output:
1: CURLYM[1] {1,32767}(18)
5: BRANCH(8)
6: EXACT <ac>(16)
8: BRANCH(11)
9: EXACT <ad>(16)
11: BRANCH(14)
12: EXACT <ab>(16)
16: SUCCEED(0)
17: NOTHING(18)
18: END(0)
This would be optimizable with startbranch=5, first=5, last=16, tail=16
and should turn into:
1: CURLYM[1] {1,32767}(18)
5: TRIE(16)
[Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
<ac>
<ad>
<ab>
16: SUCCEED(0)
17: NOTHING(18)
18: END(0)
Cases where tail != last would be like /(?foo|bar)baz/:
1: BRANCH(4)
2: EXACT <foo>(8)
4: BRANCH(7)
5: EXACT <bar>(8)
7: TAIL(8)
8: EXACT <baz>(10)
10: END(0)
which would be optimizable with startbranch=1, first=1, last=7, tail=8
and would end up looking like:
1: TRIE(8)
[Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
<foo>
<bar>
7: TAIL(8)
8: EXACT <baz>(10)
10: END(0)
d = uvchr_to_utf8_flags(d, uv, 0);
is the recommended Unicode-aware way of saying
*(d++) = uv;
*/
#define TRIE_STORE_REVCHAR(val) \
STMT_START { \
if (UTF) { \
SV *zlopp = newSV(7); /* XXX: optimize me */ \
unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
SvCUR_set(zlopp, kapow - flrbbbbb); \
SvPOK_on(zlopp); \
SvUTF8_on(zlopp); \
av_push(revcharmap, zlopp); \
} else { \
char ooooff = (char)val; \
av_push(revcharmap, newSVpvn(&ooooff, 1)); \
} \
} STMT_END
/* This gets the next character from the input, folding it if not already
* folded. */
#define TRIE_READ_CHAR STMT_START { \
wordlen++; \
if ( UTF ) { \
/* if it is UTF then it is either already folded, or does not need \
* folding */ \
uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
} \
else if (folder == PL_fold_latin1) { \
/* This folder implies Unicode rules, which in the range expressible \
* by not UTF is the lower case, with the two exceptions, one of \
* which should have been taken care of before calling this */ \
assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
uvc = toLOWER_L1(*uc); \
if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
len = 1; \
} else { \
/* raw data, will be folded later if needed */ \
uvc = (U32)*uc; \
len = 1; \
} \
} STMT_END
#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
U32 ging = TRIE_LIST_LEN( state ) *= 2; \
Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
} \
TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
TRIE_LIST_CUR( state )++; \
} STMT_END
#define TRIE_LIST_NEW(state) STMT_START { \
Newxz( trie->states[ state ].trans.list, \
4, reg_trie_trans_le ); \
TRIE_LIST_CUR( state ) = 1; \
TRIE_LIST_LEN( state ) = 4; \
} STMT_END
#define TRIE_HANDLE_WORD(state) STMT_START { \
U16 dupe= trie->states[ state ].wordnum; \
regnode * const noper_next = regnext( noper ); \
\
DEBUG_r({ \
/* store the word for dumping */ \
SV* tmp; \
if (OP(noper) != NOTHING) \
tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
else \
tmp = newSVpvn_utf8( "", 0, UTF ); \
av_push( trie_words, tmp ); \
}); \
\
curword++; \
trie->wordinfo[curword].prev = 0; \
trie->wordinfo[curword].len = wordlen; \
trie->wordinfo[curword].accept = state; \
\
if ( noper_next < tail ) { \
if (!trie->jump) \
trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
sizeof(U16) ); \
trie->jump[curword] = (U16)(noper_next - convert); \
if (!jumper) \
jumper = noper_next; \
if (!nextbranch) \
nextbranch= regnext(cur); \
} \
\
if ( dupe ) { \
/* It's a dupe. Pre-insert into the wordinfo[].prev */\
/* chain, so that when the bits of chain are later */\
/* linked together, the dups appear in the chain */\
trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
trie->wordinfo[dupe].prev = curword; \
} else { \
/* we haven't inserted this word yet. */ \
trie->states[ state ].wordnum = curword; \
} \
} STMT_END
#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
( ( base + charid >= ucharcount \
&& base + charid < ubound \
&& state == trie->trans[ base - ucharcount + charid ].check \
&& trie->trans[ base - ucharcount + charid ].next ) \
? trie->trans[ base - ucharcount + charid ].next \
: ( state==1 ? special : 0 ) \
)
#define MADE_TRIE 1
#define MADE_JUMP_TRIE 2
#define MADE_EXACT_TRIE 4
STATIC I32
S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
regnode *first, regnode *last, regnode *tail,
U32 word_count, U32 flags, U32 depth)
{
dVAR;
/* first pass, loop through and scan words */
reg_trie_data *trie;
HV *widecharmap = NULL;
AV *revcharmap = newAV();
regnode *cur;
STRLEN len = 0;
UV uvc = 0;
U16 curword = 0;
U32 next_alloc = 0;
regnode *jumper = NULL;
regnode *nextbranch = NULL;
regnode *convert = NULL;
U32 *prev_states; /* temp array mapping each state to previous one */
/* we just use folder as a flag in utf8 */
const U8 * folder = NULL;
#ifdef DEBUGGING
const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
AV *trie_words = NULL;
/* along with revcharmap, this only used during construction but both are
* useful during debugging so we store them in the struct when debugging.
*/
#else
const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
STRLEN trie_charcount=0;
#endif
SV *re_trie_maxbuff;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_MAKE_TRIE;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
switch (flags) {
case EXACT: break;
case EXACTFA:
case EXACTFU_SS:
case EXACTFU: folder = PL_fold_latin1; break;
case EXACTF: folder = PL_fold; break;
default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
}
trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
trie->refcount = 1;
trie->startstate = 1;
trie->wordcount = word_count;
RExC_rxi->data->data[ data_slot ] = (void*)trie;
trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
if (flags == EXACT)
trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
trie->wordcount+1, sizeof(reg_trie_wordinfo));
DEBUG_r({
trie_words = newAV();
});
re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
if (!SvIOK(re_trie_maxbuff)) {
sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
}
DEBUG_TRIE_COMPILE_r({
PerlIO_printf( Perl_debug_log,
"%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
(int)depth * 2 + 2, "",
REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
});
/* Find the node we are going to overwrite */
if ( first == startbranch && OP( last ) != BRANCH ) {
/* whole branch chain */
convert = first;
} else {
/* branch sub-chain */
convert = NEXTOPER( first );
}
/* -- First loop and Setup --
We first traverse the branches and scan each word to determine if it
contains widechars, and how many unique chars there are, this is
important as we have to build a table with at least as many columns as we
have unique chars.
We use an array of integers to represent the character codes 0..255
(trie->charmap) and we use a an HV* to store Unicode characters. We use
the native representation of the character value as the key and IV's for
the coded index.
*TODO* If we keep track of how many times each character is used we can
remap the columns so that the table compression later on is more
efficient in terms of memory by ensuring the most common value is in the
middle and the least common are on the outside. IMO this would be better
than a most to least common mapping as theres a decent chance the most
common letter will share a node with the least common, meaning the node
will not be compressible. With a middle is most common approach the worst
case is when we have the least common nodes twice.
*/
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
regnode *noper = NEXTOPER( cur );
const U8 *uc = (U8*)STRING( noper );
const U8 *e = uc + STR_LEN( noper );
int foldlen = 0;
U32 wordlen = 0; /* required init */
STRLEN minchars = 0;
STRLEN maxchars = 0;
bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
bitmap?*/
if (OP(noper) == NOTHING) {
regnode *noper_next= regnext(noper);
if (noper_next != tail && OP(noper_next) == flags) {
noper = noper_next;
uc= (U8*)STRING(noper);
e= uc + STR_LEN(noper);
trie->minlen= STR_LEN(noper);
} else {
trie->minlen= 0;
continue;
}
}
if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
regardless of encoding */
if (OP( noper ) == EXACTFU_SS) {
/* false positives are ok, so just set this */
TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
}
}
for ( ; uc < e ; uc += len ) { /* Look at each char in the current
branch */
TRIE_CHARCOUNT(trie)++;
TRIE_READ_CHAR;
/* TRIE_READ_CHAR returns the current character, or its fold if /i
* is in effect. Under /i, this character can match itself, or
* anything that folds to it. If not under /i, it can match just
* itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
* all fold to k, and all are single characters. But some folds
* expand to more than one character, so for example LATIN SMALL
* LIGATURE FFI folds to the three character sequence 'ffi'. If
* the string beginning at 'uc' is 'ffi', it could be matched by
* three characters, or just by the one ligature character. (It
* could also be matched by two characters: LATIN SMALL LIGATURE FF
* followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
* (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
* match.) The trie needs to know the minimum and maximum number
* of characters that could match so that it can use size alone to
* quickly reject many match attempts. The max is simple: it is
* the number of folded characters in this branch (since a fold is
* never shorter than what folds to it. */
maxchars++;
/* And the min is equal to the max if not under /i (indicated by
* 'folder' being NULL), or there are no multi-character folds. If
* there is a multi-character fold, the min is incremented just
* once, for the character that folds to the sequence. Each
* character in the sequence needs to be added to the list below of
* characters in the trie, but we count only the first towards the
* min number of characters needed. This is done through the
* variable 'foldlen', which is returned by the macros that look
* for these sequences as the number of bytes the sequence
* occupies. Each time through the loop, we decrement 'foldlen' by
* how many bytes the current char occupies. Only when it reaches
* 0 do we increment 'minchars' or look for another multi-character
* sequence. */
if (folder == NULL) {
minchars++;
}
else if (foldlen > 0) {
foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
}
else {
minchars++;
/* See if *uc is the beginning of a multi-character fold. If
* so, we decrement the length remaining to look at, to account
* for the current character this iteration. (We can use 'uc'
* instead of the fold returned by TRIE_READ_CHAR because for
* non-UTF, the latin1_safe macro is smart enough to account
* for all the unfolded characters, and because for UTF, the
* string will already have been folded earlier in the
* compilation process */
if (UTF) {
if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
foldlen -= UTF8SKIP(uc);
}
}
else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
foldlen--;
}
}
/* The current character (and any potential folds) should be added
* to the possible matching characters for this position in this
* branch */
if ( uvc < 256 ) {
if ( folder ) {
U8 folded= folder[ (U8) uvc ];
if ( !trie->charmap[ folded ] ) {
trie->charmap[ folded ]=( ++trie->uniquecharcount );
TRIE_STORE_REVCHAR( folded );
}
}
if ( !trie->charmap[ uvc ] ) {
trie->charmap[ uvc ]=( ++trie->uniquecharcount );
TRIE_STORE_REVCHAR( uvc );
}
if ( set_bit ) {
/* store the codepoint in the bitmap, and its folded
* equivalent. */
TRIE_BITMAP_SET(trie, uvc);
/* store the folded codepoint */
if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
if ( !UTF ) {
/* store first byte of utf8 representation of
variant codepoints */
if (! UVCHR_IS_INVARIANT(uvc)) {
TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
}
}
set_bit = 0; /* We've done our bit :-) */
}
} else {
/* XXX We could come up with the list of code points that fold
* to this using PL_utf8_foldclosures, except not for
* multi-char folds, as there may be multiple combinations
* there that could work, which needs to wait until runtime to
* resolve (The comment about LIGATURE FFI above is such an
* example */
SV** svpp;
if ( !widecharmap )
widecharmap = newHV();
svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
if ( !svpp )
Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
if ( !SvTRUE( *svpp ) ) {
sv_setiv( *svpp, ++trie->uniquecharcount );
TRIE_STORE_REVCHAR(uvc);
}
}
} /* end loop through characters in this branch of the trie */
/* We take the min and max for this branch and combine to find the min
* and max for all branches processed so far */
if( cur == first ) {
trie->minlen = minchars;
trie->maxlen = maxchars;
} else if (minchars < trie->minlen) {
trie->minlen = minchars;
} else if (maxchars > trie->maxlen) {
trie->maxlen = maxchars;
}
} /* end first pass */
DEBUG_TRIE_COMPILE_r(
PerlIO_printf( Perl_debug_log,
"%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
(int)depth * 2 + 2,"",
( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
(int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
(int)trie->minlen, (int)trie->maxlen )
);
/*
We now know what we are dealing with in terms of unique chars and
string sizes so we can calculate how much memory a naive
representation using a flat table will take. If it's over a reasonable
limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
conservative but potentially much slower representation using an array
of lists.
At the end we convert both representations into the same compressed
form that will be used in regexec.c for matching with. The latter
is a form that cannot be used to construct with but has memory
properties similar to the list form and access properties similar
to the table form making it both suitable for fast searches and
small enough that its feasable to store for the duration of a program.
See the comment in the code where the compressed table is produced
inplace from the flat tabe representation for an explanation of how
the compression works.
*/
Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
prev_states[1] = 0;
if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
> SvIV(re_trie_maxbuff) )
{
/*
Second Pass -- Array Of Lists Representation
Each state will be represented by a list of charid:state records
(reg_trie_trans_le) the first such element holds the CUR and LEN
points of the allocated array. (See defines above).
We build the initial structure using the lists, and then convert
it into the compressed table form which allows faster lookups
(but cant be modified once converted).
*/
STRLEN transcount = 1;
DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
"%*sCompiling trie using list compiler\n",
(int)depth * 2 + 2, ""));
trie->states = (reg_trie_state *)
PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
sizeof(reg_trie_state) );
TRIE_LIST_NEW(1);
next_alloc = 2;
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
regnode *noper = NEXTOPER( cur );
U8 *uc = (U8*)STRING( noper );
const U8 *e = uc + STR_LEN( noper );
U32 state = 1; /* required init */
U16 charid = 0; /* sanity init */
U32 wordlen = 0; /* required init */
if (OP(noper) == NOTHING) {
regnode *noper_next= regnext(noper);
if (noper_next != tail && OP(noper_next) == flags) {
noper = noper_next;
uc= (U8*)STRING(noper);
e= uc + STR_LEN(noper);
}
}
if (OP(noper) != NOTHING) {
for ( ; uc < e ; uc += len ) {
TRIE_READ_CHAR;
if ( uvc < 256 ) {
charid = trie->charmap[ uvc ];
} else {
SV** const svpp = hv_fetch( widecharmap,
(char*)&uvc,
sizeof( UV ),
0);
if ( !svpp ) {
charid = 0;
} else {
charid=(U16)SvIV( *svpp );
}
}
/* charid is now 0 if we dont know the char read, or
* nonzero if we do */
if ( charid ) {
U16 check;
U32 newstate = 0;
charid--;
if ( !trie->states[ state ].trans.list ) {
TRIE_LIST_NEW( state );
}
for ( check = 1;
check <= TRIE_LIST_USED( state );
check++ )
{
if ( TRIE_LIST_ITEM( state, check ).forid
== charid )
{
newstate = TRIE_LIST_ITEM( state, check ).newstate;
break;
}
}
if ( ! newstate ) {
newstate = next_alloc++;
prev_states[newstate] = state;
TRIE_LIST_PUSH( state, charid, newstate );
transcount++;
}
state = newstate;
} else {
Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
}
}
}
TRIE_HANDLE_WORD(state);
} /* end second pass */
/* next alloc is the NEXT state to be allocated */
trie->statecount = next_alloc;
trie->states = (reg_trie_state *)
PerlMemShared_realloc( trie->states,
next_alloc
* sizeof(reg_trie_state) );
/* and now dump it out before we compress it */
DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
revcharmap, next_alloc,
depth+1)
);
trie->trans = (reg_trie_trans *)
PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
{
U32 state;
U32 tp = 0;
U32 zp = 0;
for( state=1 ; state < next_alloc ; state ++ ) {
U32 base=0;
/*
DEBUG_TRIE_COMPILE_MORE_r(
PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
);
*/
if (trie->states[state].trans.list) {
U16 minid=TRIE_LIST_ITEM( state, 1).forid;
U16 maxid=minid;
U16 idx;
for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
if ( forid < minid ) {
minid=forid;
} else if ( forid > maxid ) {
maxid=forid;
}
}
if ( transcount < tp + maxid - minid + 1) {
transcount *= 2;
trie->trans = (reg_trie_trans *)
PerlMemShared_realloc( trie->trans,
transcount
* sizeof(reg_trie_trans) );
Zero( trie->trans + (transcount / 2),
transcount / 2,
reg_trie_trans );
}
base = trie->uniquecharcount + tp - minid;
if ( maxid == minid ) {
U32 set = 0;
for ( ; zp < tp ; zp++ ) {
if ( ! trie->trans[ zp ].next ) {
base = trie->uniquecharcount + zp - minid;
trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
1).newstate;
trie->trans[ zp ].check = state;
set = 1;
break;
}
}
if ( !set ) {
trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
1).newstate;
trie->trans[ tp ].check = state;
tp++;
zp = tp;
}
} else {
for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
const U32 tid = base
- trie->uniquecharcount
+ TRIE_LIST_ITEM( state, idx ).forid;
trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
idx ).newstate;
trie->trans[ tid ].check = state;
}
tp += ( maxid - minid + 1 );
}
Safefree(trie->states[ state ].trans.list);
}
/*
DEBUG_TRIE_COMPILE_MORE_r(
PerlIO_printf( Perl_debug_log, " base: %d\n",base);
);
*/
trie->states[ state ].trans.base=base;
}
trie->lasttrans = tp + 1;
}
} else {
/*
Second Pass -- Flat Table Representation.
we dont use the 0 slot of either trans[] or states[] so we add 1 to
each. We know that we will need Charcount+1 trans at most to store
the data (one row per char at worst case) So we preallocate both
structures assuming worst case.
We then construct the trie using only the .next slots of the entry
structs.
We use the .check field of the first entry of the node temporarily
to make compression both faster and easier by keeping track of how
many non zero fields are in the node.
Since trans are numbered from 1 any 0 pointer in the table is a FAIL
transition.
There are two terms at use here: state as a TRIE_NODEIDX() which is
a number representing the first entry of the node, and state as a
TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
if there are 2 entrys per node. eg:
A B A B
1. 2 4 1. 3 7
2. 0 3 3. 0 5
3. 0 0 5. 0 0
4. 0 0 7. 0 0
The table is internally in the right hand, idx form. However as we
also have to deal with the states array which is indexed by nodenum
we have to use TRIE_NODENUM() to convert.
*/
DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
"%*sCompiling trie using table compiler\n",
(int)depth * 2 + 2, ""));
trie->trans = (reg_trie_trans *)
PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
* trie->uniquecharcount + 1,
sizeof(reg_trie_trans) );
trie->states = (reg_trie_state *)
PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
sizeof(reg_trie_state) );
next_alloc = trie->uniquecharcount + 1;
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
regnode *noper = NEXTOPER( cur );
const U8 *uc = (U8*)STRING( noper );
const U8 *e = uc + STR_LEN( noper );
U32 state = 1; /* required init */
U16 charid = 0; /* sanity init */
U32 accept_state = 0; /* sanity init */
U32 wordlen = 0; /* required init */
if (OP(noper) == NOTHING) {
regnode *noper_next= regnext(noper);
if (noper_next != tail && OP(noper_next) == flags) {
noper = noper_next;
uc= (U8*)STRING(noper);
e= uc + STR_LEN(noper);
}
}
if ( OP(noper) != NOTHING ) {
for ( ; uc < e ; uc += len ) {
TRIE_READ_CHAR;
if ( uvc < 256 ) {
charid = trie->charmap[ uvc ];
} else {
SV* const * const svpp = hv_fetch( widecharmap,
(char*)&uvc,
sizeof( UV ),
0);
charid = svpp ? (U16)SvIV(*svpp) : 0;
}
if ( charid ) {
charid--;
if ( !trie->trans[ state + charid ].next ) {
trie->trans[ state + charid ].next = next_alloc;
trie->trans[ state ].check++;
prev_states[TRIE_NODENUM(next_alloc)]
= TRIE_NODENUM(state);
next_alloc += trie->uniquecharcount;
}
state = trie->trans[ state + charid ].next;
} else {
Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
}
/* charid is now 0 if we dont know the char read, or
* nonzero if we do */
}
}
accept_state = TRIE_NODENUM( state );
TRIE_HANDLE_WORD(accept_state);
} /* end second pass */
/* and now dump it out before we compress it */
DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
revcharmap,
next_alloc, depth+1));
{
/*
* Inplace compress the table.*
For sparse data sets the table constructed by the trie algorithm will
be mostly 0/FAIL transitions or to put it another way mostly empty.
(Note that leaf nodes will not contain any transitions.)
This algorithm compresses the tables by eliminating most such
transitions, at the cost of a modest bit of extra work during lookup:
- Each states[] entry contains a .base field which indicates the
index in the state[] array wheres its transition data is stored.
- If .base is 0 there are no valid transitions from that node.
- If .base is nonzero then charid is added to it to find an entry in
the trans array.
-If trans[states[state].base+charid].check!=state then the
transition is taken to be a 0/Fail transition. Thus if there are fail
transitions at the front of the node then the .base offset will point
somewhere inside the previous nodes data (or maybe even into a node
even earlier), but the .check field determines if the transition is
valid.
XXX - wrong maybe?
The following process inplace converts the table to the compressed
table: We first do not compress the root node 1,and mark all its
.check pointers as 1 and set its .base pointer as 1 as well. This
allows us to do a DFA construction from the compressed table later,
and ensures that any .base pointers we calculate later are greater
than 0.
- We set 'pos' to indicate the first entry of the second node.
- We then iterate over the columns of the node, finding the first and
last used entry at l and m. We then copy l..m into pos..(pos+m-l),
and set the .check pointers accordingly, and advance pos
appropriately and repreat for the next node. Note that when we copy
the next pointers we have to convert them from the original
NODEIDX form to NODENUM form as the former is not valid post
compression.
- If a node has no transitions used we mark its base as 0 and do not
advance the pos pointer.
- If a node only has one transition we use a second pointer into the
structure to fill in allocated fail transitions from other states.
This pointer is independent of the main pointer and scans forward
looking for null transitions that are allocated to a state. When it
finds one it writes the single transition into the "hole". If the
pointer doesnt find one the single transition is appended as normal.
- Once compressed we can Renew/realloc the structures to release the
excess space.
See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
specifically Fig 3.47 and the associated pseudocode.
demq
*/
const U32 laststate = TRIE_NODENUM( next_alloc );
U32 state, charid;
U32 pos = 0, zp=0;
trie->statecount = laststate;
for ( state = 1 ; state < laststate ; state++ ) {
U8 flag = 0;
const U32 stateidx = TRIE_NODEIDX( state );
const U32 o_used = trie->trans[ stateidx ].check;
U32 used = trie->trans[ stateidx ].check;
trie->trans[ stateidx ].check = 0;
for ( charid = 0;
used && charid < trie->uniquecharcount;
charid++ )
{
if ( flag || trie->trans[ stateidx + charid ].next ) {
if ( trie->trans[ stateidx + charid ].next ) {
if (o_used == 1) {
for ( ; zp < pos ; zp++ ) {
if ( ! trie->trans[ zp ].next ) {
break;
}
}
trie->states[ state ].trans.base
= zp
+ trie->uniquecharcount
- charid ;
trie->trans[ zp ].next
= SAFE_TRIE_NODENUM( trie->trans[ stateidx
+ charid ].next );
trie->trans[ zp ].check = state;
if ( ++zp > pos ) pos = zp;
break;
}
used--;
}
if ( !flag ) {
flag = 1;
trie->states[ state ].trans.base
= pos + trie->uniquecharcount - charid ;
}
trie->trans[ pos ].next
= SAFE_TRIE_NODENUM(
trie->trans[ stateidx + charid ].next );
trie->trans[ pos ].check = state;
pos++;
}
}
}
trie->lasttrans = pos + 1;
trie->states = (reg_trie_state *)
PerlMemShared_realloc( trie->states, laststate
* sizeof(reg_trie_state) );
DEBUG_TRIE_COMPILE_MORE_r(
PerlIO_printf( Perl_debug_log,
"%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
(int)depth * 2 + 2,"",
(int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
+ 1 ),
(IV)next_alloc,
(IV)pos,
( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
);
} /* end table compress */
}
DEBUG_TRIE_COMPILE_MORE_r(
PerlIO_printf(Perl_debug_log,
"%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
(int)depth * 2 + 2, "",
(UV)trie->statecount,
(UV)trie->lasttrans)
);
/* resize the trans array to remove unused space */
trie->trans = (reg_trie_trans *)
PerlMemShared_realloc( trie->trans, trie->lasttrans
* sizeof(reg_trie_trans) );
{ /* Modify the program and insert the new TRIE node */
U8 nodetype =(U8)(flags & 0xFF);
char *str=NULL;
#ifdef DEBUGGING
regnode *optimize = NULL;
#ifdef RE_TRACK_PATTERN_OFFSETS
U32 mjd_offset = 0;
U32 mjd_nodelen = 0;
#endif /* RE_TRACK_PATTERN_OFFSETS */
#endif /* DEBUGGING */
/*
This means we convert either the first branch or the first Exact,
depending on whether the thing following (in 'last') is a branch
or not and whther first is the startbranch (ie is it a sub part of
the alternation or is it the whole thing.)
Assuming its a sub part we convert the EXACT otherwise we convert
the whole branch sequence, including the first.
*/
/* Find the node we are going to overwrite */
if ( first != startbranch || OP( last ) == BRANCH ) {
/* branch sub-chain */
NEXT_OFF( first ) = (U16)(last - first);
#ifdef RE_TRACK_PATTERN_OFFSETS
DEBUG_r({
mjd_offset= Node_Offset((convert));
mjd_nodelen= Node_Length((convert));
});
#endif
/* whole branch chain */
}
#ifdef RE_TRACK_PATTERN_OFFSETS
else {
DEBUG_r({
const regnode *nop = NEXTOPER( convert );
mjd_offset= Node_Offset((nop));
mjd_nodelen= Node_Length((nop));
});
}
DEBUG_OPTIMISE_r(
PerlIO_printf(Perl_debug_log,
"%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
(int)depth * 2 + 2, "",
(UV)mjd_offset, (UV)mjd_nodelen)
);
#endif
/* But first we check to see if there is a common prefix we can
split out as an EXACT and put in front of the TRIE node. */
trie->startstate= 1;
if ( trie->bitmap && !widecharmap && !trie->jump ) {
U32 state;
for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
U32 ofs = 0;
I32 idx = -1;
U32 count = 0;
const U32 base = trie->states[ state ].trans.base;
if ( trie->states[state].wordnum )
count = 1;
for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
if ( ( base + ofs >= trie->uniquecharcount ) &&
( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
{
if ( ++count > 1 ) {
SV **tmp = av_fetch( revcharmap, ofs, 0);
const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
if ( state == 1 ) break;
if ( count == 2 ) {
Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
DEBUG_OPTIMISE_r(
PerlIO_printf(Perl_debug_log,
"%*sNew Start State=%"UVuf" Class: [",
(int)depth * 2 + 2, "",
(UV)state));
if (idx >= 0) {
SV ** const tmp = av_fetch( revcharmap, idx, 0);
const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
TRIE_BITMAP_SET(trie,*ch);
if ( folder )
TRIE_BITMAP_SET(trie, folder[ *ch ]);
DEBUG_OPTIMISE_r(
PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
);
}
}
TRIE_BITMAP_SET(trie,*ch);
if ( folder )
TRIE_BITMAP_SET(trie,folder[ *ch ]);
DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
}
idx = ofs;
}
}
if ( count == 1 ) {
SV **tmp = av_fetch( revcharmap, idx, 0);
STRLEN len;
char *ch = SvPV( *tmp, len );
DEBUG_OPTIMISE_r({
SV *sv=sv_newmortal();
PerlIO_printf( Perl_debug_log,
"%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
(int)depth * 2 + 2, "",
(UV)state, (UV)idx,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_ESCAPE_FIRSTCHAR
)
);
});
if ( state==1 ) {
OP( convert ) = nodetype;
str=STRING(convert);
STR_LEN(convert)=0;
}
STR_LEN(convert) += len;
while (len--)
*str++ = *ch++;
} else {
#ifdef DEBUGGING
if (state>1)
DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
#endif
break;
}
}
trie->prefixlen = (state-1);
if (str) {
regnode *n = convert+NODE_SZ_STR(convert);
NEXT_OFF(convert) = NODE_SZ_STR(convert);
trie->startstate = state;
trie->minlen -= (state - 1);
trie->maxlen -= (state - 1);
#ifdef DEBUGGING
/* At least the UNICOS C compiler choked on this
* being argument to DEBUG_r(), so let's just have
* it right here. */
if (
#ifdef PERL_EXT_RE_BUILD
1
#else
DEBUG_r_TEST
#endif
) {
regnode *fix = convert;
U32 word = trie->wordcount;
mjd_nodelen++;
Set_Node_Offset_Length(convert, mjd_offset, state - 1);
while( ++fix < n ) {
Set_Node_Offset_Length(fix, 0, 0);
}
while (word--) {
SV ** const tmp = av_fetch( trie_words, word, 0 );
if (tmp) {
if ( STR_LEN(convert) <= SvCUR(*tmp) )
sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
else
sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
}
}
}
#endif
if (trie->maxlen) {
convert = n;
} else {
NEXT_OFF(convert) = (U16)(tail - convert);
DEBUG_r(optimize= n);
}
}
}
if (!jumper)
jumper = last;
if ( trie->maxlen ) {
NEXT_OFF( convert ) = (U16)(tail - convert);
ARG_SET( convert, data_slot );
/* Store the offset to the first unabsorbed branch in
jump[0], which is otherwise unused by the jump logic.
We use this when dumping a trie and during optimisation. */
if (trie->jump)
trie->jump[0] = (U16)(nextbranch - convert);
/* If the start state is not accepting (meaning there is no empty string/NOTHING)
* and there is a bitmap
* and the first "jump target" node we found leaves enough room
* then convert the TRIE node into a TRIEC node, with the bitmap
* embedded inline in the opcode - this is hypothetically faster.
*/
if ( !trie->states[trie->startstate].wordnum
&& trie->bitmap
&& ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
{
OP( convert ) = TRIEC;
Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
PerlMemShared_free(trie->bitmap);
trie->bitmap= NULL;
} else
OP( convert ) = TRIE;
/* store the type in the flags */
convert->flags = nodetype;
DEBUG_r({
optimize = convert
+ NODE_STEP_REGNODE
+ regarglen[ OP( convert ) ];
});
/* XXX We really should free up the resource in trie now,
as we won't use them - (which resources?) dmq */
}
/* needed for dumping*/
DEBUG_r(if (optimize) {
regnode *opt = convert;
while ( ++opt < optimize) {
Set_Node_Offset_Length(opt,0,0);
}
/*
Try to clean up some of the debris left after the
optimisation.
*/
while( optimize < jumper ) {
mjd_nodelen += Node_Length((optimize));
OP( optimize ) = OPTIMIZED;
Set_Node_Offset_Length(optimize,0,0);
optimize++;
}
Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
});
} /* end node insert */
/* Finish populating the prev field of the wordinfo array. Walk back
* from each accept state until we find another accept state, and if
* so, point the first word's .prev field at the second word. If the
* second already has a .prev field set, stop now. This will be the
* case either if we've already processed that word's accept state,
* or that state had multiple words, and the overspill words were
* already linked up earlier.
*/
{
U16 word;
U32 state;
U16 prev;
for (word=1; word <= trie->wordcount; word++) {
prev = 0;
if (trie->wordinfo[word].prev)
continue;
state = trie->wordinfo[word].accept;
while (state) {
state = prev_states[state];
if (!state)
break;
prev = trie->states[state].wordnum;
if (prev)
break;
}
trie->wordinfo[word].prev = prev;
}
Safefree(prev_states);
}
/* and now dump out the compressed format */
DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
#ifdef DEBUGGING
RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
#else
SvREFCNT_dec_NN(revcharmap);
#endif
return trie->jump
? MADE_JUMP_TRIE
: trie->startstate>1
? MADE_EXACT_TRIE
: MADE_TRIE;
}
STATIC void
S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
{
/* The Trie is constructed and compressed now so we can build a fail array if
* it's needed
This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3.32 in the
"Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
Ullman 1985/88
ISBN 0-201-10088-6
We find the fail state for each state in the trie, this state is the longest
proper suffix of the current state's 'word' that is also a proper prefix of
another word in our trie. State 1 represents the word '' and is thus the
default fail state. This allows the DFA not to have to restart after its
tried and failed a word at a given point, it simply continues as though it
had been matching the other word in the first place.
Consider
'abcdgu'=~/abcdefg|cdgu/
When we get to 'd' we are still matching the first word, we would encounter
'g' which would fail, which would bring us to the state representing 'd' in
the second word where we would try 'g' and succeed, proceeding to match
'cdgu'.
*/
/* add a fail transition */
const U32 trie_offset = ARG(source);
reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
U32 *q;
const U32 ucharcount = trie->uniquecharcount;
const U32 numstates = trie->statecount;
const U32 ubound = trie->lasttrans + ucharcount;
U32 q_read = 0;
U32 q_write = 0;
U32 charid;
U32 base = trie->states[ 1 ].trans.base;
U32 *fail;
reg_ac_data *aho;
const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
ARG_SET( stclass, data_slot );
aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
RExC_rxi->data->data[ data_slot ] = (void*)aho;
aho->trie=trie_offset;
aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
Copy( trie->states, aho->states, numstates, reg_trie_state );
Newxz( q, numstates, U32);
aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
aho->refcount = 1;
fail = aho->fail;
/* initialize fail[0..1] to be 1 so that we always have
a valid final fail state */
fail[ 0 ] = fail[ 1 ] = 1;
for ( charid = 0; charid < ucharcount ; charid++ ) {
const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
if ( newstate ) {
q[ q_write ] = newstate;
/* set to point at the root */
fail[ q[ q_write++ ] ]=1;
}
}
while ( q_read < q_write) {
const U32 cur = q[ q_read++ % numstates ];
base = trie->states[ cur ].trans.base;
for ( charid = 0 ; charid < ucharcount ; charid++ ) {
const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
if (ch_state) {
U32 fail_state = cur;
U32 fail_base;
do {
fail_state = fail[ fail_state ];
fail_base = aho->states[ fail_state ].trans.base;
} while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
fail[ ch_state ] = fail_state;
if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
{
aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
}
q[ q_write++ % numstates] = ch_state;
}
}
}
/* restore fail[0..1] to 0 so that we "fall out" of the AC loop
when we fail in state 1, this allows us to use the
charclass scan to find a valid start char. This is based on the principle
that theres a good chance the string being searched contains lots of stuff
that cant be a start char.
*/
fail[ 0 ] = fail[ 1 ] = 0;
DEBUG_TRIE_COMPILE_r({
PerlIO_printf(Perl_debug_log,
"%*sStclass Failtable (%"UVuf" states): 0",
(int)(depth * 2), "", (UV)numstates
);
for( q_read=1; q_read<numstates; q_read++ ) {
PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
}
PerlIO_printf(Perl_debug_log, "\n");
});
Safefree(q);
/*RExC_seen |= REG_TRIEDFA_SEEN;*/
}
#define DEBUG_PEEP(str,scan,depth) \
DEBUG_OPTIMISE_r({if (scan){ \
SV * const mysv=sv_newmortal(); \
regnode *Next = regnext(scan); \
regprop(RExC_rx, mysv, scan, NULL); \
PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
(int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
Next ? (REG_NODE_NUM(Next)) : 0 ); \
}});
/* The below joins as many adjacent EXACTish nodes as possible into a single
* one. The regop may be changed if the node(s) contain certain sequences that
* require special handling. The joining is only done if:
* 1) there is room in the current conglomerated node to entirely contain the
* next one.
* 2) they are the exact same node type
*
* The adjacent nodes actually may be separated by NOTHING-kind nodes, and
* these get optimized out
*
* If a node is to match under /i (folded), the number of characters it matches
* can be different than its character length if it contains a multi-character
* fold. *min_subtract is set to the total delta number of characters of the
* input nodes.
*
* And *unfolded_multi_char is set to indicate whether or not the node contains
* an unfolded multi-char fold. This happens when whether the fold is valid or
* not won't be known until runtime; namely for EXACTF nodes that contain LATIN
* SMALL LETTER SHARP S, as only if the target string being matched against
* turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
* folding rules depend on the locale in force at runtime. (Multi-char folds
* whose components are all above the Latin1 range are not run-time locale
* dependent, and have already been folded by the time this function is
* called.)
*
* This is as good a place as any to discuss the design of handling these
* multi-character fold sequences. It's been wrong in Perl for a very long
* time. There are three code points in Unicode whose multi-character folds
* were long ago discovered to mess things up. The previous designs for
* dealing with these involved assigning a special node for them. This
* approach doesn't always work, as evidenced by this example:
* "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
* Both sides fold to "sss", but if the pattern is parsed to create a node that
* would match just the \xDF, it won't be able to handle the case where a
* successful match would have to cross the node's boundary. The new approach
* that hopefully generally solves the problem generates an EXACTFU_SS node
* that is "sss" in this case.
*
* It turns out that there are problems with all multi-character folds, and not
* just these three. Now the code is general, for all such cases. The
* approach taken is:
* 1) This routine examines each EXACTFish node that could contain multi-
* character folded sequences. Since a single character can fold into
* such a sequence, the minimum match length for this node is less than
* the number of characters in the node. This routine returns in
* *min_subtract how many characters to subtract from the the actual
* length of the string to get a real minimum match length; it is 0 if
* there are no multi-char foldeds. This delta is used by the caller to
* adjust the min length of the match, and the delta between min and max,
* so that the optimizer doesn't reject these possibilities based on size
* constraints.
* 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
* is used for an EXACTFU node that contains at least one "ss" sequence in
* it. For non-UTF-8 patterns and strings, this is the only case where
* there is a possible fold length change. That means that a regular
* EXACTFU node without UTF-8 involvement doesn't have to concern itself
* with length changes, and so can be processed faster. regexec.c takes
* advantage of this. Generally, an EXACTFish node that is in UTF-8 is
* pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
* known until runtime). This saves effort in regex matching. However,
* the pre-folding isn't done for non-UTF8 patterns because the fold of
* the MICRO SIGN requires UTF-8, and we don't want to slow things down by
* forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
* again, EXACTFL) nodes fold to isn't known until runtime. The fold
* possibilities for the non-UTF8 patterns are quite simple, except for
* the sharp s. All the ones that don't involve a UTF-8 target string are
* members of a fold-pair, and arrays are set up for all of them so that
* the other member of the pair can be found quickly. Code elsewhere in
* this file makes sure that in EXACTFU nodes, the sharp s gets folded to
* 'ss', even if the pattern isn't UTF-8. This avoids the issues
* described in the next item.
* 3) A problem remains for unfolded multi-char folds. (These occur when the
* validity of the fold won't be known until runtime, and so must remain
* unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
* nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
* be an EXACTF node with a UTF-8 pattern.) They also occur for various
* folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
* The reason this is a problem is that the optimizer part of regexec.c
* (probably unwittingly, in Perl_regexec_flags()) makes an assumption
* that a character in the pattern corresponds to at most a single
* character in the target string. (And I do mean character, and not byte
* here, unlike other parts of the documentation that have never been
* updated to account for multibyte Unicode.) sharp s in EXACTF and
* EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
* it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
* nodes, violate the assumption, and they are the only instances where it
* is violated. I'm reluctant to try to change the assumption, as the
* code involved is impenetrable to me (khw), so instead the code here
* punts. This routine examines EXACTFL nodes, and (when the pattern
* isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
* boolean indicating whether or not the node contains such a fold. When
* it is true, the caller sets a flag that later causes the optimizer in
* this file to not set values for the floating and fixed string lengths,
* and thus avoids the optimizer code in regexec.c that makes the invalid
* assumption. Thus, there is no optimization based on string lengths for
* EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
* EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
* assumption is wrong only in these cases is that all other non-UTF-8
* folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
* their expanded versions. (Again, we can't prefold sharp s to 'ss' in
* EXACTF nodes because we don't know at compile time if it actually
* matches 'ss' or not. For EXACTF nodes it will match iff the target
* string is in UTF-8. This is in contrast to EXACTFU nodes, where it
* always matches; and EXACTFA where it never does. In an EXACTFA node in
* a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
* problem; but in a non-UTF8 pattern, folding it to that above-Latin1
* string would require the pattern to be forced into UTF-8, the overhead
* of which we want to avoid. Similarly the unfolded multi-char folds in
* EXACTFL nodes will match iff the locale at the time of match is a UTF-8
* locale.)
*
* Similarly, the code that generates tries doesn't currently handle
* not-already-folded multi-char folds, and it looks like a pain to change
* that. Therefore, trie generation of EXACTFA nodes with the sharp s
* doesn't work. Instead, such an EXACTFA is turned into a new regnode,
* EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
* using /iaa matching will be doing so almost entirely with ASCII
* strings, so this should rarely be encountered in practice */
#define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
if (PL_regkind[OP(scan)] == EXACT) \
join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
STATIC U32
S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
UV *min_subtract, bool *unfolded_multi_char,
U32 flags,regnode *val, U32 depth)
{
/* Merge several consecutive EXACTish nodes into one. */
regnode *n = regnext(scan);
U32 stringok = 1;
regnode *next = scan + NODE_SZ_STR(scan);
U32 merged = 0;
U32 stopnow = 0;
#ifdef DEBUGGING
regnode *stop = scan;
GET_RE_DEBUG_FLAGS_DECL;
#else
PERL_UNUSED_ARG(depth);
#endif
PERL_ARGS_ASSERT_JOIN_EXACT;
#ifndef EXPERIMENTAL_INPLACESCAN
PERL_UNUSED_ARG(flags);
PERL_UNUSED_ARG(val);
#endif
DEBUG_PEEP("join",scan,depth);
/* Look through the subsequent nodes in the chain. Skip NOTHING, merge
* EXACT ones that are mergeable to the current one. */
while (n
&& (PL_regkind[OP(n)] == NOTHING
|| (stringok && OP(n) == OP(scan)))
&& NEXT_OFF(n)
&& NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
{
if (OP(n) == TAIL || n > next)
stringok = 0;
if (PL_regkind[OP(n)] == NOTHING) {
DEBUG_PEEP("skip:",n,depth);
NEXT_OFF(scan) += NEXT_OFF(n);
next = n + NODE_STEP_REGNODE;
#ifdef DEBUGGING
if (stringok)
stop = n;
#endif
n = regnext(n);
}
else if (stringok) {
const unsigned int oldl = STR_LEN(scan);
regnode * const nnext = regnext(n);
/* XXX I (khw) kind of doubt that this works on platforms (should
* Perl ever run on one) where U8_MAX is above 255 because of lots
* of other assumptions */
/* Don't join if the sum can't fit into a single node */
if (oldl + STR_LEN(n) > U8_MAX)
break;
DEBUG_PEEP("merg",n,depth);
merged++;
NEXT_OFF(scan) += NEXT_OFF(n);
STR_LEN(scan) += STR_LEN(n);
next = n + NODE_SZ_STR(n);
/* Now we can overwrite *n : */
Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
#ifdef DEBUGGING
stop = next - 1;
#endif
n = nnext;
if (stopnow) break;
}
#ifdef EXPERIMENTAL_INPLACESCAN
if (flags && !NEXT_OFF(n)) {
DEBUG_PEEP("atch", val, depth);
if (reg_off_by_arg[OP(n)]) {
ARG_SET(n, val - n);
}
else {
NEXT_OFF(n) = val - n;
}
stopnow = 1;
}
#endif
}
*min_subtract = 0;
*unfolded_multi_char = FALSE;
/* Here, all the adjacent mergeable EXACTish nodes have been merged. We
* can now analyze for sequences of problematic code points. (Prior to
* this final joining, sequences could have been split over boundaries, and
* hence missed). The sequences only happen in folding, hence for any
* non-EXACT EXACTish node */
if (OP(scan) != EXACT) {
U8* s0 = (U8*) STRING(scan);
U8* s = s0;
U8* s_end = s0 + STR_LEN(scan);
int total_count_delta = 0; /* Total delta number of characters that
multi-char folds expand to */
/* One pass is made over the node's string looking for all the
* possibilities. To avoid some tests in the loop, there are two main
* cases, for UTF-8 patterns (which can't have EXACTF nodes) and
* non-UTF-8 */
if (UTF) {
U8* folded = NULL;
if (OP(scan) == EXACTFL) {
U8 *d;
/* An EXACTFL node would already have been changed to another
* node type unless there is at least one character in it that
* is problematic; likely a character whose fold definition
* won't be known until runtime, and so has yet to be folded.
* For all but the UTF-8 locale, folds are 1-1 in length, but
* to handle the UTF-8 case, we need to create a temporary
* folded copy using UTF-8 locale rules in order to analyze it.
* This is because our macros that look to see if a sequence is
* a multi-char fold assume everything is folded (otherwise the
* tests in those macros would be too complicated and slow).
* Note that here, the non-problematic folds will have already
* been done, so we can just copy such characters. We actually
* don't completely fold the EXACTFL string. We skip the
* unfolded multi-char folds, as that would just create work
* below to figure out the size they already are */
Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
d = folded;
while (s < s_end) {
STRLEN s_len = UTF8SKIP(s);
if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
Copy(s, d, s_len, U8);
d += s_len;
}
else if (is_FOLDS_TO_MULTI_utf8(s)) {
*unfolded_multi_char = TRUE;
Copy(s, d, s_len, U8);
d += s_len;
}
else if (isASCII(*s)) {
*(d++) = toFOLD(*s);
}
else {
STRLEN len;
_to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
d += len;
}
s += s_len;
}
/* Point the remainder of the routine to look at our temporary
* folded copy */
s = folded;
s_end = d;
} /* End of creating folded copy of EXACTFL string */
/* Examine the string for a multi-character fold sequence. UTF-8
* patterns have all characters pre-folded by the time this code is
* executed */
while (s < s_end - 1) /* Can stop 1 before the end, as minimum
length sequence we are looking for is 2 */
{
int count = 0; /* How many characters in a multi-char fold */
int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
if (! len) { /* Not a multi-char fold: get next char */
s += UTF8SKIP(s);
continue;
}
/* Nodes with 'ss' require special handling, except for
* EXACTFA-ish for which there is no multi-char fold to this */
if (len == 2 && *s == 's' && *(s+1) == 's'
&& OP(scan) != EXACTFA
&& OP(scan) != EXACTFA_NO_TRIE)
{
count = 2;
if (OP(scan) != EXACTFL) {
OP(scan) = EXACTFU_SS;
}
s += 2;
}
else { /* Here is a generic multi-char fold. */
U8* multi_end = s + len;
/* Count how many characters in it. In the case of /aa, no
* folds which contain ASCII code points are allowed, so
* check for those, and skip if found. */
if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
count = utf8_length(s, multi_end);
s = multi_end;
}
else {
while (s < multi_end) {
if (isASCII(*s)) {
s++;
goto next_iteration;
}
else {
s += UTF8SKIP(s);
}
count++;
}
}
}
/* The delta is how long the sequence is minus 1 (1 is how long
* the character that folds to the sequence is) */
total_count_delta += count - 1;
next_iteration: ;
}
/* We created a temporary folded copy of the string in EXACTFL
* nodes. Therefore we need to be sure it doesn't go below zero,
* as the real string could be shorter */
if (OP(scan) == EXACTFL) {
int total_chars = utf8_length((U8*) STRING(scan),
(U8*) STRING(scan) + STR_LEN(scan));
if (total_count_delta > total_chars) {
total_count_delta = total_chars;
}
}
*min_subtract += total_count_delta;
Safefree(folded);
}
else if (OP(scan) == EXACTFA) {
/* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
* fold to the ASCII range (and there are no existing ones in the
* upper latin1 range). But, as outlined in the comments preceding
* this function, we need to flag any occurrences of the sharp s.
* This character forbids trie formation (because of added
* complexity) */
while (s < s_end) {
if (*s == LATIN_SMALL_LETTER_SHARP_S) {
OP(scan) = EXACTFA_NO_TRIE;
*unfolded_multi_char = TRUE;
break;
}
s++;
continue;
}
}
else {
/* Non-UTF-8 pattern, not EXACTFA node. Look for the multi-char
* folds that are all Latin1. As explained in the comments
* preceding this function, we look also for the sharp s in EXACTF
* and EXACTFL nodes; it can be in the final position. Otherwise
* we can stop looking 1 byte earlier because have to find at least
* two characters for a multi-fold */
const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
? s_end
: s_end -1;
while (s < upper) {
int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
if (! len) { /* Not a multi-char fold. */
if (*s == LATIN_SMALL_LETTER_SHARP_S
&& (OP(scan) == EXACTF || OP(scan) == EXACTFL))
{
*unfolded_multi_char = TRUE;
}
s++;
continue;
}
if (len == 2
&& isARG2_lower_or_UPPER_ARG1('s', *s)
&& isARG2_lower_or_UPPER_ARG1('s', *(s+1)))
{
/* EXACTF nodes need to know that the minimum length
* changed so that a sharp s in the string can match this
* ss in the pattern, but they remain EXACTF nodes, as they
* won't match this unless the target string is is UTF-8,
* which we don't know until runtime. EXACTFL nodes can't
* transform into EXACTFU nodes */
if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
OP(scan) = EXACTFU_SS;
}
}
*min_subtract += len - 1;
s += len;
}
}
}
#ifdef DEBUGGING
/* Allow dumping but overwriting the collection of skipped
* ops and/or strings with fake optimized ops */
n = scan + NODE_SZ_STR(scan);
while (n <= stop) {
OP(n) = OPTIMIZED;
FLAGS(n) = 0;
NEXT_OFF(n) = 0;
n++;
}
#endif
DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
return stopnow;
}
/* REx optimizer. Converts nodes into quicker variants "in place".
Finds fixed substrings. */
/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
to the position after last scanned or to NULL. */
#define INIT_AND_WITHP \
assert(!and_withp); \
Newx(and_withp,1, regnode_ssc); \
SAVEFREEPV(and_withp)
/* this is a chain of data about sub patterns we are processing that
need to be handled separately/specially in study_chunk. Its so
we can simulate recursion without losing state. */
struct scan_frame;
typedef struct scan_frame {
regnode *last; /* last node to process in this frame */
regnode *next; /* next node to process when last is reached */
struct scan_frame *prev; /*previous frame*/
U32 prev_recursed_depth;
I32 stop; /* what stopparen do we use */
} scan_frame;
STATIC SSize_t
S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
SSize_t *minlenp, SSize_t *deltap,
regnode *last,
scan_data_t *data,
I32 stopparen,
U32 recursed_depth,
regnode_ssc *and_withp,
U32 flags, U32 depth)
/* scanp: Start here (read-write). */
/* deltap: Write maxlen-minlen here. */
/* last: Stop before this one. */
/* data: string data about the pattern */
/* stopparen: treat close N as END */
/* recursed: which subroutines have we recursed into */
/* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
{
dVAR;
/* There must be at least this number of characters to match */
SSize_t min = 0;
I32 pars = 0, code;
regnode *scan = *scanp, *next;
SSize_t delta = 0;
int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
int is_inf_internal = 0; /* The studied chunk is infinite */
I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
scan_data_t data_fake;
SV *re_trie_maxbuff = NULL;
regnode *first_non_open = scan;
SSize_t stopmin = SSize_t_MAX;
scan_frame *frame = NULL;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_STUDY_CHUNK;
#ifdef DEBUGGING
StructCopy(&zero_scan_data, &data_fake, scan_data_t);
#endif
if ( depth == 0 ) {
while (first_non_open && OP(first_non_open) == OPEN)
first_non_open=regnext(first_non_open);
}
fake_study_recurse:
while ( scan && OP(scan) != END && scan < last ){
UV min_subtract = 0; /* How mmany chars to subtract from the minimum
node length to get a real minimum (because
the folded version may be shorter) */
bool unfolded_multi_char = FALSE;
/* Peephole optimizer: */
DEBUG_OPTIMISE_MORE_r(
{
PerlIO_printf(Perl_debug_log,
"%*sstudy_chunk stopparen=%ld depth=%lu recursed_depth=%lu ",
((int) depth*2), "", (long)stopparen,
(unsigned long)depth, (unsigned long)recursed_depth);
if (recursed_depth) {
U32 i;
U32 j;
for ( j = 0 ; j < recursed_depth ; j++ ) {
PerlIO_printf(Perl_debug_log,"[");
for ( i = 0 ; i < (U32)RExC_npar ; i++ )
PerlIO_printf(Perl_debug_log,"%d",
PAREN_TEST(RExC_study_chunk_recursed +
(j * RExC_study_chunk_recursed_bytes), i)
? 1 : 0
);
PerlIO_printf(Perl_debug_log,"]");
}
}
PerlIO_printf(Perl_debug_log,"\n");
}
);
DEBUG_STUDYDATA("Peep:", data, depth);
DEBUG_PEEP("Peep", scan, depth);
/* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
* which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
* by a different invocation of reg() -- Yves
*/
JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
/* Follow the next-chain of the current node and optimize
away all the NOTHINGs from it. */
if (OP(scan) != CURLYX) {
const int max = (reg_off_by_arg[OP(scan)]
? I32_MAX
/* I32 may be smaller than U16 on CRAYs! */
: (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
int noff;
regnode *n = scan;
/* Skip NOTHING and LONGJMP. */
while ((n = regnext(n))
&& ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
|| ((OP(n) == LONGJMP) && (noff = ARG(n))))
&& off + noff < max)
off += noff;
if (reg_off_by_arg[OP(scan)])
ARG(scan) = off;
else
NEXT_OFF(scan) = off;
}
/* The principal pseudo-switch. Cannot be a switch, since we
look into several different things. */
if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
|| OP(scan) == IFTHEN) {
next = regnext(scan);
code = OP(scan);
/* demq: the op(next)==code check is to see if we have
* "branch-branch" AFAICT */
if (OP(next) == code || code == IFTHEN) {
/* NOTE - There is similar code to this block below for
* handling TRIE nodes on a re-study. If you change stuff here
* check there too. */
SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
regnode_ssc accum;
regnode * const startbranch=scan;
if (flags & SCF_DO_SUBSTR) {
/* Cannot merge strings after this. */
scan_commit(pRExC_state, data, minlenp, is_inf);
}
if (flags & SCF_DO_STCLASS)
ssc_init_zero(pRExC_state, &accum);
while (OP(scan) == code) {
SSize_t deltanext, minnext, fake;
I32 f = 0;
regnode_ssc this_class;
num++;
data_fake.flags = 0;
if (data) {
data_fake.whilem_c = data->whilem_c;
data_fake.last_closep = data->last_closep;
}
else
data_fake.last_closep = &fake;
data_fake.pos_delta = delta;
next = regnext(scan);
scan = NEXTOPER(scan);
if (code != BRANCH)
scan = NEXTOPER(scan);
if (flags & SCF_DO_STCLASS) {
ssc_init(pRExC_state, &this_class);
data_fake.start_class = &this_class;
f = SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
/* we suppose the run is continuous, last=next...*/
minnext = study_chunk(pRExC_state, &scan, minlenp,
&deltanext, next, &data_fake, stopparen,
recursed_depth, NULL, f,depth+1);
if (min1 > minnext)
min1 = minnext;
if (deltanext == SSize_t_MAX) {
is_inf = is_inf_internal = 1;
max1 = SSize_t_MAX;
} else if (max1 < minnext + deltanext)
max1 = minnext + deltanext;
scan = next;
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SCF_SEEN_ACCEPT) {
if ( stopmin > minnext)
stopmin = min + min1;
flags &= ~SCF_DO_SUBSTR;
if (data)
data->flags |= SCF_SEEN_ACCEPT;
}
if (data) {
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
}
if (flags & SCF_DO_STCLASS)
ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
}
if (code == IFTHEN && num < 2) /* Empty ELSE branch */
min1 = 0;
if (flags & SCF_DO_SUBSTR) {
data->pos_min += min1;
if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
data->pos_delta = SSize_t_MAX;
else
data->pos_delta += max1 - min1;
if (max1 != min1 || is_inf)
data->longest = &(data->longest_float);
}
min += min1;
if (delta == SSize_t_MAX
|| SSize_t_MAX - delta - (max1 - min1) < 0)
delta = SSize_t_MAX;
else
delta += max1 - min1;
if (flags & SCF_DO_STCLASS_OR) {
ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
if (min1) {
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
flags &= ~SCF_DO_STCLASS;
}
}
else if (flags & SCF_DO_STCLASS_AND) {
if (min1) {
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
flags &= ~SCF_DO_STCLASS;
}
else {
/* Switch to OR mode: cache the old value of
* data->start_class */
INIT_AND_WITHP;
StructCopy(data->start_class, and_withp, regnode_ssc);
flags &= ~SCF_DO_STCLASS_AND;
StructCopy(&accum, data->start_class, regnode_ssc);
flags |= SCF_DO_STCLASS_OR;
}
}
if (PERL_ENABLE_TRIE_OPTIMISATION &&
OP( startbranch ) == BRANCH )
{
/* demq.
Assuming this was/is a branch we are dealing with: 'scan'
now points at the item that follows the branch sequence,
whatever it is. We now start at the beginning of the
sequence and look for subsequences of
BRANCH->EXACT=>x1
BRANCH->EXACT=>x2
tail
which would be constructed from a pattern like
/A|LIST|OF|WORDS/
If we can find such a subsequence we need to turn the first
element into a trie and then add the subsequent branch exact
strings to the trie.
We have two cases
1. patterns where the whole set of branches can be
converted.
2. patterns where only a subset can be converted.
In case 1 we can replace the whole set with a single regop
for the trie. In case 2 we need to keep the start and end
branches so
'BRANCH EXACT; BRANCH EXACT; BRANCH X'
becomes BRANCH TRIE; BRANCH X;
There is an additional case, that being where there is a
common prefix, which gets split out into an EXACT like node
preceding the TRIE node.
If x(1..n)==tail then we can do a simple trie, if not we make
a "jump" trie, such that when we match the appropriate word
we "jump" to the appropriate tail node. Essentially we turn
a nested if into a case structure of sorts.
*/
int made=0;
if (!re_trie_maxbuff) {
re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
if (!SvIOK(re_trie_maxbuff))
sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
}
if ( SvIV(re_trie_maxbuff)>=0 ) {
regnode *cur;
regnode *first = (regnode *)NULL;
regnode *last = (regnode *)NULL;
regnode *tail = scan;
U8 trietype = 0;
U32 count=0;
#ifdef DEBUGGING
SV * const mysv = sv_newmortal(); /* for dumping */
#endif
/* var tail is used because there may be a TAIL
regop in the way. Ie, the exacts will point to the
thing following the TAIL, but the last branch will
point at the TAIL. So we advance tail. If we
have nested (?:) we may have to move through several
tails.
*/
while ( OP( tail ) == TAIL ) {
/* this is the TAIL generated by (?:) */
tail = regnext( tail );
}
DEBUG_TRIE_COMPILE_r({
regprop(RExC_rx, mysv, tail, NULL);
PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
(int)depth * 2 + 2, "",
"Looking for TRIE'able sequences. Tail node is: ",
SvPV_nolen_const( mysv )
);
});
/*
Step through the branches
cur represents each branch,
noper is the first thing to be matched as part
of that branch
noper_next is the regnext() of that node.
We normally handle a case like this
/FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
support building with NOJUMPTRIE, which restricts
the trie logic to structures like /FOO|BAR/.
If noper is a trieable nodetype then the branch is
a possible optimization target. If we are building
under NOJUMPTRIE then we require that noper_next is
the same as scan (our current position in the regex
program).
Once we have two or more consecutive such branches
we can create a trie of the EXACT's contents and
stitch it in place into the program.
If the sequence represents all of the branches in
the alternation we replace the entire thing with a
single TRIE node.
Otherwise when it is a subsequence we need to
stitch it in place and replace only the relevant
branches. This means the first branch has to remain
as it is used by the alternation logic, and its
next pointer, and needs to be repointed at the item
on the branch chain following the last branch we
have optimized away.
This could be either a BRANCH, in which case the
subsequence is internal, or it could be the item
following the branch sequence in which case the
subsequence is at the end (which does not
necessarily mean the first node is the start of the
alternation).
TRIE_TYPE(X) is a define which maps the optype to a
trietype.
optype | trietype
----------------+-----------
NOTHING | NOTHING
EXACT | EXACT
EXACTFU | EXACTFU
EXACTFU_SS | EXACTFU
EXACTFA | EXACTFA
*/
#define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
( EXACT == (X) ) ? EXACT : \
( EXACTFU == (X) || EXACTFU_SS == (X) ) ? EXACTFU : \
( EXACTFA == (X) ) ? EXACTFA : \
0 )
/* dont use tail as the end marker for this traverse */
for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
regnode * const noper = NEXTOPER( cur );
U8 noper_type = OP( noper );
U8 noper_trietype = TRIE_TYPE( noper_type );
#if defined(DEBUGGING) || defined(NOJUMPTRIE)
regnode * const noper_next = regnext( noper );
U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
#endif
DEBUG_TRIE_COMPILE_r({
regprop(RExC_rx, mysv, cur, NULL);
PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
(int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
regprop(RExC_rx, mysv, noper, NULL);
PerlIO_printf( Perl_debug_log, " -> %s",
SvPV_nolen_const(mysv));
if ( noper_next ) {
regprop(RExC_rx, mysv, noper_next, NULL);
PerlIO_printf( Perl_debug_log,"\t=> %s\t",
SvPV_nolen_const(mysv));
}
PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
);
});
/* Is noper a trieable nodetype that can be merged
* with the current trie (if there is one)? */
if ( noper_trietype
&&
(
( noper_trietype == NOTHING)
|| ( trietype == NOTHING )
|| ( trietype == noper_trietype )
)
#ifdef NOJUMPTRIE
&& noper_next == tail
#endif
&& count < U16_MAX)
{
/* Handle mergable triable node Either we are
* the first node in a new trieable sequence,
* in which case we do some bookkeeping,
* otherwise we update the end pointer. */
if ( !first ) {
first = cur;
if ( noper_trietype == NOTHING ) {
#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
regnode * const noper_next = regnext( noper );
U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
#endif
if ( noper_next_trietype ) {
trietype = noper_next_trietype;
} else if (noper_next_type) {
/* a NOTHING regop is 1 regop wide.
* We need at least two for a trie
* so we can't merge this in */
first = NULL;
}
} else {
trietype = noper_trietype;
}
} else {
if ( trietype == NOTHING )
trietype = noper_trietype;
last = cur;
}
if (first)
count++;
} /* end handle mergable triable node */
else {
/* handle unmergable node -
* noper may either be a triable node which can
* not be tried together with the current trie,
* or a non triable node */
if ( last ) {
/* If last is set and trietype is not
* NOTHING then we have found at least two
* triable branch sequences in a row of a
* similar trietype so we can turn them
* into a trie. If/when we allow NOTHING to
* start a trie sequence this condition
* will be required, and it isn't expensive
* so we leave it in for now. */
if ( trietype && trietype != NOTHING )
make_trie( pRExC_state,
startbranch, first, cur, tail,
count, trietype, depth+1 );
last = NULL; /* note: we clear/update
first, trietype etc below,
so we dont do it here */
}
if ( noper_trietype
#ifdef NOJUMPTRIE
&& noper_next == tail
#endif
){
/* noper is triable, so we can start a new
* trie sequence */
count = 1;
first = cur;
trietype = noper_trietype;
} else if (first) {
/* if we already saw a first but the
* current node is not triable then we have
* to reset the first information. */
count = 0;
first = NULL;
trietype = 0;
}
} /* end handle unmergable node */
} /* loop over branches */
DEBUG_TRIE_COMPILE_r({
regprop(RExC_rx, mysv, cur, NULL);
PerlIO_printf( Perl_debug_log,
"%*s- %s (%d) <SCAN FINISHED>\n",
(int)depth * 2 + 2,
"", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
});
if ( last && trietype ) {
if ( trietype != NOTHING ) {
/* the last branch of the sequence was part of
* a trie, so we have to construct it here
* outside of the loop */
made= make_trie( pRExC_state, startbranch,
first, scan, tail, count,
trietype, depth+1 );
#ifdef TRIE_STUDY_OPT
if ( ((made == MADE_EXACT_TRIE &&
startbranch == first)
|| ( first_non_open == first )) &&
depth==0 ) {
flags |= SCF_TRIE_RESTUDY;
if ( startbranch == first
&& scan == tail )
{
RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
}
}
#endif
} else {
/* at this point we know whatever we have is a
* NOTHING sequence/branch AND if 'startbranch'
* is 'first' then we can turn the whole thing
* into a NOTHING
*/
if ( startbranch == first ) {
regnode *opt;
/* the entire thing is a NOTHING sequence,
* something like this: (?:|) So we can
* turn it into a plain NOTHING op. */
DEBUG_TRIE_COMPILE_r({
regprop(RExC_rx, mysv, cur, NULL);
PerlIO_printf( Perl_debug_log,
"%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
"", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
});
OP(startbranch)= NOTHING;
NEXT_OFF(startbranch)= tail - startbranch;
for ( opt= startbranch + 1; opt < tail ; opt++ )
OP(opt)= OPTIMIZED;
}
}
} /* end if ( last) */
} /* TRIE_MAXBUF is non zero */
} /* do trie */
}
else if ( code == BRANCHJ ) { /* single branch is optimized. */
scan = NEXTOPER(NEXTOPER(scan));
} else /* single branch is optimized. */
scan = NEXTOPER(scan);
continue;
} else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
scan_frame *newframe = NULL;
I32 paren;
regnode *start;
regnode *end;
U32 my_recursed_depth= recursed_depth;
if (OP(scan) != SUSPEND) {
/* set the pointer */
if (OP(scan) == GOSUB) {
paren = ARG(scan);
RExC_recurse[ARG2L(scan)] = scan;
start = RExC_open_parens[paren-1];
end = RExC_close_parens[paren-1];
} else {
paren = 0;
start = RExC_rxi->program + 1;
end = RExC_opend;
}
if (!recursed_depth
||
!PAREN_TEST(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes), paren)
) {
if (!recursed_depth) {
Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
} else {
Copy(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes),
RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes),
RExC_study_chunk_recursed_bytes, U8);
}
/* we havent recursed into this paren yet, so recurse into it */
DEBUG_STUDYDATA("set:", data,depth);
PAREN_SET(RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes), paren);
my_recursed_depth= recursed_depth + 1;
Newx(newframe,1,scan_frame);
} else {
DEBUG_STUDYDATA("inf:", data,depth);
/* some form of infinite recursion, assume infinite length
* */
if (flags & SCF_DO_SUBSTR) {
scan_commit(pRExC_state, data, minlenp, is_inf);
data->longest = &(data->longest_float);
}
is_inf = is_inf_internal = 1;
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
ssc_anything(data->start_class);
flags &= ~SCF_DO_STCLASS;
}
} else {
Newx(newframe,1,scan_frame);
paren = stopparen;
start = scan+2;
end = regnext(scan);
}
if (newframe) {
assert(start);
assert(end);
SAVEFREEPV(newframe);
newframe->next = regnext(scan);
newframe->last = last;
newframe->stop = stopparen;
newframe->prev = frame;
newframe->prev_recursed_depth = recursed_depth;
DEBUG_STUDYDATA("frame-new:",data,depth);
DEBUG_PEEP("fnew", scan, depth);
frame = newframe;
scan = start;
stopparen = paren;
last = end;
depth = depth + 1;
recursed_depth= my_recursed_depth;
continue;
}
}
else if (OP(scan) == EXACT) {
SSize_t l = STR_LEN(scan);
UV uc;
if (UTF) {
const U8 * const s = (U8*)STRING(scan);
uc = utf8_to_uvchr_buf(s, s + l, NULL);
l = utf8_length(s, s + l);
} else {
uc = *((U8*)STRING(scan));
}
min += l;
if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
/* The code below prefers earlier match for fixed
offset, later match for variable offset. */
if (data->last_end == -1) { /* Update the start info. */
data->last_start_min = data->pos_min;
data->last_start_max = is_inf
? SSize_t_MAX : data->pos_min + data->pos_delta;
}
sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
if (UTF)
SvUTF8_on(data->last_found);
{
SV * const sv = data->last_found;
MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
mg_find(sv, PERL_MAGIC_utf8) : NULL;
if (mg && mg->mg_len >= 0)
mg->mg_len += utf8_length((U8*)STRING(scan),
(U8*)STRING(scan)+STR_LEN(scan));
}
data->last_end = data->pos_min + l;
data->pos_min += l; /* As in the first entry. */
data->flags &= ~SF_BEFORE_EOL;
}
/* ANDing the code point leaves at most it, and not in locale, and
* can't match null string */
if (flags & SCF_DO_STCLASS_AND) {
ssc_cp_and(data->start_class, uc);
ANYOF_FLAGS(data->start_class) &= ~ANYOF_EMPTY_STRING;
ssc_clear_locale(data->start_class);
}
else if (flags & SCF_DO_STCLASS_OR) {
ssc_add_cp(data->start_class, uc);
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
/* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
ANYOF_FLAGS(data->start_class) &= ~ANYOF_EMPTY_STRING;
}
flags &= ~SCF_DO_STCLASS;
}
else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
SSize_t l = STR_LEN(scan);
UV uc = *((U8*)STRING(scan));
SV* EXACTF_invlist = _new_invlist(4); /* Start out big enough for 2
separate code points */
/* Search for fixed substrings supports EXACT only. */
if (flags & SCF_DO_SUBSTR) {
assert(data);
scan_commit(pRExC_state, data, minlenp, is_inf);
}
if (UTF) {
const U8 * const s = (U8 *)STRING(scan);
uc = utf8_to_uvchr_buf(s, s + l, NULL);
l = utf8_length(s, s + l);
}
if (unfolded_multi_char) {
RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
}
min += l - min_subtract;
assert (min >= 0);
delta += min_subtract;
if (flags & SCF_DO_SUBSTR) {
data->pos_min += l - min_subtract;
if (data->pos_min < 0) {
data->pos_min = 0;
}
data->pos_delta += min_subtract;
if (min_subtract) {
data->longest = &(data->longest_float);
}
}
if (OP(scan) == EXACTFL) {
/* We don't know what the folds are; it could be anything. XXX
* Actually, we only support UTF-8 encoding for code points
* above Latin1, so we could know what those folds are. */
EXACTF_invlist = _add_range_to_invlist(EXACTF_invlist,
0,
UV_MAX);
}
else { /* Non-locale EXACTFish */
EXACTF_invlist = add_cp_to_invlist(EXACTF_invlist, uc);
if (flags & SCF_DO_STCLASS_AND) {
ssc_clear_locale(data->start_class);
}
if (uc < 256) { /* We know what the Latin1 folds are ... */
if (IS_IN_SOME_FOLD_L1(uc)) { /* For instance, we
know if anything folds
with this */
EXACTF_invlist = add_cp_to_invlist(EXACTF_invlist,
PL_fold_latin1[uc]);
if (OP(scan) != EXACTFA) { /* The folds below aren't
legal under /iaa */
if (isARG2_lower_or_UPPER_ARG1('s', uc)) {
EXACTF_invlist
= add_cp_to_invlist(EXACTF_invlist,
LATIN_SMALL_LETTER_SHARP_S);
}
else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
EXACTF_invlist
= add_cp_to_invlist(EXACTF_invlist, 's');
EXACTF_invlist
= add_cp_to_invlist(EXACTF_invlist, 'S');
}
}
/* We also know if there are above-Latin1 code points
* that fold to this (none legal for ASCII and /iaa) */
if ((! isASCII(uc) || OP(scan) != EXACTFA)
&& HAS_NONLATIN1_FOLD_CLOSURE(uc))
{
/* XXX We could know exactly what does fold to this
* if the reverse folds are loaded, as currently in
* S_regclass() */
_invlist_union(EXACTF_invlist,
PL_AboveLatin1,
&EXACTF_invlist);
}
}
}
else { /* Non-locale, above Latin1. XXX We don't currently
know what participates in folds with this, so have
to assume anything could */
/* XXX We could know exactly what does fold to this if the
* reverse folds are loaded, as currently in S_regclass().
* But we do know that under /iaa nothing in the ASCII
* range can participate */
if (OP(scan) == EXACTFA) {
_invlist_union_complement_2nd(EXACTF_invlist,
PL_XPosix_ptrs[_CC_ASCII],
&EXACTF_invlist);
}
else {
EXACTF_invlist = _add_range_to_invlist(EXACTF_invlist,
0, UV_MAX);
}
}
}
if (flags & SCF_DO_STCLASS_AND) {
ANYOF_FLAGS(data->start_class) &= ~ANYOF_EMPTY_STRING;
ANYOF_POSIXL_ZERO(data->start_class);
ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
}
else if (flags & SCF_DO_STCLASS_OR) {
ssc_union(data->start_class, EXACTF_invlist, FALSE);
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
/* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
ANYOF_FLAGS(data->start_class) &= ~ANYOF_EMPTY_STRING;
}
flags &= ~SCF_DO_STCLASS;
SvREFCNT_dec(EXACTF_invlist);
}
else if (REGNODE_VARIES(OP(scan))) {
SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
I32 fl = 0, f = flags;
regnode * const oscan = scan;
regnode_ssc this_class;
regnode_ssc *oclass = NULL;
I32 next_is_eval = 0;
switch (PL_regkind[OP(scan)]) {
case WHILEM: /* End of (?:...)* . */
scan = NEXTOPER(scan);
goto finish;
case PLUS:
if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
next = NEXTOPER(scan);
if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
mincount = 1;
maxcount = REG_INFTY;
next = regnext(scan);
scan = NEXTOPER(scan);
goto do_curly;
}
}
if (flags & SCF_DO_SUBSTR)
data->pos_min++;
min++;
/* Fall through. */
case STAR:
if (flags & SCF_DO_STCLASS) {
mincount = 0;
maxcount = REG_INFTY;
next = regnext(scan);
scan = NEXTOPER(scan);
goto do_curly;
}
if (flags & SCF_DO_SUBSTR) {
scan_commit(pRExC_state, data, minlenp, is_inf);
/* Cannot extend fixed substrings */
data->longest = &(data->longest_float);
}
is_inf = is_inf_internal = 1;
scan = regnext(scan);
goto optimize_curly_tail;
case CURLY:
if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
&& (scan->flags == stopparen))
{
mincount = 1;
maxcount = 1;
} else {
mincount = ARG1(scan);
maxcount = ARG2(scan);
}
next = regnext(scan);
if (OP(scan) == CURLYX) {
I32 lp = (data ? *(data->last_closep) : 0);
scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
}
scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
next_is_eval = (OP(scan) == EVAL);
do_curly:
if (flags & SCF_DO_SUBSTR) {
if (mincount == 0)
scan_commit(pRExC_state, data, minlenp, is_inf);
/* Cannot extend fixed substrings */
pos_before = data->pos_min;
}
if (data) {
fl = data->flags;
data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
if (is_inf)
data->flags |= SF_IS_INF;
}
if (flags & SCF_DO_STCLASS) {
ssc_init(pRExC_state, &this_class);
oclass = data->start_class;
data->start_class = &this_class;
f |= SCF_DO_STCLASS_AND;
f &= ~SCF_DO_STCLASS_OR;
}
/* Exclude from super-linear cache processing any {n,m}
regops for which the combination of input pos and regex
pos is not enough information to determine if a match
will be possible.
For example, in the regex /foo(bar\s*){4,8}baz/ with the
regex pos at the \s*, the prospects for a match depend not
only on the input position but also on how many (bar\s*)
repeats into the {4,8} we are. */
if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
f &= ~SCF_WHILEM_VISITED_POS;
/* This will finish on WHILEM, setting scan, or on NULL: */
minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
last, data, stopparen, recursed_depth, NULL,
(mincount == 0
? (f & ~SCF_DO_SUBSTR)
: f)
,depth+1);
if (flags & SCF_DO_STCLASS)
data->start_class = oclass;
if (mincount == 0 || minnext == 0) {
if (flags & SCF_DO_STCLASS_OR) {
ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
}
else if (flags & SCF_DO_STCLASS_AND) {
/* Switch to OR mode: cache the old value of
* data->start_class */
INIT_AND_WITHP;
StructCopy(data->start_class, and_withp, regnode_ssc);
flags &= ~SCF_DO_STCLASS_AND;
StructCopy(&this_class, data->start_class, regnode_ssc);
flags |= SCF_DO_STCLASS_OR;
ANYOF_FLAGS(data->start_class) |= ANYOF_EMPTY_STRING;
}
} else { /* Non-zero len */
if (flags & SCF_DO_STCLASS_OR) {
ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
}
else if (flags & SCF_DO_STCLASS_AND)
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
flags &= ~SCF_DO_STCLASS;
}
if (!scan) /* It was not CURLYX, but CURLY. */
scan = next;
if (!(flags & SCF_TRIE_DOING_RESTUDY)
/* ? quantifier ok, except for (?{ ... }) */
&& (next_is_eval || !(mincount == 0 && maxcount == 1))
&& (minnext == 0) && (deltanext == 0)
&& data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
&& maxcount <= REG_INFTY/3) /* Complement check for big
count */
{
/* Fatal warnings may leak the regexp without this: */
SAVEFREESV(RExC_rx_sv);
ckWARNreg(RExC_parse,
"Quantifier unexpected on zero-length expression");
(void)ReREFCNT_inc(RExC_rx_sv);
}
min += minnext * mincount;
is_inf_internal |= deltanext == SSize_t_MAX
|| (maxcount == REG_INFTY && minnext + deltanext > 0);
is_inf |= is_inf_internal;
if (is_inf) {
delta = SSize_t_MAX;
} else {
delta += (minnext + deltanext) * maxcount
- minnext * mincount;
}
/* Try powerful optimization CURLYX => CURLYN. */
if ( OP(oscan) == CURLYX && data
&& data->flags & SF_IN_PAR
&& !(data->flags & SF_HAS_EVAL)
&& !deltanext && minnext == 1 ) {
/* Try to optimize to CURLYN. */
regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
regnode * const nxt1 = nxt;
#ifdef DEBUGGING
regnode *nxt2;
#endif
/* Skip open. */
nxt = regnext(nxt);
if (!REGNODE_SIMPLE(OP(nxt))
&& !(PL_regkind[OP(nxt)] == EXACT
&& STR_LEN(nxt) == 1))
goto nogo;
#ifdef DEBUGGING
nxt2 = nxt;
#endif
nxt = regnext(nxt);
if (OP(nxt) != CLOSE)
goto nogo;
if (RExC_open_parens) {
RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
}
/* Now we know that nxt2 is the only contents: */
oscan->flags = (U8)ARG(nxt);
OP(oscan) = CURLYN;
OP(nxt1) = NOTHING; /* was OPEN. */
#ifdef DEBUGGING
OP(nxt1 + 1) = OPTIMIZED; /* was count. */
NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
OP(nxt) = OPTIMIZED; /* was CLOSE. */
OP(nxt + 1) = OPTIMIZED; /* was count. */
NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
#endif
}
nogo:
/* Try optimization CURLYX => CURLYM. */
if ( OP(oscan) == CURLYX && data
&& !(data->flags & SF_HAS_PAR)
&& !(data->flags & SF_HAS_EVAL)
&& !deltanext /* atom is fixed width */
&& minnext != 0 /* CURLYM can't handle zero width */
/* Nor characters whose fold at run-time may be
* multi-character */
&& ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
) {
/* XXXX How to optimize if data == 0? */
/* Optimize to a simpler form. */
regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
regnode *nxt2;
OP(oscan) = CURLYM;
while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
&& (OP(nxt2) != WHILEM))
nxt = nxt2;
OP(nxt2) = SUCCEED; /* Whas WHILEM */
/* Need to optimize away parenths. */
if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
/* Set the parenth number. */
regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
oscan->flags = (U8)ARG(nxt);
if (RExC_open_parens) {
RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
}
OP(nxt1) = OPTIMIZED; /* was OPEN. */
OP(nxt) = OPTIMIZED; /* was CLOSE. */
#ifdef DEBUGGING
OP(nxt1 + 1) = OPTIMIZED; /* was count. */
OP(nxt + 1) = OPTIMIZED; /* was count. */
NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
#endif
#if 0
while ( nxt1 && (OP(nxt1) != WHILEM)) {
regnode *nnxt = regnext(nxt1);
if (nnxt == nxt) {
if (reg_off_by_arg[OP(nxt1)])
ARG_SET(nxt1, nxt2 - nxt1);
else if (nxt2 - nxt1 < U16_MAX)
NEXT_OFF(nxt1) = nxt2 - nxt1;
else
OP(nxt) = NOTHING; /* Cannot beautify */
}
nxt1 = nnxt;
}
#endif
/* Optimize again: */
study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
NULL, stopparen, recursed_depth, NULL, 0,depth+1);
}
else
oscan->flags = 0;
}
else if ((OP(oscan) == CURLYX)
&& (flags & SCF_WHILEM_VISITED_POS)
/* See the comment on a similar expression above.
However, this time it's not a subexpression
we care about, but the expression itself. */
&& (maxcount == REG_INFTY)
&& data && ++data->whilem_c < 16) {
/* This stays as CURLYX, we can put the count/of pair. */
/* Find WHILEM (as in regexec.c) */
regnode *nxt = oscan + NEXT_OFF(oscan);
if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
nxt += ARG(nxt);
PREVOPER(nxt)->flags = (U8)(data->whilem_c
| (RExC_whilem_seen << 4)); /* On WHILEM */
}
if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (flags & SCF_DO_SUBSTR) {
SV *last_str = NULL;
STRLEN last_chrs = 0;
int counted = mincount != 0;
if (data->last_end > 0 && mincount != 0) { /* Ends with a
string. */
SSize_t b = pos_before >= data->last_start_min
? pos_before : data->last_start_min;
STRLEN l;
const char * const s = SvPV_const(data->last_found, l);
SSize_t old = b - data->last_start_min;
if (UTF)
old = utf8_hop((U8*)s, old) - (U8*)s;
l -= old;
/* Get the added string: */
last_str = newSVpvn_utf8(s + old, l, UTF);
last_chrs = UTF ? utf8_length((U8*)(s + old),
(U8*)(s + old + l)) : l;
if (deltanext == 0 && pos_before == b) {
/* What was added is a constant string */
if (mincount > 1) {
SvGROW(last_str, (mincount * l) + 1);
repeatcpy(SvPVX(last_str) + l,
SvPVX_const(last_str), l,
mincount - 1);
SvCUR_set(last_str, SvCUR(last_str) * mincount);
/* Add additional parts. */
SvCUR_set(data->last_found,
SvCUR(data->last_found) - l);
sv_catsv(data->last_found, last_str);
{
SV * sv = data->last_found;
MAGIC *mg =
SvUTF8(sv) && SvMAGICAL(sv) ?
mg_find(sv, PERL_MAGIC_utf8) : NULL;
if (mg && mg->mg_len >= 0)
mg->mg_len += last_chrs * (mincount-1);
}
last_chrs *= mincount;
data->last_end += l * (mincount - 1);
}
} else {
/* start offset must point into the last copy */
data->last_start_min += minnext * (mincount - 1);
data->last_start_max += is_inf ? SSize_t_MAX
: (maxcount - 1) * (minnext + data->pos_delta);
}
}
/* It is counted once already... */
data->pos_min += minnext * (mincount - counted);
#if 0
PerlIO_printf(Perl_debug_log, "counted=%"UVdf" deltanext=%"UVdf
" SSize_t_MAX=%"UVdf" minnext=%"UVdf
" maxcount=%"UVdf" mincount=%"UVdf"\n",
(UV)counted, (UV)deltanext, (UV)SSize_t_MAX, (UV)minnext, (UV)maxcount,
(UV)mincount);
if (deltanext != SSize_t_MAX)
PerlIO_printf(Perl_debug_log, "LHS=%"UVdf" RHS=%"UVdf"\n",
(UV)(-counted * deltanext + (minnext + deltanext) * maxcount
- minnext * mincount), (UV)(SSize_t_MAX - data->pos_delta));
#endif
if (deltanext == SSize_t_MAX
|| -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= SSize_t_MAX - data->pos_delta)
data->pos_delta = SSize_t_MAX;
else
data->pos_delta += - counted * deltanext +
(minnext + deltanext) * maxcount - minnext * mincount;
if (mincount != maxcount) {
/* Cannot extend fixed substrings found inside
the group. */
scan_commit(pRExC_state, data, minlenp, is_inf);
if (mincount && last_str) {
SV * const sv = data->last_found;
MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
mg_find(sv, PERL_MAGIC_utf8) : NULL;
if (mg)
mg->mg_len = -1;
sv_setsv(sv, last_str);
data->last_end = data->pos_min;
data->last_start_min = data->pos_min - last_chrs;
data->last_start_max = is_inf
? SSize_t_MAX
: data->pos_min + data->pos_delta - last_chrs;
}
data->longest = &(data->longest_float);
}
SvREFCNT_dec(last_str);
}
if (data && (fl & SF_HAS_EVAL))
data->flags |= SF_HAS_EVAL;
optimize_curly_tail:
if (OP(oscan) != CURLYX) {
while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
&& NEXT_OFF(next))
NEXT_OFF(oscan) += NEXT_OFF(next);
}
continue;
default:
#ifdef DEBUGGING
Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
OP(scan));
#endif
case REF:
case CLUMP:
if (flags & SCF_DO_SUBSTR) {
/* Cannot expect anything... */
scan_commit(pRExC_state, data, minlenp, is_inf);
data->longest = &(data->longest_float);
}
is_inf = is_inf_internal = 1;
if (flags & SCF_DO_STCLASS_OR) {
if (OP(scan) == CLUMP) {
/* Actually is any start char, but very few code points
* aren't start characters */
ssc_match_all_cp(data->start_class);
}
else {
ssc_anything(data->start_class);
}
}
flags &= ~SCF_DO_STCLASS;
break;
}
}
else if (OP(scan) == LNBREAK) {
if (flags & SCF_DO_STCLASS) {
if (flags & SCF_DO_STCLASS_AND) {
ssc_intersection(data->start_class,
PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
ssc_clear_locale(data->start_class);
ANYOF_FLAGS(data->start_class) &= ~ANYOF_EMPTY_STRING;
}
else if (flags & SCF_DO_STCLASS_OR) {
ssc_union(data->start_class,
PL_XPosix_ptrs[_CC_VERTSPACE],
FALSE);
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
/* See commit msg for
* 749e076fceedeb708a624933726e7989f2302f6a */
ANYOF_FLAGS(data->start_class) &= ~ANYOF_EMPTY_STRING;
}
flags &= ~SCF_DO_STCLASS;
}
min++;
delta++; /* Because of the 2 char string cr-lf */
if (flags & SCF_DO_SUBSTR) {
/* Cannot expect anything... */
scan_commit(pRExC_state, data, minlenp, is_inf);
data->pos_min += 1;
data->pos_delta += 1;
data->longest = &(data->longest_float);
}
}
else if (REGNODE_SIMPLE(OP(scan))) {
if (flags & SCF_DO_SUBSTR) {
scan_commit(pRExC_state, data, minlenp, is_inf);
data->pos_min++;
}
min++;
if (flags & SCF_DO_STCLASS) {
bool invert = 0;
SV* my_invlist = NULL;
U8 namedclass;
/* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
ANYOF_FLAGS(data->start_class) &= ~ANYOF_EMPTY_STRING;
/* Some of the logic below assumes that switching
locale on will only add false positives. */
switch (OP(scan)) {
default:
#ifdef DEBUGGING
Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
OP(scan));
#endif
case CANY:
case SANY:
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
ssc_match_all_cp(data->start_class);
break;
case REG_ANY:
{
SV* REG_ANY_invlist = _new_invlist(2);
REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
'\n');
if (flags & SCF_DO_STCLASS_OR) {
ssc_union(data->start_class,
REG_ANY_invlist,
TRUE /* TRUE => invert, hence all but \n
*/
);
}
else if (flags & SCF_DO_STCLASS_AND) {
ssc_intersection(data->start_class,
REG_ANY_invlist,
TRUE /* TRUE => invert */
);
ssc_clear_locale(data->start_class);
}
SvREFCNT_dec_NN(REG_ANY_invlist);
}
break;
case ANYOF:
if (flags & SCF_DO_STCLASS_AND)
ssc_and(pRExC_state, data->start_class,
(regnode_charclass *) scan);
else
ssc_or(pRExC_state, data->start_class,
(regnode_charclass *) scan);
break;
case NPOSIXL:
invert = 1;
/* FALL THROUGH */
case POSIXL:
namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
if (flags & SCF_DO_STCLASS_AND) {
bool was_there = cBOOL(
ANYOF_POSIXL_TEST(data->start_class,
namedclass));
ANYOF_POSIXL_ZERO(data->start_class);
if (was_there) { /* Do an AND */
ANYOF_POSIXL_SET(data->start_class, namedclass);
}
/* No individual code points can now match */
data->start_class->invlist
= sv_2mortal(_new_invlist(0));
}
else {
int complement = namedclass + ((invert) ? -1 : 1);
assert(flags & SCF_DO_STCLASS_OR);
/* If the complement of this class was already there,
* the result is that they match all code points,
* (\d + \D == everything). Remove the classes from
* future consideration. Locale is not relevant in
* this case */
if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
ssc_match_all_cp(data->start_class);
ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
ANYOF_POSIXL_CLEAR(data->start_class, complement);
}
else { /* The usual case; just add this class to the
existing set */
ANYOF_POSIXL_SET(data->start_class, namedclass);
}
}
break;
case NPOSIXA: /* For these, we always know the exact set of
what's matched */
invert = 1;
/* FALL THROUGH */
case POSIXA:
if (FLAGS(scan) == _CC_ASCII) {
my_invlist = invlist_clone(PL_XPosix_ptrs[_CC_ASCII]);
}
else {
_invlist_intersection(PL_XPosix_ptrs[FLAGS(scan)],
PL_XPosix_ptrs[_CC_ASCII],
&my_invlist);
}
goto join_posix;
case NPOSIXD:
case NPOSIXU:
invert = 1;
/* FALL THROUGH */
case POSIXD:
case POSIXU:
my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)]);
/* NPOSIXD matches all upper Latin1 code points unless the
* target string being matched is UTF-8, which is
* unknowable until match time. Since we are going to
* invert, we want to get rid of all of them so that the
* inversion will match all */
if (OP(scan) == NPOSIXD) {
_invlist_subtract(my_invlist, PL_UpperLatin1,
&my_invlist);
}
join_posix:
if (flags & SCF_DO_STCLASS_AND) {
ssc_intersection(data->start_class, my_invlist, invert);
ssc_clear_locale(data->start_class);
}
else {
assert(flags & SCF_DO_STCLASS_OR);
ssc_union(data->start_class, my_invlist, invert);
}
SvREFCNT_dec(my_invlist);
}
if (flags & SCF_DO_STCLASS_OR)
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
flags &= ~SCF_DO_STCLASS;
}
}
else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
data->flags |= (OP(scan) == MEOL
? SF_BEFORE_MEOL
: SF_BEFORE_SEOL);
scan_commit(pRExC_state, data, minlenp, is_inf);
}
else if ( PL_regkind[OP(scan)] == BRANCHJ
/* Lookbehind, or need to calculate parens/evals/stclass: */
&& (scan->flags || data || (flags & SCF_DO_STCLASS))
&& (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
if ( OP(scan) == UNLESSM &&
scan->flags == 0 &&
OP(NEXTOPER(NEXTOPER(scan))) == NOTHING &&
OP(regnext(NEXTOPER(NEXTOPER(scan)))) == SUCCEED
) {
regnode *opt;
regnode *upto= regnext(scan);
DEBUG_PARSE_r({
SV * const mysv_val=sv_newmortal();
DEBUG_STUDYDATA("OPFAIL",data,depth);
/*DEBUG_PARSE_MSG("opfail");*/
regprop(RExC_rx, mysv_val, upto, NULL);
PerlIO_printf(Perl_debug_log,
"~ replace with OPFAIL pointed at %s (%"IVdf") offset %"IVdf"\n",
SvPV_nolen_const(mysv_val),
(IV)REG_NODE_NUM(upto),
(IV)(upto - scan)
);
});
OP(scan) = OPFAIL;
NEXT_OFF(scan) = upto - scan;
for (opt= scan + 1; opt < upto ; opt++)
OP(opt) = OPTIMIZED;
scan= upto;
continue;
}
if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
|| OP(scan) == UNLESSM )
{
/* Negative Lookahead/lookbehind
In this case we can't do fixed string optimisation.
*/
SSize_t deltanext, minnext, fake = 0;
regnode *nscan;
regnode_ssc intrnl;
int f = 0;
data_fake.flags = 0;
if (data) {
data_fake.whilem_c = data->whilem_c;
data_fake.last_closep = data->last_closep;
}
else
data_fake.last_closep = &fake;
data_fake.pos_delta = delta;
if ( flags & SCF_DO_STCLASS && !scan->flags
&& OP(scan) == IFMATCH ) { /* Lookahead */
ssc_init(pRExC_state, &intrnl);
data_fake.start_class = &intrnl;
f |= SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
next = regnext(scan);
nscan = NEXTOPER(NEXTOPER(scan));
minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
last, &data_fake, stopparen,
recursed_depth, NULL, f, depth+1);
if (scan->flags) {
if (deltanext) {
FAIL("Variable length lookbehind not implemented");
}
else if (minnext > (I32)U8_MAX) {
FAIL2("Lookbehind longer than %"UVuf" not implemented",
(UV)U8_MAX);
}
scan->flags = (U8)minnext;
}
if (data) {
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
}
if (f & SCF_DO_STCLASS_AND) {
if (flags & SCF_DO_STCLASS_OR) {
/* OR before, AND after: ideally we would recurse with
* data_fake to get the AND applied by study of the
* remainder of the pattern, and then derecurse;
* *** HACK *** for now just treat as "no information".
* See [perl #56690].
*/
ssc_init(pRExC_state, data->start_class);
} else {
/* AND before and after: combine and continue. These
* assertions are zero-length, so can match an EMPTY
* string */
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
ANYOF_FLAGS(data->start_class) |= ANYOF_EMPTY_STRING;
}
}
}
#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
else {
/* Positive Lookahead/lookbehind
In this case we can do fixed string optimisation,
but we must be careful about it. Note in the case of
lookbehind the positions will be offset by the minimum
length of the pattern, something we won't know about
until after the recurse.
*/
SSize_t deltanext, fake = 0;
regnode *nscan;
regnode_ssc intrnl;
int f = 0;
/* We use SAVEFREEPV so that when the full compile
is finished perl will clean up the allocated
minlens when it's all done. This way we don't
have to worry about freeing them when we know
they wont be used, which would be a pain.
*/
SSize_t *minnextp;
Newx( minnextp, 1, SSize_t );
SAVEFREEPV(minnextp);
if (data) {
StructCopy(data, &data_fake, scan_data_t);
if ((flags & SCF_DO_SUBSTR) && data->last_found) {
f |= SCF_DO_SUBSTR;
if (scan->flags)
scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
data_fake.last_found=newSVsv(data->last_found);
}
}
else
data_fake.last_closep = &fake;
data_fake.flags = 0;
data_fake.pos_delta = delta;
if (is_inf)
data_fake.flags |= SF_IS_INF;
if ( flags & SCF_DO_STCLASS && !scan->flags
&& OP(scan) == IFMATCH ) { /* Lookahead */
ssc_init(pRExC_state, &intrnl);
data_fake.start_class = &intrnl;
f |= SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
next = regnext(scan);
nscan = NEXTOPER(NEXTOPER(scan));
*minnextp = study_chunk(pRExC_state, &nscan, minnextp,
&deltanext, last, &data_fake,
stopparen, recursed_depth, NULL,
f,depth+1);
if (scan->flags) {
if (deltanext) {
FAIL("Variable length lookbehind not implemented");
}
else if (*minnextp > (I32)U8_MAX) {
FAIL2("Lookbehind longer than %"UVuf" not implemented",
(UV)U8_MAX);
}
scan->flags = (U8)*minnextp;
}
*minnextp += min;
if (f & SCF_DO_STCLASS_AND) {
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
ANYOF_FLAGS(data->start_class) |= ANYOF_EMPTY_STRING;
}
if (data) {
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
if (RExC_rx->minlen<*minnextp)
RExC_rx->minlen=*minnextp;
scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
SvREFCNT_dec_NN(data_fake.last_found);
if ( data_fake.minlen_fixed != minlenp )
{
data->offset_fixed= data_fake.offset_fixed;
data->minlen_fixed= data_fake.minlen_fixed;
data->lookbehind_fixed+= scan->flags;
}
if ( data_fake.minlen_float != minlenp )
{
data->minlen_float= data_fake.minlen_float;
data->offset_float_min=data_fake.offset_float_min;
data->offset_float_max=data_fake.offset_float_max;
data->lookbehind_float+= scan->flags;
}
}
}
}
#endif
}
else if (OP(scan) == OPEN) {
if (stopparen != (I32)ARG(scan))
pars++;
}
else if (OP(scan) == CLOSE) {
if (stopparen == (I32)ARG(scan)) {
break;
}
if ((I32)ARG(scan) == is_par) {
next = regnext(scan);
if ( next && (OP(next) != WHILEM) && next < last)
is_par = 0; /* Disable optimization */
}
if (data)
*(data->last_closep) = ARG(scan);
}
else if (OP(scan) == EVAL) {
if (data)
data->flags |= SF_HAS_EVAL;
}
else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
if (flags & SCF_DO_SUBSTR) {
scan_commit(pRExC_state, data, minlenp, is_inf);
flags &= ~SCF_DO_SUBSTR;
}
if (data && OP(scan)==ACCEPT) {
data->flags |= SCF_SEEN_ACCEPT;
if (stopmin > min)
stopmin = min;
}
}
else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
{
if (flags & SCF_DO_SUBSTR) {
scan_commit(pRExC_state, data, minlenp, is_inf);
data->longest = &(data->longest_float);
}
is_inf = is_inf_internal = 1;
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
ssc_anything(data->start_class);
flags &= ~SCF_DO_STCLASS;
}
else if (OP(scan) == GPOS) {
if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
!(delta || is_inf || (data && data->pos_delta)))
{
if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
RExC_rx->intflags |= PREGf_ANCH_GPOS;
if (RExC_rx->gofs < (STRLEN)min)
RExC_rx->gofs = min;
} else {
RExC_rx->intflags |= PREGf_GPOS_FLOAT;
RExC_rx->gofs = 0;
}
}
#ifdef TRIE_STUDY_OPT
#ifdef FULL_TRIE_STUDY
else if (PL_regkind[OP(scan)] == TRIE) {
/* NOTE - There is similar code to this block above for handling
BRANCH nodes on the initial study. If you change stuff here
check there too. */
regnode *trie_node= scan;
regnode *tail= regnext(scan);
reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
SSize_t max1 = 0, min1 = SSize_t_MAX;
regnode_ssc accum;
if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
/* Cannot merge strings after this. */
scan_commit(pRExC_state, data, minlenp, is_inf);
}
if (flags & SCF_DO_STCLASS)
ssc_init_zero(pRExC_state, &accum);
if (!trie->jump) {
min1= trie->minlen;
max1= trie->maxlen;
} else {
const regnode *nextbranch= NULL;
U32 word;
for ( word=1 ; word <= trie->wordcount ; word++)
{
SSize_t deltanext=0, minnext=0, f = 0, fake;
regnode_ssc this_class;
data_fake.flags = 0;
if (data) {
data_fake.whilem_c = data->whilem_c;
data_fake.last_closep = data->last_closep;
}
else
data_fake.last_closep = &fake;
data_fake.pos_delta = delta;
if (flags & SCF_DO_STCLASS) {
ssc_init(pRExC_state, &this_class);
data_fake.start_class = &this_class;
f = SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
if (trie->jump[word]) {
if (!nextbranch)
nextbranch = trie_node + trie->jump[0];
scan= trie_node + trie->jump[word];
/* We go from the jump point to the branch that follows
it. Note this means we need the vestigal unused
branches even though they arent otherwise used. */
minnext = study_chunk(pRExC_state, &scan, minlenp,
&deltanext, (regnode *)nextbranch, &data_fake,
stopparen, recursed_depth, NULL, f,depth+1);
}
if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
nextbranch= regnext((regnode*)nextbranch);
if (min1 > (SSize_t)(minnext + trie->minlen))
min1 = minnext + trie->minlen;
if (deltanext == SSize_t_MAX) {
is_inf = is_inf_internal = 1;
max1 = SSize_t_MAX;
} else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
max1 = minnext + deltanext + trie->maxlen;
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SCF_SEEN_ACCEPT) {
if ( stopmin > min + min1)
stopmin = min + min1;
flags &= ~SCF_DO_SUBSTR;
if (data)
data->flags |= SCF_SEEN_ACCEPT;
}
if (data) {
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
}
if (flags & SCF_DO_STCLASS)
ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
}
}
if (flags & SCF_DO_SUBSTR) {
data->pos_min += min1;
data->pos_delta += max1 - min1;
if (max1 != min1 || is_inf)
data->longest = &(data->longest_float);
}
min += min1;
delta += max1 - min1;
if (flags & SCF_DO_STCLASS_OR) {
ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
if (min1) {
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
flags &= ~SCF_DO_STCLASS;
}
}
else if (flags & SCF_DO_STCLASS_AND) {
if (min1) {
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
flags &= ~SCF_DO_STCLASS;
}
else {
/* Switch to OR mode: cache the old value of
* data->start_class */
INIT_AND_WITHP;
StructCopy(data->start_class, and_withp, regnode_ssc);
flags &= ~SCF_DO_STCLASS_AND;
StructCopy(&accum, data->start_class, regnode_ssc);
flags |= SCF_DO_STCLASS_OR;
}
}
scan= tail;
continue;
}
#else
else if (PL_regkind[OP(scan)] == TRIE) {
reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
U8*bang=NULL;
min += trie->minlen;
delta += (trie->maxlen - trie->minlen);
flags &= ~SCF_DO_STCLASS; /* xxx */
if (flags & SCF_DO_SUBSTR) {
/* Cannot expect anything... */
scan_commit(pRExC_state, data, minlenp, is_inf);
data->pos_min += trie->minlen;
data->pos_delta += (trie->maxlen - trie->minlen);
if (trie->maxlen != trie->minlen)
data->longest = &(data->longest_float);
}
if (trie->jump) /* no more substrings -- for now /grr*/
flags &= ~SCF_DO_SUBSTR;
}
#endif /* old or new */
#endif /* TRIE_STUDY_OPT */
/* Else: zero-length, ignore. */
scan = regnext(scan);
}
/* If we are exiting a recursion we can unset its recursed bit
* and allow ourselves to enter it again - no danger of an
* infinite loop there.
if (stopparen > -1 && recursed) {
DEBUG_STUDYDATA("unset:", data,depth);
PAREN_UNSET( recursed, stopparen);
}
*/
if (frame) {
DEBUG_STUDYDATA("frame-end:",data,depth);
DEBUG_PEEP("fend", scan, depth);
/* restore previous context */
last = frame->last;
scan = frame->next;
stopparen = frame->stop;
recursed_depth = frame->prev_recursed_depth;
depth = depth - 1;
frame = frame->prev;
goto fake_study_recurse;
}
finish:
assert(!frame);
DEBUG_STUDYDATA("pre-fin:",data,depth);
*scanp = scan;
*deltap = is_inf_internal ? SSize_t_MAX : delta;
if (flags & SCF_DO_SUBSTR && is_inf)
data->pos_delta = SSize_t_MAX - data->pos_min;
if (is_par > (I32)U8_MAX)
is_par = 0;
if (is_par && pars==1 && data) {
data->flags |= SF_IN_PAR;
data->flags &= ~SF_HAS_PAR;
}
else if (pars && data) {
data->flags |= SF_HAS_PAR;
data->flags &= ~SF_IN_PAR;
}
if (flags & SCF_DO_STCLASS_OR)
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
if (flags & SCF_TRIE_RESTUDY)
data->flags |= SCF_TRIE_RESTUDY;
DEBUG_STUDYDATA("post-fin:",data,depth);
{
SSize_t final_minlen= min < stopmin ? min : stopmin;
if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) && (RExC_maxlen < final_minlen + delta)) {
RExC_maxlen = final_minlen + delta;
}
return final_minlen;
}
/* not-reached */
}
STATIC U32
S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
{
U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
PERL_ARGS_ASSERT_ADD_DATA;
Renewc(RExC_rxi->data,
sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
char, struct reg_data);
if(count)
Renew(RExC_rxi->data->what, count + n, U8);
else
Newx(RExC_rxi->data->what, n, U8);
RExC_rxi->data->count = count + n;
Copy(s, RExC_rxi->data->what + count, n, U8);
return count;
}
/*XXX: todo make this not included in a non debugging perl */
#ifndef PERL_IN_XSUB_RE
void
Perl_reginitcolors(pTHX)
{
dVAR;
const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
if (s) {
char *t = savepv(s);
int i = 0;
PL_colors[0] = t;
while (++i < 6) {
t = strchr(t, '\t');
if (t) {
*t = '\0';
PL_colors[i] = ++t;
}
else
PL_colors[i] = t = (char *)"";
}
} else {
int i = 0;
while (i < 6)
PL_colors[i++] = (char *)"";
}
PL_colorset = 1;
}
#endif
#ifdef TRIE_STUDY_OPT
#define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
STMT_START { \
if ( \
(data.flags & SCF_TRIE_RESTUDY) \
&& ! restudied++ \
) { \
dOsomething; \
goto reStudy; \
} \
} STMT_END
#else
#define CHECK_RESTUDY_GOTO_butfirst
#endif
/*
* pregcomp - compile a regular expression into internal code
*
* Decides which engine's compiler to call based on the hint currently in
* scope
*/
#ifndef PERL_IN_XSUB_RE
/* return the currently in-scope regex engine (or the default if none) */
regexp_engine const *
Perl_current_re_engine(pTHX)
{
dVAR;
if (IN_PERL_COMPILETIME) {
HV * const table = GvHV(PL_hintgv);
SV **ptr;
if (!table || !(PL_hints & HINT_LOCALIZE_HH))
return &PL_core_reg_engine;
ptr = hv_fetchs(table, "regcomp", FALSE);
if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
return &PL_core_reg_engine;
return INT2PTR(regexp_engine*,SvIV(*ptr));
}
else {
SV *ptr;
if (!PL_curcop->cop_hints_hash)
return &PL_core_reg_engine;
ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
return &PL_core_reg_engine;
return INT2PTR(regexp_engine*,SvIV(ptr));
}
}
REGEXP *
Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
{
dVAR;
regexp_engine const *eng = current_re_engine();
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_PREGCOMP;
/* Dispatch a request to compile a regexp to correct regexp engine. */
DEBUG_COMPILE_r({
PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
PTR2UV(eng));
});
return CALLREGCOMP_ENG(eng, pattern, flags);
}
#endif
/* public(ish) entry point for the perl core's own regex compiling code.
* It's actually a wrapper for Perl_re_op_compile that only takes an SV
* pattern rather than a list of OPs, and uses the internal engine rather
* than the current one */
REGEXP *
Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
{
SV *pat = pattern; /* defeat constness! */
PERL_ARGS_ASSERT_RE_COMPILE;
return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
#ifdef PERL_IN_XSUB_RE
&my_reg_engine,
#else
&PL_core_reg_engine,
#endif
NULL, NULL, rx_flags, 0);
}
/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
* blocks, recalculate the indices. Update pat_p and plen_p in-place to
* point to the realloced string and length.
*
* This is essentially a copy of Perl_bytes_to_utf8() with the code index
* stuff added */
static void
S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
char **pat_p, STRLEN *plen_p, int num_code_blocks)
{
U8 *const src = (U8*)*pat_p;
U8 *dst;
int n=0;
STRLEN s = 0, d = 0;
bool do_end = 0;
GET_RE_DEBUG_FLAGS_DECL;
DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
"UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
Newx(dst, *plen_p * 2 + 1, U8);
while (s < *plen_p) {
if (NATIVE_BYTE_IS_INVARIANT(src[s]))
dst[d] = src[s];
else {
dst[d++] = UTF8_EIGHT_BIT_HI(src[s]);
dst[d] = UTF8_EIGHT_BIT_LO(src[s]);
}
if (n < num_code_blocks) {
if (!do_end && pRExC_state->code_blocks[n].start == s) {
pRExC_state->code_blocks[n].start = d;
assert(dst[d] == '(');
do_end = 1;
}
else if (do_end && pRExC_state->code_blocks[n].end == s) {
pRExC_state->code_blocks[n].end = d;
assert(dst[d] == ')');
do_end = 0;
n++;
}
}
s++;
d++;
}
dst[d] = '\0';
*plen_p = d;
*pat_p = (char*) dst;
SAVEFREEPV(*pat_p);
RExC_orig_utf8 = RExC_utf8 = 1;
}
/* S_concat_pat(): concatenate a list of args to the pattern string pat,
* while recording any code block indices, and handling overloading,
* nested qr// objects etc. If pat is null, it will allocate a new
* string, or just return the first arg, if there's only one.
*
* Returns the malloced/updated pat.
* patternp and pat_count is the array of SVs to be concatted;
* oplist is the optional list of ops that generated the SVs;
* recompile_p is a pointer to a boolean that will be set if
* the regex will need to be recompiled.
* delim, if non-null is an SV that will be inserted between each element
*/
static SV*
S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
SV *pat, SV ** const patternp, int pat_count,
OP *oplist, bool *recompile_p, SV *delim)
{
SV **svp;
int n = 0;
bool use_delim = FALSE;
bool alloced = FALSE;
/* if we know we have at least two args, create an empty string,
* then concatenate args to that. For no args, return an empty string */
if (!pat && pat_count != 1) {
pat = newSVpvn("", 0);
SAVEFREESV(pat);
alloced = TRUE;
}
for (svp = patternp; svp < patternp + pat_count; svp++) {
SV *sv;
SV *rx = NULL;
STRLEN orig_patlen = 0;
bool code = 0;
SV *msv = use_delim ? delim : *svp;
if (!msv) msv = &PL_sv_undef;
/* if we've got a delimiter, we go round the loop twice for each
* svp slot (except the last), using the delimiter the second
* time round */
if (use_delim) {
svp--;
use_delim = FALSE;
}
else if (delim)
use_delim = TRUE;
if (SvTYPE(msv) == SVt_PVAV) {
/* we've encountered an interpolated array within
* the pattern, e.g. /...@a..../. Expand the list of elements,
* then recursively append elements.
* The code in this block is based on S_pushav() */
AV *const av = (AV*)msv;
const SSize_t maxarg = AvFILL(av) + 1;
SV **array;
if (oplist) {
assert(oplist->op_type == OP_PADAV
|| oplist->op_type == OP_RV2AV);
oplist = oplist->op_sibling;;
}
if (SvRMAGICAL(av)) {
SSize_t i;
Newx(array, maxarg, SV*);
SAVEFREEPV(array);
for (i=0; i < maxarg; i++) {
SV ** const svp = av_fetch(av, i, FALSE);
array[i] = svp ? *svp : &PL_sv_undef;
}
}
else
array = AvARRAY(av);
pat = S_concat_pat(aTHX_ pRExC_state, pat,
array, maxarg, NULL, recompile_p,
/* $" */
GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
continue;
}
/* we make the assumption here that each op in the list of
* op_siblings maps to one SV pushed onto the stack,
* except for code blocks, with have both an OP_NULL and
* and OP_CONST.
* This allows us to match up the list of SVs against the
* list of OPs to find the next code block.
*
* Note that PUSHMARK PADSV PADSV ..
* is optimised to
* PADRANGE PADSV PADSV ..
* so the alignment still works. */
if (oplist) {
if (oplist->op_type == OP_NULL
&& (oplist->op_flags & OPf_SPECIAL))
{
assert(n < pRExC_state->num_code_blocks);
pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
pRExC_state->code_blocks[n].block = oplist;
pRExC_state->code_blocks[n].src_regex = NULL;
n++;
code = 1;
oplist = oplist->op_sibling; /* skip CONST */
assert(oplist);
}
oplist = oplist->op_sibling;;
}
/* apply magic and QR overloading to arg */
SvGETMAGIC(msv);
if (SvROK(msv) && SvAMAGIC(msv)) {
SV *sv = AMG_CALLunary(msv, regexp_amg);
if (sv) {
if (SvROK(sv))
sv = SvRV(sv);
if (SvTYPE(sv) != SVt_REGEXP)
Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
msv = sv;
}
}
/* try concatenation overload ... */
if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
(sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
{
sv_setsv(pat, sv);
/* overloading involved: all bets are off over literal
* code. Pretend we haven't seen it */
pRExC_state->num_code_blocks -= n;
n = 0;
}
else {
/* ... or failing that, try "" overload */
while (SvAMAGIC(msv)
&& (sv = AMG_CALLunary(msv, string_amg))
&& sv != msv
&& !( SvROK(msv)
&& SvROK(sv)
&& SvRV(msv) == SvRV(sv))
) {
msv = sv;
SvGETMAGIC(msv);
}
if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
msv = SvRV(msv);
if (pat) {
/* this is a partially unrolled
* sv_catsv_nomg(pat, msv);
* that allows us to adjust code block indices if
* needed */
STRLEN dlen;
char *dst = SvPV_force_nomg(pat, dlen);
orig_patlen = dlen;
if (SvUTF8(msv) && !SvUTF8(pat)) {
S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
sv_setpvn(pat, dst, dlen);
SvUTF8_on(pat);
}
sv_catsv_nomg(pat, msv);
rx = msv;
}
else
pat = msv;
if (code)
pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
}
/* extract any code blocks within any embedded qr//'s */
if (rx && SvTYPE(rx) == SVt_REGEXP
&& RX_ENGINE((REGEXP*)rx)->op_comp)
{
RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
if (ri->num_code_blocks) {
int i;
/* the presence of an embedded qr// with code means
* we should always recompile: the text of the
* qr// may not have changed, but it may be a
* different closure than last time */
*recompile_p = 1;
Renew(pRExC_state->code_blocks,
pRExC_state->num_code_blocks + ri->num_code_blocks,
struct reg_code_block);
pRExC_state->num_code_blocks += ri->num_code_blocks;
for (i=0; i < ri->num_code_blocks; i++) {
struct reg_code_block *src, *dst;
STRLEN offset = orig_patlen
+ ReANY((REGEXP *)rx)->pre_prefix;
assert(n < pRExC_state->num_code_blocks);
src = &ri->code_blocks[i];
dst = &pRExC_state->code_blocks[n];
dst->start = src->start + offset;
dst->end = src->end + offset;
dst->block = src->block;
dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
src->src_regex
? src->src_regex
: (REGEXP*)rx);
n++;
}
}
}
}
/* avoid calling magic multiple times on a single element e.g. =~ $qr */
if (alloced)
SvSETMAGIC(pat);
return pat;
}
/* see if there are any run-time code blocks in the pattern.
* False positives are allowed */
static bool
S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
char *pat, STRLEN plen)
{
int n = 0;
STRLEN s;
for (s = 0; s < plen; s++) {
if (n < pRExC_state->num_code_blocks
&& s == pRExC_state->code_blocks[n].start)
{
s = pRExC_state->code_blocks[n].end;
n++;
continue;
}
/* TODO ideally should handle [..], (#..), /#.../x to reduce false
* positives here */
if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
(pat[s+2] == '{'
|| (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
)
return 1;
}
return 0;
}
/* Handle run-time code blocks. We will already have compiled any direct
* or indirect literal code blocks. Now, take the pattern 'pat' and make a
* copy of it, but with any literal code blocks blanked out and
* appropriate chars escaped; then feed it into
*
* eval "qr'modified_pattern'"
*
* For example,
*
* a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
*
* becomes
*
* qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
*
* After eval_sv()-ing that, grab any new code blocks from the returned qr
* and merge them with any code blocks of the original regexp.
*
* If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
* instead, just save the qr and return FALSE; this tells our caller that
* the original pattern needs upgrading to utf8.
*/
static bool
S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
char *pat, STRLEN plen)
{
SV *qr;
GET_RE_DEBUG_FLAGS_DECL;
if (pRExC_state->runtime_code_qr) {
/* this is the second time we've been called; this should
* only happen if the main pattern got upgraded to utf8
* during compilation; re-use the qr we compiled first time
* round (which should be utf8 too)
*/
qr = pRExC_state->runtime_code_qr;
pRExC_state->runtime_code_qr = NULL;
assert(RExC_utf8 && SvUTF8(qr));
}
else {
int n = 0;
STRLEN s;
char *p, *newpat;
int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
SV *sv, *qr_ref;
dSP;
/* determine how many extra chars we need for ' and \ escaping */
for (s = 0; s < plen; s++) {
if (pat[s] == '\'' || pat[s] == '\\')
newlen++;
}
Newx(newpat, newlen, char);
p = newpat;
*p++ = 'q'; *p++ = 'r'; *p++ = '\'';
for (s = 0; s < plen; s++) {
if (n < pRExC_state->num_code_blocks
&& s == pRExC_state->code_blocks[n].start)
{
/* blank out literal code block */
assert(pat[s] == '(');
while (s <= pRExC_state->code_blocks[n].end) {
*p++ = '_';
s++;
}
s--;
n++;
continue;
}
if (pat[s] == '\'' || pat[s] == '\\')
*p++ = '\\';
*p++ = pat[s];
}
*p++ = '\'';
if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
*p++ = 'x';
*p++ = '\0';
DEBUG_COMPILE_r({
PerlIO_printf(Perl_debug_log,
"%sre-parsing pattern for runtime code:%s %s\n",
PL_colors[4],PL_colors[5],newpat);
});
sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
Safefree(newpat);
ENTER;
SAVETMPS;
save_re_context();
PUSHSTACKi(PERLSI_REQUIRE);
/* G_RE_REPARSING causes the toker to collapse \\ into \ when
* parsing qr''; normally only q'' does this. It also alters
* hints handling */
eval_sv(sv, G_SCALAR|G_RE_REPARSING);
SvREFCNT_dec_NN(sv);
SPAGAIN;
qr_ref = POPs;
PUTBACK;
{
SV * const errsv = ERRSV;
if (SvTRUE_NN(errsv))
{
Safefree(pRExC_state->code_blocks);
/* use croak_sv ? */
Perl_croak_nocontext("%"SVf, SVfARG(errsv));
}
}
assert(SvROK(qr_ref));
qr = SvRV(qr_ref);
assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
/* the leaving below frees the tmp qr_ref.
* Give qr a life of its own */
SvREFCNT_inc(qr);
POPSTACK;
FREETMPS;
LEAVE;
}
if (!RExC_utf8 && SvUTF8(qr)) {
/* first time through; the pattern got upgraded; save the
* qr for the next time through */
assert(!pRExC_state->runtime_code_qr);
pRExC_state->runtime_code_qr = qr;
return 0;
}
/* extract any code blocks within the returned qr// */
/* merge the main (r1) and run-time (r2) code blocks into one */
{
RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
struct reg_code_block *new_block, *dst;
RExC_state_t * const r1 = pRExC_state; /* convenient alias */
int i1 = 0, i2 = 0;
if (!r2->num_code_blocks) /* we guessed wrong */
{
SvREFCNT_dec_NN(qr);
return 1;
}
Newx(new_block,
r1->num_code_blocks + r2->num_code_blocks,
struct reg_code_block);
dst = new_block;
while ( i1 < r1->num_code_blocks
|| i2 < r2->num_code_blocks)
{
struct reg_code_block *src;
bool is_qr = 0;
if (i1 == r1->num_code_blocks) {
src = &r2->code_blocks[i2++];
is_qr = 1;
}
else if (i2 == r2->num_code_blocks)
src = &r1->code_blocks[i1++];
else if ( r1->code_blocks[i1].start
< r2->code_blocks[i2].start)
{
src = &r1->code_blocks[i1++];
assert(src->end < r2->code_blocks[i2].start);
}
else {
assert( r1->code_blocks[i1].start
> r2->code_blocks[i2].start);
src = &r2->code_blocks[i2++];
is_qr = 1;
assert(src->end < r1->code_blocks[i1].start);
}
assert(pat[src->start] == '(');
assert(pat[src->end] == ')');
dst->start = src->start;
dst->end = src->end;
dst->block = src->block;
dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
: src->src_regex;
dst++;
}
r1->num_code_blocks += r2->num_code_blocks;
Safefree(r1->code_blocks);
r1->code_blocks = new_block;
}
SvREFCNT_dec_NN(qr);
return 1;
}
STATIC bool
S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest,
SV** rx_utf8, SV** rx_substr, SSize_t* rx_end_shift,
SSize_t lookbehind, SSize_t offset, SSize_t *minlen,
STRLEN longest_length, bool eol, bool meol)
{
/* This is the common code for setting up the floating and fixed length
* string data extracted from Perl_re_op_compile() below. Returns a boolean
* as to whether succeeded or not */
I32 t;
SSize_t ml;
if (! (longest_length
|| (eol /* Can't have SEOL and MULTI */
&& (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
)
/* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
|| (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
{
return FALSE;
}
/* copy the information about the longest from the reg_scan_data
over to the program. */
if (SvUTF8(sv_longest)) {
*rx_utf8 = sv_longest;
*rx_substr = NULL;
} else {
*rx_substr = sv_longest;
*rx_utf8 = NULL;
}
/* end_shift is how many chars that must be matched that
follow this item. We calculate it ahead of time as once the
lookbehind offset is added in we lose the ability to correctly
calculate it.*/
ml = minlen ? *(minlen) : (SSize_t)longest_length;
*rx_end_shift = ml - offset
- longest_length + (SvTAIL(sv_longest) != 0)
+ lookbehind;
t = (eol/* Can't have SEOL and MULTI */
&& (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
return TRUE;
}
/*
* Perl_re_op_compile - the perl internal RE engine's function to compile a
* regular expression into internal code.
* The pattern may be passed either as:
* a list of SVs (patternp plus pat_count)
* a list of OPs (expr)
* If both are passed, the SV list is used, but the OP list indicates
* which SVs are actually pre-compiled code blocks
*
* The SVs in the list have magic and qr overloading applied to them (and
* the list may be modified in-place with replacement SVs in the latter
* case).
*
* If the pattern hasn't changed from old_re, then old_re will be
* returned.
*
* eng is the current engine. If that engine has an op_comp method, then
* handle directly (i.e. we assume that op_comp was us); otherwise, just
* do the initial concatenation of arguments and pass on to the external
* engine.
*
* If is_bare_re is not null, set it to a boolean indicating whether the
* arg list reduced (after overloading) to a single bare regex which has
* been returned (i.e. /$qr/).
*
* orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
*
* pm_flags contains the PMf_* flags, typically based on those from the
* pm_flags field of the related PMOP. Currently we're only interested in
* PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
*
* We can't allocate space until we know how big the compiled form will be,
* but we can't compile it (and thus know how big it is) until we've got a
* place to put the code. So we cheat: we compile it twice, once with code
* generation turned off and size counting turned on, and once "for real".
* This also means that we don't allocate space until we are sure that the
* thing really will compile successfully, and we never have to move the
* code and thus invalidate pointers into it. (Note that it has to be in
* one piece because free() must be able to free it all.) [NB: not true in perl]
*
* Beware that the optimization-preparation code in here knows about some
* of the structure of the compiled regexp. [I'll say.]
*/
REGEXP *
Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
OP *expr, const regexp_engine* eng, REGEXP *old_re,
bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
{
dVAR;
REGEXP *rx;
struct regexp *r;
regexp_internal *ri;
STRLEN plen;
char *exp;
regnode *scan;
I32 flags;
SSize_t minlen = 0;
U32 rx_flags;
SV *pat;
SV *code_blocksv = NULL;
SV** new_patternp = patternp;
/* these are all flags - maybe they should be turned
* into a single int with different bit masks */
I32 sawlookahead = 0;
I32 sawplus = 0;
I32 sawopen = 0;
I32 sawminmod = 0;
regex_charset initial_charset = get_regex_charset(orig_rx_flags);
bool recompile = 0;
bool runtime_code = 0;
scan_data_t data;
RExC_state_t RExC_state;
RExC_state_t * const pRExC_state = &RExC_state;
#ifdef TRIE_STUDY_OPT
int restudied = 0;
RExC_state_t copyRExC_state;
#endif
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_RE_OP_COMPILE;
DEBUG_r(if (!PL_colorset) reginitcolors());
#ifndef PERL_IN_XSUB_RE
/* Initialize these here instead of as-needed, as is quick and avoids
* having to test them each time otherwise */
if (! PL_AboveLatin1) {
PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
PL_utf8_foldable = _new_invlist_C_array(_Perl_Any_Folds_invlist);
PL_HasMultiCharFold =
_new_invlist_C_array(_Perl_Folds_To_Multi_Char_invlist);
}
#endif
pRExC_state->code_blocks = NULL;
pRExC_state->num_code_blocks = 0;
if (is_bare_re)
*is_bare_re = FALSE;
if (expr && (expr->op_type == OP_LIST ||
(expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
/* allocate code_blocks if needed */
OP *o;
int ncode = 0;
for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling)
if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
ncode++; /* count of DO blocks */
if (ncode) {
pRExC_state->num_code_blocks = ncode;
Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
}
}
if (!pat_count) {
/* compile-time pattern with just OP_CONSTs and DO blocks */
int n;
OP *o;
/* find how many CONSTs there are */
assert(expr);
n = 0;
if (expr->op_type == OP_CONST)
n = 1;
else
for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
if (o->op_type == OP_CONST)
n++;
}
/* fake up an SV array */
assert(!new_patternp);
Newx(new_patternp, n, SV*);
SAVEFREEPV(new_patternp);
pat_count = n;
n = 0;
if (expr->op_type == OP_CONST)
new_patternp[n] = cSVOPx_sv(expr);
else
for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
if (o->op_type == OP_CONST)
new_patternp[n++] = cSVOPo_sv;
}
}
DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
"Assembling pattern from %d elements%s\n", pat_count,
orig_rx_flags & RXf_SPLIT ? " for split" : ""));
/* set expr to the first arg op */
if (pRExC_state->num_code_blocks
&& expr->op_type != OP_CONST)
{
expr = cLISTOPx(expr)->op_first;
assert( expr->op_type == OP_PUSHMARK
|| (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
|| expr->op_type == OP_PADRANGE);
expr = expr->op_sibling;
}
pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
expr, &recompile, NULL);
/* handle bare (possibly after overloading) regex: foo =~ $re */
{
SV *re = pat;
if (SvROK(re))
re = SvRV(re);
if (SvTYPE(re) == SVt_REGEXP) {
if (is_bare_re)
*is_bare_re = TRUE;
SvREFCNT_inc(re);
Safefree(pRExC_state->code_blocks);
DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
"Precompiled pattern%s\n",
orig_rx_flags & RXf_SPLIT ? " for split" : ""));
return (REGEXP*)re;
}
}
exp = SvPV_nomg(pat, plen);
if (!eng->op_comp) {
if ((SvUTF8(pat) && IN_BYTES)
|| SvGMAGICAL(pat) || SvAMAGIC(pat))
{
/* make a temporary copy; either to convert to bytes,
* or to avoid repeating get-magic / overloaded stringify */
pat = newSVpvn_flags(exp, plen, SVs_TEMP |
(IN_BYTES ? 0 : SvUTF8(pat)));
}
Safefree(pRExC_state->code_blocks);
return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
}
/* ignore the utf8ness if the pattern is 0 length */
RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
RExC_uni_semantics = 0;
RExC_contains_locale = 0;
RExC_contains_i = 0;
pRExC_state->runtime_code_qr = NULL;
DEBUG_COMPILE_r({
SV *dsv= sv_newmortal();
RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
PL_colors[4],PL_colors[5],s);
});
redo_first_pass:
/* we jump here if we upgrade the pattern to utf8 and have to
* recompile */
if ((pm_flags & PMf_USE_RE_EVAL)
/* this second condition covers the non-regex literal case,
* i.e. $foo =~ '(?{})'. */
|| (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
)
runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
/* return old regex if pattern hasn't changed */
/* XXX: note in the below we have to check the flags as well as the
* pattern.
*
* Things get a touch tricky as we have to compare the utf8 flag
* independently from the compile flags. */
if ( old_re
&& !recompile
&& !!RX_UTF8(old_re) == !!RExC_utf8
&& ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
&& RX_PRECOMP(old_re)
&& RX_PRELEN(old_re) == plen
&& memEQ(RX_PRECOMP(old_re), exp, plen)
&& !runtime_code /* with runtime code, always recompile */ )
{
Safefree(pRExC_state->code_blocks);
return old_re;
}
rx_flags = orig_rx_flags;
if (rx_flags & PMf_FOLD) {
RExC_contains_i = 1;
}
if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
/* Set to use unicode semantics if the pattern is in utf8 and has the
* 'depends' charset specified, as it means unicode when utf8 */
set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
}
RExC_precomp = exp;
RExC_flags = rx_flags;
RExC_pm_flags = pm_flags;
if (runtime_code) {
if (TAINTING_get && TAINT_get)
Perl_croak(aTHX_ "Eval-group in insecure regular expression");
if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
/* whoops, we have a non-utf8 pattern, whilst run-time code
* got compiled as utf8. Try again with a utf8 pattern */
S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
pRExC_state->num_code_blocks);
goto redo_first_pass;
}
}
assert(!pRExC_state->runtime_code_qr);
RExC_sawback = 0;
RExC_seen = 0;
RExC_maxlen = 0;
RExC_in_lookbehind = 0;
RExC_seen_zerolen = *exp == '^' ? -1 : 0;
RExC_extralen = 0;
RExC_override_recoding = 0;
RExC_in_multi_char_class = 0;
/* First pass: determine size, legality. */
RExC_parse = exp;
RExC_start = exp;
RExC_end = exp + plen;
RExC_naughty = 0;
RExC_npar = 1;
RExC_nestroot = 0;
RExC_size = 0L;
RExC_emit = (regnode *) &RExC_emit_dummy;
RExC_whilem_seen = 0;
RExC_open_parens = NULL;
RExC_close_parens = NULL;
RExC_opend = NULL;
RExC_paren_names = NULL;
#ifdef DEBUGGING
RExC_paren_name_list = NULL;
#endif
RExC_recurse = NULL;
RExC_study_chunk_recursed = NULL;
RExC_study_chunk_recursed_bytes= 0;
RExC_recurse_count = 0;
pRExC_state->code_index = 0;
#if 0 /* REGC() is (currently) a NOP at the first pass.
* Clever compilers notice this and complain. --jhi */
REGC((U8)REG_MAGIC, (char*)RExC_emit);
#endif
DEBUG_PARSE_r(
PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
RExC_lastnum=0;
RExC_lastparse=NULL;
);
/* reg may croak on us, not giving us a chance to free
pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may
need it to survive as long as the regexp (qr/(?{})/).
We must check that code_blocksv is not already set, because we may
have jumped back to restart the sizing pass. */
if (pRExC_state->code_blocks && !code_blocksv) {
code_blocksv = newSV_type(SVt_PV);
SAVEFREESV(code_blocksv);
SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
}
if (reg(pRExC_state, 0, &flags,1) == NULL) {
/* It's possible to write a regexp in ascii that represents Unicode
codepoints outside of the byte range, such as via \x{100}. If we
detect such a sequence we have to convert the entire pattern to utf8
and then recompile, as our sizing calculation will have been based
on 1 byte == 1 character, but we will need to use utf8 to encode
at least some part of the pattern, and therefore must convert the whole
thing.
-- dmq */
if (flags & RESTART_UTF8) {
S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
pRExC_state->num_code_blocks);
goto redo_first_pass;
}
Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#"UVxf"", (UV) flags);
}
if (code_blocksv)
SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
DEBUG_PARSE_r({
PerlIO_printf(Perl_debug_log,
"Required size %"IVdf" nodes\n"
"Starting second pass (creation)\n",
(IV)RExC_size);
RExC_lastnum=0;
RExC_lastparse=NULL;
});
/* The first pass could have found things that force Unicode semantics */
if ((RExC_utf8 || RExC_uni_semantics)
&& get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
{
set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
}
/* Small enough for pointer-storage convention?
If extralen==0, this means that we will not need long jumps. */
if (RExC_size >= 0x10000L && RExC_extralen)
RExC_size += RExC_extralen;
else
RExC_extralen = 0;
if (RExC_whilem_seen > 15)
RExC_whilem_seen = 15;
/* Allocate space and zero-initialize. Note, the two step process
of zeroing when in debug mode, thus anything assigned has to
happen after that */
rx = (REGEXP*) newSV_type(SVt_REGEXP);
r = ReANY(rx);
Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
char, regexp_internal);
if ( r == NULL || ri == NULL )
FAIL("Regexp out of space");
#ifdef DEBUGGING
/* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
char);
#else
/* bulk initialize base fields with 0. */
Zero(ri, sizeof(regexp_internal), char);
#endif
/* non-zero initialization begins here */
RXi_SET( r, ri );
r->engine= eng;
r->extflags = rx_flags;
RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
if (pm_flags & PMf_IS_QR) {
ri->code_blocks = pRExC_state->code_blocks;
ri->num_code_blocks = pRExC_state->num_code_blocks;
}
else
{
int n;
for (n = 0; n < pRExC_state->num_code_blocks; n++)
if (pRExC_state->code_blocks[n].src_regex)
SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
SAVEFREEPV(pRExC_state->code_blocks);
}
{
bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
bool has_charset = (get_regex_charset(r->extflags)
!= REGEX_DEPENDS_CHARSET);
/* The caret is output if there are any defaults: if not all the STD
* flags are set, or if no character set specifier is needed */
bool has_default =
(((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
|| ! has_charset);
bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
== REG_RUN_ON_COMMENT_SEEN);
U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
>> RXf_PMf_STD_PMMOD_SHIFT);
const char *fptr = STD_PAT_MODS; /*"msix"*/
char *p;
/* Allocate for the worst case, which is all the std flags are turned
* on. If more precision is desired, we could do a population count of
* the flags set. This could be done with a small lookup table, or by
* shifting, masking and adding, or even, when available, assembly
* language for a machine-language population count.
* We never output a minus, as all those are defaults, so are
* covered by the caret */
const STRLEN wraplen = plen + has_p + has_runon
+ has_default /* If needs a caret */
/* If needs a character set specifier */
+ ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ (sizeof(STD_PAT_MODS) - 1)
+ (sizeof("(?:)") - 1);
Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
r->xpv_len_u.xpvlenu_pv = p;
if (RExC_utf8)
SvFLAGS(rx) |= SVf_UTF8;
*p++='('; *p++='?';
/* If a default, cover it using the caret */
if (has_default) {
*p++= DEFAULT_PAT_MOD;
}
if (has_charset) {
STRLEN len;
const char* const name = get_regex_charset_name(r->extflags, &len);
Copy(name, p, len, char);
p += len;
}
if (has_p)
*p++ = KEEPCOPY_PAT_MOD; /*'p'*/
{
char ch;
while((ch = *fptr++)) {
if(reganch & 1)
*p++ = ch;
reganch >>= 1;
}
}
*p++ = ':';
Copy(RExC_precomp, p, plen, char);
assert ((RX_WRAPPED(rx) - p) < 16);
r->pre_prefix = p - RX_WRAPPED(rx);
p += plen;
if (has_runon)
*p++ = '\n';
*p++ = ')';
*p = 0;
SvCUR_set(rx, p - RX_WRAPPED(rx));
}
r->intflags = 0;
r->nparens = RExC_npar - 1; /* set early to validate backrefs */
/* setup various meta data about recursion, this all requires
* RExC_npar to be correctly set, and a bit later on we clear it */
if (RExC_seen & REG_RECURSE_SEEN) {
Newxz(RExC_open_parens, RExC_npar,regnode *);
SAVEFREEPV(RExC_open_parens);
Newxz(RExC_close_parens,RExC_npar,regnode *);
SAVEFREEPV(RExC_close_parens);
}
if (RExC_seen & (REG_RECURSE_SEEN | REG_GOSTART_SEEN)) {
/* Note, RExC_npar is 1 + the number of parens in a pattern.
* So its 1 if there are no parens. */
RExC_study_chunk_recursed_bytes= (RExC_npar >> 3) +
((RExC_npar & 0x07) != 0);
Newx(RExC_study_chunk_recursed,
RExC_study_chunk_recursed_bytes * RExC_npar, U8);
SAVEFREEPV(RExC_study_chunk_recursed);
}
/* Useful during FAIL. */
#ifdef RE_TRACK_PATTERN_OFFSETS
Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
"%s %"UVuf" bytes for offset annotations.\n",
ri->u.offsets ? "Got" : "Couldn't get",
(UV)((2*RExC_size+1) * sizeof(U32))));
#endif
SetProgLen(ri,RExC_size);
RExC_rx_sv = rx;
RExC_rx = r;
RExC_rxi = ri;
/* Second pass: emit code. */
RExC_flags = rx_flags; /* don't let top level (?i) bleed */
RExC_pm_flags = pm_flags;
RExC_parse = exp;
RExC_end = exp + plen;
RExC_naughty = 0;
RExC_npar = 1;
RExC_emit_start = ri->program;
RExC_emit = ri->program;
RExC_emit_bound = ri->program + RExC_size + 1;
pRExC_state->code_index = 0;
REGC((U8)REG_MAGIC, (char*) RExC_emit++);
if (reg(pRExC_state, 0, &flags,1) == NULL) {
ReREFCNT_dec(rx);
Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#"UVxf"", (UV) flags);
}
/* XXXX To minimize changes to RE engine we always allocate
3-units-long substrs field. */
Newx(r->substrs, 1, struct reg_substr_data);
if (RExC_recurse_count) {
Newxz(RExC_recurse,RExC_recurse_count,regnode *);
SAVEFREEPV(RExC_recurse);
}
reStudy:
r->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
Zero(r->substrs, 1, struct reg_substr_data);
if (RExC_study_chunk_recursed)
Zero(RExC_study_chunk_recursed,
RExC_study_chunk_recursed_bytes * RExC_npar, U8);
#ifdef TRIE_STUDY_OPT
if (!restudied) {
StructCopy(&zero_scan_data, &data, scan_data_t);
copyRExC_state = RExC_state;
} else {
U32 seen=RExC_seen;
DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
RExC_state = copyRExC_state;
if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
else
RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
StructCopy(&zero_scan_data, &data, scan_data_t);
}
#else
StructCopy(&zero_scan_data, &data, scan_data_t);
#endif
/* Dig out information for optimizations. */
r->extflags = RExC_flags; /* was pm_op */
/*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
if (UTF)
SvUTF8_on(rx); /* Unicode in it? */
ri->regstclass = NULL;
if (RExC_naughty >= 10) /* Probably an expensive pattern. */
r->intflags |= PREGf_NAUGHTY;
scan = ri->program + 1; /* First BRANCH. */
/* testing for BRANCH here tells us whether there is "must appear"
data in the pattern. If there is then we can use it for optimisations */
if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /* Only one top-level choice.
*/
SSize_t fake;
STRLEN longest_float_length, longest_fixed_length;
regnode_ssc ch_class; /* pointed to by data */
int stclass_flag;
SSize_t last_close = 0; /* pointed to by data */
regnode *first= scan;
regnode *first_next= regnext(first);
/*
* Skip introductions and multiplicators >= 1
* so that we can extract the 'meat' of the pattern that must
* match in the large if() sequence following.
* NOTE that EXACT is NOT covered here, as it is normally
* picked up by the optimiser separately.
*
* This is unfortunate as the optimiser isnt handling lookahead
* properly currently.
*
*/
while ((OP(first) == OPEN && (sawopen = 1)) ||
/* An OR of *one* alternative - should not happen now. */
(OP(first) == BRANCH && OP(first_next) != BRANCH) ||
/* for now we can't handle lookbehind IFMATCH*/
(OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
(OP(first) == PLUS) ||
(OP(first) == MINMOD) ||
/* An {n,m} with n>0 */
(PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
(OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
{
/*
* the only op that could be a regnode is PLUS, all the rest
* will be regnode_1 or regnode_2.
*
* (yves doesn't think this is true)
*/
if (OP(first) == PLUS)
sawplus = 1;
else {
if (OP(first) == MINMOD)
sawminmod = 1;
first += regarglen[OP(first)];
}
first = NEXTOPER(first);
first_next= regnext(first);
}
/* Starting-point info. */
again:
DEBUG_PEEP("first:",first,0);
/* Ignore EXACT as we deal with it later. */
if (PL_regkind[OP(first)] == EXACT) {
if (OP(first) == EXACT)
NOOP; /* Empty, get anchored substr later. */
else
ri->regstclass = first;
}
#ifdef TRIE_STCLASS
else if (PL_regkind[OP(first)] == TRIE &&
((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
{
regnode *trie_op;
/* this can happen only on restudy */
if ( OP(first) == TRIE ) {
struct regnode_1 *trieop = (struct regnode_1 *)
PerlMemShared_calloc(1, sizeof(struct regnode_1));
StructCopy(first,trieop,struct regnode_1);
trie_op=(regnode *)trieop;
} else {
struct regnode_charclass *trieop = (struct regnode_charclass *)
PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
StructCopy(first,trieop,struct regnode_charclass);
trie_op=(regnode *)trieop;
}
OP(trie_op)+=2;
make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
ri->regstclass = trie_op;
}
#endif
else if (REGNODE_SIMPLE(OP(first)))
ri->regstclass = first;
else if (PL_regkind[OP(first)] == BOUND ||
PL_regkind[OP(first)] == NBOUND)
ri->regstclass = first;
else if (PL_regkind[OP(first)] == BOL) {
r->intflags |= (OP(first) == MBOL
? PREGf_ANCH_MBOL
: (OP(first) == SBOL
? PREGf_ANCH_SBOL
: PREGf_ANCH_BOL));
first = NEXTOPER(first);
goto again;
}
else if (OP(first) == GPOS) {
r->intflags |= PREGf_ANCH_GPOS;
first = NEXTOPER(first);
goto again;
}
else if ((!sawopen || !RExC_sawback) &&
(OP(first) == STAR &&
PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
!(r->intflags & PREGf_ANCH) && !pRExC_state->num_code_blocks)
{
/* turn .* into ^.* with an implied $*=1 */
const int type =
(OP(NEXTOPER(first)) == REG_ANY)
? PREGf_ANCH_MBOL
: PREGf_ANCH_SBOL;
r->intflags |= (type | PREGf_IMPLICIT);
first = NEXTOPER(first);
goto again;
}
if (sawplus && !sawminmod && !sawlookahead
&& (!sawopen || !RExC_sawback)
&& !pRExC_state->num_code_blocks) /* May examine pos and $& */
/* x+ must match at the 1st pos of run of x's */
r->intflags |= PREGf_SKIP;
/* Scan is after the zeroth branch, first is atomic matcher. */
#ifdef TRIE_STUDY_OPT
DEBUG_PARSE_r(
if (!restudied)
PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
(IV)(first - scan + 1))
);
#else
DEBUG_PARSE_r(
PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
(IV)(first - scan + 1))
);
#endif
/*
* If there's something expensive in the r.e., find the
* longest literal string that must appear and make it the
* regmust. Resolve ties in favor of later strings, since
* the regstart check works with the beginning of the r.e.
* and avoiding duplication strengthens checking. Not a
* strong reason, but sufficient in the absence of others.
* [Now we resolve ties in favor of the earlier string if
* it happens that c_offset_min has been invalidated, since the
* earlier string may buy us something the later one won't.]
*/
data.longest_fixed = newSVpvs("");
data.longest_float = newSVpvs("");
data.last_found = newSVpvs("");
data.longest = &(data.longest_fixed);
ENTER_with_name("study_chunk");
SAVEFREESV(data.longest_fixed);
SAVEFREESV(data.longest_float);
SAVEFREESV(data.last_found);
first = scan;
if (!ri->regstclass) {
ssc_init(pRExC_state, &ch_class);
data.start_class = &ch_class;
stclass_flag = SCF_DO_STCLASS_AND;
} else /* XXXX Check for BOUND? */
stclass_flag = 0;
data.last_closep = &last_close;
DEBUG_RExC_seen();
minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
scan + RExC_size, /* Up to end */
&data, -1, 0, NULL,
SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
| (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
0);
CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
&& data.last_start_min == 0 && data.last_end > 0
&& !RExC_seen_zerolen
&& !(RExC_seen & REG_VERBARG_SEEN)
&& !(RExC_seen & REG_GPOS_SEEN)
){
r->extflags |= RXf_CHECK_ALL;
}
scan_commit(pRExC_state, &data,&minlen,0);
longest_float_length = CHR_SVLEN(data.longest_float);
if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
&& data.offset_fixed == data.offset_float_min
&& SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
&& S_setup_longest (aTHX_ pRExC_state,
data.longest_float,
&(r->float_utf8),
&(r->float_substr),
&(r->float_end_shift),
data.lookbehind_float,
data.offset_float_min,
data.minlen_float,
longest_float_length,
cBOOL(data.flags & SF_FL_BEFORE_EOL),
cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
{
r->float_min_offset = data.offset_float_min - data.lookbehind_float;
r->float_max_offset = data.offset_float_max;
if (data.offset_float_max < SSize_t_MAX) /* Don't offset infinity */
r->float_max_offset -= data.lookbehind_float;
SvREFCNT_inc_simple_void_NN(data.longest_float);
}
else {
r->float_substr = r->float_utf8 = NULL;
longest_float_length = 0;
}
longest_fixed_length = CHR_SVLEN(data.longest_fixed);
if (S_setup_longest (aTHX_ pRExC_state,
data.longest_fixed,
&(r->anchored_utf8),
&(r->anchored_substr),
&(r->anchored_end_shift),
data.lookbehind_fixed,
data.offset_fixed,
data.minlen_fixed,
longest_fixed_length,
cBOOL(data.flags & SF_FIX_BEFORE_EOL),
cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
{
r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
SvREFCNT_inc_simple_void_NN(data.longest_fixed);
}
else {
r->anchored_substr = r->anchored_utf8 = NULL;
longest_fixed_length = 0;
}
LEAVE_with_name("study_chunk");
if (ri->regstclass
&& (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
ri->regstclass = NULL;
if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
&& stclass_flag
&& ! (ANYOF_FLAGS(data.start_class) & ANYOF_EMPTY_STRING)
&& !ssc_is_anything(data.start_class))
{
const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
ssc_finalize(pRExC_state, data.start_class);
Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
StructCopy(data.start_class,
(regnode_ssc*)RExC_rxi->data->data[n],
regnode_ssc);
ri->regstclass = (regnode*)RExC_rxi->data->data[n];
r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
regprop(r, sv, (regnode*)data.start_class, NULL);
PerlIO_printf(Perl_debug_log,
"synthetic stclass \"%s\".\n",
SvPVX_const(sv));});
data.start_class = NULL;
}
/* A temporary algorithm prefers floated substr to fixed one to dig
* more info. */
if (longest_fixed_length > longest_float_length) {
r->substrs->check_ix = 0;
r->check_end_shift = r->anchored_end_shift;
r->check_substr = r->anchored_substr;
r->check_utf8 = r->anchored_utf8;
r->check_offset_min = r->check_offset_max = r->anchored_offset;
if (r->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS))
r->intflags |= PREGf_NOSCAN;
}
else {
r->substrs->check_ix = 1;
r->check_end_shift = r->float_end_shift;
r->check_substr = r->float_substr;
r->check_utf8 = r->float_utf8;
r->check_offset_min = r->float_min_offset;
r->check_offset_max = r->float_max_offset;
}
if ((r->check_substr || r->check_utf8) ) {
r->extflags |= RXf_USE_INTUIT;
if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
r->extflags |= RXf_INTUIT_TAIL;
}
r->substrs->data[0].max_offset = r->substrs->data[0].min_offset;
/* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
if ( (STRLEN)minlen < longest_float_length )
minlen= longest_float_length;
if ( (STRLEN)minlen < longest_fixed_length )
minlen= longest_fixed_length;
*/
}
else {
/* Several toplevels. Best we can is to set minlen. */
SSize_t fake;
regnode_ssc ch_class;
SSize_t last_close = 0;
DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
scan = ri->program + 1;
ssc_init(pRExC_state, &ch_class);
data.start_class = &ch_class;
data.last_closep = &last_close;
DEBUG_RExC_seen();
minlen = study_chunk(pRExC_state,
&scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
? SCF_TRIE_DOING_RESTUDY
: 0),
0);
CHECK_RESTUDY_GOTO_butfirst(NOOP);
r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
= r->float_substr = r->float_utf8 = NULL;
if (! (ANYOF_FLAGS(data.start_class) & ANYOF_EMPTY_STRING)
&& ! ssc_is_anything(data.start_class))
{
const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
ssc_finalize(pRExC_state, data.start_class);
Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
StructCopy(data.start_class,
(regnode_ssc*)RExC_rxi->data->data[n],
regnode_ssc);
ri->regstclass = (regnode*)RExC_rxi->data->data[n];
r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
regprop(r, sv, (regnode*)data.start_class, NULL);
PerlIO_printf(Perl_debug_log,
"synthetic stclass \"%s\".\n",
SvPVX_const(sv));});
data.start_class = NULL;
}
}
if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
r->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
r->maxlen = REG_INFTY;
}
else {
r->maxlen = RExC_maxlen;
}
/* Guard against an embedded (?=) or (?<=) with a longer minlen than
the "real" pattern. */
DEBUG_OPTIMISE_r({
PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf" maxlen:%ld\n",
(IV)minlen, (IV)r->minlen, RExC_maxlen);
});
r->minlenret = minlen;
if (r->minlen < minlen)
r->minlen = minlen;
if (RExC_seen & REG_GPOS_SEEN)
r->intflags |= PREGf_GPOS_SEEN;
if (RExC_seen & REG_LOOKBEHIND_SEEN)
r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
lookbehind */
if (pRExC_state->num_code_blocks)
r->extflags |= RXf_EVAL_SEEN;
if (RExC_seen & REG_CANY_SEEN)
r->intflags |= PREGf_CANY_SEEN;
if (RExC_seen & REG_VERBARG_SEEN)
{
r->intflags |= PREGf_VERBARG_SEEN;
r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
}
if (RExC_seen & REG_CUTGROUP_SEEN)
r->intflags |= PREGf_CUTGROUP_SEEN;
if (pm_flags & PMf_USE_RE_EVAL)
r->intflags |= PREGf_USE_RE_EVAL;
if (RExC_paren_names)
RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
else
RXp_PAREN_NAMES(r) = NULL;
/* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
* so it can be used in pp.c */
if (r->intflags & PREGf_ANCH)
r->extflags |= RXf_IS_ANCHORED;
{
/* this is used to identify "special" patterns that might result
* in Perl NOT calling the regex engine and instead doing the match "itself",
* particularly special cases in split//. By having the regex compiler
* do this pattern matching at a regop level (instead of by inspecting the pattern)
* we avoid weird issues with equivalent patterns resulting in different behavior,
* AND we allow non Perl engines to get the same optimizations by the setting the
* flags appropriately - Yves */
regnode *first = ri->program + 1;
U8 fop = OP(first);
regnode *next = NEXTOPER(first);
U8 nop = OP(next);
if (PL_regkind[fop] == NOTHING && nop == END)
r->extflags |= RXf_NULL;
else if (PL_regkind[fop] == BOL && nop == END)
r->extflags |= RXf_START_ONLY;
else if (fop == PLUS
&& PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
&& OP(regnext(first)) == END)
r->extflags |= RXf_WHITE;
else if ( r->extflags & RXf_SPLIT
&& fop == EXACT
&& STR_LEN(first) == 1
&& *(STRING(first)) == ' '
&& OP(regnext(first)) == END )
r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
}
if (RExC_contains_locale) {
RXp_EXTFLAGS(r) |= RXf_TAINTED;
}
#ifdef DEBUGGING
if (RExC_paren_names) {
ri->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
ri->data->data[ri->name_list_idx]
= (void*)SvREFCNT_inc(RExC_paren_name_list);
} else
#endif
ri->name_list_idx = 0;
if (RExC_recurse_count) {
for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
const regnode *scan = RExC_recurse[RExC_recurse_count-1];
ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
}
}
Newxz(r->offs, RExC_npar, regexp_paren_pair);
/* assume we don't need to swap parens around before we match */
DEBUG_DUMP_r({
DEBUG_RExC_seen();
PerlIO_printf(Perl_debug_log,"Final program:\n");
regdump(r);
});
#ifdef RE_TRACK_PATTERN_OFFSETS
DEBUG_OFFSETS_r(if (ri->u.offsets) {
const STRLEN len = ri->u.offsets[0];
STRLEN i;
GET_RE_DEBUG_FLAGS_DECL;
PerlIO_printf(Perl_debug_log,
"Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
for (i = 1; i <= len; i++) {
if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
(UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
}
PerlIO_printf(Perl_debug_log, "\n");
});
#endif
#ifdef USE_ITHREADS
/* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
* by setting the regexp SV to readonly-only instead. If the
* pattern's been recompiled, the USEDness should remain. */
if (old_re && SvREADONLY(old_re))
SvREADONLY_on(rx);
#endif
return rx;
}
SV*
Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
const U32 flags)
{
PERL_ARGS_ASSERT_REG_NAMED_BUFF;
PERL_UNUSED_ARG(value);
if (flags & RXapif_FETCH) {
return reg_named_buff_fetch(rx, key, flags);
} else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
Perl_croak_no_modify();
return NULL;
} else if (flags & RXapif_EXISTS) {
return reg_named_buff_exists(rx, key, flags)
? &PL_sv_yes
: &PL_sv_no;
} else if (flags & RXapif_REGNAMES) {
return reg_named_buff_all(rx, flags);
} else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
return reg_named_buff_scalar(rx, flags);
} else {
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
return NULL;
}
}
SV*
Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
const U32 flags)
{
PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
PERL_UNUSED_ARG(lastkey);
if (flags & RXapif_FIRSTKEY)
return reg_named_buff_firstkey(rx, flags);
else if (flags & RXapif_NEXTKEY)
return reg_named_buff_nextkey(rx, flags);
else {
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
(int)flags);
return NULL;
}
}
SV*
Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
const U32 flags)
{
AV *retarray = NULL;
SV *ret;
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
if (flags & RXapif_ALL)
retarray=newAV();
if (rx && RXp_PAREN_NAMES(rx)) {
HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
if (he_str) {
IV i;
SV* sv_dat=HeVAL(he_str);
I32 *nums=(I32*)SvPVX(sv_dat);
for ( i=0; i<SvIVX(sv_dat); i++ ) {
if ((I32)(rx->nparens) >= nums[i]
&& rx->offs[nums[i]].start != -1
&& rx->offs[nums[i]].end != -1)
{
ret = newSVpvs("");
CALLREG_NUMBUF_FETCH(r,nums[i],ret);
if (!retarray)
return ret;
} else {
if (retarray)
ret = newSVsv(&PL_sv_undef);
}
if (retarray)
av_push(retarray, ret);
}
if (retarray)
return newRV_noinc(MUTABLE_SV(retarray));
}
}
return NULL;
}
bool
Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
const U32 flags)
{
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
if (rx && RXp_PAREN_NAMES(rx)) {
if (flags & RXapif_ALL) {
return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
} else {
SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
if (sv) {
SvREFCNT_dec_NN(sv);
return TRUE;
} else {
return FALSE;
}
}
} else {
return FALSE;
}
}
SV*
Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
if ( rx && RXp_PAREN_NAMES(rx) ) {
(void)hv_iterinit(RXp_PAREN_NAMES(rx));
return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
} else {
return FALSE;
}
}
SV*
Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = ReANY(r);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
if (rx && RXp_PAREN_NAMES(rx)) {
HV *hv = RXp_PAREN_NAMES(rx);
HE *temphe;
while ( (temphe = hv_iternext_flags(hv,0)) ) {
IV i;
IV parno = 0;
SV* sv_dat = HeVAL(temphe);
I32 *nums = (I32*)SvPVX(sv_dat);
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
if ((I32)(rx->lastparen) >= nums[i] &&
rx->offs[nums[i]].start != -1 &&
rx->offs[nums[i]].end != -1)
{
parno = nums[i];
break;
}
}
if (parno || flags & RXapif_ALL) {
return newSVhek(HeKEY_hek(temphe));
}
}
}
return NULL;
}
SV*
Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
{
SV *ret;
AV *av;
SSize_t length;
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
if (rx && RXp_PAREN_NAMES(rx)) {
if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
} else if (flags & RXapif_ONE) {
ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
av = MUTABLE_AV(SvRV(ret));
length = av_tindex(av);
SvREFCNT_dec_NN(ret);
return newSViv(length + 1);
} else {
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
(int)flags);
return NULL;
}
}
return &PL_sv_undef;
}
SV*
Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = ReANY(r);
AV *av = newAV();
PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
if (rx && RXp_PAREN_NAMES(rx)) {
HV *hv= RXp_PAREN_NAMES(rx);
HE *temphe;
(void)hv_iterinit(hv);
while ( (temphe = hv_iternext_flags(hv,0)) ) {
IV i;
IV parno = 0;
SV* sv_dat = HeVAL(temphe);
I32 *nums = (I32*)SvPVX(sv_dat);
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
if ((I32)(rx->lastparen) >= nums[i] &&
rx->offs[nums[i]].start != -1 &&
rx->offs[nums[i]].end != -1)
{
parno = nums[i];
break;
}
}
if (parno || flags & RXapif_ALL) {
av_push(av, newSVhek(HeKEY_hek(temphe)));
}
}
}
return newRV_noinc(MUTABLE_SV(av));
}
void
Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
SV * const sv)
{
struct regexp *const rx = ReANY(r);
char *s = NULL;
SSize_t i = 0;
SSize_t s1, t1;
I32 n = paren;
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
if ( n == RX_BUFF_IDX_CARET_PREMATCH
|| n == RX_BUFF_IDX_CARET_FULLMATCH
|| n == RX_BUFF_IDX_CARET_POSTMATCH
)
{
bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
if (!keepcopy) {
/* on something like
* $r = qr/.../;
* /$qr/p;
* the KEEPCOPY is set on the PMOP rather than the regex */
if (PL_curpm && r == PM_GETRE(PL_curpm))
keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
}
if (!keepcopy)
goto ret_undef;
}
if (!rx->subbeg)
goto ret_undef;
if (n == RX_BUFF_IDX_CARET_FULLMATCH)
/* no need to distinguish between them any more */
n = RX_BUFF_IDX_FULLMATCH;
if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
&& rx->offs[0].start != -1)
{
/* $`, ${^PREMATCH} */
i = rx->offs[0].start;
s = rx->subbeg;
}
else
if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
&& rx->offs[0].end != -1)
{
/* $', ${^POSTMATCH} */
s = rx->subbeg - rx->suboffset + rx->offs[0].end;
i = rx->sublen + rx->suboffset - rx->offs[0].end;
}
else
if ( 0 <= n && n <= (I32)rx->nparens &&
(s1 = rx->offs[n].start) != -1 &&
(t1 = rx->offs[n].end) != -1)
{
/* $&, ${^MATCH}, $1 ... */
i = t1 - s1;
s = rx->subbeg + s1 - rx->suboffset;
} else {
goto ret_undef;
}
assert(s >= rx->subbeg);
assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
if (i >= 0) {
#ifdef NO_TAINT_SUPPORT
sv_setpvn(sv, s, i);
#else
const int oldtainted = TAINT_get;
TAINT_NOT;
sv_setpvn(sv, s, i);
TAINT_set(oldtainted);
#endif
if ( (rx->intflags & PREGf_CANY_SEEN)
? (RXp_MATCH_UTF8(rx)
&& (!i || is_utf8_string((U8*)s, i)))
: (RXp_MATCH_UTF8(rx)) )
{
SvUTF8_on(sv);
}
else
SvUTF8_off(sv);
if (TAINTING_get) {
if (RXp_MATCH_TAINTED(rx)) {
if (SvTYPE(sv) >= SVt_PVMG) {
MAGIC* const mg = SvMAGIC(sv);
MAGIC* mgt;
TAINT;
SvMAGIC_set(sv, mg->mg_moremagic);
SvTAINT(sv);
if ((mgt = SvMAGIC(sv))) {
mg->mg_moremagic = mgt;
SvMAGIC_set(sv, mg);
}
} else {
TAINT;
SvTAINT(sv);
}
} else
SvTAINTED_off(sv);
}
} else {
ret_undef:
sv_setsv(sv,&PL_sv_undef);
return;
}
}
void
Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
SV const * const value)
{
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
PERL_UNUSED_ARG(rx);
PERL_UNUSED_ARG(paren);
PERL_UNUSED_ARG(value);
if (!PL_localizing)
Perl_croak_no_modify();
}
I32
Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
const I32 paren)
{
struct regexp *const rx = ReANY(r);
I32 i;
I32 s1, t1;
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
if ( paren == RX_BUFF_IDX_CARET_PREMATCH
|| paren == RX_BUFF_IDX_CARET_FULLMATCH
|| paren == RX_BUFF_IDX_CARET_POSTMATCH
)
{
bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
if (!keepcopy) {
/* on something like
* $r = qr/.../;
* /$qr/p;
* the KEEPCOPY is set on the PMOP rather than the regex */
if (PL_curpm && r == PM_GETRE(PL_curpm))
keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
}
if (!keepcopy)
goto warn_undef;
}
/* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
switch (paren) {
case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
case RX_BUFF_IDX_PREMATCH: /* $` */
if (rx->offs[0].start != -1) {
i = rx->offs[0].start;
if (i > 0) {
s1 = 0;
t1 = i;
goto getlen;
}
}
return 0;
case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
case RX_BUFF_IDX_POSTMATCH: /* $' */
if (rx->offs[0].end != -1) {
i = rx->sublen - rx->offs[0].end;
if (i > 0) {
s1 = rx->offs[0].end;
t1 = rx->sublen;
goto getlen;
}
}
return 0;
default: /* $& / ${^MATCH}, $1, $2, ... */
if (paren <= (I32)rx->nparens &&
(s1 = rx->offs[paren].start) != -1 &&
(t1 = rx->offs[paren].end) != -1)
{
i = t1 - s1;
goto getlen;
} else {
warn_undef:
if (ckWARN(WARN_UNINITIALIZED))
report_uninit((const SV *)sv);
return 0;
}
}
getlen:
if (i > 0 && RXp_MATCH_UTF8(rx)) {
const char * const s = rx->subbeg - rx->suboffset + s1;
const U8 *ep;
STRLEN el;
i = t1 - s1;
if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
i = el;
}
return i;
}
SV*
Perl_reg_qr_package(pTHX_ REGEXP * const rx)
{
PERL_ARGS_ASSERT_REG_QR_PACKAGE;
PERL_UNUSED_ARG(rx);
if (0)
return NULL;
else
return newSVpvs("Regexp");
}
/* Scans the name of a named buffer from the pattern.
* If flags is REG_RSN_RETURN_NULL returns null.
* If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
* If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
* to the parsed name as looked up in the RExC_paren_names hash.
* If there is an error throws a vFAIL().. type exception.
*/
#define REG_RSN_RETURN_NULL 0
#define REG_RSN_RETURN_NAME 1
#define REG_RSN_RETURN_DATA 2
STATIC SV*
S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
{
char *name_start = RExC_parse;
PERL_ARGS_ASSERT_REG_SCAN_NAME;
assert (RExC_parse <= RExC_end);
if (RExC_parse == RExC_end) NOOP;
else if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
/* skip IDFIRST by using do...while */
if (UTF)
do {
RExC_parse += UTF8SKIP(RExC_parse);
} while (isWORDCHAR_utf8((U8*)RExC_parse));
else
do {
RExC_parse++;
} while (isWORDCHAR(*RExC_parse));
} else {
RExC_parse++; /* so the <- from the vFAIL is after the offending
character */
vFAIL("Group name must start with a non-digit word character");
}
if ( flags ) {
SV* sv_name
= newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
SVs_TEMP | (UTF ? SVf_UTF8 : 0));
if ( flags == REG_RSN_RETURN_NAME)
return sv_name;
else if (flags==REG_RSN_RETURN_DATA) {
HE *he_str = NULL;
SV *sv_dat = NULL;
if ( ! sv_name ) /* should not happen*/
Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
if (RExC_paren_names)
he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
if ( he_str )
sv_dat = HeVAL(he_str);
if ( ! sv_dat )
vFAIL("Reference to nonexistent named group");
return sv_dat;
}
else {
Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
(unsigned long) flags);
}
assert(0); /* NOT REACHED */
}
return NULL;
}
#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
int rem=(int)(RExC_end - RExC_parse); \
int cut; \
int num; \
int iscut=0; \
if (rem>10) { \
rem=10; \
iscut=1; \
} \
cut=10-rem; \
if (RExC_lastparse!=RExC_parse) \
PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
rem, RExC_parse, \
cut + 4, \
iscut ? "..." : "<" \
); \
else \
PerlIO_printf(Perl_debug_log,"%16s",""); \
\
if (SIZE_ONLY) \
num = RExC_size + 1; \
else \
num=REG_NODE_NUM(RExC_emit); \
if (RExC_lastnum!=num) \
PerlIO_printf(Perl_debug_log,"|%4d",num); \
else \
PerlIO_printf(Perl_debug_log,"|%4s",""); \
PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
(int)((depth*2)), "", \
(funcname) \
); \
RExC_lastnum=num; \
RExC_lastparse=RExC_parse; \
})
#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
DEBUG_PARSE_MSG((funcname)); \
PerlIO_printf(Perl_debug_log,"%4s","\n"); \
})
#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
DEBUG_PARSE_MSG((funcname)); \
PerlIO_printf(Perl_debug_log,fmt "\n",args); \
})
/* This section of code defines the inversion list object and its methods. The
* interfaces are highly subject to change, so as much as possible is static to
* this file. An inversion list is here implemented as a malloc'd C UV array
* as an SVt_INVLIST scalar.
*
* An inversion list for Unicode is an array of code points, sorted by ordinal
* number. The zeroth element is the first code point in the list. The 1th
* element is the first element beyond that not in the list. In other words,
* the first range is
* invlist[0]..(invlist[1]-1)
* The other ranges follow. Thus every element whose index is divisible by two
* marks the beginning of a range that is in the list, and every element not
* divisible by two marks the beginning of a range not in the list. A single
* element inversion list that contains the single code point N generally
* consists of two elements
* invlist[0] == N
* invlist[1] == N+1
* (The exception is when N is the highest representable value on the
* machine, in which case the list containing just it would be a single
* element, itself. By extension, if the last range in the list extends to
* infinity, then the first element of that range will be in the inversion list
* at a position that is divisible by two, and is the final element in the
* list.)
* Taking the complement (inverting) an inversion list is quite simple, if the
* first element is 0, remove it; otherwise add a 0 element at the beginning.
* This implementation reserves an element at the beginning of each inversion
* list to always contain 0; there is an additional flag in the header which
* indicates if the list begins at the 0, or is offset to begin at the next
* element.
*
* More about inversion lists can be found in "Unicode Demystified"
* Chapter 13 by Richard Gillam, published by Addison-Wesley.
* More will be coming when functionality is added later.
*
* The inversion list data structure is currently implemented as an SV pointing
* to an array of UVs that the SV thinks are bytes. This allows us to have an
* array of UV whose memory management is automatically handled by the existing
* facilities for SV's.
*
* Some of the methods should always be private to the implementation, and some
* should eventually be made public */
/* The header definitions are in F<inline_invlist.c> */
PERL_STATIC_INLINE UV*
S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
{
/* Returns a pointer to the first element in the inversion list's array.
* This is called upon initialization of an inversion list. Where the
* array begins depends on whether the list has the code point U+0000 in it
* or not. The other parameter tells it whether the code that follows this
* call is about to put a 0 in the inversion list or not. The first
* element is either the element reserved for 0, if TRUE, or the element
* after it, if FALSE */
bool* offset = get_invlist_offset_addr(invlist);
UV* zero_addr = (UV *) SvPVX(invlist);
PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
/* Must be empty */
assert(! _invlist_len(invlist));
*zero_addr = 0;
/* 1^1 = 0; 1^0 = 1 */
*offset = 1 ^ will_have_0;
return zero_addr + *offset;
}
PERL_STATIC_INLINE UV*
S_invlist_array(pTHX_ SV* const invlist)
{
/* Returns the pointer to the inversion list's array. Every time the
* length changes, this needs to be called in case malloc or realloc moved
* it */
PERL_ARGS_ASSERT_INVLIST_ARRAY;
/* Must not be empty. If these fail, you probably didn't check for <len>
* being non-zero before trying to get the array */
assert(_invlist_len(invlist));
/* The very first element always contains zero, The array begins either
* there, or if the inversion list is offset, at the element after it.
* The offset header field determines which; it contains 0 or 1 to indicate
* how much additionally to add */
assert(0 == *(SvPVX(invlist)));
return ((UV *) SvPVX(invlist) + *get_invlist_offset_addr(invlist));
}
PERL_STATIC_INLINE void
S_invlist_set_len(pTHX_ SV* const invlist, const UV len, const bool offset)
{
/* Sets the current number of elements stored in the inversion list.
* Updates SvCUR correspondingly */
PERL_ARGS_ASSERT_INVLIST_SET_LEN;
assert(SvTYPE(invlist) == SVt_INVLIST);
SvCUR_set(invlist,
(len == 0)
? 0
: TO_INTERNAL_SIZE(len + offset));
assert(SvLEN(invlist) == 0 || SvCUR(invlist) <= SvLEN(invlist));
}
PERL_STATIC_INLINE IV*
S_get_invlist_previous_index_addr(pTHX_ SV* invlist)
{
/* Return the address of the IV that is reserved to hold the cached index
* */
PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
assert(SvTYPE(invlist) == SVt_INVLIST);
return &(((XINVLIST*) SvANY(invlist))->prev_index);
}
PERL_STATIC_INLINE IV
S_invlist_previous_index(pTHX_ SV* const invlist)
{
/* Returns cached index of previous search */
PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
return *get_invlist_previous_index_addr(invlist);
}
PERL_STATIC_INLINE void
S_invlist_set_previous_index(pTHX_ SV* const invlist, const IV index)
{
/* Caches <index> for later retrieval */
PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
assert(index == 0 || index < (int) _invlist_len(invlist));
*get_invlist_previous_index_addr(invlist) = index;
}
PERL_STATIC_INLINE UV
S_invlist_max(pTHX_ SV* const invlist)
{
/* Returns the maximum number of elements storable in the inversion list's
* array, without having to realloc() */
PERL_ARGS_ASSERT_INVLIST_MAX;
assert(SvTYPE(invlist) == SVt_INVLIST);
/* Assumes worst case, in which the 0 element is not counted in the
* inversion list, so subtracts 1 for that */
return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
: FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
}
#ifndef PERL_IN_XSUB_RE
SV*
Perl__new_invlist(pTHX_ IV initial_size)
{
/* Return a pointer to a newly constructed inversion list, with enough
* space to store 'initial_size' elements. If that number is negative, a
* system default is used instead */
SV* new_list;
if (initial_size < 0) {
initial_size = 10;
}
/* Allocate the initial space */
new_list = newSV_type(SVt_INVLIST);
/* First 1 is in case the zero element isn't in the list; second 1 is for
* trailing NUL */
SvGROW(new_list, TO_INTERNAL_SIZE(initial_size + 1) + 1);
invlist_set_len(new_list, 0, 0);
/* Force iterinit() to be used to get iteration to work */
*get_invlist_iter_addr(new_list) = (STRLEN) UV_MAX;
*get_invlist_previous_index_addr(new_list) = 0;
return new_list;
}
SV*
Perl__new_invlist_C_array(pTHX_ const UV* const list)
{
/* Return a pointer to a newly constructed inversion list, initialized to
* point to <list>, which has to be in the exact correct inversion list
* form, including internal fields. Thus this is a dangerous routine that
* should not be used in the wrong hands. The passed in 'list' contains
* several header fields at the beginning that are not part of the
* inversion list body proper */
const STRLEN length = (STRLEN) list[0];
const UV version_id = list[1];
const bool offset = cBOOL(list[2]);
#define HEADER_LENGTH 3
/* If any of the above changes in any way, you must change HEADER_LENGTH
* (if appropriate) and regenerate INVLIST_VERSION_ID by running
* perl -E 'say int(rand 2**31-1)'
*/
#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
data structure type, so that one being
passed in can be validated to be an
inversion list of the correct vintage.
*/
SV* invlist = newSV_type(SVt_INVLIST);
PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
if (version_id != INVLIST_VERSION_ID) {
Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
}
/* The generated array passed in includes header elements that aren't part
* of the list proper, so start it just after them */
SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
SvLEN_set(invlist, 0); /* Means we own the contents, and the system
shouldn't touch it */
*(get_invlist_offset_addr(invlist)) = offset;
/* The 'length' passed to us is the physical number of elements in the
* inversion list. But if there is an offset the logical number is one
* less than that */
invlist_set_len(invlist, length - offset, offset);
invlist_set_previous_index(invlist, 0);
/* Initialize the iteration pointer. */
invlist_iterfinish(invlist);
SvREADONLY_on(invlist);
return invlist;
}
#endif /* ifndef PERL_IN_XSUB_RE */
STATIC void
S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
{
/* Grow the maximum size of an inversion list */
PERL_ARGS_ASSERT_INVLIST_EXTEND;
assert(SvTYPE(invlist) == SVt_INVLIST);
/* Add one to account for the zero element at the beginning which may not
* be counted by the calling parameters */
SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max + 1));
}
PERL_STATIC_INLINE void
S_invlist_trim(pTHX_ SV* const invlist)
{
PERL_ARGS_ASSERT_INVLIST_TRIM;
assert(SvTYPE(invlist) == SVt_INVLIST);
/* Change the length of the inversion list to how many entries it currently
* has */
SvPV_shrink_to_cur((SV *) invlist);
}
STATIC void
S__append_range_to_invlist(pTHX_ SV* const invlist,
const UV start, const UV end)
{
/* Subject to change or removal. Append the range from 'start' to 'end' at
* the end of the inversion list. The range must be above any existing
* ones. */
UV* array;
UV max = invlist_max(invlist);
UV len = _invlist_len(invlist);
bool offset;
PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
if (len == 0) { /* Empty lists must be initialized */
offset = start != 0;
array = _invlist_array_init(invlist, ! offset);
}
else {
/* Here, the existing list is non-empty. The current max entry in the
* list is generally the first value not in the set, except when the
* set extends to the end of permissible values, in which case it is
* the first entry in that final set, and so this call is an attempt to
* append out-of-order */
UV final_element = len - 1;
array = invlist_array(invlist);
if (array[final_element] > start
|| ELEMENT_RANGE_MATCHES_INVLIST(final_element))
{
Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
array[final_element], start,
ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
}
/* Here, it is a legal append. If the new range begins with the first
* value not in the set, it is extending the set, so the new first
* value not in the set is one greater than the newly extended range.
* */
offset = *get_invlist_offset_addr(invlist);
if (array[final_element] == start) {
if (end != UV_MAX) {
array[final_element] = end + 1;
}
else {
/* But if the end is the maximum representable on the machine,
* just let the range that this would extend to have no end */
invlist_set_len(invlist, len - 1, offset);
}
return;
}
}
/* Here the new range doesn't extend any existing set. Add it */
len += 2; /* Includes an element each for the start and end of range */
/* If wll overflow the existing space, extend, which may cause the array to
* be moved */
if (max < len) {
invlist_extend(invlist, len);
/* Have to set len here to avoid assert failure in invlist_array() */
invlist_set_len(invlist, len, offset);
array = invlist_array(invlist);
}
else {
invlist_set_len(invlist, len, offset);
}
/* The next item on the list starts the range, the one after that is
* one past the new range. */
array[len - 2] = start;
if (end != UV_MAX) {
array[len - 1] = end + 1;
}
else {
/* But if the end is the maximum representable on the machine, just let
* the range have no end */
invlist_set_len(invlist, len - 1, offset);
}
}
#ifndef PERL_IN_XSUB_RE
IV
Perl__invlist_search(pTHX_ SV* const invlist, const UV cp)
{
/* Searches the inversion list for the entry that contains the input code
* point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
* return value is the index into the list's array of the range that
* contains <cp> */
IV low = 0;
IV mid;
IV high = _invlist_len(invlist);
const IV highest_element = high - 1;
const UV* array;
PERL_ARGS_ASSERT__INVLIST_SEARCH;
/* If list is empty, return failure. */
if (high == 0) {
return -1;
}
/* (We can't get the array unless we know the list is non-empty) */
array = invlist_array(invlist);
mid = invlist_previous_index(invlist);
assert(mid >=0 && mid <= highest_element);
/* <mid> contains the cache of the result of the previous call to this
* function (0 the first time). See if this call is for the same result,
* or if it is for mid-1. This is under the theory that calls to this
* function will often be for related code points that are near each other.
* And benchmarks show that caching gives better results. We also test
* here if the code point is within the bounds of the list. These tests
* replace others that would have had to be made anyway to make sure that
* the array bounds were not exceeded, and these give us extra information
* at the same time */
if (cp >= array[mid]) {
if (cp >= array[highest_element]) {
return highest_element;
}
/* Here, array[mid] <= cp < array[highest_element]. This means that
* the final element is not the answer, so can exclude it; it also
* means that <mid> is not the final element, so can refer to 'mid + 1'
* safely */
if (cp < array[mid + 1]) {
return mid;
}
high--;
low = mid + 1;
}
else { /* cp < aray[mid] */
if (cp < array[0]) { /* Fail if outside the array */
return -1;
}
high = mid;
if (cp >= array[mid - 1]) {
goto found_entry;
}
}
/* Binary search. What we are looking for is <i> such that
* array[i] <= cp < array[i+1]
* The loop below converges on the i+1. Note that there may not be an
* (i+1)th element in the array, and things work nonetheless */
while (low < high) {
mid = (low + high) / 2;
assert(mid <= highest_element);
if (array[mid] <= cp) { /* cp >= array[mid] */
low = mid + 1;
/* We could do this extra test to exit the loop early.
if (cp < array[low]) {
return mid;
}
*/
}
else { /* cp < array[mid] */
high = mid;
}
}
found_entry:
high--;
invlist_set_previous_index(invlist, high);
return high;
}
void
Perl__invlist_populate_swatch(pTHX_ SV* const invlist,
const UV start, const UV end, U8* swatch)
{
/* populates a swatch of a swash the same way swatch_get() does in utf8.c,
* but is used when the swash has an inversion list. This makes this much
* faster, as it uses a binary search instead of a linear one. This is
* intimately tied to that function, and perhaps should be in utf8.c,
* except it is intimately tied to inversion lists as well. It assumes
* that <swatch> is all 0's on input */
UV current = start;
const IV len = _invlist_len(invlist);
IV i;
const UV * array;
PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
if (len == 0) { /* Empty inversion list */
return;
}
array = invlist_array(invlist);
/* Find which element it is */
i = _invlist_search(invlist, start);
/* We populate from <start> to <end> */
while (current < end) {
UV upper;
/* The inversion list gives the results for every possible code point
* after the first one in the list. Only those ranges whose index is
* even are ones that the inversion list matches. For the odd ones,
* and if the initial code point is not in the list, we have to skip
* forward to the next element */
if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
i++;
if (i >= len) { /* Finished if beyond the end of the array */
return;
}
current = array[i];
if (current >= end) { /* Finished if beyond the end of what we
are populating */
if (LIKELY(end < UV_MAX)) {
return;
}
/* We get here when the upper bound is the maximum
* representable on the machine, and we are looking for just
* that code point. Have to special case it */
i = len;
goto join_end_of_list;
}
}
assert(current >= start);
/* The current range ends one below the next one, except don't go past
* <end> */
i++;
upper = (i < len && array[i] < end) ? array[i] : end;
/* Here we are in a range that matches. Populate a bit in the 3-bit U8
* for each code point in it */
for (; current < upper; current++) {
const STRLEN offset = (STRLEN)(current - start);
swatch[offset >> 3] |= 1 << (offset & 7);
}
join_end_of_list:
/* Quit if at the end of the list */
if (i >= len) {
/* But first, have to deal with the highest possible code point on
* the platform. The previous code assumes that <end> is one
* beyond where we want to populate, but that is impossible at the
* platform's infinity, so have to handle it specially */
if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
{
const STRLEN offset = (STRLEN)(end - start);
swatch[offset >> 3] |= 1 << (offset & 7);
}
return;
}
/* Advance to the next range, which will be for code points not in the
* inversion list */
current = array[i];
}
return;
}
void
Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
const bool complement_b, SV** output)
{
/* Take the union of two inversion lists and point <output> to it. *output
* SHOULD BE DEFINED upon input, and if it points to one of the two lists,
* the reference count to that list will be decremented if not already a
* temporary (mortal); otherwise *output will be made correspondingly
* mortal. The first list, <a>, may be NULL, in which case a copy of the
* second list is returned. If <complement_b> is TRUE, the union is taken
* of the complement (inversion) of <b> instead of b itself.
*
* The basis for this comes from "Unicode Demystified" Chapter 13 by
* Richard Gillam, published by Addison-Wesley, and explained at some
* length there. The preface says to incorporate its examples into your
* code at your own risk.
*
* The algorithm is like a merge sort.
*
* XXX A potential performance improvement is to keep track as we go along
* if only one of the inputs contributes to the result, meaning the other
* is a subset of that one. In that case, we can skip the final copy and
* return the larger of the input lists, but then outside code might need
* to keep track of whether to free the input list or not */
const UV* array_a; /* a's array */
const UV* array_b;
UV len_a; /* length of a's array */
UV len_b;
SV* u; /* the resulting union */
UV* array_u;
UV len_u;
UV i_a = 0; /* current index into a's array */
UV i_b = 0;
UV i_u = 0;
/* running count, as explained in the algorithm source book; items are
* stopped accumulating and are output when the count changes to/from 0.
* The count is incremented when we start a range that's in the set, and
* decremented when we start a range that's not in the set. So its range
* is 0 to 2. Only when the count is zero is something not in the set.
*/
UV count = 0;
PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
assert(a != b);
/* If either one is empty, the union is the other one */
if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
bool make_temp = FALSE; /* Should we mortalize the result? */
if (*output == a) {
if (a != NULL) {
if (! (make_temp = cBOOL(SvTEMP(a)))) {
SvREFCNT_dec_NN(a);
}
}
}
if (*output != b) {
*output = invlist_clone(b);
if (complement_b) {
_invlist_invert(*output);
}
} /* else *output already = b; */
if (make_temp) {
sv_2mortal(*output);
}
return;
}
else if ((len_b = _invlist_len(b)) == 0) {
bool make_temp = FALSE;
if (*output == b) {
if (! (make_temp = cBOOL(SvTEMP(b)))) {
SvREFCNT_dec_NN(b);
}
}
/* The complement of an empty list is a list that has everything in it,
* so the union with <a> includes everything too */
if (complement_b) {
if (a == *output) {
if (! (make_temp = cBOOL(SvTEMP(a)))) {
SvREFCNT_dec_NN(a);
}
}
*output = _new_invlist(1);
_append_range_to_invlist(*output, 0, UV_MAX);
}
else if (*output != a) {
*output = invlist_clone(a);
}
/* else *output already = a; */
if (make_temp) {
sv_2mortal(*output);
}
return;
}
/* Here both lists exist and are non-empty */
array_a = invlist_array(a);
array_b = invlist_array(b);
/* If are to take the union of 'a' with the complement of b, set it
* up so are looking at b's complement. */
if (complement_b) {
/* To complement, we invert: if the first element is 0, remove it. To
* do this, we just pretend the array starts one later */
if (array_b[0] == 0) {
array_b++;
len_b--;
}
else {
/* But if the first element is not zero, we pretend the list starts
* at the 0 that is always stored immediately before the array. */
array_b--;
len_b++;
}
}
/* Size the union for the worst case: that the sets are completely
* disjoint */
u = _new_invlist(len_a + len_b);
/* Will contain U+0000 if either component does */
array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
|| (len_b > 0 && array_b[0] == 0));
/* Go through each list item by item, stopping when exhausted one of
* them */
while (i_a < len_a && i_b < len_b) {
UV cp; /* The element to potentially add to the union's array */
bool cp_in_set; /* is it in the the input list's set or not */
/* We need to take one or the other of the two inputs for the union.
* Since we are merging two sorted lists, we take the smaller of the
* next items. In case of a tie, we take the one that is in its set
* first. If we took one not in the set first, it would decrement the
* count, possibly to 0 which would cause it to be output as ending the
* range, and the next time through we would take the same number, and
* output it again as beginning the next range. By doing it the
* opposite way, there is no possibility that the count will be
* momentarily decremented to 0, and thus the two adjoining ranges will
* be seamlessly merged. (In a tie and both are in the set or both not
* in the set, it doesn't matter which we take first.) */
if (array_a[i_a] < array_b[i_b]
|| (array_a[i_a] == array_b[i_b]
&& ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
{
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
cp= array_a[i_a++];
}
else {
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
cp = array_b[i_b++];
}
/* Here, have chosen which of the two inputs to look at. Only output
* if the running count changes to/from 0, which marks the
* beginning/end of a range in that's in the set */
if (cp_in_set) {
if (count == 0) {
array_u[i_u++] = cp;
}
count++;
}
else {
count--;
if (count == 0) {
array_u[i_u++] = cp;
}
}
}
/* Here, we are finished going through at least one of the lists, which
* means there is something remaining in at most one. We check if the list
* that hasn't been exhausted is positioned such that we are in the middle
* of a range in its set or not. (i_a and i_b point to the element beyond
* the one we care about.) If in the set, we decrement 'count'; if 0, there
* is potentially more to output.
* There are four cases:
* 1) Both weren't in their sets, count is 0, and remains 0. What's left
* in the union is entirely from the non-exhausted set.
* 2) Both were in their sets, count is 2. Nothing further should
* be output, as everything that remains will be in the exhausted
* list's set, hence in the union; decrementing to 1 but not 0 insures
* that
* 3) the exhausted was in its set, non-exhausted isn't, count is 1.
* Nothing further should be output because the union includes
* everything from the exhausted set. Not decrementing ensures that.
* 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
* decrementing to 0 insures that we look at the remainder of the
* non-exhausted set */
if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
|| (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
{
count--;
}
/* The final length is what we've output so far, plus what else is about to
* be output. (If 'count' is non-zero, then the input list we exhausted
* has everything remaining up to the machine's limit in its set, and hence
* in the union, so there will be no further output. */
len_u = i_u;
if (count == 0) {
/* At most one of the subexpressions will be non-zero */
len_u += (len_a - i_a) + (len_b - i_b);
}
/* Set result to final length, which can change the pointer to array_u, so
* re-find it */
if (len_u != _invlist_len(u)) {
invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
invlist_trim(u);
array_u = invlist_array(u);
}
/* When 'count' is 0, the list that was exhausted (if one was shorter than
* the other) ended with everything above it not in its set. That means
* that the remaining part of the union is precisely the same as the
* non-exhausted list, so can just copy it unchanged. (If both list were
* exhausted at the same time, then the operations below will be both 0.)
*/
if (count == 0) {
IV copy_count; /* At most one will have a non-zero copy count */
if ((copy_count = len_a - i_a) > 0) {
Copy(array_a + i_a, array_u + i_u, copy_count, UV);
}
else if ((copy_count = len_b - i_b) > 0) {
Copy(array_b + i_b, array_u + i_u, copy_count, UV);
}
}
/* We may be removing a reference to one of the inputs. If so, the output
* is made mortal if the input was. (Mortal SVs shouldn't have their ref
* count decremented) */
if (a == *output || b == *output) {
assert(! invlist_is_iterating(*output));
if ((SvTEMP(*output))) {
sv_2mortal(u);
}
else {
SvREFCNT_dec_NN(*output);
}
}
*output = u;
return;
}
void
Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
const bool complement_b, SV** i)
{
/* Take the intersection of two inversion lists and point <i> to it. *i
* SHOULD BE DEFINED upon input, and if it points to one of the two lists,
* the reference count to that list will be decremented if not already a
* temporary (mortal); otherwise *i will be made correspondingly mortal.
* The first list, <a>, may be NULL, in which case an empty list is
* returned. If <complement_b> is TRUE, the result will be the
* intersection of <a> and the complement (or inversion) of <b> instead of
* <b> directly.
*
* The basis for this comes from "Unicode Demystified" Chapter 13 by
* Richard Gillam, published by Addison-Wesley, and explained at some
* length there. The preface says to incorporate its examples into your
* code at your own risk. In fact, it had bugs
*
* The algorithm is like a merge sort, and is essentially the same as the
* union above
*/
const UV* array_a; /* a's array */
const UV* array_b;
UV len_a; /* length of a's array */
UV len_b;
SV* r; /* the resulting intersection */
UV* array_r;
UV len_r;
UV i_a = 0; /* current index into a's array */
UV i_b = 0;
UV i_r = 0;
/* running count, as explained in the algorithm source book; items are
* stopped accumulating and are output when the count changes to/from 2.
* The count is incremented when we start a range that's in the set, and
* decremented when we start a range that's not in the set. So its range
* is 0 to 2. Only when the count is 2 is something in the intersection.
*/
UV count = 0;
PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
assert(a != b);
/* Special case if either one is empty */
len_a = (a == NULL) ? 0 : _invlist_len(a);
if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
bool make_temp = FALSE;
if (len_a != 0 && complement_b) {
/* Here, 'a' is not empty, therefore from the above 'if', 'b' must
* be empty. Here, also we are using 'b's complement, which hence
* must be every possible code point. Thus the intersection is
* simply 'a'. */
if (*i != a) {
if (*i == b) {
if (! (make_temp = cBOOL(SvTEMP(b)))) {
SvREFCNT_dec_NN(b);
}
}
*i = invlist_clone(a);
}
/* else *i is already 'a' */
if (make_temp) {
sv_2mortal(*i);
}
return;
}
/* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
* intersection must be empty */
if (*i == a) {
if (! (make_temp = cBOOL(SvTEMP(a)))) {
SvREFCNT_dec_NN(a);
}
}
else if (*i == b) {
if (! (make_temp = cBOOL(SvTEMP(b)))) {
SvREFCNT_dec_NN(b);
}
}
*i = _new_invlist(0);
if (make_temp) {
sv_2mortal(*i);
}
return;
}
/* Here both lists exist and are non-empty */
array_a = invlist_array(a);
array_b = invlist_array(b);
/* If are to take the intersection of 'a' with the complement of b, set it
* up so are looking at b's complement. */
if (complement_b) {
/* To complement, we invert: if the first element is 0, remove it. To
* do this, we just pretend the array starts one later */
if (array_b[0] == 0) {
array_b++;
len_b--;
}
else {
/* But if the first element is not zero, we pretend the list starts
* at the 0 that is always stored immediately before the array. */
array_b--;
len_b++;
}
}
/* Size the intersection for the worst case: that the intersection ends up
* fragmenting everything to be completely disjoint */
r= _new_invlist(len_a + len_b);
/* Will contain U+0000 iff both components do */
array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
&& len_b > 0 && array_b[0] == 0);
/* Go through each list item by item, stopping when exhausted one of
* them */
while (i_a < len_a && i_b < len_b) {
UV cp; /* The element to potentially add to the intersection's
array */
bool cp_in_set; /* Is it in the input list's set or not */
/* We need to take one or the other of the two inputs for the
* intersection. Since we are merging two sorted lists, we take the
* smaller of the next items. In case of a tie, we take the one that
* is not in its set first (a difference from the union algorithm). If
* we took one in the set first, it would increment the count, possibly
* to 2 which would cause it to be output as starting a range in the
* intersection, and the next time through we would take that same
* number, and output it again as ending the set. By doing it the
* opposite of this, there is no possibility that the count will be
* momentarily incremented to 2. (In a tie and both are in the set or
* both not in the set, it doesn't matter which we take first.) */
if (array_a[i_a] < array_b[i_b]
|| (array_a[i_a] == array_b[i_b]
&& ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
{
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
cp= array_a[i_a++];
}
else {
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
cp= array_b[i_b++];
}
/* Here, have chosen which of the two inputs to look at. Only output
* if the running count changes to/from 2, which marks the
* beginning/end of a range that's in the intersection */
if (cp_in_set) {
count++;
if (count == 2) {
array_r[i_r++] = cp;
}
}
else {
if (count == 2) {
array_r[i_r++] = cp;
}
count--;
}
}
/* Here, we are finished going through at least one of the lists, which
* means there is something remaining in at most one. We check if the list
* that has been exhausted is positioned such that we are in the middle
* of a range in its set or not. (i_a and i_b point to elements 1 beyond
* the ones we care about.) There are four cases:
* 1) Both weren't in their sets, count is 0, and remains 0. There's
* nothing left in the intersection.
* 2) Both were in their sets, count is 2 and perhaps is incremented to
* above 2. What should be output is exactly that which is in the
* non-exhausted set, as everything it has is also in the intersection
* set, and everything it doesn't have can't be in the intersection
* 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
* gets incremented to 2. Like the previous case, the intersection is
* everything that remains in the non-exhausted set.
* 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
* remains 1. And the intersection has nothing more. */
if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
|| (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
{
count++;
}
/* The final length is what we've output so far plus what else is in the
* intersection. At most one of the subexpressions below will be non-zero
* */
len_r = i_r;
if (count >= 2) {
len_r += (len_a - i_a) + (len_b - i_b);
}
/* Set result to final length, which can change the pointer to array_r, so
* re-find it */
if (len_r != _invlist_len(r)) {
invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
invlist_trim(r);
array_r = invlist_array(r);
}
/* Finish outputting any remaining */
if (count >= 2) { /* At most one will have a non-zero copy count */
IV copy_count;
if ((copy_count = len_a - i_a) > 0) {
Copy(array_a + i_a, array_r + i_r, copy_count, UV);
}
else if ((copy_count = len_b - i_b) > 0) {
Copy(array_b + i_b, array_r + i_r, copy_count, UV);
}
}
/* We may be removing a reference to one of the inputs. If so, the output
* is made mortal if the input was. (Mortal SVs shouldn't have their ref
* count decremented) */
if (a == *i || b == *i) {
assert(! invlist_is_iterating(*i));
if (SvTEMP(*i)) {
sv_2mortal(r);
}
else {
SvREFCNT_dec_NN(*i);
}
}
*i = r;
return;
}
SV*
Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
{
/* Add the range from 'start' to 'end' inclusive to the inversion list's
* set. A pointer to the inversion list is returned. This may actually be
* a new list, in which case the passed in one has been destroyed. The
* passed in inversion list can be NULL, in which case a new one is created
* with just the one range in it */
SV* range_invlist;
UV len;
if (invlist == NULL) {
invlist = _new_invlist(2);
len = 0;
}
else {
len = _invlist_len(invlist);
}
/* If comes after the final entry actually in the list, can just append it
* to the end, */
if (len == 0
|| (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
&& start >= invlist_array(invlist)[len - 1]))
{
_append_range_to_invlist(invlist, start, end);
return invlist;
}
/* Here, can't just append things, create and return a new inversion list
* which is the union of this range and the existing inversion list */
range_invlist = _new_invlist(2);
_append_range_to_invlist(range_invlist, start, end);
_invlist_union(invlist, range_invlist, &invlist);
/* The temporary can be freed */
SvREFCNT_dec_NN(range_invlist);
return invlist;
}
SV*
Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
UV** other_elements_ptr)
{
/* Create and return an inversion list whose contents are to be populated
* by the caller. The caller gives the number of elements (in 'size') and
* the very first element ('element0'). This function will set
* '*other_elements_ptr' to an array of UVs, where the remaining elements
* are to be placed.
*
* Obviously there is some trust involved that the caller will properly
* fill in the other elements of the array.
*
* (The first element needs to be passed in, as the underlying code does
* things differently depending on whether it is zero or non-zero) */
SV* invlist = _new_invlist(size);
bool offset;
PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
_append_range_to_invlist(invlist, element0, element0);
offset = *get_invlist_offset_addr(invlist);
invlist_set_len(invlist, size, offset);
*other_elements_ptr = invlist_array(invlist) + 1;
return invlist;
}
#endif
PERL_STATIC_INLINE SV*
S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
return _add_range_to_invlist(invlist, cp, cp);
}
#ifndef PERL_IN_XSUB_RE
void
Perl__invlist_invert(pTHX_ SV* const invlist)
{
/* Complement the input inversion list. This adds a 0 if the list didn't
* have a zero; removes it otherwise. As described above, the data
* structure is set up so that this is very efficient */
PERL_ARGS_ASSERT__INVLIST_INVERT;
assert(! invlist_is_iterating(invlist));
/* The inverse of matching nothing is matching everything */
if (_invlist_len(invlist) == 0) {
_append_range_to_invlist(invlist, 0, UV_MAX);
return;
}
*get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
}
#endif
PERL_STATIC_INLINE SV*
S_invlist_clone(pTHX_ SV* const invlist)
{
/* Return a new inversion list that is a copy of the input one, which is
* unchanged. The new list will not be mortal even if the old one was. */
/* Need to allocate extra space to accommodate Perl's addition of a
* trailing NUL to SvPV's, since it thinks they are always strings */
SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
STRLEN physical_length = SvCUR(invlist);
bool offset = *(get_invlist_offset_addr(invlist));
PERL_ARGS_ASSERT_INVLIST_CLONE;
*(get_invlist_offset_addr(new_invlist)) = offset;
invlist_set_len(new_invlist, _invlist_len(invlist), offset);
Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
return new_invlist;
}
PERL_STATIC_INLINE STRLEN*
S_get_invlist_iter_addr(pTHX_ SV* invlist)
{
/* Return the address of the UV that contains the current iteration
* position */
PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
assert(SvTYPE(invlist) == SVt_INVLIST);
return &(((XINVLIST*) SvANY(invlist))->iterator);
}
PERL_STATIC_INLINE void
S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
{
PERL_ARGS_ASSERT_INVLIST_ITERINIT;
*get_invlist_iter_addr(invlist) = 0;
}
PERL_STATIC_INLINE void
S_invlist_iterfinish(pTHX_ SV* invlist)
{
/* Terminate iterator for invlist. This is to catch development errors.
* Any iteration that is interrupted before completed should call this
* function. Functions that add code points anywhere else but to the end
* of an inversion list assert that they are not in the middle of an
* iteration. If they were, the addition would make the iteration
* problematical: if the iteration hadn't reached the place where things
* were being added, it would be ok */
PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
*get_invlist_iter_addr(invlist) = (STRLEN) UV_MAX;
}
STATIC bool
S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
{
/* An C<invlist_iterinit> call on <invlist> must be used to set this up.
* This call sets in <*start> and <*end>, the next range in <invlist>.
* Returns <TRUE> if successful and the next call will return the next
* range; <FALSE> if was already at the end of the list. If the latter,
* <*start> and <*end> are unchanged, and the next call to this function
* will start over at the beginning of the list */
STRLEN* pos = get_invlist_iter_addr(invlist);
UV len = _invlist_len(invlist);
UV *array;
PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
if (*pos >= len) {
*pos = (STRLEN) UV_MAX; /* Force iterinit() to be required next time */
return FALSE;
}
array = invlist_array(invlist);
*start = array[(*pos)++];
if (*pos >= len) {
*end = UV_MAX;
}
else {
*end = array[(*pos)++] - 1;
}
return TRUE;
}
PERL_STATIC_INLINE bool
S_invlist_is_iterating(pTHX_ SV* const invlist)
{
PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
}
PERL_STATIC_INLINE UV
S_invlist_highest(pTHX_ SV* const invlist)
{
/* Returns the highest code point that matches an inversion list. This API
* has an ambiguity, as it returns 0 under either the highest is actually
* 0, or if the list is empty. If this distinction matters to you, check
* for emptiness before calling this function */
UV len = _invlist_len(invlist);
UV *array;
PERL_ARGS_ASSERT_INVLIST_HIGHEST;
if (len == 0) {
return 0;
}
array = invlist_array(invlist);
/* The last element in the array in the inversion list always starts a
* range that goes to infinity. That range may be for code points that are
* matched in the inversion list, or it may be for ones that aren't
* matched. In the latter case, the highest code point in the set is one
* less than the beginning of this range; otherwise it is the final element
* of this range: infinity */
return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
? UV_MAX
: array[len - 1] - 1;
}
#ifndef PERL_IN_XSUB_RE
SV *
Perl__invlist_contents(pTHX_ SV* const invlist)
{
/* Get the contents of an inversion list into a string SV so that they can
* be printed out. It uses the format traditionally done for debug tracing
*/
UV start, end;
SV* output = newSVpvs("\n");
PERL_ARGS_ASSERT__INVLIST_CONTENTS;
assert(! invlist_is_iterating(invlist));
invlist_iterinit(invlist);
while (invlist_iternext(invlist, &start, &end)) {
if (end == UV_MAX) {
Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
}
else if (end != start) {
Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
start, end);
}
else {
Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
}
}
return output;
}
#endif
#ifndef PERL_IN_XSUB_RE
void
Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
const char * const indent, SV* const invlist)
{
/* Designed to be called only by do_sv_dump(). Dumps out the ranges of the
* inversion list 'invlist' to 'file' at 'level' Each line is prefixed by
* the string 'indent'. The output looks like this:
[0] 0x000A .. 0x000D
[2] 0x0085
[4] 0x2028 .. 0x2029
[6] 0x3104 .. INFINITY
* This means that the first range of code points matched by the list are
* 0xA through 0xD; the second range contains only the single code point
* 0x85, etc. An inversion list is an array of UVs. Two array elements
* are used to define each range (except if the final range extends to
* infinity, only a single element is needed). The array index of the
* first element for the corresponding range is given in brackets. */
UV start, end;
STRLEN count = 0;
PERL_ARGS_ASSERT__INVLIST_DUMP;
if (invlist_is_iterating(invlist)) {
Perl_dump_indent(aTHX_ level, file,
"%sCan't dump inversion list because is in middle of iterating\n",
indent);
return;
}
invlist_iterinit(invlist);
while (invlist_iternext(invlist, &start, &end)) {
if (end == UV_MAX) {
Perl_dump_indent(aTHX_ level, file,
"%s[%"UVuf"] 0x%04"UVXf" .. INFINITY\n",
indent, (UV)count, start);
}
else if (end != start) {
Perl_dump_indent(aTHX_ level, file,
"%s[%"UVuf"] 0x%04"UVXf" .. 0x%04"UVXf"\n",
indent, (UV)count, start, end);
}
else {
Perl_dump_indent(aTHX_ level, file, "%s[%"UVuf"] 0x%04"UVXf"\n",
indent, (UV)count, start);
}
count += 2;
}
}
#endif
#ifdef PERL_ARGS_ASSERT__INVLISTEQ
bool
S__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
{
/* Return a boolean as to if the two passed in inversion lists are
* identical. The final argument, if TRUE, says to take the complement of
* the second inversion list before doing the comparison */
const UV* array_a = invlist_array(a);
const UV* array_b = invlist_array(b);
UV len_a = _invlist_len(a);
UV len_b = _invlist_len(b);
UV i = 0; /* current index into the arrays */
bool retval = TRUE; /* Assume are identical until proven otherwise */
PERL_ARGS_ASSERT__INVLISTEQ;
/* If are to compare 'a' with the complement of b, set it
* up so are looking at b's complement. */
if (complement_b) {
/* The complement of nothing is everything, so <a> would have to have
* just one element, starting at zero (ending at infinity) */
if (len_b == 0) {
return (len_a == 1 && array_a[0] == 0);
}
else if (array_b[0] == 0) {
/* Otherwise, to complement, we invert. Here, the first element is
* 0, just remove it. To do this, we just pretend the array starts
* one later */
array_b++;
len_b--;
}
else {
/* But if the first element is not zero, we pretend the list starts
* at the 0 that is always stored immediately before the array. */
array_b--;
len_b++;
}
}
/* Make sure that the lengths are the same, as well as the final element
* before looping through the remainder. (Thus we test the length, final,
* and first elements right off the bat) */
if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
retval = FALSE;
}
else for (i = 0; i < len_a - 1; i++) {
if (array_a[i] != array_b[i]) {
retval = FALSE;
break;
}
}
return retval;
}
#endif
#undef HEADER_LENGTH
#undef TO_INTERNAL_SIZE
#undef FROM_INTERNAL_SIZE
#undef INVLIST_VERSION_ID
/* End of inversion list object */
STATIC void
S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
{
/* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
* constructs, and updates RExC_flags with them. On input, RExC_parse
* should point to the first flag; it is updated on output to point to the
* final ')' or ':'. There needs to be at least one flag, or this will
* abort */
/* for (?g), (?gc), and (?o) warnings; warning
about (?c) will warn about (?g) -- japhy */
#define WASTED_O 0x01
#define WASTED_G 0x02
#define WASTED_C 0x04
#define WASTED_GC (WASTED_G|WASTED_C)
I32 wastedflags = 0x00;
U32 posflags = 0, negflags = 0;
U32 *flagsp = &posflags;
char has_charset_modifier = '\0';
regex_charset cs;
bool has_use_defaults = FALSE;
const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
/* '^' as an initial flag sets certain defaults */
if (UCHARAT(RExC_parse) == '^') {
RExC_parse++;
has_use_defaults = TRUE;
STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
? REGEX_UNICODE_CHARSET
: REGEX_DEPENDS_CHARSET);
}
cs = get_regex_charset(RExC_flags);
if (cs == REGEX_DEPENDS_CHARSET
&& (RExC_utf8 || RExC_uni_semantics))
{
cs = REGEX_UNICODE_CHARSET;
}
while (*RExC_parse) {
/* && strchr("iogcmsx", *RExC_parse) */
/* (?g), (?gc) and (?o) are useless here
and must be globally applied -- japhy */
switch (*RExC_parse) {
/* Code for the imsx flags */
CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
case LOCALE_PAT_MOD:
if (has_charset_modifier) {
goto excess_modifier;
}
else if (flagsp == &negflags) {
goto neg_modifier;
}
cs = REGEX_LOCALE_CHARSET;
has_charset_modifier = LOCALE_PAT_MOD;
break;
case UNICODE_PAT_MOD:
if (has_charset_modifier) {
goto excess_modifier;
}
else if (flagsp == &negflags) {
goto neg_modifier;
}
cs = REGEX_UNICODE_CHARSET;
has_charset_modifier = UNICODE_PAT_MOD;
break;
case ASCII_RESTRICT_PAT_MOD:
if (flagsp == &negflags) {
goto neg_modifier;
}
if (has_charset_modifier) {
if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
goto excess_modifier;
}
/* Doubled modifier implies more restricted */
cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
}
else {
cs = REGEX_ASCII_RESTRICTED_CHARSET;
}
has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
break;
case DEPENDS_PAT_MOD:
if (has_use_defaults) {
goto fail_modifiers;
}
else if (flagsp == &negflags) {
goto neg_modifier;
}
else if (has_charset_modifier) {
goto excess_modifier;
}
/* The dual charset means unicode semantics if the
* pattern (or target, not known until runtime) are
* utf8, or something in the pattern indicates unicode
* semantics */
cs = (RExC_utf8 || RExC_uni_semantics)
? REGEX_UNICODE_CHARSET
: REGEX_DEPENDS_CHARSET;
has_charset_modifier = DEPENDS_PAT_MOD;
break;
excess_modifier:
RExC_parse++;
if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
}
else if (has_charset_modifier == *(RExC_parse - 1)) {
vFAIL2("Regexp modifier \"%c\" may not appear twice",
*(RExC_parse - 1));
}
else {
vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
}
/*NOTREACHED*/
neg_modifier:
RExC_parse++;
vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
*(RExC_parse - 1));
/*NOTREACHED*/
case ONCE_PAT_MOD: /* 'o' */
case GLOBAL_PAT_MOD: /* 'g' */
if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
const I32 wflagbit = *RExC_parse == 'o'
? WASTED_O
: WASTED_G;
if (! (wastedflags & wflagbit) ) {
wastedflags |= wflagbit;
/* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
vWARN5(
RExC_parse + 1,
"Useless (%s%c) - %suse /%c modifier",
flagsp == &negflags ? "?-" : "?",
*RExC_parse,
flagsp == &negflags ? "don't " : "",
*RExC_parse
);
}
}
break;
case CONTINUE_PAT_MOD: /* 'c' */
if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
if (! (wastedflags & WASTED_C) ) {
wastedflags |= WASTED_GC;
/* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
vWARN3(
RExC_parse + 1,
"Useless (%sc) - %suse /gc modifier",
flagsp == &negflags ? "?-" : "?",
flagsp == &negflags ? "don't " : ""
);
}
}
break;
case KEEPCOPY_PAT_MOD: /* 'p' */
if (flagsp == &negflags) {
if (SIZE_ONLY)
ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
} else {
*flagsp |= RXf_PMf_KEEPCOPY;
}
break;
case '-':
/* A flag is a default iff it is following a minus, so
* if there is a minus, it means will be trying to
* re-specify a default which is an error */
if (has_use_defaults || flagsp == &negflags) {
goto fail_modifiers;
}
flagsp = &negflags;
wastedflags = 0; /* reset so (?g-c) warns twice */
break;
case ':':
case ')':
RExC_flags |= posflags;
RExC_flags &= ~negflags;
set_regex_charset(&RExC_flags, cs);
if (RExC_flags & RXf_PMf_FOLD) {
RExC_contains_i = 1;
}
return;
/*NOTREACHED*/
default:
fail_modifiers:
RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
/* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
vFAIL2utf8f("Sequence (%"UTF8f"...) not recognized",
UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
/*NOTREACHED*/
}
++RExC_parse;
}
}
/*
- reg - regular expression, i.e. main body or parenthesized thing
*
* Caller must absorb opening parenthesis.
*
* Combining parenthesis handling with the base level of regular expression
* is a trifle forced, but the need to tie the tails of the branches to what
* follows makes it hard to avoid.
*/
#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
#ifdef DEBUGGING
#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
#else
#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
#endif
/* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
needs to be restarted.
Otherwise would only return NULL if regbranch() returns NULL, which
cannot happen. */
STATIC regnode *
S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
/* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
* 2 is like 1, but indicates that nextchar() has been called to advance
* RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and
* this flag alerts us to the need to check for that */
{
dVAR;
regnode *ret; /* Will be the head of the group. */
regnode *br;
regnode *lastbr;
regnode *ender = NULL;
I32 parno = 0;
I32 flags;
U32 oregflags = RExC_flags;
bool have_branch = 0;
bool is_open = 0;
I32 freeze_paren = 0;
I32 after_freeze = 0;
char * parse_start = RExC_parse; /* MJD */
char * const oregcomp_parse = RExC_parse;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REG;
DEBUG_PARSE("reg ");
*flagp = 0; /* Tentatively. */
/* Make an OPEN node, if parenthesized. */
if (paren) {
/* Under /x, space and comments can be gobbled up between the '(' and
* here (if paren ==2). The forms '(*VERB' and '(?...' disallow such
* intervening space, as the sequence is a token, and a token should be
* indivisible */
bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
if ( *RExC_parse == '*') { /* (*VERB:ARG) */
char *start_verb = RExC_parse;
STRLEN verb_len = 0;
char *start_arg = NULL;
unsigned char op = 0;
int argok = 1;
int internal_argval = 0; /* internal_argval is only useful if
!argok */
if (has_intervening_patws && SIZE_ONLY) {
ckWARNregdep(RExC_parse + 1, "In '(*VERB...)', splitting the initial '(*' is deprecated");
}
while ( *RExC_parse && *RExC_parse != ')' ) {
if ( *RExC_parse == ':' ) {
start_arg = RExC_parse + 1;
break;
}
RExC_parse++;
}
++start_verb;
verb_len = RExC_parse - start_verb;
if ( start_arg ) {
RExC_parse++;
while ( *RExC_parse && *RExC_parse != ')' )
RExC_parse++;
if ( *RExC_parse != ')' )
vFAIL("Unterminated verb pattern argument");
if ( RExC_parse == start_arg )
start_arg = NULL;
} else {
if ( *RExC_parse != ')' )
vFAIL("Unterminated verb pattern");
}
switch ( *start_verb ) {
case 'A': /* (*ACCEPT) */
if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
op = ACCEPT;
internal_argval = RExC_nestroot;
}
break;
case 'C': /* (*COMMIT) */
if ( memEQs(start_verb,verb_len,"COMMIT") )
op = COMMIT;
break;
case 'F': /* (*FAIL) */
if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
op = OPFAIL;
argok = 0;
}
break;
case ':': /* (*:NAME) */
case 'M': /* (*MARK:NAME) */
if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
op = MARKPOINT;
argok = -1;
}
break;
case 'P': /* (*PRUNE) */
if ( memEQs(start_verb,verb_len,"PRUNE") )
op = PRUNE;
break;
case 'S': /* (*SKIP) */
if ( memEQs(start_verb,verb_len,"SKIP") )
op = SKIP;
break;
case 'T': /* (*THEN) */
/* [19:06] <TimToady> :: is then */
if ( memEQs(start_verb,verb_len,"THEN") ) {
op = CUTGROUP;
RExC_seen |= REG_CUTGROUP_SEEN;
}
break;
}
if ( ! op ) {
RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
vFAIL2utf8f(
"Unknown verb pattern '%"UTF8f"'",
UTF8fARG(UTF, verb_len, start_verb));
}
if ( argok ) {
if ( start_arg && internal_argval ) {
vFAIL3("Verb pattern '%.*s' may not have an argument",
verb_len, start_verb);
} else if ( argok < 0 && !start_arg ) {
vFAIL3("Verb pattern '%.*s' has a mandatory argument",
verb_len, start_verb);
} else {
ret = reganode(pRExC_state, op, internal_argval);
if ( ! internal_argval && ! SIZE_ONLY ) {
if (start_arg) {
SV *sv = newSVpvn( start_arg,
RExC_parse - start_arg);
ARG(ret) = add_data( pRExC_state,
STR_WITH_LEN("S"));
RExC_rxi->data->data[ARG(ret)]=(void*)sv;
ret->flags = 0;
} else {
ret->flags = 1;
}
}
}
if (!internal_argval)
RExC_seen |= REG_VERBARG_SEEN;
} else if ( start_arg ) {
vFAIL3("Verb pattern '%.*s' may not have an argument",
verb_len, start_verb);
} else {
ret = reg_node(pRExC_state, op);
}
nextchar(pRExC_state);
return ret;
}
else if (*RExC_parse == '?') { /* (?...) */
bool is_logical = 0;
const char * const seqstart = RExC_parse;
if (has_intervening_patws && SIZE_ONLY) {
ckWARNregdep(RExC_parse + 1, "In '(?...)', splitting the initial '(?' is deprecated");
}
RExC_parse++;
paren = *RExC_parse++;
ret = NULL; /* For look-ahead/behind. */
switch (paren) {
case 'P': /* (?P...) variants for those used to PCRE/Python */
paren = *RExC_parse++;
if ( paren == '<') /* (?P<...>) named capture */
goto named_capture;
else if (paren == '>') { /* (?P>name) named recursion */
goto named_recursion;
}
else if (paren == '=') { /* (?P=...) named backref */
/* this pretty much dupes the code for \k<NAME> in
* regatom(), if you change this make sure you change that
* */
char* name_start = RExC_parse;
U32 num = 0;
SV *sv_dat = reg_scan_name(pRExC_state,
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
if (RExC_parse == name_start || *RExC_parse != ')')
/* diag_listed_as: Sequence ?P=... not terminated in regex; marked by <-- HERE in m/%s/ */
vFAIL2("Sequence %.3s... not terminated",parse_start);
if (!SIZE_ONLY) {
num = add_data( pRExC_state, STR_WITH_LEN("S"));
RExC_rxi->data->data[num]=(void*)sv_dat;
SvREFCNT_inc_simple_void(sv_dat);
}
RExC_sawback = 1;
ret = reganode(pRExC_state,
((! FOLD)
? NREF
: (ASCII_FOLD_RESTRICTED)
? NREFFA
: (AT_LEAST_UNI_SEMANTICS)
? NREFFU
: (LOC)
? NREFFL
: NREFF),
num);
*flagp |= HASWIDTH;
Set_Node_Offset(ret, parse_start+1);
Set_Node_Cur_Length(ret, parse_start);
nextchar(pRExC_state);
return ret;
}
RExC_parse++;
/* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
vFAIL3("Sequence (%.*s...) not recognized",
RExC_parse-seqstart, seqstart);
/*NOTREACHED*/
case '<': /* (?<...) */
if (*RExC_parse == '!')
paren = ',';
else if (*RExC_parse != '=')
named_capture:
{ /* (?<...>) */
char *name_start;
SV *svname;
paren= '>';
case '\'': /* (?'...') */
name_start= RExC_parse;
svname = reg_scan_name(pRExC_state,
SIZE_ONLY /* reverse test from the others */
? REG_RSN_RETURN_NAME
: REG_RSN_RETURN_NULL);
if (RExC_parse == name_start || *RExC_parse != paren)
vFAIL2("Sequence (?%c... not terminated",
paren=='>' ? '<' : paren);
if (SIZE_ONLY) {
HE *he_str;
SV *sv_dat = NULL;
if (!svname) /* shouldn't happen */
Perl_croak(aTHX_
"panic: reg_scan_name returned NULL");
if (!RExC_paren_names) {
RExC_paren_names= newHV();
sv_2mortal(MUTABLE_SV(RExC_paren_names));
#ifdef DEBUGGING
RExC_paren_name_list= newAV();
sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
#endif
}
he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
if ( he_str )
sv_dat = HeVAL(he_str);
if ( ! sv_dat ) {
/* croak baby croak */
Perl_croak(aTHX_
"panic: paren_name hash element allocation failed");
} else if ( SvPOK(sv_dat) ) {
/* (?|...) can mean we have dupes so scan to check
its already been stored. Maybe a flag indicating
we are inside such a construct would be useful,
but the arrays are likely to be quite small, so
for now we punt -- dmq */
IV count = SvIV(sv_dat);
I32 *pv = (I32*)SvPVX(sv_dat);
IV i;
for ( i = 0 ; i < count ; i++ ) {
if ( pv[i] == RExC_npar ) {
count = 0;
break;
}
}
if ( count ) {
pv = (I32*)SvGROW(sv_dat,
SvCUR(sv_dat) + sizeof(I32)+1);
SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
pv[count] = RExC_npar;
SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
}
} else {
(void)SvUPGRADE(sv_dat,SVt_PVNV);
sv_setpvn(sv_dat, (char *)&(RExC_npar),
sizeof(I32));
SvIOK_on(sv_dat);
SvIV_set(sv_dat, 1);
}
#ifdef DEBUGGING
/* Yes this does cause a memory leak in debugging Perls
* */
if (!av_store(RExC_paren_name_list,
RExC_npar, SvREFCNT_inc(svname)))
SvREFCNT_dec_NN(svname);
#endif
/*sv_dump(sv_dat);*/
}
nextchar(pRExC_state);
paren = 1;
goto capturing_parens;
}
RExC_seen |= REG_LOOKBEHIND_SEEN;
RExC_in_lookbehind++;
RExC_parse++;
case '=': /* (?=...) */
RExC_seen_zerolen++;
break;
case '!': /* (?!...) */
RExC_seen_zerolen++;
if (*RExC_parse == ')') {
ret=reg_node(pRExC_state, OPFAIL);
nextchar(pRExC_state);
return ret;
}
break;
case '|': /* (?|...) */
/* branch reset, behave like a (?:...) except that
buffers in alternations share the same numbers */
paren = ':';
after_freeze = freeze_paren = RExC_npar;
break;
case ':': /* (?:...) */
case '>': /* (?>...) */
break;
case '$': /* (?$...) */
case '@': /* (?@...) */
vFAIL2("Sequence (?%c...) not implemented", (int)paren);
break;
case '#': /* (?#...) */
/* XXX As soon as we disallow separating the '?' and '*' (by
* spaces or (?#...) comment), it is believed that this case
* will be unreachable and can be removed. See
* [perl #117327] */
while (*RExC_parse && *RExC_parse != ')')
RExC_parse++;
if (*RExC_parse != ')')
FAIL("Sequence (?#... not terminated");
nextchar(pRExC_state);
*flagp = TRYAGAIN;
return NULL;
case '0' : /* (?0) */
case 'R' : /* (?R) */
if (*RExC_parse != ')')
FAIL("Sequence (?R) not terminated");
ret = reg_node(pRExC_state, GOSTART);
RExC_seen |= REG_GOSTART_SEEN;
*flagp |= POSTPONED;
nextchar(pRExC_state);
return ret;
/*notreached*/
{ /* named and numeric backreferences */
I32 num;
case '&': /* (?&NAME) */
parse_start = RExC_parse - 1;
named_recursion:
{
SV *sv_dat = reg_scan_name(pRExC_state,
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
}
if (RExC_parse == RExC_end || *RExC_parse != ')')
vFAIL("Sequence (?&... not terminated");
goto gen_recurse_regop;
assert(0); /* NOT REACHED */
case '+':
if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
RExC_parse++;
vFAIL("Illegal pattern");
}
goto parse_recursion;
/* NOT REACHED*/
case '-': /* (?-1) */
if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
RExC_parse--; /* rewind to let it be handled later */
goto parse_flags;
}
/*FALLTHROUGH */
case '1': case '2': case '3': case '4': /* (?1) */
case '5': case '6': case '7': case '8': case '9':
RExC_parse--;
parse_recursion:
num = atoi(RExC_parse);
parse_start = RExC_parse - 1; /* MJD */
if (*RExC_parse == '-')
RExC_parse++;
while (isDIGIT(*RExC_parse))
RExC_parse++;
if (*RExC_parse!=')')
vFAIL("Expecting close bracket");
gen_recurse_regop:
if ( paren == '-' ) {
/*
Diagram of capture buffer numbering.
Top line is the normal capture buffer numbers
Bottom line is the negative indexing as from
the X (the (?-2))
+ 1 2 3 4 5 X 6 7
/(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
- 5 4 3 2 1 X x x
*/
num = RExC_npar + num;
if (num < 1) {
RExC_parse++;
vFAIL("Reference to nonexistent group");
}
} else if ( paren == '+' ) {
num = RExC_npar + num - 1;
}
ret = reganode(pRExC_state, GOSUB, num);
if (!SIZE_ONLY) {
if (num > (I32)RExC_rx->nparens) {
RExC_parse++;
vFAIL("Reference to nonexistent group");
}
ARG2L_SET( ret, RExC_recurse_count++);
RExC_emit++;
DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
"Recurse #%"UVuf" to %"IVdf"\n",
(UV)ARG(ret), (IV)ARG2L(ret)));
} else {
RExC_size++;
}
RExC_seen |= REG_RECURSE_SEEN;
Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
Set_Node_Offset(ret, parse_start); /* MJD */
*flagp |= POSTPONED;
nextchar(pRExC_state);
return ret;
} /* named and numeric backreferences */
assert(0); /* NOT REACHED */
case '?': /* (??...) */
is_logical = 1;
if (*RExC_parse != '{') {
RExC_parse++;
/* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
vFAIL2utf8f(
"Sequence (%"UTF8f"...) not recognized",
UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
/*NOTREACHED*/
}
*flagp |= POSTPONED;
paren = *RExC_parse++;
/* FALL THROUGH */
case '{': /* (?{...}) */
{
U32 n = 0;
struct reg_code_block *cb;
RExC_seen_zerolen++;
if ( !pRExC_state->num_code_blocks
|| pRExC_state->code_index >= pRExC_state->num_code_blocks
|| pRExC_state->code_blocks[pRExC_state->code_index].start
!= (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
- RExC_start)
) {
if (RExC_pm_flags & PMf_USE_RE_EVAL)
FAIL("panic: Sequence (?{...}): no code block found\n");
FAIL("Eval-group not allowed at runtime, use re 'eval'");
}
/* this is a pre-compiled code block (?{...}) */
cb = &pRExC_state->code_blocks[pRExC_state->code_index];
RExC_parse = RExC_start + cb->end;
if (!SIZE_ONLY) {
OP *o = cb->block;
if (cb->src_regex) {
n = add_data(pRExC_state, STR_WITH_LEN("rl"));
RExC_rxi->data->data[n] =
(void*)SvREFCNT_inc((SV*)cb->src_regex);
RExC_rxi->data->data[n+1] = (void*)o;
}
else {
n = add_data(pRExC_state,
(RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
RExC_rxi->data->data[n] = (void*)o;
}
}
pRExC_state->code_index++;
nextchar(pRExC_state);
if (is_logical) {
regnode *eval;
ret = reg_node(pRExC_state, LOGICAL);
eval = reganode(pRExC_state, EVAL, n);
if (!SIZE_ONLY) {
ret->flags = 2;
/* for later propagation into (??{}) return value */
eval->flags = (U8) (RExC_flags & RXf_PMf_COMPILETIME);
}
REGTAIL(pRExC_state, ret, eval);
/* deal with the length of this later - MJD */
return ret;
}
ret = reganode(pRExC_state, EVAL, n);
Set_Node_Length(ret, RExC_parse - parse_start + 1);
Set_Node_Offset(ret, parse_start);
return ret;
}
case '(': /* (?(?{...})...) and (?(?=...)...) */
{
int is_define= 0;
if (RExC_parse[0] == '?') { /* (?(?...)) */
if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
|| RExC_parse[1] == '<'
|| RExC_parse[1] == '{') { /* Lookahead or eval. */
I32 flag;
regnode *tail;
ret = reg_node(pRExC_state, LOGICAL);
if (!SIZE_ONLY)
ret->flags = 1;
tail = reg(pRExC_state, 1, &flag, depth+1);
if (flag & RESTART_UTF8) {
*flagp = RESTART_UTF8;
return NULL;
}
REGTAIL(pRExC_state, ret, tail);
goto insert_if;
}
}
else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
|| RExC_parse[0] == '\'' ) /* (?('NAME')...) */
{
char ch = RExC_parse[0] == '<' ? '>' : '\'';
char *name_start= RExC_parse++;
U32 num = 0;
SV *sv_dat=reg_scan_name(pRExC_state,
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
if (RExC_parse == name_start || *RExC_parse != ch)
vFAIL2("Sequence (?(%c... not terminated",
(ch == '>' ? '<' : ch));
RExC_parse++;
if (!SIZE_ONLY) {
num = add_data( pRExC_state, STR_WITH_LEN("S"));
RExC_rxi->data->data[num]=(void*)sv_dat;
SvREFCNT_inc_simple_void(sv_dat);
}
ret = reganode(pRExC_state,NGROUPP,num);
goto insert_if_check_paren;
}
else if (RExC_parse[0] == 'D' &&
RExC_parse[1] == 'E' &&
RExC_parse[2] == 'F' &&
RExC_parse[3] == 'I' &&
RExC_parse[4] == 'N' &&
RExC_parse[5] == 'E')
{
ret = reganode(pRExC_state,DEFINEP,0);
RExC_parse +=6 ;
is_define = 1;
goto insert_if_check_paren;
}
else if (RExC_parse[0] == 'R') {
RExC_parse++;
parno = 0;
if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
parno = atoi(RExC_parse++);
while (isDIGIT(*RExC_parse))
RExC_parse++;
} else if (RExC_parse[0] == '&') {
SV *sv_dat;
RExC_parse++;
sv_dat = reg_scan_name(pRExC_state,
SIZE_ONLY
? REG_RSN_RETURN_NULL
: REG_RSN_RETURN_DATA);
parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
}
ret = reganode(pRExC_state,INSUBP,parno);
goto insert_if_check_paren;
}
else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
/* (?(1)...) */
char c;
char *tmp;
parno = atoi(RExC_parse++);
while (isDIGIT(*RExC_parse))
RExC_parse++;
ret = reganode(pRExC_state, GROUPP, parno);
insert_if_check_paren:
if (*(tmp = nextchar(pRExC_state)) != ')') {
/* nextchar also skips comments, so undo its work
* and skip over the the next character.
*/
RExC_parse = tmp;
RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
vFAIL("Switch condition not recognized");
}
insert_if:
REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
br = regbranch(pRExC_state, &flags, 1,depth+1);
if (br == NULL) {
if (flags & RESTART_UTF8) {
*flagp = RESTART_UTF8;
return NULL;
}
FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
(UV) flags);
} else
REGTAIL(pRExC_state, br, reganode(pRExC_state,
LONGJMP, 0));
c = *nextchar(pRExC_state);
if (flags&HASWIDTH)
*flagp |= HASWIDTH;
if (c == '|') {
if (is_define)
vFAIL("(?(DEFINE)....) does not allow branches");
/* Fake one for optimizer. */
lastbr = reganode(pRExC_state, IFTHEN, 0);
if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
if (flags & RESTART_UTF8) {
*flagp = RESTART_UTF8;
return NULL;
}
FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
(UV) flags);
}
REGTAIL(pRExC_state, ret, lastbr);
if (flags&HASWIDTH)
*flagp |= HASWIDTH;
c = *nextchar(pRExC_state);
}
else
lastbr = NULL;
if (c != ')')
vFAIL("Switch (?(condition)... contains too many branches");
ender = reg_node(pRExC_state, TAIL);
REGTAIL(pRExC_state, br, ender);
if (lastbr) {
REGTAIL(pRExC_state, lastbr, ender);
REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
}
else
REGTAIL(pRExC_state, ret, ender);
RExC_size++; /* XXX WHY do we need this?!!
For large programs it seems to be required
but I can't figure out why. -- dmq*/
return ret;
}
else {
RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
vFAIL("Unknown switch condition (?(...))");
}
}
case '[': /* (?[ ... ]) */
return handle_regex_sets(pRExC_state, NULL, flagp, depth,
oregcomp_parse);
case 0:
RExC_parse--; /* for vFAIL to print correctly */
vFAIL("Sequence (? incomplete");
break;
default: /* e.g., (?i) */
--RExC_parse;
parse_flags:
parse_lparen_question_flags(pRExC_state);
if (UCHARAT(RExC_parse) != ':') {
nextchar(pRExC_state);
*flagp = TRYAGAIN;
return NULL;
}
paren = ':';
nextchar(pRExC_state);
ret = NULL;
goto parse_rest;
} /* end switch */
}
else { /* (...) */
capturing_parens:
parno = RExC_npar;
RExC_npar++;
ret = reganode(pRExC_state, OPEN, parno);
if (!SIZE_ONLY ){
if (!RExC_nestroot)
RExC_nestroot = parno;
if (RExC_seen & REG_RECURSE_SEEN
&& !RExC_open_parens[parno-1])
{
DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
"Setting open paren #%"IVdf" to %d\n",
(IV)parno, REG_NODE_NUM(ret)));
RExC_open_parens[parno-1]= ret;
}
}
Set_Node_Length(ret, 1); /* MJD */
Set_Node_Offset(ret, RExC_parse); /* MJD */
is_open = 1;
}
}
else /* ! paren */
ret = NULL;
parse_rest:
/* Pick up the branches, linking them together. */
parse_start = RExC_parse; /* MJD */
br = regbranch(pRExC_state, &flags, 1,depth+1);
/* branch_len = (paren != 0); */
if (br == NULL) {
if (flags & RESTART_UTF8) {
*flagp = RESTART_UTF8;
return NULL;
}
FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
}
if (*RExC_parse == '|') {
if (!SIZE_ONLY && RExC_extralen) {
reginsert(pRExC_state, BRANCHJ, br, depth+1);
}
else { /* MJD */
reginsert(pRExC_state, BRANCH, br, depth+1);
Set_Node_Length(br, paren != 0);
Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
}
have_branch = 1;
if (SIZE_ONLY)
RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
}
else if (paren == ':') {
*flagp |= flags&SIMPLE;
}
if (is_open) { /* Starts with OPEN. */
REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
}
else if (paren != '?') /* Not Conditional */
ret = br;
*flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
lastbr = br;
while (*RExC_parse == '|') {
if (!SIZE_ONLY && RExC_extralen) {
ender = reganode(pRExC_state, LONGJMP,0);
/* Append to the previous. */
REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
}
if (SIZE_ONLY)
RExC_extralen += 2; /* Account for LONGJMP. */
nextchar(pRExC_state);
if (freeze_paren) {
if (RExC_npar > after_freeze)
after_freeze = RExC_npar;
RExC_npar = freeze_paren;
}
br = regbranch(pRExC_state, &flags, 0, depth+1);
if (br == NULL) {
if (flags & RESTART_UTF8) {
*flagp = RESTART_UTF8;
return NULL;
}
FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
}
REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
lastbr = br;
*flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
}
if (have_branch || paren != ':') {
/* Make a closing node, and hook it on the end. */
switch (paren) {
case ':':
ender = reg_node(pRExC_state, TAIL);
break;
case 1: case 2:
ender = reganode(pRExC_state, CLOSE, parno);
if (!SIZE_ONLY && RExC_seen & REG_RECURSE_SEEN) {
DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
"Setting close paren #%"IVdf" to %d\n",
(IV)parno, REG_NODE_NUM(ender)));
RExC_close_parens[parno-1]= ender;
if (RExC_nestroot == parno)
RExC_nestroot = 0;
}
Set_Node_Offset(ender,RExC_parse+1); /* MJD */
Set_Node_Length(ender,1); /* MJD */
break;
case '<':
case ',':
case '=':
case '!':
*flagp &= ~HASWIDTH;
/* FALL THROUGH */
case '>':
ender = reg_node(pRExC_state, SUCCEED);
break;
case 0:
ender = reg_node(pRExC_state, END);
if (!SIZE_ONLY) {
assert(!RExC_opend); /* there can only be one! */
RExC_opend = ender;
}
break;
}
DEBUG_PARSE_r(if (!SIZE_ONLY) {
SV * const mysv_val1=sv_newmortal();
SV * const mysv_val2=sv_newmortal();
DEBUG_PARSE_MSG("lsbr");
regprop(RExC_rx, mysv_val1, lastbr, NULL);
regprop(RExC_rx, mysv_val2, ender, NULL);
PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
SvPV_nolen_const(mysv_val1),
(IV)REG_NODE_NUM(lastbr),
SvPV_nolen_const(mysv_val2),
(IV)REG_NODE_NUM(ender),
(IV)(ender - lastbr)
);
});
REGTAIL(pRExC_state, lastbr, ender);
if (have_branch && !SIZE_ONLY) {
char is_nothing= 1;
if (depth==1)
RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
/* Hook the tails of the branches to the closing node. */
for (br = ret; br; br = regnext(br)) {
const U8 op = PL_regkind[OP(br)];
if (op == BRANCH) {
REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
if ( OP(NEXTOPER(br)) != NOTHING
|| regnext(NEXTOPER(br)) != ender)
is_nothing= 0;
}
else if (op == BRANCHJ) {
REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
/* for now we always disable this optimisation * /
if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
|| regnext(NEXTOPER(NEXTOPER(br))) != ender)
*/
is_nothing= 0;
}
}
if (is_nothing) {
br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
DEBUG_PARSE_r(if (!SIZE_ONLY) {
SV * const mysv_val1=sv_newmortal();
SV * const mysv_val2=sv_newmortal();
DEBUG_PARSE_MSG("NADA");
regprop(RExC_rx, mysv_val1, ret, NULL);
regprop(RExC_rx, mysv_val2, ender, NULL);
PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
SvPV_nolen_const(mysv_val1),
(IV)REG_NODE_NUM(ret),
SvPV_nolen_const(mysv_val2),
(IV)REG_NODE_NUM(ender),
(IV)(ender - ret)
);
});
OP(br)= NOTHING;
if (OP(ender) == TAIL) {
NEXT_OFF(br)= 0;
RExC_emit= br + 1;
} else {
regnode *opt;
for ( opt= br + 1; opt < ender ; opt++ )
OP(opt)= OPTIMIZED;
NEXT_OFF(br)= ender - br;
}
}
}
}
{
const char *p;
static const char parens[] = "=!<,>";
if (paren && (p = strchr(parens, paren))) {
U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
int flag = (p - parens) > 1;
if (paren == '>')
node = SUSPEND, flag = 0;
reginsert(pRExC_state, node,ret, depth+1);
Set_Node_Cur_Length(ret, parse_start);
Set_Node_Offset(ret, parse_start + 1);
ret->flags = flag;
REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
}
}
/* Check for proper termination. */
if (paren) {
/* restore original flags, but keep (?p) */
RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
RExC_parse = oregcomp_parse;
vFAIL("Unmatched (");
}
}
else if (!paren && RExC_parse < RExC_end) {
if (*RExC_parse == ')') {
RExC_parse++;
vFAIL("Unmatched )");
}
else
FAIL("Junk on end of regexp"); /* "Can't happen". */
assert(0); /* NOTREACHED */
}
if (RExC_in_lookbehind) {
RExC_in_lookbehind--;
}
if (after_freeze > RExC_npar)
RExC_npar = after_freeze;
return(ret);
}
/*
- regbranch - one alternative of an | operator
*
* Implements the concatenation operator.
*
* Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
* restarted.
*/
STATIC regnode *
S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
{
dVAR;
regnode *ret;
regnode *chain = NULL;
regnode *latest;
I32 flags = 0, c = 0;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGBRANCH;
DEBUG_PARSE("brnc");
if (first)
ret = NULL;
else {
if (!SIZE_ONLY && RExC_extralen)
ret = reganode(pRExC_state, BRANCHJ,0);
else {
ret = reg_node(pRExC_state, BRANCH);
Set_Node_Length(ret, 1);
}
}
if (!first && SIZE_ONLY)
RExC_extralen += 1; /* BRANCHJ */
*flagp = WORST; /* Tentatively. */
RExC_parse--;
nextchar(pRExC_state);
while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
flags &= ~TRYAGAIN;
latest = regpiece(pRExC_state, &flags,depth+1);
if (latest == NULL) {
if (flags & TRYAGAIN)
continue;
if (flags & RESTART_UTF8) {
*flagp = RESTART_UTF8;
return NULL;
}
FAIL2("panic: regpiece returned NULL, flags=%#"UVxf"", (UV) flags);
}
else if (ret == NULL)
ret = latest;
*flagp |= flags&(HASWIDTH|POSTPONED);
if (chain == NULL) /* First piece. */
*flagp |= flags&SPSTART;
else {
RExC_naughty++;
REGTAIL(pRExC_state, chain, latest);
}
chain = latest;
c++;
}
if (chain == NULL) { /* Loop ran zero times. */
chain = reg_node(pRExC_state, NOTHING);
if (ret == NULL)
ret = chain;
}
if (c == 1) {
*flagp |= flags&SIMPLE;
}
return ret;
}
/*
- regpiece - something followed by possible [*+?]
*
* Note that the branching code sequences used for ? and the general cases
* of * and + are somewhat optimized: they use the same NOTHING node as
* both the endmarker for their branch list and the body of the last branch.
* It might seem that this node could be dispensed with entirely, but the
* endmarker role is not redundant.
*
* Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
* TRYAGAIN.
* Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
* restarted.
*/
STATIC regnode *
S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
{
dVAR;
regnode *ret;
char op;
char *next;
I32 flags;
const char * const origparse = RExC_parse;
I32 min;
I32 max = REG_INFTY;
#ifdef RE_TRACK_PATTERN_OFFSETS
char *parse_start;
#endif
const char *maxpos = NULL;
/* Save the original in case we change the emitted regop to a FAIL. */
regnode * const orig_emit = RExC_emit;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGPIECE;
DEBUG_PARSE("piec");
ret = regatom(pRExC_state, &flags,depth+1);
if (ret == NULL) {
if (flags & (TRYAGAIN|RESTART_UTF8))
*flagp |= flags & (TRYAGAIN|RESTART_UTF8);
else
FAIL2("panic: regatom returned NULL, flags=%#"UVxf"", (UV) flags);
return(NULL);
}
op = *RExC_parse;
if (op == '{' && regcurly(RExC_parse, FALSE)) {
maxpos = NULL;
#ifdef RE_TRACK_PATTERN_OFFSETS
parse_start = RExC_parse; /* MJD */
#endif
next = RExC_parse + 1;
while (isDIGIT(*next) || *next == ',') {
if (*next == ',') {
if (maxpos)
break;
else
maxpos = next;
}
next++;
}
if (*next == '}') { /* got one */
if (!maxpos)
maxpos = next;
RExC_parse++;
min = atoi(RExC_parse);
if (*maxpos == ',')
maxpos++;
else
maxpos = RExC_parse;
max = atoi(maxpos);
if (!max && *maxpos != '0')
max = REG_INFTY; /* meaning "infinity" */
else if (max >= REG_INFTY)
vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
RExC_parse = next;
nextchar(pRExC_state);
if (max < min) { /* If can't match, warn and optimize to fail
unconditionally */
if (SIZE_ONLY) {
ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
/* We can't back off the size because we have to reserve
* enough space for all the things we are about to throw
* away, but we can shrink it by the ammount we are about
* to re-use here */
RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
}
else {
RExC_emit = orig_emit;
}
ret = reg_node(pRExC_state, OPFAIL);
return ret;
}
else if (min == max && RExC_parse < RExC_end && *RExC_parse == '?')
{
if (SIZE_ONLY) {
ckWARN2reg(RExC_parse + 1,
"Useless use of greediness modifier '%c'",
*RExC_parse);
}
/* Absorb the modifier, so later code doesn't see nor use
* it */
nextchar(pRExC_state);
}
do_curly:
if ((flags&SIMPLE)) {
RExC_naughty += 2 + RExC_naughty / 2;
reginsert(pRExC_state, CURLY, ret, depth+1);
Set_Node_Offset(ret, parse_start+1); /* MJD */
Set_Node_Cur_Length(ret, parse_start);
}
else {
regnode * const w = reg_node(pRExC_state, WHILEM);
w->flags = 0;
REGTAIL(pRExC_state, ret, w);
if (!SIZE_ONLY && RExC_extralen) {
reginsert(pRExC_state, LONGJMP,ret, depth+1);
reginsert(pRExC_state, NOTHING,ret, depth+1);
NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
}
reginsert(pRExC_state, CURLYX,ret, depth+1);
/* MJD hk */
Set_Node_Offset(ret, parse_start+1);
Set_Node_Length(ret,
op == '{' ? (RExC_parse - parse_start) : 1);
if (!SIZE_ONLY && RExC_extralen)
NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
if (SIZE_ONLY)
RExC_whilem_seen++, RExC_extralen += 3;
RExC_naughty += 4 + RExC_naughty; /* compound interest */
}
ret->flags = 0;
if (min > 0)
*flagp = WORST;
if (max > 0)
*flagp |= HASWIDTH;
if (!SIZE_ONLY) {
ARG1_SET(ret, (U16)min);
ARG2_SET(ret, (U16)max);
}
if (max == REG_INFTY)
RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
goto nest_check;
}
}
if (!ISMULT1(op)) {
*flagp = flags;
return(ret);
}
#if 0 /* Now runtime fix should be reliable. */
/* if this is reinstated, don't forget to put this back into perldiag:
=item Regexp *+ operand could be empty at {#} in regex m/%s/
(F) The part of the regexp subject to either the * or + quantifier
could match an empty string. The {#} shows in the regular
expression about where the problem was discovered.
*/
if (!(flags&HASWIDTH) && op != '?')
vFAIL("Regexp *+ operand could be empty");
#endif
#ifdef RE_TRACK_PATTERN_OFFSETS
parse_start = RExC_parse;
#endif
nextchar(pRExC_state);
*flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
if (op == '*' && (flags&SIMPLE)) {
reginsert(pRExC_state, STAR, ret, depth+1);
ret->flags = 0;
RExC_naughty += 4;
RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
}
else if (op == '*') {
min = 0;
goto do_curly;
}
else if (op == '+' && (flags&SIMPLE)) {
reginsert(pRExC_state, PLUS, ret, depth+1);
ret->flags = 0;
RExC_naughty += 3;
RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
}
else if (op == '+') {
min = 1;
goto do_curly;
}
else if (op == '?') {
min = 0; max = 1;
goto do_curly;
}
nest_check:
if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
ckWARN2reg(RExC_parse,
"%"UTF8f" matches null string many times",
UTF8fARG(UTF, (RExC_parse >= origparse
? RExC_parse - origparse
: 0),
origparse));
(void)ReREFCNT_inc(RExC_rx_sv);
}
if (RExC_parse < RExC_end && *RExC_parse == '?') {
nextchar(pRExC_state);
reginsert(pRExC_state, MINMOD, ret, depth+1);
REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
}
else
if (RExC_parse < RExC_end && *RExC_parse == '+') {
regnode *ender;
nextchar(pRExC_state);
ender = reg_node(pRExC_state, SUCCEED);
REGTAIL(pRExC_state, ret, ender);
reginsert(pRExC_state, SUSPEND, ret, depth+1);
ret->flags = 0;
ender = reg_node(pRExC_state, TAIL);
REGTAIL(pRExC_state, ret, ender);
}
if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
RExC_parse++;
vFAIL("Nested quantifiers");
}
return(ret);
}
STATIC bool
S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state, regnode** node_p,
UV *valuep, I32 *flagp, U32 depth, bool in_char_class,
const bool strict /* Apply stricter parsing rules? */
)
{
/* This is expected to be called by a parser routine that has recognized '\N'
and needs to handle the rest. RExC_parse is expected to point at the first
char following the N at the time of the call. On successful return,
RExC_parse has been updated to point to just after the sequence identified
by this routine, and <*flagp> has been updated.
The \N may be inside (indicated by the boolean <in_char_class>) or outside a
character class.
\N may begin either a named sequence, or if outside a character class, mean
to match a non-newline. For non single-quoted regexes, the tokenizer has
attempted to decide which, and in the case of a named sequence, converted it
into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
where c1... are the characters in the sequence. For single-quoted regexes,
the tokenizer passes the \N sequence through unchanged; this code will not
attempt to determine this nor expand those, instead raising a syntax error.
The net effect is that if the beginning of the passed-in pattern isn't '{U+'
or there is no '}', it signals that this \N occurrence means to match a
non-newline.
Only the \N{U+...} form should occur in a character class, for the same
reason that '.' inside a character class means to just match a period: it
just doesn't make sense.
The function raises an error (via vFAIL), and doesn't return for various
syntax errors. Otherwise it returns TRUE and sets <node_p> or <valuep> on
success; it returns FALSE otherwise. Returns FALSE, setting *flagp to
RESTART_UTF8 if the sizing scan needs to be restarted. Such a restart is
only possible if node_p is non-NULL.
If <valuep> is non-null, it means the caller can accept an input sequence
consisting of a just a single code point; <*valuep> is set to that value
if the input is such.
If <node_p> is non-null it signifies that the caller can accept any other
legal sequence (i.e., one that isn't just a single code point). <*node_p>
is set as follows:
1) \N means not-a-NL: points to a newly created REG_ANY node;
2) \N{}: points to a new NOTHING node;
3) otherwise: points to a new EXACT node containing the resolved
string.
Note that FALSE is returned for single code point sequences if <valuep> is
null.
*/
char * endbrace; /* '}' following the name */
char* p;
char *endchar; /* Points to '.' or '}' ending cur char in the input
stream */
bool has_multiple_chars; /* true if the input stream contains a sequence of
more than one character */
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_GROK_BSLASH_N;
GET_RE_DEBUG_FLAGS;
assert(cBOOL(node_p) ^ cBOOL(valuep)); /* Exactly one should be set */
/* The [^\n] meaning of \N ignores spaces and comments under the /x
* modifier. The other meaning does not, so use a temporary until we find
* out which we are being called with */
p = (RExC_flags & RXf_PMf_EXTENDED)
? regwhite( pRExC_state, RExC_parse )
: RExC_parse;
/* Disambiguate between \N meaning a named character versus \N meaning
* [^\n]. The former is assumed when it can't be the latter. */
if (*p != '{' || regcurly(p, FALSE)) {
RExC_parse = p;
if (! node_p) {
/* no bare \N allowed in a charclass */
if (in_char_class) {
vFAIL("\\N in a character class must be a named character: \\N{...}");
}
return FALSE;
}
RExC_parse--; /* Need to back off so nextchar() doesn't skip the
current char */
nextchar(pRExC_state);
*node_p = reg_node(pRExC_state, REG_ANY);
*flagp |= HASWIDTH|SIMPLE;
RExC_naughty++;
Set_Node_Length(*node_p, 1); /* MJD */
return TRUE;
}
/* Here, we have decided it should be a named character or sequence */
/* The test above made sure that the next real character is a '{', but
* under the /x modifier, it could be separated by space (or a comment and
* \n) and this is not allowed (for consistency with \x{...} and the
* tokenizer handling of \N{NAME}). */
if (*RExC_parse != '{') {
vFAIL("Missing braces on \\N{}");
}
RExC_parse++; /* Skip past the '{' */
if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
|| ! (endbrace == RExC_parse /* nothing between the {} */
|| (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below
*/
&& strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg)
*/
{
if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
vFAIL("\\N{NAME} must be resolved by the lexer");
}
if (endbrace == RExC_parse) { /* empty: \N{} */
bool ret = TRUE;
if (node_p) {
*node_p = reg_node(pRExC_state,NOTHING);
}
else if (in_char_class) {
if (SIZE_ONLY && in_char_class) {
if (strict) {
RExC_parse++; /* Position after the "}" */
vFAIL("Zero length \\N{}");
}
else {
ckWARNreg(RExC_parse,
"Ignoring zero length \\N{} in character class");
}
}
ret = FALSE;
}
else {
return FALSE;
}
nextchar(pRExC_state);
return ret;
}
RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
RExC_parse += 2; /* Skip past the 'U+' */
endchar = RExC_parse + strcspn(RExC_parse, ".}");
/* Code points are separated by dots. If none, there is only one code
* point, and is terminated by the brace */
has_multiple_chars = (endchar < endbrace);
if (valuep && (! has_multiple_chars || in_char_class)) {
/* We only pay attention to the first char of
multichar strings being returned in char classes. I kinda wonder
if this makes sense as it does change the behaviour
from earlier versions, OTOH that behaviour was broken
as well. XXX Solution is to recharacterize as
[rest-of-class]|multi1|multi2... */
STRLEN length_of_hex = (STRLEN)(endchar - RExC_parse);
I32 grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
| PERL_SCAN_DISALLOW_PREFIX
| (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
*valuep = grok_hex(RExC_parse, &length_of_hex, &grok_hex_flags, NULL);
/* The tokenizer should have guaranteed validity, but it's possible to
* bypass it by using single quoting, so check */
if (length_of_hex == 0
|| length_of_hex != (STRLEN)(endchar - RExC_parse) )
{
RExC_parse += length_of_hex; /* Includes all the valid */
RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
? UTF8SKIP(RExC_parse)
: 1;
/* Guard against malformed utf8 */
if (RExC_parse >= endchar) {
RExC_parse = endchar;
}
vFAIL("Invalid hexadecimal number in \\N{U+...}");
}
if (in_char_class && has_multiple_chars) {
if (strict) {
RExC_parse = endbrace;
vFAIL("\\N{} in character class restricted to one character");
}
else {
ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
}
}
RExC_parse = endbrace + 1;
}
else if (! node_p || ! has_multiple_chars) {
/* Here, the input is legal, but not according to the caller's
* options. We fail without advancing the parse, so that the
* caller can try again */
RExC_parse = p;
return FALSE;
}
else {
/* What is done here is to convert this to a sub-pattern of the form
* (?:\x{char1}\x{char2}...)
* and then call reg recursively. That way, it retains its atomicness,
* while not having to worry about special handling that some code
* points may have. toke.c has converted the original Unicode values
* to native, so that we can just pass on the hex values unchanged. We
* do have to set a flag to keep recoding from happening in the
* recursion */
SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
STRLEN len;
char *orig_end = RExC_end;
I32 flags;
while (RExC_parse < endbrace) {
/* Convert to notation the rest of the code understands */
sv_catpv(substitute_parse, "\\x{");
sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
sv_catpv(substitute_parse, "}");
/* Point to the beginning of the next character in the sequence. */
RExC_parse = endchar + 1;
endchar = RExC_parse + strcspn(RExC_parse, ".}");
}
sv_catpv(substitute_parse, ")");
len = SvCUR(substitute_parse);
/* Don't allow empty number */
if (len < 8) {
vFAIL("Invalid hexadecimal number in \\N{U+...}");
}
RExC_parse = SvPV_nolen(substitute_parse);
RExC_end = RExC_parse + len;
/* The values are Unicode, and therefore not subject to recoding */
RExC_override_recoding = 1;
if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
if (flags & RESTART_UTF8) {
*flagp = RESTART_UTF8;
return FALSE;
}
FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#"UVxf"",
(UV) flags);
}
*flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
RExC_parse = endbrace;
RExC_end = orig_end;
RExC_override_recoding = 0;
nextchar(pRExC_state);
}
return TRUE;
}
/*
* reg_recode
*
* It returns the code point in utf8 for the value in *encp.
* value: a code value in the source encoding
* encp: a pointer to an Encode object
*
* If the result from Encode is not a single character,
* it returns U+FFFD (Replacement character) and sets *encp to NULL.
*/
STATIC UV
S_reg_recode(pTHX_ const char value, SV **encp)
{
STRLEN numlen = 1;
SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
const STRLEN newlen = SvCUR(sv);
UV uv = UNICODE_REPLACEMENT;
PERL_ARGS_ASSERT_REG_RECODE;
if (newlen)
uv = SvUTF8(sv)
? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
: *(U8*)s;
if (!newlen || numlen != newlen) {
uv = UNICODE_REPLACEMENT;
*encp = NULL;
}
return uv;
}
PERL_STATIC_INLINE U8
S_compute_EXACTish(pTHX_ RExC_state_t *pRExC_state)
{
U8 op;
PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
if (! FOLD) {
return EXACT;
}
op = get_regex_charset(RExC_flags);
if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
op--; /* /a is same as /u, and map /aa's offset to what /a's would have
been, so there is no hole */
}
return op + EXACTF;
}
PERL_STATIC_INLINE void
S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state,
regnode *node, I32* flagp, STRLEN len, UV code_point,
bool downgradable)
{
/* This knows the details about sizing an EXACTish node, setting flags for
* it (by setting <*flagp>, and potentially populating it with a single
* character.
*
* If <len> (the length in bytes) is non-zero, this function assumes that
* the node has already been populated, and just does the sizing. In this
* case <code_point> should be the final code point that has already been
* placed into the node. This value will be ignored except that under some
* circumstances <*flagp> is set based on it.
*
* If <len> is zero, the function assumes that the node is to contain only
* the single character given by <code_point> and calculates what <len>
* should be. In pass 1, it sizes the node appropriately. In pass 2, it
* additionally will populate the node's STRING with <code_point> or its
* fold if folding.
*
* In both cases <*flagp> is appropriately set
*
* It knows that under FOLD, the Latin Sharp S and UTF characters above
* 255, must be folded (the former only when the rules indicate it can
* match 'ss')
*
* When it does the populating, it looks at the flag 'downgradable'. If
* true with a node that folds, it checks if the single code point
* participates in a fold, and if not downgrades the node to an EXACT.
* This helps the optimizer */
bool len_passed_in = cBOOL(len != 0);
U8 character[UTF8_MAXBYTES_CASE+1];
PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
/* Don't bother to check for downgrading in PASS1, as it doesn't make any
* sizing difference, and is extra work that is thrown away */
if (downgradable && ! PASS2) {
downgradable = FALSE;
}
if (! len_passed_in) {
if (UTF) {
if (UNI_IS_INVARIANT(code_point)) {
if (LOC || ! FOLD) { /* /l defers folding until runtime */
*character = (U8) code_point;
}
else { /* Here is /i and not /l (toFOLD() is defined on just
ASCII, which isn't the same thing as INVARIANT on
EBCDIC, but it works there, as the extra invariants
fold to themselves) */
*character = toFOLD((U8) code_point);
/* We can downgrade to an EXACT node if this character
* isn't a folding one. Note that this assumes that
* nothing above Latin1 folds to some other invariant than
* one of these alphabetics; otherwise we would also have
* to check:
* && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
* || ASCII_FOLD_RESTRICTED))
*/
if (downgradable && PL_fold[code_point] == code_point) {
OP(node) = EXACT;
}
}
len = 1;
}
else if (FOLD && (! LOC
|| ! is_PROBLEMATIC_LOCALE_FOLD_cp(code_point)))
{ /* Folding, and ok to do so now */
UV folded = _to_uni_fold_flags(
code_point,
character,
&len,
FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
? FOLD_FLAGS_NOMIX_ASCII
: 0));
if (downgradable
&& folded == code_point
&& ! _invlist_contains_cp(PL_utf8_foldable, code_point))
{
OP(node) = EXACT;
}
}
else if (code_point <= MAX_UTF8_TWO_BYTE) {
/* Not folding this cp, and can output it directly */
*character = UTF8_TWO_BYTE_HI(code_point);
*(character + 1) = UTF8_TWO_BYTE_LO(code_point);
len = 2;
}
else {
uvchr_to_utf8( character, code_point);
len = UTF8SKIP(character);
}
} /* Else pattern isn't UTF8. */
else if (! FOLD) {
*character = (U8) code_point;
len = 1;
} /* Else is folded non-UTF8 */
else if (LIKELY(code_point != LATIN_SMALL_LETTER_SHARP_S)) {
/* We don't fold any non-UTF8 except possibly the Sharp s (see
* comments at join_exact()); */
*character = (U8) code_point;
len = 1;
/* Can turn into an EXACT node if we know the fold at compile time,
* and it folds to itself and doesn't particpate in other folds */
if (downgradable
&& ! LOC
&& PL_fold_latin1[code_point] == code_point
&& (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
|| (isASCII(code_point) && ASCII_FOLD_RESTRICTED)))
{
OP(node) = EXACT;
}
} /* else is Sharp s. May need to fold it */
else if (AT_LEAST_UNI_SEMANTICS && ! ASCII_FOLD_RESTRICTED) {
*character = 's';
*(character + 1) = 's';
len = 2;
}
else {
*character = LATIN_SMALL_LETTER_SHARP_S;
len = 1;
}
}
if (SIZE_ONLY) {
RExC_size += STR_SZ(len);
}
else {
RExC_emit += STR_SZ(len);
STR_LEN(node) = len;
if (! len_passed_in) {
Copy((char *) character, STRING(node), len, char);
}
}
*flagp |= HASWIDTH;
/* A single character node is SIMPLE, except for the special-cased SHARP S
* under /di. */
if ((len == 1 || (UTF && len == UNISKIP(code_point)))
&& (code_point != LATIN_SMALL_LETTER_SHARP_S
|| ! FOLD || ! DEPENDS_SEMANTICS))
{
*flagp |= SIMPLE;
}
/* The OP may not be well defined in PASS1 */
if (PASS2 && OP(node) == EXACTFL) {
RExC_contains_locale = 1;
}
}
/* return atoi(p), unless it's too big to sensibly be a backref,
* in which case return I32_MAX (rather than possibly 32-bit wrapping) */
static I32
S_backref_value(char *p)
{
char *q = p;
for (;isDIGIT(*q); q++); /* calculate length of num */
if (q - p == 0 || q - p > 9)
return I32_MAX;
return atoi(p);
}
/*
- regatom - the lowest level
Try to identify anything special at the start of the pattern. If there
is, then handle it as required. This may involve generating a single regop,
such as for an assertion; or it may involve recursing, such as to
handle a () structure.
If the string doesn't start with something special then we gobble up
as much literal text as we can.
Once we have been able to handle whatever type of thing started the
sequence, we return.
Note: we have to be careful with escapes, as they can be both literal
and special, and in the case of \10 and friends, context determines which.
A summary of the code structure is:
switch (first_byte) {
cases for each special:
handle this special;
break;
case '\\':
switch (2nd byte) {
cases for each unambiguous special:
handle this special;
break;
cases for each ambigous special/literal:
disambiguate;
if (special) handle here
else goto defchar;
default: // unambiguously literal:
goto defchar;
}
default: // is a literal char
// FALL THROUGH
defchar:
create EXACTish node for literal;
while (more input and node isn't full) {
switch (input_byte) {
cases for each special;
make sure parse pointer is set so that the next call to
regatom will see this special first
goto loopdone; // EXACTish node terminated by prev. char
default:
append char to EXACTISH node;
}
get next input byte;
}
loopdone:
}
return the generated node;
Specifically there are two separate switches for handling
escape sequences, with the one for handling literal escapes requiring
a dummy entry for all of the special escapes that are actually handled
by the other.
Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
TRYAGAIN.
Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
restarted.
Otherwise does not return NULL.
*/
STATIC regnode *
S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
{
dVAR;
regnode *ret = NULL;
I32 flags = 0;
char *parse_start;
U8 op;
int invert = 0;
GET_RE_DEBUG_FLAGS_DECL;
*flagp = WORST; /* Tentatively. */
DEBUG_PARSE("atom");
PERL_ARGS_ASSERT_REGATOM;
tryagain:
parse_start = RExC_parse;
switch ((U8)*RExC_parse) {
case '^':
RExC_seen_zerolen++;
nextchar(pRExC_state);
if (RExC_flags & RXf_PMf_MULTILINE)
ret = reg_node(pRExC_state, MBOL);
else if (RExC_flags & RXf_PMf_SINGLELINE)
ret = reg_node(pRExC_state, SBOL);
else
ret = reg_node(pRExC_state, BOL);
Set_Node_Length(ret, 1); /* MJD */
break;
case '$':
nextchar(pRExC_state);
if (*RExC_parse)
RExC_seen_zerolen++;
if (RExC_flags & RXf_PMf_MULTILINE)
ret = reg_node(pRExC_state, MEOL);
else if (RExC_flags & RXf_PMf_SINGLELINE)
ret = reg_node(pRExC_state, SEOL);
else
ret = reg_node(pRExC_state, EOL);
Set_Node_Length(ret, 1); /* MJD */
break;
case '.':
nextchar(pRExC_state);
if (RExC_flags & RXf_PMf_SINGLELINE)
ret = reg_node(pRExC_state, SANY);
else
ret = reg_node(pRExC_state, REG_ANY);
*flagp |= HASWIDTH|SIMPLE;
RExC_naughty++;
Set_Node_Length(ret, 1); /* MJD */
break;
case '[':
{
char * const oregcomp_parse = ++RExC_parse;
ret = regclass(pRExC_state, flagp,depth+1,
FALSE, /* means parse the whole char class */
TRUE, /* allow multi-char folds */
FALSE, /* don't silence non-portable warnings. */
NULL);
if (*RExC_parse != ']') {
RExC_parse = oregcomp_parse;
vFAIL("Unmatched [");
}
if (ret == NULL) {
if (*flagp & RESTART_UTF8)
return NULL;
FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
(UV) *flagp);
}
nextchar(pRExC_state);
Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
break;
}
case '(':
nextchar(pRExC_state);
ret = reg(pRExC_state, 2, &flags,depth+1);
if (ret == NULL) {
if (flags & TRYAGAIN) {
if (RExC_parse == RExC_end) {
/* Make parent create an empty node if needed. */
*flagp |= TRYAGAIN;
return(NULL);
}
goto tryagain;
}
if (flags & RESTART_UTF8) {
*flagp = RESTART_UTF8;
return NULL;
}
FAIL2("panic: reg returned NULL to regatom, flags=%#"UVxf"",
(UV) flags);
}
*flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
break;
case '|':
case ')':
if (flags & TRYAGAIN) {
*flagp |= TRYAGAIN;
return NULL;
}
vFAIL("Internal urp");
/* Supposed to be caught earlier. */
break;
case '{':
if (!regcurly(RExC_parse, FALSE)) {
RExC_parse = parse_start;
goto defchar;
}
/* FALL THROUGH */
case '?':
case '+':
case '*':
RExC_parse++;
vFAIL("Quantifier follows nothing");
break;
case '\\':
/* Special Escapes
This switch handles escape sequences that resolve to some kind
of special regop and not to literal text. Escape sequnces that
resolve to literal text are handled below in the switch marked
"Literal Escapes".
Every entry in this switch *must* have a corresponding entry
in the literal escape switch. However, the opposite is not
required, as the default for this switch is to jump to the
literal text handling code.
*/
switch ((U8)*++RExC_parse) {
U8 arg;
/* Special Escapes */
case 'A':
RExC_seen_zerolen++;
ret = reg_node(pRExC_state, SBOL);
*flagp |= SIMPLE;
goto finish_meta_pat;
case 'G':
ret = reg_node(pRExC_state, GPOS);
RExC_seen |= REG_GPOS_SEEN;
*flagp |= SIMPLE;
goto finish_meta_pat;
case 'K':
RExC_seen_zerolen++;
ret = reg_node(pRExC_state, KEEPS);
*flagp |= SIMPLE;
/* XXX:dmq : disabling in-place substitution seems to
* be necessary here to avoid cases of memory corruption, as
* with: C<$_="x" x 80; s/x\K/y/> -- rgs
*/
RExC_seen |= REG_LOOKBEHIND_SEEN;
goto finish_meta_pat;
case 'Z':
ret = reg_node(pRExC_state, SEOL);
*flagp |= SIMPLE;
RExC_seen_zerolen++; /* Do not optimize RE away */
goto finish_meta_pat;
case 'z':
ret = reg_node(pRExC_state, EOS);
*flagp |= SIMPLE;
RExC_seen_zerolen++; /* Do not optimize RE away */
goto finish_meta_pat;
case 'C':
ret = reg_node(pRExC_state, CANY);
RExC_seen |= REG_CANY_SEEN;
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'X':
ret = reg_node(pRExC_state, CLUMP);
*flagp |= HASWIDTH;
goto finish_meta_pat;
case 'W':
invert = 1;
/* FALLTHROUGH */
case 'w':
arg = ANYOF_WORDCHAR;
goto join_posix;
case 'b':
RExC_seen_zerolen++;
RExC_seen |= REG_LOOKBEHIND_SEEN;
op = BOUND + get_regex_charset(RExC_flags);
if (op > BOUNDA) { /* /aa is same as /a */
op = BOUNDA;
}
else if (op == BOUNDL) {
RExC_contains_locale = 1;
}
ret = reg_node(pRExC_state, op);
FLAGS(ret) = get_regex_charset(RExC_flags);
*flagp |= SIMPLE;
if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
/* diag_listed_as: Use "%s" instead of "%s" */
vFAIL("Use \"\\b\\{\" instead of \"\\b{\"");
}
goto finish_meta_pat;
case 'B':
RExC_seen_zerolen++;
RExC_seen |= REG_LOOKBEHIND_SEEN;
op = NBOUND + get_regex_charset(RExC_flags);
if (op > NBOUNDA) { /* /aa is same as /a */
op = NBOUNDA;
}
else if (op == NBOUNDL) {
RExC_contains_locale = 1;
}
ret = reg_node(pRExC_state, op);
FLAGS(ret) = get_regex_charset(RExC_flags);
*flagp |= SIMPLE;
if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
/* diag_listed_as: Use "%s" instead of "%s" */
vFAIL("Use \"\\B\\{\" instead of \"\\B{\"");
}
goto finish_meta_pat;
case 'D':
invert = 1;
/* FALLTHROUGH */
case 'd':
arg = ANYOF_DIGIT;
goto join_posix;
case 'R':
ret = reg_node(pRExC_state, LNBREAK);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'H':
invert = 1;
/* FALLTHROUGH */
case 'h':
arg = ANYOF_BLANK;
op = POSIXU;
goto join_posix_op_known;
case 'V':
invert = 1;
/* FALLTHROUGH */
case 'v':
arg = ANYOF_VERTWS;
op = POSIXU;
goto join_posix_op_known;
case 'S':
invert = 1;
/* FALLTHROUGH */
case 's':
arg = ANYOF_SPACE;
join_posix:
op = POSIXD + get_regex_charset(RExC_flags);
if (op > POSIXA) { /* /aa is same as /a */
op = POSIXA;
}
else if (op == POSIXL) {
RExC_contains_locale = 1;
}
join_posix_op_known:
if (invert) {
op += NPOSIXD - POSIXD;
}
ret = reg_node(pRExC_state, op);
if (! SIZE_ONLY) {
FLAGS(ret) = namedclass_to_classnum(arg);
}
*flagp |= HASWIDTH|SIMPLE;
/* FALL THROUGH */
finish_meta_pat:
nextchar(pRExC_state);
Set_Node_Length(ret, 2); /* MJD */
break;
case 'p':
case 'P':
{
#ifdef DEBUGGING
char* parse_start = RExC_parse - 2;
#endif
RExC_parse--;
ret = regclass(pRExC_state, flagp,depth+1,
TRUE, /* means just parse this element */
FALSE, /* don't allow multi-char folds */
FALSE, /* don't silence non-portable warnings.
It would be a bug if these returned
non-portables */
NULL);
/* regclass() can only return RESTART_UTF8 if multi-char folds
are allowed. */
if (!ret)
FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
(UV) *flagp);
RExC_parse--;
Set_Node_Offset(ret, parse_start + 2);
Set_Node_Cur_Length(ret, parse_start);
nextchar(pRExC_state);
}
break;
case 'N':
/* Handle \N and \N{NAME} with multiple code points here and not
* below because it can be multicharacter. join_exact() will join
* them up later on. Also this makes sure that things like
* /\N{BLAH}+/ and \N{BLAH} being multi char Just Happen. dmq.
* The options to the grok function call causes it to fail if the
* sequence is just a single code point. We then go treat it as
* just another character in the current EXACT node, and hence it
* gets uniform treatment with all the other characters. The
* special treatment for quantifiers is not needed for such single
* character sequences */
++RExC_parse;
if (! grok_bslash_N(pRExC_state, &ret, NULL, flagp, depth, FALSE,
FALSE /* not strict */ )) {
if (*flagp & RESTART_UTF8)
return NULL;
RExC_parse = parse_start;
goto defchar;
}
break;
case 'k': /* Handle \k<NAME> and \k'NAME' */
parse_named_seq:
{
char ch= RExC_parse[1];
if (ch != '<' && ch != '\'' && ch != '{') {
RExC_parse++;
/* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
vFAIL2("Sequence %.2s... not terminated",parse_start);
} else {
/* this pretty much dupes the code for (?P=...) in reg(), if
you change this make sure you change that */
char* name_start = (RExC_parse += 2);
U32 num = 0;
SV *sv_dat = reg_scan_name(pRExC_state,
SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
if (RExC_parse == name_start || *RExC_parse != ch)
/* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
vFAIL2("Sequence %.3s... not terminated",parse_start);
if (!SIZE_ONLY) {
num = add_data( pRExC_state, STR_WITH_LEN("S"));
RExC_rxi->data->data[num]=(void*)sv_dat;
SvREFCNT_inc_simple_void(sv_dat);
}
RExC_sawback = 1;
ret = reganode(pRExC_state,
((! FOLD)
? NREF
: (ASCII_FOLD_RESTRICTED)
? NREFFA
: (AT_LEAST_UNI_SEMANTICS)
? NREFFU
: (LOC)
? NREFFL
: NREFF),
num);
*flagp |= HASWIDTH;
/* override incorrect value set in reganode MJD */
Set_Node_Offset(ret, parse_start+1);
Set_Node_Cur_Length(ret, parse_start);
nextchar(pRExC_state);
}
break;
}
case 'g':
case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{
I32 num;
bool hasbrace = 0;
if (*RExC_parse == 'g') {
bool isrel = 0;
RExC_parse++;
if (*RExC_parse == '{') {
RExC_parse++;
hasbrace = 1;
}
if (*RExC_parse == '-') {
RExC_parse++;
isrel = 1;
}
if (hasbrace && !isDIGIT(*RExC_parse)) {
if (isrel) RExC_parse--;
RExC_parse -= 2;
goto parse_named_seq;
}
num = S_backref_value(RExC_parse);
if (num == 0)
vFAIL("Reference to invalid group 0");
else if (num == I32_MAX) {
if (isDIGIT(*RExC_parse))
vFAIL("Reference to nonexistent group");
else
vFAIL("Unterminated \\g... pattern");
}
if (isrel) {
num = RExC_npar - num;
if (num < 1)
vFAIL("Reference to nonexistent or unclosed group");
}
}
else {
num = S_backref_value(RExC_parse);
/* bare \NNN might be backref or octal - if it is larger than or equal
* RExC_npar then it is assumed to be and octal escape.
* Note RExC_npar is +1 from the actual number of parens*/
if (num == I32_MAX || (num > 9 && num >= RExC_npar
&& *RExC_parse != '8' && *RExC_parse != '9'))
{
/* Probably a character specified in octal, e.g. \35 */
RExC_parse = parse_start;
goto defchar;
}
}
/* at this point RExC_parse definitely points to a backref
* number */
{
#ifdef RE_TRACK_PATTERN_OFFSETS
char * const parse_start = RExC_parse - 1; /* MJD */
#endif
while (isDIGIT(*RExC_parse))
RExC_parse++;
if (hasbrace) {
if (*RExC_parse != '}')
vFAIL("Unterminated \\g{...} pattern");
RExC_parse++;
}
if (!SIZE_ONLY) {
if (num > (I32)RExC_rx->nparens)
vFAIL("Reference to nonexistent group");
}
RExC_sawback = 1;
ret = reganode(pRExC_state,
((! FOLD)
? REF
: (ASCII_FOLD_RESTRICTED)
? REFFA
: (AT_LEAST_UNI_SEMANTICS)
? REFFU
: (LOC)
? REFFL
: REFF),
num);
*flagp |= HASWIDTH;
/* override incorrect value set in reganode MJD */
Set_Node_Offset(ret, parse_start+1);
Set_Node_Cur_Length(ret, parse_start);
RExC_parse--;
nextchar(pRExC_state);
}
}
break;
case '\0':
if (RExC_parse >= RExC_end)
FAIL("Trailing \\");
/* FALL THROUGH */
default:
/* Do not generate "unrecognized" warnings here, we fall
back into the quick-grab loop below */
RExC_parse = parse_start;
goto defchar;
}
break;
case '#':
if (RExC_flags & RXf_PMf_EXTENDED) {
if ( reg_skipcomment( pRExC_state ) )
goto tryagain;
}
/* FALL THROUGH */
default:
defchar: {
STRLEN len = 0;
UV ender = 0;
char *p;
char *s;
#define MAX_NODE_STRING_SIZE 127
char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
char *s0;
U8 upper_parse = MAX_NODE_STRING_SIZE;
U8 node_type = compute_EXACTish(pRExC_state);
bool next_is_quantifier;
char * oldp = NULL;
/* We can convert EXACTF nodes to EXACTFU if they contain only
* characters that match identically regardless of the target
* string's UTF8ness. The reason to do this is that EXACTF is not
* trie-able, EXACTFU is.
*
* Similarly, we can convert EXACTFL nodes to EXACTFU if they
* contain only above-Latin1 characters (hence must be in UTF8),
* which don't participate in folds with Latin1-range characters,
* as the latter's folds aren't known until runtime. (We don't
* need to figure this out until pass 2) */
bool maybe_exactfu = PASS2
&& (node_type == EXACTF || node_type == EXACTFL);
/* If a folding node contains only code points that don't
* participate in folds, it can be changed into an EXACT node,
* which allows the optimizer more things to look for */
bool maybe_exact;
ret = reg_node(pRExC_state, node_type);
/* In pass1, folded, we use a temporary buffer instead of the
* actual node, as the node doesn't exist yet */
s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
s0 = s;
reparse:
/* We do the EXACTFish to EXACT node only if folding. (And we
* don't need to figure this out until pass 2) */
maybe_exact = FOLD && PASS2;
/* XXX The node can hold up to 255 bytes, yet this only goes to
* 127. I (khw) do not know why. Keeping it somewhat less than
* 255 allows us to not have to worry about overflow due to
* converting to utf8 and fold expansion, but that value is
* 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
* split up by this limit into a single one using the real max of
* 255. Even at 127, this breaks under rare circumstances. If
* folding, we do not want to split a node at a character that is a
* non-final in a multi-char fold, as an input string could just
* happen to want to match across the node boundary. The join
* would solve that problem if the join actually happens. But a
* series of more than two nodes in a row each of 127 would cause
* the first join to succeed to get to 254, but then there wouldn't
* be room for the next one, which could at be one of those split
* multi-char folds. I don't know of any fool-proof solution. One
* could back off to end with only a code point that isn't such a
* non-final, but it is possible for there not to be any in the
* entire node. */
assert( ! UTF /* Is at the beginning of a character */
|| UTF8_IS_INVARIANT(UCHARAT(RExC_parse))
|| UTF8_IS_START(UCHARAT(RExC_parse)));
for (p = RExC_parse;
len < upper_parse && p < RExC_end;
len++)
{
oldp = p;
if (RExC_flags & RXf_PMf_EXTENDED)
p = regwhite( pRExC_state, p );
switch ((U8)*p) {
case '^':
case '$':
case '.':
case '[':
case '(':
case ')':
case '|':
goto loopdone;
case '\\':
/* Literal Escapes Switch
This switch is meant to handle escape sequences that
resolve to a literal character.
Every escape sequence that represents something
else, like an assertion or a char class, is handled
in the switch marked 'Special Escapes' above in this
routine, but also has an entry here as anything that
isn't explicitly mentioned here will be treated as
an unescaped equivalent literal.
*/
switch ((U8)*++p) {
/* These are all the special escapes. */
case 'A': /* Start assertion */
case 'b': case 'B': /* Word-boundary assertion*/
case 'C': /* Single char !DANGEROUS! */
case 'd': case 'D': /* digit class */
case 'g': case 'G': /* generic-backref, pos assertion */
case 'h': case 'H': /* HORIZWS */
case 'k': case 'K': /* named backref, keep marker */
case 'p': case 'P': /* Unicode property */
case 'R': /* LNBREAK */
case 's': case 'S': /* space class */
case 'v': case 'V': /* VERTWS */
case 'w': case 'W': /* word class */
case 'X': /* eXtended Unicode "combining
character sequence" */
case 'z': case 'Z': /* End of line/string assertion */
--p;
goto loopdone;
/* Anything after here is an escape that resolves to a
literal. (Except digits, which may or may not)
*/
case 'n':
ender = '\n';
p++;
break;
case 'N': /* Handle a single-code point named character. */
/* The options cause it to fail if a multiple code
* point sequence. Handle those in the switch() above
* */
RExC_parse = p + 1;
if (! grok_bslash_N(pRExC_state, NULL, &ender,
flagp, depth, FALSE,
FALSE /* not strict */ ))
{
if (*flagp & RESTART_UTF8)
FAIL("panic: grok_bslash_N set RESTART_UTF8");
RExC_parse = p = oldp;
goto loopdone;
}
p = RExC_parse;
RExC_parse = parse_start;
if (ender > 0xff) {
REQUIRE_UTF8;
}
break;
case 'r':
ender = '\r';
p++;
break;
case 't':
ender = '\t';
p++;
break;
case 'f':
ender = '\f';
p++;
break;
case 'e':
ender = ASCII_TO_NATIVE('\033');
p++;
break;
case 'a':
ender = '\a';
p++;
break;
case 'o':
{
UV result;
const char* error_msg;
bool valid = grok_bslash_o(&p,
&result,
&error_msg,
TRUE, /* out warnings */
FALSE, /* not strict */
TRUE, /* Output warnings
for non-
portables */
UTF);
if (! valid) {
RExC_parse = p; /* going to die anyway; point
to exact spot of failure */
vFAIL(error_msg);
}
ender = result;
if (PL_encoding && ender < 0x100) {
goto recode_encoding;
}
if (ender > 0xff) {
REQUIRE_UTF8;
}
break;
}
case 'x':
{
UV result = UV_MAX; /* initialize to erroneous
value */
const char* error_msg;
bool valid = grok_bslash_x(&p,
&result,
&error_msg,
TRUE, /* out warnings */
FALSE, /* not strict */
TRUE, /* Output warnings
for non-
portables */
UTF);
if (! valid) {
RExC_parse = p; /* going to die anyway; point
to exact spot of failure */
vFAIL(error_msg);
}
ender = result;
if (PL_encoding && ender < 0x100) {
goto recode_encoding;
}
if (ender > 0xff) {
REQUIRE_UTF8;
}
break;
}
case 'c':
p++;
ender = grok_bslash_c(*p++, SIZE_ONLY);
break;
case '8': case '9': /* must be a backreference */
--p;
goto loopdone;
case '1': case '2': case '3':case '4':
case '5': case '6': case '7':
/* When we parse backslash escapes there is ambiguity
* between backreferences and octal escapes. Any escape
* from \1 - \9 is a backreference, any multi-digit
* escape which does not start with 0 and which when
* evaluated as decimal could refer to an already
* parsed capture buffer is a backslash. Anything else
* is octal.
*
* Note this implies that \118 could be interpreted as
* 118 OR as "\11" . "8" depending on whether there
* were 118 capture buffers defined already in the
* pattern. */
/* NOTE, RExC_npar is 1 more than the actual number of
* parens we have seen so far, hence the < RExC_npar below. */
if ( !isDIGIT(p[1]) || S_backref_value(p) < RExC_npar)
{ /* Not to be treated as an octal constant, go
find backref */
--p;
goto loopdone;
}
case '0':
{
I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
STRLEN numlen = 3;
ender = grok_oct(p, &numlen, &flags, NULL);
if (ender > 0xff) {
REQUIRE_UTF8;
}
p += numlen;
if (SIZE_ONLY /* like \08, \178 */
&& numlen < 3
&& p < RExC_end
&& isDIGIT(*p) && ckWARN(WARN_REGEXP))
{
reg_warn_non_literal_string(
p + 1,
form_short_octal_warning(p, numlen));
}
}
if (PL_encoding && ender < 0x100)
goto recode_encoding;
break;
recode_encoding:
if (! RExC_override_recoding) {
SV* enc = PL_encoding;
ender = reg_recode((const char)(U8)ender, &enc);
if (!enc && SIZE_ONLY)
ckWARNreg(p, "Invalid escape in the specified encoding");
REQUIRE_UTF8;
}
break;
case '\0':
if (p >= RExC_end)
FAIL("Trailing \\");
/* FALL THROUGH */
default:
if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
/* Include any { following the alpha to emphasize
* that it could be part of an escape at some point
* in the future */
int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
}
goto normal_default;
} /* End of switch on '\' */
break;
default: /* A literal character */
if (! SIZE_ONLY
&& RExC_flags & RXf_PMf_EXTENDED
&& ckWARN_d(WARN_DEPRECATED)
&& is_PATWS_non_low_safe(p, RExC_end, UTF))
{
vWARN_dep(p + ((UTF) ? UTF8SKIP(p) : 1),
"Escape literal pattern white space under /x");
}
normal_default:
if (UTF8_IS_START(*p) && UTF) {
STRLEN numlen;
ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
&numlen, UTF8_ALLOW_DEFAULT);
p += numlen;
}
else
ender = (U8) *p++;
break;
} /* End of switch on the literal */
/* Here, have looked at the literal character and <ender>
* contains its ordinal, <p> points to the character after it
*/
if ( RExC_flags & RXf_PMf_EXTENDED)
p = regwhite( pRExC_state, p );
/* If the next thing is a quantifier, it applies to this
* character only, which means that this character has to be in
* its own node and can't just be appended to the string in an
* existing node, so if there are already other characters in
* the node, close the node with just them, and set up to do
* this character again next time through, when it will be the
* only thing in its new node */
if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
{
p = oldp;
goto loopdone;
}
if (! FOLD /* The simple case, just append the literal */
|| (LOC /* Also don't fold for tricky chars under /l */
&& is_PROBLEMATIC_LOCALE_FOLD_cp(ender)))
{
if (UTF) {
/* Normally, we don't need the representation of the
* character in the sizing pass--just its size, but if
* folding, we have to actually put the character out
* even in the sizing pass, because the size could
* change as we juggle things at the end of this loop
* to avoid splitting a too-full node in the middle of
* a potential multi-char fold [perl #123539] */
const STRLEN unilen = (SIZE_ONLY && ! FOLD)
? UNISKIP(ender)
: (uvchr_to_utf8((U8*)s, ender) - (U8*)s);
if (unilen > 0) {
s += unilen;
len += unilen;
}
/* The loop increments <len> each time, as all but this
* path (and one other) through it add a single byte to
* the EXACTish node. But this one has changed len to
* be the correct final value, so subtract one to
* cancel out the increment that follows */
len--;
}
else if (FOLD) {
/* See comment above for [perl #123539] */
*(s++) = (char) ender;
}
else {
REGC((char)ender, s++);
}
/* Can get here if folding only if is one of the /l
* characters whose fold depends on the locale. The
* occurrence of any of these indicate that we can't
* simplify things */
if (FOLD) {
maybe_exact = FALSE;
maybe_exactfu = FALSE;
}
}
else /* FOLD */
if (! ( UTF
/* See comments for join_exact() as to why we fold this
* non-UTF at compile time */
|| (node_type == EXACTFU
&& ender == LATIN_SMALL_LETTER_SHARP_S)))
{
/* Here, are folding and are not UTF-8 encoded; therefore
* the character must be in the range 0-255, and is not /l
* (Not /l because we already handled these under /l in
* is_PROBLEMATIC_LOCALE_FOLD_cp */
if (IS_IN_SOME_FOLD_L1(ender)) {
maybe_exact = FALSE;
/* See if the character's fold differs between /d and
* /u. This includes the multi-char fold SHARP S to
* 'ss' */
if (maybe_exactfu
&& (PL_fold[ender] != PL_fold_latin1[ender]
|| ender == LATIN_SMALL_LETTER_SHARP_S
|| (len > 0
&& isARG2_lower_or_UPPER_ARG1('s', ender)
&& isARG2_lower_or_UPPER_ARG1('s',
*(s-1)))))
{
maybe_exactfu = FALSE;
}
}
/* Even when folding, we store just the input character, as
* we have an array that finds its fold quickly */
*(s++) = (char) ender;
}
else { /* FOLD and UTF */
/* Unlike the non-fold case, we do actually have to
* calculate the results here in pass 1. This is for two
* reasons, the folded length may be longer than the
* unfolded, and we have to calculate how many EXACTish
* nodes it will take; and we may run out of room in a node
* in the middle of a potential multi-char fold, and have
* to back off accordingly. (Hence we can't use REGC for
* the simple case just below.) */
UV folded;
if (isASCII(ender)) {
folded = toFOLD(ender);
*(s)++ = (U8) folded;
}
else {
STRLEN foldlen;
folded = _to_uni_fold_flags(
ender,
(U8 *) s,
&foldlen,
FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
? FOLD_FLAGS_NOMIX_ASCII
: 0));
s += foldlen;
/* The loop increments <len> each time, as all but this
* path (and one other) through it add a single byte to
* the EXACTish node. But this one has changed len to
* be the correct final value, so subtract one to
* cancel out the increment that follows */
len += foldlen - 1;
}
/* If this node only contains non-folding code points so
* far, see if this new one is also non-folding */
if (maybe_exact) {
if (folded != ender) {
maybe_exact = FALSE;
}
else {
/* Here the fold is the original; we have to check
* further to see if anything folds to it */
if (_invlist_contains_cp(PL_utf8_foldable,
ender))
{
maybe_exact = FALSE;
}
}
}
ender = folded;
}
if (next_is_quantifier) {
/* Here, the next input is a quantifier, and to get here,
* the current character is the only one in the node.
* Also, here <len> doesn't include the final byte for this
* character */
len++;
goto loopdone;
}
} /* End of loop through literal characters */
/* Here we have either exhausted the input or ran out of room in
* the node. (If we encountered a character that can't be in the
* node, transfer is made directly to <loopdone>, and so we
* wouldn't have fallen off the end of the loop.) In the latter
* case, we artificially have to split the node into two, because
* we just don't have enough space to hold everything. This
* creates a problem if the final character participates in a
* multi-character fold in the non-final position, as a match that
* should have occurred won't, due to the way nodes are matched,
* and our artificial boundary. So back off until we find a non-
* problematic character -- one that isn't at the beginning or
* middle of such a fold. (Either it doesn't participate in any
* folds, or appears only in the final position of all the folds it
* does participate in.) A better solution with far fewer false
* positives, and that would fill the nodes more completely, would
* be to actually have available all the multi-character folds to
* test against, and to back-off only far enough to be sure that
* this node isn't ending with a partial one. <upper_parse> is set
* further below (if we need to reparse the node) to include just
* up through that final non-problematic character that this code
* identifies, so when it is set to less than the full node, we can
* skip the rest of this */
if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
const STRLEN full_len = len;
assert(len >= MAX_NODE_STRING_SIZE);
/* Here, <s> points to the final byte of the final character.
* Look backwards through the string until find a non-
* problematic character */
if (! UTF) {
/* This has no multi-char folds to non-UTF characters */
if (ASCII_FOLD_RESTRICTED) {
goto loopdone;
}
while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
len = s - s0 + 1;
}
else {
if (! PL_NonL1NonFinalFold) {
PL_NonL1NonFinalFold = _new_invlist_C_array(
NonL1_Perl_Non_Final_Folds_invlist);
}
/* Point to the first byte of the final character */
s = (char *) utf8_hop((U8 *) s, -1);
while (s >= s0) { /* Search backwards until find
non-problematic char */
if (UTF8_IS_INVARIANT(*s)) {
/* There are no ascii characters that participate
* in multi-char folds under /aa. In EBCDIC, the
* non-ascii invariants are all control characters,
* so don't ever participate in any folds. */
if (ASCII_FOLD_RESTRICTED
|| ! IS_NON_FINAL_FOLD(*s))
{
break;
}
}
else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
if (! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_NATIVE(
*s, *(s+1))))
{
break;
}
}
else if (! _invlist_contains_cp(
PL_NonL1NonFinalFold,
valid_utf8_to_uvchr((U8 *) s, NULL)))
{
break;
}
/* Here, the current character is problematic in that
* it does occur in the non-final position of some
* fold, so try the character before it, but have to
* special case the very first byte in the string, so
* we don't read outside the string */
s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
} /* End of loop backwards through the string */
/* If there were only problematic characters in the string,
* <s> will point to before s0, in which case the length
* should be 0, otherwise include the length of the
* non-problematic character just found */
len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
}
/* Here, have found the final character, if any, that is
* non-problematic as far as ending the node without splitting
* it across a potential multi-char fold. <len> contains the
* number of bytes in the node up-to and including that
* character, or is 0 if there is no such character, meaning
* the whole node contains only problematic characters. In
* this case, give up and just take the node as-is. We can't
* do any better */
if (len == 0) {
len = full_len;
/* If the node ends in an 's' we make sure it stays EXACTF,
* as if it turns into an EXACTFU, it could later get
* joined with another 's' that would then wrongly match
* the sharp s */
if (maybe_exactfu && isARG2_lower_or_UPPER_ARG1('s', ender))
{
maybe_exactfu = FALSE;
}
} else {
/* Here, the node does contain some characters that aren't
* problematic. If one such is the final character in the
* node, we are done */
if (len == full_len) {
goto loopdone;
}
else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
/* If the final character is problematic, but the
* penultimate is not, back-off that last character to
* later start a new node with it */
p = oldp;
goto loopdone;
}
/* Here, the final non-problematic character is earlier
* in the input than the penultimate character. What we do
* is reparse from the beginning, going up only as far as
* this final ok one, thus guaranteeing that the node ends
* in an acceptable character. The reason we reparse is
* that we know how far in the character is, but we don't
* know how to correlate its position with the input parse.
* An alternate implementation would be to build that
* correlation as we go along during the original parse,
* but that would entail extra work for every node, whereas
* this code gets executed only when the string is too
* large for the node, and the final two characters are
* problematic, an infrequent occurrence. Yet another
* possible strategy would be to save the tail of the
* string, and the next time regatom is called, initialize
* with that. The problem with this is that unless you
* back off one more character, you won't be guaranteed
* regatom will get called again, unless regbranch,
* regpiece ... are also changed. If you do back off that
* extra character, so that there is input guaranteed to
* force calling regatom, you can't handle the case where
* just the first character in the node is acceptable. I
* (khw) decided to try this method which doesn't have that
* pitfall; if performance issues are found, we can do a
* combination of the current approach plus that one */
upper_parse = len;
len = 0;
s = s0;
goto reparse;
}
} /* End of verifying node ends with an appropriate char */
loopdone: /* Jumped to when encounters something that shouldn't be in
the node */
/* I (khw) don't know if you can get here with zero length, but the
* old code handled this situation by creating a zero-length EXACT
* node. Might as well be NOTHING instead */
if (len == 0) {
OP(ret) = NOTHING;
}
else {
if (FOLD) {
/* If 'maybe_exact' is still set here, means there are no
* code points in the node that participate in folds;
* similarly for 'maybe_exactfu' and code points that match
* differently depending on UTF8ness of the target string
* (for /u), or depending on locale for /l */
if (maybe_exact) {
OP(ret) = EXACT;
}
else if (maybe_exactfu) {
OP(ret) = EXACTFU;
}
}
alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender,
FALSE /* Don't look to see if could
be turned into an EXACT
node, as we have already
computed that */
);
}
RExC_parse = p - 1;
Set_Node_Cur_Length(ret, parse_start);
nextchar(pRExC_state);
{
/* len is STRLEN which is unsigned, need to copy to signed */
IV iv = len;
if (iv < 0)
vFAIL("Internal disaster");
}
} /* End of label 'defchar:' */
break;
} /* End of giant switch on input character */
return(ret);
}
STATIC char *
S_regwhite( RExC_state_t *pRExC_state, char *p )
{
const char *e = RExC_end;
PERL_ARGS_ASSERT_REGWHITE;
while (p < e) {
if (isSPACE(*p))
++p;
else if (*p == '#') {
bool ended = 0;
do {
if (*p++ == '\n') {
ended = 1;
break;
}
} while (p < e);
if (!ended)
RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
}
else
break;
}
return p;
}
STATIC char *
S_regpatws( RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
{
/* Returns the next non-pattern-white space, non-comment character (the
* latter only if 'recognize_comment is true) in the string p, which is
* ended by RExC_end. If there is no line break ending a comment,
* RExC_seen has added the REG_RUN_ON_COMMENT_SEEN flag; */
const char *e = RExC_end;
PERL_ARGS_ASSERT_REGPATWS;
while (p < e) {
STRLEN len;
if ((len = is_PATWS_safe(p, e, UTF))) {
p += len;
}
else if (recognize_comment && *p == '#') {
bool ended = 0;
do {
p++;
if (is_LNBREAK_safe(p, e, UTF)) {
ended = 1;
break;
}
} while (p < e);
if (!ended)
RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
}
else
break;
}
return p;
}
STATIC void
S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
{
/* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'. It
* sets up the bitmap and any flags, removing those code points from the
* inversion list, setting it to NULL should it become completely empty */
PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
assert(PL_regkind[OP(node)] == ANYOF);
ANYOF_BITMAP_ZERO(node);
if (*invlist_ptr) {
/* This gets set if we actually need to modify things */
bool change_invlist = FALSE;
UV start, end;
/* Start looking through *invlist_ptr */
invlist_iterinit(*invlist_ptr);
while (invlist_iternext(*invlist_ptr, &start, &end)) {
UV high;
int i;
if (end == UV_MAX && start <= 256) {
ANYOF_FLAGS(node) |= ANYOF_ABOVE_LATIN1_ALL;
}
else if (end >= 256) {
ANYOF_FLAGS(node) |= ANYOF_UTF8;
}
/* Quit if are above what we should change */
if (start > 255) {
break;
}
change_invlist = TRUE;
/* Set all the bits in the range, up to the max that we are doing */
high = (end < 255) ? end : 255;
for (i = start; i <= (int) high; i++) {
if (! ANYOF_BITMAP_TEST(node, i)) {
ANYOF_BITMAP_SET(node, i);
}
}
}
invlist_iterfinish(*invlist_ptr);
/* Done with loop; remove any code points that are in the bitmap from
* *invlist_ptr; similarly for code points above latin1 if we have a
* flag to match all of them anyways */
if (change_invlist) {
_invlist_subtract(*invlist_ptr, PL_Latin1, invlist_ptr);
}
if (ANYOF_FLAGS(node) & ANYOF_ABOVE_LATIN1_ALL) {
_invlist_intersection(*invlist_ptr, PL_Latin1, invlist_ptr);
}
/* If have completely emptied it, remove it completely */
if (_invlist_len(*invlist_ptr) == 0) {
SvREFCNT_dec_NN(*invlist_ptr);
*invlist_ptr = NULL;
}
}
}
/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
Character classes ([:foo:]) can also be negated ([:^foo:]).
Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
but trigger failures because they are currently unimplemented. */
#define POSIXCC_DONE(c) ((c) == ':')
#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
PERL_STATIC_INLINE I32
S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
{
dVAR;
I32 namedclass = OOB_NAMEDCLASS;
PERL_ARGS_ASSERT_REGPPOSIXCC;
if (value == '[' && RExC_parse + 1 < RExC_end &&
/* I smell either [: or [= or [. -- POSIX has been here, right? */
POSIXCC(UCHARAT(RExC_parse)))
{
const char c = UCHARAT(RExC_parse);
char* const s = RExC_parse++;
while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
RExC_parse++;
if (RExC_parse == RExC_end) {
if (strict) {
/* Try to give a better location for the error (than the end of
* the string) by looking for the matching ']' */
RExC_parse = s;
while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
RExC_parse++;
}
vFAIL2("Unmatched '%c' in POSIX class", c);
}
/* Grandfather lone [:, [=, [. */
RExC_parse = s;
}
else {
const char* const t = RExC_parse++; /* skip over the c */
assert(*t == c);
if (UCHARAT(RExC_parse) == ']') {
const char *posixcc = s + 1;
RExC_parse++; /* skip over the ending ] */
if (*s == ':') {
const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
const I32 skip = t - posixcc;
/* Initially switch on the length of the name. */
switch (skip) {
case 4:
if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
this is the Perl \w
*/
namedclass = ANYOF_WORDCHAR;
break;
case 5:
/* Names all of length 5. */
/* alnum alpha ascii blank cntrl digit graph lower
print punct space upper */
/* Offset 4 gives the best switch position. */
switch (posixcc[4]) {
case 'a':
if (memEQ(posixcc, "alph", 4)) /* alpha */
namedclass = ANYOF_ALPHA;
break;
case 'e':
if (memEQ(posixcc, "spac", 4)) /* space */
namedclass = ANYOF_PSXSPC;
break;
case 'h':
if (memEQ(posixcc, "grap", 4)) /* graph */
namedclass = ANYOF_GRAPH;
break;
case 'i':
if (memEQ(posixcc, "asci", 4)) /* ascii */
namedclass = ANYOF_ASCII;
break;
case 'k':
if (memEQ(posixcc, "blan", 4)) /* blank */
namedclass = ANYOF_BLANK;
break;
case 'l':
if (memEQ(posixcc, "cntr", 4)) /* cntrl */
namedclass = ANYOF_CNTRL;
break;
case 'm':
if (memEQ(posixcc, "alnu", 4)) /* alnum */
namedclass = ANYOF_ALPHANUMERIC;
break;
case 'r':
if (memEQ(posixcc, "lowe", 4)) /* lower */
namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
else if (memEQ(posixcc, "uppe", 4)) /* upper */
namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
break;
case 't':
if (memEQ(posixcc, "digi", 4)) /* digit */
namedclass = ANYOF_DIGIT;
else if (memEQ(posixcc, "prin", 4)) /* print */
namedclass = ANYOF_PRINT;
else if (memEQ(posixcc, "punc", 4)) /* punct */
namedclass = ANYOF_PUNCT;
break;
}
break;
case 6:
if (memEQ(posixcc, "xdigit", 6))
namedclass = ANYOF_XDIGIT;
break;
}
if (namedclass == OOB_NAMEDCLASS)
vFAIL2utf8f(
"POSIX class [:%"UTF8f":] unknown",
UTF8fARG(UTF, t - s - 1, s + 1));
/* The #defines are structured so each complement is +1 to
* the normal one */
if (complement) {
namedclass++;
}
assert (posixcc[skip] == ':');
assert (posixcc[skip+1] == ']');
} else if (!SIZE_ONLY) {
/* [[=foo=]] and [[.foo.]] are still future. */
/* adjust RExC_parse so the warning shows after
the class closes */
while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
RExC_parse++;
vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
}
} else {
/* Maternal grandfather:
* "[:" ending in ":" but not in ":]" */
if (strict) {
vFAIL("Unmatched '[' in POSIX class");
}
/* Grandfather lone [:, [=, [. */
RExC_parse = s;
}
}
}
return namedclass;
}
STATIC bool
S_could_it_be_a_POSIX_class(pTHX_ RExC_state_t *pRExC_state)
{
/* This applies some heuristics at the current parse position (which should
* be at a '[') to see if what follows might be intended to be a [:posix:]
* class. It returns true if it really is a posix class, of course, but it
* also can return true if it thinks that what was intended was a posix
* class that didn't quite make it.
*
* It will return true for
* [:alphanumerics:
* [:alphanumerics] (as long as the ] isn't followed immediately by a
* ')' indicating the end of the (?[
* [:any garbage including %^&$ punctuation:]
*
* This is designed to be called only from S_handle_regex_sets; it could be
* easily adapted to be called from the spot at the beginning of regclass()
* that checks to see in a normal bracketed class if the surrounding []
* have been omitted ([:word:] instead of [[:word:]]). But doing so would
* change long-standing behavior, so I (khw) didn't do that */
char* p = RExC_parse + 1;
char first_char = *p;
PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
assert(*(p - 1) == '[');
if (! POSIXCC(first_char)) {
return FALSE;
}
p++;
while (p < RExC_end && isWORDCHAR(*p)) p++;
if (p >= RExC_end) {
return FALSE;
}
if (p - RExC_parse > 2 /* Got at least 1 word character */
&& (*p == first_char
|| (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
{
return TRUE;
}
p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
return (p
&& p - RExC_parse > 2 /* [:] evaluates to colon;
[::] is a bad posix class. */
&& first_char == *(p - 1));
}
STATIC regnode *
S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
I32 *flagp, U32 depth,
char * const oregcomp_parse)
{
/* Handle the (?[...]) construct to do set operations */
U8 curchar;
UV start, end; /* End points of code point ranges */
SV* result_string;
char *save_end, *save_parse;
SV* final;
STRLEN len;
regnode* node;
AV* stack;
const bool save_fold = FOLD;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
if (LOC) {
vFAIL("(?[...]) not valid in locale");
}
RExC_uni_semantics = 1;
/* This will return only an ANYOF regnode, or (unlikely) something smaller
* (such as EXACT). Thus we can skip most everything if just sizing. We
* call regclass to handle '[]' so as to not have to reinvent its parsing
* rules here (throwing away the size it computes each time). And, we exit
* upon an unescaped ']' that isn't one ending a regclass. To do both
* these things, we need to realize that something preceded by a backslash
* is escaped, so we have to keep track of backslashes */
if (SIZE_ONLY) {
UV depth = 0; /* how many nested (?[...]) constructs */
Perl_ck_warner_d(aTHX_
packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
"The regex_sets feature is experimental" REPORT_LOCATION,
UTF8fARG(UTF, (RExC_parse - RExC_precomp), RExC_precomp),
UTF8fARG(UTF,
RExC_end - RExC_start - (RExC_parse - RExC_precomp),
RExC_precomp + (RExC_parse - RExC_precomp)));
while (RExC_parse < RExC_end) {
SV* current = NULL;
RExC_parse = regpatws(pRExC_state, RExC_parse,
TRUE); /* means recognize comments */
switch (*RExC_parse) {
case '?':
if (RExC_parse[1] == '[') depth++, RExC_parse++;
/* FALL THROUGH */
default:
break;
case '\\':
/* Skip the next byte (which could cause us to end up in
* the middle of a UTF-8 character, but since none of those
* are confusable with anything we currently handle in this
* switch (invariants all), it's safe. We'll just hit the
* default: case next time and keep on incrementing until
* we find one of the invariants we do handle. */
RExC_parse++;
break;
case '[':
{
/* If this looks like it is a [:posix:] class, leave the
* parse pointer at the '[' to fool regclass() into
* thinking it is part of a '[[:posix:]]'. That function
* will use strict checking to force a syntax error if it
* doesn't work out to a legitimate class */
bool is_posix_class
= could_it_be_a_POSIX_class(pRExC_state);
if (! is_posix_class) {
RExC_parse++;
}
/* regclass() can only return RESTART_UTF8 if multi-char
folds are allowed. */
if (!regclass(pRExC_state, flagp,depth+1,
is_posix_class, /* parse the whole char
class only if not a
posix class */
FALSE, /* don't allow multi-char folds */
TRUE, /* silence non-portable warnings. */
¤t))
FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf"",
(UV) *flagp);
/* function call leaves parse pointing to the ']', except
* if we faked it */
if (is_posix_class) {
RExC_parse--;
}
SvREFCNT_dec(current); /* In case it returned something */
break;
}
case ']':
if (depth--) break;
RExC_parse++;
if (RExC_parse < RExC_end
&& *RExC_parse == ')')
{
node = reganode(pRExC_state, ANYOF, 0);
RExC_size += ANYOF_SKIP;
nextchar(pRExC_state);
Set_Node_Length(node,
RExC_parse - oregcomp_parse + 1); /* MJD */
return node;
}
goto no_close;
}
RExC_parse++;
}
no_close:
FAIL("Syntax error in (?[...])");
}
/* Pass 2 only after this. Everything in this construct is a
* metacharacter. Operands begin with either a '\' (for an escape
* sequence), or a '[' for a bracketed character class. Any other
* character should be an operator, or parenthesis for grouping. Both
* types of operands are handled by calling regclass() to parse them. It
* is called with a parameter to indicate to return the computed inversion
* list. The parsing here is implemented via a stack. Each entry on the
* stack is a single character representing one of the operators, or the
* '('; or else a pointer to an operand inversion list. */
#define IS_OPERAND(a) (! SvIOK(a))
/* The stack starts empty. It is a syntax error if the first thing parsed
* is a binary operator; everything else is pushed on the stack. When an
* operand is parsed, the top of the stack is examined. If it is a binary
* operator, the item before it should be an operand, and both are replaced
* by the result of doing that operation on the new operand and the one on
* the stack. Thus a sequence of binary operands is reduced to a single
* one before the next one is parsed.
*
* A unary operator may immediately follow a binary in the input, for
* example
* [a] + ! [b]
* When an operand is parsed and the top of the stack is a unary operator,
* the operation is performed, and then the stack is rechecked to see if
* this new operand is part of a binary operation; if so, it is handled as
* above.
*
* A '(' is simply pushed on the stack; it is valid only if the stack is
* empty, or the top element of the stack is an operator or another '('
* (for which the parenthesized expression will become an operand). By the
* time the corresponding ')' is parsed everything in between should have
* been parsed and evaluated to a single operand (or else is a syntax
* error), and is handled as a regular operand */
sv_2mortal((SV *)(stack = newAV()));
while (RExC_parse < RExC_end) {
I32 top_index = av_tindex(stack);
SV** top_ptr;
SV* current = NULL;
/* Skip white space */
RExC_parse = regpatws(pRExC_state, RExC_parse,
TRUE); /* means recognize comments */
if (RExC_parse >= RExC_end) {
Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
}
if ((curchar = UCHARAT(RExC_parse)) == ']') {
break;
}
switch (curchar) {
case '?':
if (av_tindex(stack) >= 0 /* This makes sure that we can
safely subtract 1 from
RExC_parse in the next clause.
If we have something on the
stack, we have parsed something
*/
&& UCHARAT(RExC_parse - 1) == '('
&& RExC_parse < RExC_end)
{
/* If is a '(?', could be an embedded '(?flags:(?[...])'.
* This happens when we have some thing like
*
* my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
* ...
* qr/(?[ \p{Digit} & $thai_or_lao ])/;
*
* Here we would be handling the interpolated
* '$thai_or_lao'. We handle this by a recursive call to
* ourselves which returns the inversion list the
* interpolated expression evaluates to. We use the flags
* from the interpolated pattern. */
U32 save_flags = RExC_flags;
const char * const save_parse = ++RExC_parse;
parse_lparen_question_flags(pRExC_state);
if (RExC_parse == save_parse /* Makes sure there was at
least one flag (or this
embedding wasn't compiled)
*/
|| RExC_parse >= RExC_end - 4
|| UCHARAT(RExC_parse) != ':'
|| UCHARAT(++RExC_parse) != '('
|| UCHARAT(++RExC_parse) != '?'
|| UCHARAT(++RExC_parse) != '[')
{
/* In combination with the above, this moves the
* pointer to the point just after the first erroneous
* character (or if there are no flags, to where they
* should have been) */
if (RExC_parse >= RExC_end - 4) {
RExC_parse = RExC_end;
}
else if (RExC_parse != save_parse) {
RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
}
vFAIL("Expecting '(?flags:(?[...'");
}
RExC_parse++;
(void) handle_regex_sets(pRExC_state, ¤t, flagp,
depth+1, oregcomp_parse);
/* Here, 'current' contains the embedded expression's
* inversion list, and RExC_parse points to the trailing
* ']'; the next character should be the ')' which will be
* paired with the '(' that has been put on the stack, so
* the whole embedded expression reduces to '(operand)' */
RExC_parse++;
RExC_flags = save_flags;
goto handle_operand;
}
/* FALL THROUGH */
default:
RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
vFAIL("Unexpected character");
case '\\':
/* regclass() can only return RESTART_UTF8 if multi-char
folds are allowed. */
if (!regclass(pRExC_state, flagp,depth+1,
TRUE, /* means parse just the next thing */
FALSE, /* don't allow multi-char folds */
FALSE, /* don't silence non-portable warnings. */
¤t))
FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf"",
(UV) *flagp);
/* regclass() will return with parsing just the \ sequence,
* leaving the parse pointer at the next thing to parse */
RExC_parse--;
goto handle_operand;
case '[': /* Is a bracketed character class */
{
bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
if (! is_posix_class) {
RExC_parse++;
}
/* regclass() can only return RESTART_UTF8 if multi-char
folds are allowed. */
if(!regclass(pRExC_state, flagp,depth+1,
is_posix_class, /* parse the whole char class
only if not a posix class */
FALSE, /* don't allow multi-char folds */
FALSE, /* don't silence non-portable warnings. */
¤t))
FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf"",
(UV) *flagp);
/* function call leaves parse pointing to the ']', except if we
* faked it */
if (is_posix_class) {
RExC_parse--;
}
goto handle_operand;
}
case '&':
case '|':
case '+':
case '-':
case '^':
if (top_index < 0
|| ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
|| ! IS_OPERAND(*top_ptr))
{
RExC_parse++;
vFAIL2("Unexpected binary operator '%c' with no preceding operand", curchar);
}
av_push(stack, newSVuv(curchar));
break;
case '!':
av_push(stack, newSVuv(curchar));
break;
case '(':
if (top_index >= 0) {
top_ptr = av_fetch(stack, top_index, FALSE);
assert(top_ptr);
if (IS_OPERAND(*top_ptr)) {
RExC_parse++;
vFAIL("Unexpected '(' with no preceding operator");
}
}
av_push(stack, newSVuv(curchar));
break;
case ')':
{
SV* lparen;
if (top_index < 1
|| ! (current = av_pop(stack))
|| ! IS_OPERAND(current)
|| ! (lparen = av_pop(stack))
|| IS_OPERAND(lparen)
|| SvUV(lparen) != '(')
{
SvREFCNT_dec(current);
RExC_parse++;
vFAIL("Unexpected ')'");
}
top_index -= 2;
SvREFCNT_dec_NN(lparen);
/* FALL THROUGH */
}
handle_operand:
/* Here, we have an operand to process, in 'current' */
if (top_index < 0) { /* Just push if stack is empty */
av_push(stack, current);
}
else {
SV* top = av_pop(stack);
SV *prev = NULL;
char current_operator;
if (IS_OPERAND(top)) {
SvREFCNT_dec_NN(top);
SvREFCNT_dec_NN(current);
vFAIL("Operand with no preceding operator");
}
current_operator = (char) SvUV(top);
switch (current_operator) {
case '(': /* Push the '(' back on followed by the new
operand */
av_push(stack, top);
av_push(stack, current);
SvREFCNT_inc(top); /* Counters the '_dec' done
just after the 'break', so
it doesn't get wrongly freed
*/
break;
case '!':
_invlist_invert(current);
/* Unlike binary operators, the top of the stack,
* now that this unary one has been popped off, may
* legally be an operator, and we now have operand
* for it. */
top_index--;
SvREFCNT_dec_NN(top);
goto handle_operand;
case '&':
prev = av_pop(stack);
_invlist_intersection(prev,
current,
¤t);
av_push(stack, current);
break;
case '|':
case '+':
prev = av_pop(stack);
_invlist_union(prev, current, ¤t);
av_push(stack, current);
break;
case '-':
prev = av_pop(stack);;
_invlist_subtract(prev, current, ¤t);
av_push(stack, current);
break;
case '^': /* The union minus the intersection */
{
SV* i = NULL;
SV* u = NULL;
SV* element;
prev = av_pop(stack);
_invlist_union(prev, current, &u);
_invlist_intersection(prev, current, &i);
/* _invlist_subtract will overwrite current
without freeing what it already contains */
element = current;
_invlist_subtract(u, i, ¤t);
av_push(stack, current);
SvREFCNT_dec_NN(i);
SvREFCNT_dec_NN(u);
SvREFCNT_dec_NN(element);
break;
}
default:
Perl_croak(aTHX_ "panic: Unexpected item on '(?[ ])' stack");
}
SvREFCNT_dec_NN(top);
SvREFCNT_dec(prev);
}
}
RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
}
if (av_tindex(stack) < 0 /* Was empty */
|| ((final = av_pop(stack)) == NULL)
|| ! IS_OPERAND(final)
|| av_tindex(stack) >= 0) /* More left on stack */
{
vFAIL("Incomplete expression within '(?[ ])'");
}
/* Here, 'final' is the resultant inversion list from evaluating the
* expression. Return it if so requested */
if (return_invlist) {
*return_invlist = final;
return END;
}
/* Otherwise generate a resultant node, based on 'final'. regclass() is
* expecting a string of ranges and individual code points */
invlist_iterinit(final);
result_string = newSVpvs("");
while (invlist_iternext(final, &start, &end)) {
if (start == end) {
Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
}
else {
Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
start, end);
}
}
save_parse = RExC_parse;
RExC_parse = SvPV(result_string, len);
save_end = RExC_end;
RExC_end = RExC_parse + len;
/* We turn off folding around the call, as the class we have constructed
* already has all folding taken into consideration, and we don't want
* regclass() to add to that */
RExC_flags &= ~RXf_PMf_FOLD;
/* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
*/
node = regclass(pRExC_state, flagp,depth+1,
FALSE, /* means parse the whole char class */
FALSE, /* don't allow multi-char folds */
TRUE, /* silence non-portable warnings. The above may very
well have generated non-portable code points, but
they're valid on this machine */
NULL);
if (!node)
FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
PTR2UV(flagp));
if (save_fold) {
RExC_flags |= RXf_PMf_FOLD;
}
RExC_parse = save_parse + 1;
RExC_end = save_end;
SvREFCNT_dec_NN(final);
SvREFCNT_dec_NN(result_string);
nextchar(pRExC_state);
Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
return node;
}
#undef IS_OPERAND
/* The names of properties whose definitions are not known at compile time are
* stored in this SV, after a constant heading. So if the length has been
* changed since initialization, then there is a run-time definition. */
#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION \
(SvCUR(listsv) != initial_listsv_len)
STATIC regnode *
S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
const bool stop_at_1, /* Just parse the next thing, don't
look for a full character class */
bool allow_multi_folds,
const bool silence_non_portable, /* Don't output warnings
about too large
characters */
SV** ret_invlist) /* Return an inversion list, not a node */
{
/* parse a bracketed class specification. Most of these will produce an
* ANYOF node; but something like [a] will produce an EXACT node; [aA], an
* EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
* under /i with multi-character folds: it will be rewritten following the
* paradigm of this example, where the <multi-fold>s are characters which
* fold to multiple character sequences:
* /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
* gets effectively rewritten as:
* /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
* reg() gets called (recursively) on the rewritten version, and this
* function will return what it constructs. (Actually the <multi-fold>s
* aren't physically removed from the [abcdefghi], it's just that they are
* ignored in the recursion by means of a flag:
* <RExC_in_multi_char_class>.)
*
* ANYOF nodes contain a bit map for the first 256 characters, with the
* corresponding bit set if that character is in the list. For characters
* above 255, a range list or swash is used. There are extra bits for \w,
* etc. in locale ANYOFs, as what these match is not determinable at
* compile time
*
* Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
* to be restarted. This can only happen if ret_invlist is non-NULL.
*/
dVAR;
UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
IV range = 0;
UV value = OOB_UNICODE, save_value = OOB_UNICODE;
regnode *ret;
STRLEN numlen;
IV namedclass = OOB_NAMEDCLASS;
char *rangebegin = NULL;
bool need_class = 0;
SV *listsv = NULL;
STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
than just initialized. */
SV* properties = NULL; /* Code points that match \p{} \P{} */
SV* posixes = NULL; /* Code points that match classes like [:word:],
extended beyond the Latin1 range. These have to
be kept separate from other code points for much
of this function because their handling is
different under /i, and for most classes under
/d as well */
SV* nposixes = NULL; /* Similarly for [:^word:]. These are kept
separate for a while from the non-complemented
versions because of complications with /d
matching */
UV element_count = 0; /* Number of distinct elements in the class.
Optimizations may be possible if this is tiny */
AV * multi_char_matches = NULL; /* Code points that fold to more than one
character; used under /i */
UV n;
char * stop_ptr = RExC_end; /* where to stop parsing */
const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
space? */
const bool strict = cBOOL(ret_invlist); /* Apply strict parsing rules? */
/* Unicode properties are stored in a swash; this holds the current one
* being parsed. If this swash is the only above-latin1 component of the
* character class, an optimization is to pass it directly on to the
* execution engine. Otherwise, it is set to NULL to indicate that there
* are other things in the class that have to be dealt with at execution
* time */
SV* swash = NULL; /* Code points that match \p{} \P{} */
/* Set if a component of this character class is user-defined; just passed
* on to the engine */
bool has_user_defined_property = FALSE;
/* inversion list of code points this node matches only when the target
* string is in UTF-8. (Because is under /d) */
SV* depends_list = NULL;
/* Inversion list of code points this node matches regardless of things
* like locale, folding, utf8ness of the target string */
SV* cp_list = NULL;
/* Like cp_list, but code points on this list need to be checked for things
* that fold to/from them under /i */
SV* cp_foldable_list = NULL;
/* Like cp_list, but code points on this list are valid only when the
* runtime locale is UTF-8 */
SV* only_utf8_locale_list = NULL;
#ifdef EBCDIC
/* In a range, counts how many 0-2 of the ends of it came from literals,
* not escapes. Thus we can tell if 'A' was input vs \x{C1} */
UV literal_endpoint = 0;
#endif
bool invert = FALSE; /* Is this class to be complemented */
bool warn_super = ALWAYS_WARN_SUPER;
regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
case we need to change the emitted regop to an EXACT. */
const char * orig_parse = RExC_parse;
const SSize_t orig_size = RExC_size;
bool posixl_matches_all = FALSE; /* Does /l class have both e.g. \W,\w ? */
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGCLASS;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
DEBUG_PARSE("clas");
/* Assume we are going to generate an ANYOF node. */
ret = reganode(pRExC_state, ANYOF, 0);
if (SIZE_ONLY) {
RExC_size += ANYOF_SKIP;
listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
}
else {
ANYOF_FLAGS(ret) = 0;
RExC_emit += ANYOF_SKIP;
listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
initial_listsv_len = SvCUR(listsv);
SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
}
if (skip_white) {
RExC_parse = regpatws(pRExC_state, RExC_parse,
FALSE /* means don't recognize comments */);
}
if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
RExC_parse++;
invert = TRUE;
allow_multi_folds = FALSE;
RExC_naughty++;
if (skip_white) {
RExC_parse = regpatws(pRExC_state, RExC_parse,
FALSE /* means don't recognize comments */);
}
}
/* Check that they didn't say [:posix:] instead of [[:posix:]] */
if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
const char *s = RExC_parse;
const char c = *s++;
while (isWORDCHAR(*s))
s++;
if (*s && c == *s && s[1] == ']') {
SAVEFREESV(RExC_rx_sv);
ckWARN3reg(s+2,
"POSIX syntax [%c %c] belongs inside character classes",
c, c);
(void)ReREFCNT_inc(RExC_rx_sv);
}
}
/* If the caller wants us to just parse a single element, accomplish this
* by faking the loop ending condition */
if (stop_at_1 && RExC_end > RExC_parse) {
stop_ptr = RExC_parse + 1;
}
/* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
if (UCHARAT(RExC_parse) == ']')
goto charclassloop;
parseit:
while (1) {
if (RExC_parse >= stop_ptr) {
break;
}
if (skip_white) {
RExC_parse = regpatws(pRExC_state, RExC_parse,
FALSE /* means don't recognize comments */);
}
if (UCHARAT(RExC_parse) == ']') {
break;
}
charclassloop:
namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
save_value = value;
save_prevvalue = prevvalue;
if (!range) {
rangebegin = RExC_parse;
element_count++;
}
if (UTF) {
value = utf8n_to_uvchr((U8*)RExC_parse,
RExC_end - RExC_parse,
&numlen, UTF8_ALLOW_DEFAULT);
RExC_parse += numlen;
}
else
value = UCHARAT(RExC_parse++);
if (value == '['
&& RExC_parse < RExC_end
&& POSIXCC(UCHARAT(RExC_parse)))
{
namedclass = regpposixcc(pRExC_state, value, strict);
}
else if (value == '\\') {
if (UTF) {
value = utf8n_to_uvchr((U8*)RExC_parse,
RExC_end - RExC_parse,
&numlen, UTF8_ALLOW_DEFAULT);
RExC_parse += numlen;
}
else
value = UCHARAT(RExC_parse++);
/* Some compilers cannot handle switching on 64-bit integer
* values, therefore value cannot be an UV. Yes, this will
* be a problem later if we want switch on Unicode.
* A similar issue a little bit later when switching on
* namedclass. --jhi */
/* If the \ is escaping white space when white space is being
* skipped, it means that that white space is wanted literally, and
* is already in 'value'. Otherwise, need to translate the escape
* into what it signifies. */
if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
case 'w': namedclass = ANYOF_WORDCHAR; break;
case 'W': namedclass = ANYOF_NWORDCHAR; break;
case 's': namedclass = ANYOF_SPACE; break;
case 'S': namedclass = ANYOF_NSPACE; break;
case 'd': namedclass = ANYOF_DIGIT; break;
case 'D': namedclass = ANYOF_NDIGIT; break;
case 'v': namedclass = ANYOF_VERTWS; break;
case 'V': namedclass = ANYOF_NVERTWS; break;
case 'h': namedclass = ANYOF_HORIZWS; break;
case 'H': namedclass = ANYOF_NHORIZWS; break;
case 'N': /* Handle \N{NAME} in class */
{
/* We only pay attention to the first char of
multichar strings being returned. I kinda wonder
if this makes sense as it does change the behaviour
from earlier versions, OTOH that behaviour was broken
as well. */
if (! grok_bslash_N(pRExC_state, NULL, &value, flagp, depth,
TRUE, /* => charclass */
strict))
{
if (*flagp & RESTART_UTF8)
FAIL("panic: grok_bslash_N set RESTART_UTF8");
goto parseit;
}
}
break;
case 'p':
case 'P':
{
char *e;
/* We will handle any undefined properties ourselves */
U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF
/* And we actually would prefer to get
* the straight inversion list of the
* swash, since we will be accessing it
* anyway, to save a little time */
|_CORE_SWASH_INIT_ACCEPT_INVLIST;
if (RExC_parse >= RExC_end)
vFAIL2("Empty \\%c{}", (U8)value);
if (*RExC_parse == '{') {
const U8 c = (U8)value;
e = strchr(RExC_parse++, '}');
if (!e)
vFAIL2("Missing right brace on \\%c{}", c);
while (isSPACE(UCHARAT(RExC_parse)))
RExC_parse++;
if (e == RExC_parse)
vFAIL2("Empty \\%c{}", c);
n = e - RExC_parse;
while (isSPACE(UCHARAT(RExC_parse + n - 1)))
n--;
}
else {
e = RExC_parse;
n = 1;
}
if (!SIZE_ONLY) {
SV* invlist;
char* formatted;
char* name;
if (UCHARAT(RExC_parse) == '^') {
RExC_parse++;
n--;
/* toggle. (The rhs xor gets the single bit that
* differs between P and p; the other xor inverts just
* that bit) */
value ^= 'P' ^ 'p';
while (isSPACE(UCHARAT(RExC_parse))) {
RExC_parse++;
n--;
}
}
/* Try to get the definition of the property into
* <invlist>. If /i is in effect, the effective property
* will have its name be <__NAME_i>. The design is
* discussed in commit
* 2f833f5208e26b208886e51e09e2c072b5eabb46 */
formatted = Perl_form(aTHX_
"%s%.*s%s\n",
(FOLD) ? "__" : "",
(int)n,
RExC_parse,
(FOLD) ? "_i" : ""
);
name = savepvn(formatted, strlen(formatted));
/* Look up the property name, and get its swash and
* inversion list, if the property is found */
if (swash) {
SvREFCNT_dec_NN(swash);
}
swash = _core_swash_init("utf8", name, &PL_sv_undef,
1, /* binary */
0, /* not tr/// */
NULL, /* No inversion list */
&swash_init_flags
);
if (! swash || ! (invlist = _get_swash_invlist(swash))) {
if (swash) {
SvREFCNT_dec_NN(swash);
swash = NULL;
}
/* Here didn't find it. It could be a user-defined
* property that will be available at run-time. If we
* accept only compile-time properties, is an error;
* otherwise add it to the list for run-time look up */
if (ret_invlist) {
RExC_parse = e + 1;
vFAIL2utf8f(
"Property '%"UTF8f"' is unknown",
UTF8fARG(UTF, n, name));
}
Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%"UTF8f"\n",
(value == 'p' ? '+' : '!'),
UTF8fARG(UTF, n, name));
has_user_defined_property = TRUE;
/* We don't know yet, so have to assume that the
* property could match something in the Latin1 range,
* hence something that isn't utf8. Note that this
* would cause things in <depends_list> to match
* inappropriately, except that any \p{}, including
* this one forces Unicode semantics, which means there
* is no <depends_list> */
ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
}
else {
/* Here, did get the swash and its inversion list. If
* the swash is from a user-defined property, then this
* whole character class should be regarded as such */
if (swash_init_flags
& _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)
{
has_user_defined_property = TRUE;
}
else if
/* We warn on matching an above-Unicode code point
* if the match would return true, except don't
* warn for \p{All}, which has exactly one element
* = 0 */
(_invlist_contains_cp(invlist, 0x110000)
&& (! (_invlist_len(invlist) == 1
&& *invlist_array(invlist) == 0)))
{
warn_super = TRUE;
}
/* Invert if asking for the complement */
if (value == 'P') {
_invlist_union_complement_2nd(properties,
invlist,
&properties);
/* The swash can't be used as-is, because we've
* inverted things; delay removing it to here after
* have copied its invlist above */
SvREFCNT_dec_NN(swash);
swash = NULL;
}
else {
_invlist_union(properties, invlist, &properties);
}
}
Safefree(name);
}
RExC_parse = e + 1;
namedclass = ANYOF_UNIPROP; /* no official name, but it's
named */
/* \p means they want Unicode semantics */
RExC_uni_semantics = 1;
}
break;
case 'n': value = '\n'; break;
case 'r': value = '\r'; break;
case 't': value = '\t'; break;
case 'f': value = '\f'; break;
case 'b': value = '\b'; break;
case 'e': value = ASCII_TO_NATIVE('\033');break;
case 'a': value = '\a'; break;
case 'o':
RExC_parse--; /* function expects to be pointed at the 'o' */
{
const char* error_msg;
bool valid = grok_bslash_o(&RExC_parse,
&value,
&error_msg,
SIZE_ONLY, /* warnings in pass
1 only */
strict,
silence_non_portable,
UTF);
if (! valid) {
vFAIL(error_msg);
}
}
if (PL_encoding && value < 0x100) {
goto recode_encoding;
}
break;
case 'x':
RExC_parse--; /* function expects to be pointed at the 'x' */
{
const char* error_msg;
bool valid = grok_bslash_x(&RExC_parse,
&value,
&error_msg,
TRUE, /* Output warnings */
strict,
silence_non_portable,
UTF);
if (! valid) {
vFAIL(error_msg);
}
}
if (PL_encoding && value < 0x100)
goto recode_encoding;
break;
case 'c':
value = grok_bslash_c(*RExC_parse++, SIZE_ONLY);
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7':
{
/* Take 1-3 octal digits */
I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
numlen = (strict) ? 4 : 3;
value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
RExC_parse += numlen;
if (numlen != 3) {
if (strict) {
RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
vFAIL("Need exactly 3 octal digits");
}
else if (! SIZE_ONLY /* like \08, \178 */
&& numlen < 3
&& RExC_parse < RExC_end
&& isDIGIT(*RExC_parse)
&& ckWARN(WARN_REGEXP))
{
SAVEFREESV(RExC_rx_sv);
reg_warn_non_literal_string(
RExC_parse + 1,
form_short_octal_warning(RExC_parse, numlen));
(void)ReREFCNT_inc(RExC_rx_sv);
}
}
if (PL_encoding && value < 0x100)
goto recode_encoding;
break;
}
recode_encoding:
if (! RExC_override_recoding) {
SV* enc = PL_encoding;
value = reg_recode((const char)(U8)value, &enc);
if (!enc) {
if (strict) {
vFAIL("Invalid escape in the specified encoding");
}
else if (SIZE_ONLY) {
ckWARNreg(RExC_parse,
"Invalid escape in the specified encoding");
}
}
break;
}
default:
/* Allow \_ to not give an error */
if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
if (strict) {
vFAIL2("Unrecognized escape \\%c in character class",
(int)value);
}
else {
SAVEFREESV(RExC_rx_sv);
ckWARN2reg(RExC_parse,
"Unrecognized escape \\%c in character class passed through",
(int)value);
(void)ReREFCNT_inc(RExC_rx_sv);
}
}
break;
} /* End of switch on char following backslash */
} /* end of handling backslash escape sequences */
#ifdef EBCDIC
else
literal_endpoint++;
#endif
/* Here, we have the current token in 'value' */
if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
U8 classnum;
/* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
* literal, as is the character that began the false range, i.e.
* the 'a' in the examples */
if (range) {
if (!SIZE_ONLY) {
const int w = (RExC_parse >= rangebegin)
? RExC_parse - rangebegin
: 0;
if (strict) {
vFAIL2utf8f(
"False [] range \"%"UTF8f"\"",
UTF8fARG(UTF, w, rangebegin));
}
else {
SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
ckWARN2reg(RExC_parse,
"False [] range \"%"UTF8f"\"",
UTF8fARG(UTF, w, rangebegin));
(void)ReREFCNT_inc(RExC_rx_sv);
cp_list = add_cp_to_invlist(cp_list, '-');
cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
prevvalue);
}
}
range = 0; /* this was not a true range */
element_count += 2; /* So counts for three values */
}
classnum = namedclass_to_classnum(namedclass);
if (LOC && namedclass < ANYOF_POSIXL_MAX
#ifndef HAS_ISASCII
&& classnum != _CC_ASCII
#endif
) {
/* What the Posix classes (like \w, [:space:]) match in locale
* isn't knowable under locale until actual match time. Room
* must be reserved (one time per outer bracketed class) to
* store such classes. The space will contain a bit for each
* named class that is to be matched against. This isn't
* needed for \p{} and pseudo-classes, as they are not affected
* by locale, and hence are dealt with separately */
if (! need_class) {
need_class = 1;
if (SIZE_ONLY) {
RExC_size += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
}
else {
RExC_emit += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
}
ANYOF_FLAGS(ret) |= ANYOF_POSIXL;
ANYOF_POSIXL_ZERO(ret);
}
/* See if it already matches the complement of this POSIX
* class */
if ((ANYOF_FLAGS(ret) & ANYOF_POSIXL)
&& ANYOF_POSIXL_TEST(ret, namedclass + ((namedclass % 2)
? -1
: 1)))
{
posixl_matches_all = TRUE;
break; /* No need to continue. Since it matches both
e.g., \w and \W, it matches everything, and the
bracketed class can be optimized into qr/./s */
}
/* Add this class to those that should be checked at runtime */
ANYOF_POSIXL_SET(ret, namedclass);
/* The above-Latin1 characters are not subject to locale rules.
* Just add them, in the second pass, to the
* unconditionally-matched list */
if (! SIZE_ONLY) {
SV* scratch_list = NULL;
/* Get the list of the above-Latin1 code points this
* matches */
_invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
PL_XPosix_ptrs[classnum],
/* Odd numbers are complements, like
* NDIGIT, NASCII, ... */
namedclass % 2 != 0,
&scratch_list);
/* Checking if 'cp_list' is NULL first saves an extra
* clone. Its reference count will be decremented at the
* next union, etc, or if this is the only instance, at the
* end of the routine */
if (! cp_list) {
cp_list = scratch_list;
}
else {
_invlist_union(cp_list, scratch_list, &cp_list);
SvREFCNT_dec_NN(scratch_list);
}
continue; /* Go get next character */
}
}
else if (! SIZE_ONLY) {
/* Here, not in pass1 (in that pass we skip calculating the
* contents of this class), and is /l, or is a POSIX class for
* which /l doesn't matter (or is a Unicode property, which is
* skipped here). */
if (namedclass >= ANYOF_POSIXL_MAX) { /* If a special class */
if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
/* Here, should be \h, \H, \v, or \V. None of /d, /i
* nor /l make a difference in what these match,
* therefore we just add what they match to cp_list. */
if (classnum != _CC_VERTSPACE) {
assert( namedclass == ANYOF_HORIZWS
|| namedclass == ANYOF_NHORIZWS);
/* It turns out that \h is just a synonym for
* XPosixBlank */
classnum = _CC_BLANK;
}
_invlist_union_maybe_complement_2nd(
cp_list,
PL_XPosix_ptrs[classnum],
namedclass % 2 != 0, /* Complement if odd
(NHORIZWS, NVERTWS)
*/
&cp_list);
}
}
else { /* Garden variety class. If is NASCII, NDIGIT, ...
complement and use nposixes */
SV** posixes_ptr = namedclass % 2 == 0
? &posixes
: &nposixes;
SV** source_ptr = &PL_XPosix_ptrs[classnum];
_invlist_union_maybe_complement_2nd(
*posixes_ptr,
*source_ptr,
namedclass % 2 != 0,
posixes_ptr);
}
continue; /* Go get next character */
}
} /* end of namedclass \blah */
/* Here, we have a single value. If 'range' is set, it is the ending
* of a range--check its validity. Later, we will handle each
* individual code point in the range. If 'range' isn't set, this
* could be the beginning of a range, so check for that by looking
* ahead to see if the next real character to be processed is the range
* indicator--the minus sign */
if (skip_white) {
RExC_parse = regpatws(pRExC_state, RExC_parse,
FALSE /* means don't recognize comments */);
}
if (range) {
if (prevvalue > value) /* b-a */ {
const int w = RExC_parse - rangebegin;
vFAIL2utf8f(
"Invalid [] range \"%"UTF8f"\"",
UTF8fARG(UTF, w, rangebegin));
range = 0; /* not a valid range */
}
}
else {
prevvalue = value; /* save the beginning of the potential range */
if (! stop_at_1 /* Can't be a range if parsing just one thing */
&& *RExC_parse == '-')
{
char* next_char_ptr = RExC_parse + 1;
if (skip_white) { /* Get the next real char after the '-' */
next_char_ptr = regpatws(pRExC_state,
RExC_parse + 1,
FALSE); /* means don't recognize
comments */
}
/* If the '-' is at the end of the class (just before the ']',
* it is a literal minus; otherwise it is a range */
if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
RExC_parse = next_char_ptr;
/* a bad range like \w-, [:word:]- ? */
if (namedclass > OOB_NAMEDCLASS) {
if (strict || ckWARN(WARN_REGEXP)) {
const int w =
RExC_parse >= rangebegin ?
RExC_parse - rangebegin : 0;
if (strict) {
vFAIL4("False [] range \"%*.*s\"",
w, w, rangebegin);
}
else {
vWARN4(RExC_parse,
"False [] range \"%*.*s\"",
w, w, rangebegin);
}
}
if (!SIZE_ONLY) {
cp_list = add_cp_to_invlist(cp_list, '-');
}
element_count++;
} else
range = 1; /* yeah, it's a range! */
continue; /* but do it the next time */
}
}
}
/* Here, <prevvalue> is the beginning of the range, if any; or <value>
* if not */
/* non-Latin1 code point implies unicode semantics. Must be set in
* pass1 so is there for the whole of pass 2 */
if (value > 255) {
RExC_uni_semantics = 1;
}
/* Ready to process either the single value, or the completed range.
* For single-valued non-inverted ranges, we consider the possibility
* of multi-char folds. (We made a conscious decision to not do this
* for the other cases because it can often lead to non-intuitive
* results. For example, you have the peculiar case that:
* "s s" =~ /^[^\xDF]+$/i => Y
* "ss" =~ /^[^\xDF]+$/i => N
*
* See [perl #89750] */
if (FOLD && allow_multi_folds && value == prevvalue) {
if (value == LATIN_SMALL_LETTER_SHARP_S
|| (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
value)))
{
/* Here <value> is indeed a multi-char fold. Get what it is */
U8 foldbuf[UTF8_MAXBYTES_CASE];
STRLEN foldlen;
UV folded = _to_uni_fold_flags(
value,
foldbuf,
&foldlen,
FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
? FOLD_FLAGS_NOMIX_ASCII
: 0)
);
/* Here, <folded> should be the first character of the
* multi-char fold of <value>, with <foldbuf> containing the
* whole thing. But, if this fold is not allowed (because of
* the flags), <fold> will be the same as <value>, and should
* be processed like any other character, so skip the special
* handling */
if (folded != value) {
/* Skip if we are recursed, currently parsing the class
* again. Otherwise add this character to the list of
* multi-char folds. */
if (! RExC_in_multi_char_class) {
AV** this_array_ptr;
AV* this_array;
STRLEN cp_count = utf8_length(foldbuf,
foldbuf + foldlen);
SV* multi_fold = sv_2mortal(newSVpvn("", 0));
Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
if (! multi_char_matches) {
multi_char_matches = newAV();
}
/* <multi_char_matches> is actually an array of arrays.
* There will be one or two top-level elements: [2],
* and/or [3]. The [2] element is an array, each
* element thereof is a character which folds to TWO
* characters; [3] is for folds to THREE characters.
* (Unicode guarantees a maximum of 3 characters in any
* fold.) When we rewrite the character class below,
* we will do so such that the longest folds are
* written first, so that it prefers the longest
* matching strings first. This is done even if it
* turns out that any quantifier is non-greedy, out of
* programmer laziness. Tom Christiansen has agreed
* that this is ok. This makes the test for the
* ligature 'ffi' come before the test for 'ff' */
if (av_exists(multi_char_matches, cp_count)) {
this_array_ptr = (AV**) av_fetch(multi_char_matches,
cp_count, FALSE);
this_array = *this_array_ptr;
}
else {
this_array = newAV();
av_store(multi_char_matches, cp_count,
(SV*) this_array);
}
av_push(this_array, multi_fold);
}
/* This element should not be processed further in this
* class */
element_count--;
value = save_value;
prevvalue = save_prevvalue;
continue;
}
}
}
/* Deal with this element of the class */
if (! SIZE_ONLY) {
#ifndef EBCDIC
cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
prevvalue, value);
#else
SV* this_range = _new_invlist(1);
_append_range_to_invlist(this_range, prevvalue, value);
/* In EBCDIC, the ranges 'A-Z' and 'a-z' are each not contiguous.
* If this range was specified using something like 'i-j', we want
* to include only the 'i' and the 'j', and not anything in
* between, so exclude non-ASCII, non-alphabetics from it.
* However, if the range was specified with something like
* [\x89-\x91] or [\x89-j], all code points within it should be
* included. literal_endpoint==2 means both ends of the range used
* a literal character, not \x{foo} */
if (literal_endpoint == 2
&& ((prevvalue >= 'a' && value <= 'z')
|| (prevvalue >= 'A' && value <= 'Z')))
{
_invlist_intersection(this_range, PL_ASCII,
&this_range);
/* Since this above only contains ascii, the intersection of it
* with anything will still yield only ascii */
_invlist_intersection(this_range, PL_XPosix_ptrs[_CC_ALPHA],
&this_range);
}
_invlist_union(cp_foldable_list, this_range, &cp_foldable_list);
literal_endpoint = 0;
#endif
}
range = 0; /* this range (if it was one) is done now */
} /* End of loop through all the text within the brackets */
/* If anything in the class expands to more than one character, we have to
* deal with them by building up a substitute parse string, and recursively
* calling reg() on it, instead of proceeding */
if (multi_char_matches) {
SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
I32 cp_count;
STRLEN len;
char *save_end = RExC_end;
char *save_parse = RExC_parse;
bool first_time = TRUE; /* First multi-char occurrence doesn't get
a "|" */
I32 reg_flags;
assert(! invert);
#if 0 /* Have decided not to deal with multi-char folds in inverted classes,
because too confusing */
if (invert) {
sv_catpv(substitute_parse, "(?:");
}
#endif
/* Look at the longest folds first */
for (cp_count = av_tindex(multi_char_matches); cp_count > 0; cp_count--) {
if (av_exists(multi_char_matches, cp_count)) {
AV** this_array_ptr;
SV* this_sequence;
this_array_ptr = (AV**) av_fetch(multi_char_matches,
cp_count, FALSE);
while ((this_sequence = av_pop(*this_array_ptr)) !=
&PL_sv_undef)
{
if (! first_time) {
sv_catpv(substitute_parse, "|");
}
first_time = FALSE;
sv_catpv(substitute_parse, SvPVX(this_sequence));
}
}
}
/* If the character class contains anything else besides these
* multi-character folds, have to include it in recursive parsing */
if (element_count) {
sv_catpv(substitute_parse, "|[");
sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
sv_catpv(substitute_parse, "]");
}
sv_catpv(substitute_parse, ")");
#if 0
if (invert) {
/* This is a way to get the parse to skip forward a whole named
* sequence instead of matching the 2nd character when it fails the
* first */
sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
}
#endif
RExC_parse = SvPV(substitute_parse, len);
RExC_end = RExC_parse + len;
RExC_in_multi_char_class = 1;
RExC_emit = (regnode *)orig_emit;
ret = reg(pRExC_state, 1, ®_flags, depth+1);
*flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
RExC_parse = save_parse;
RExC_end = save_end;
RExC_in_multi_char_class = 0;
SvREFCNT_dec_NN(multi_char_matches);
return ret;
}
/* Here, we've gone through the entire class and dealt with multi-char
* folds. We are now in a position that we can do some checks to see if we
* can optimize this ANYOF node into a simpler one, even in Pass 1.
* Currently we only do two checks:
* 1) is in the unlikely event that the user has specified both, eg. \w and
* \W under /l, then the class matches everything. (This optimization
* is done only to make the optimizer code run later work.)
* 2) if the character class contains only a single element (including a
* single range), we see if there is an equivalent node for it.
* Other checks are possible */
if (! ret_invlist /* Can't optimize if returning the constructed
inversion list */
&& (UNLIKELY(posixl_matches_all) || element_count == 1))
{
U8 op = END;
U8 arg = 0;
if (UNLIKELY(posixl_matches_all)) {
op = SANY;
}
else if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like
\w or [:digit:] or \p{foo}
*/
/* All named classes are mapped into POSIXish nodes, with its FLAG
* argument giving which class it is */
switch ((I32)namedclass) {
case ANYOF_UNIPROP:
break;
/* These don't depend on the charset modifiers. They always
* match under /u rules */
case ANYOF_NHORIZWS:
case ANYOF_HORIZWS:
namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
/* FALLTHROUGH */
case ANYOF_NVERTWS:
case ANYOF_VERTWS:
op = POSIXU;
goto join_posix;
/* The actual POSIXish node for all the rest depends on the
* charset modifier. The ones in the first set depend only on
* ASCII or, if available on this platform, locale */
case ANYOF_ASCII:
case ANYOF_NASCII:
#ifdef HAS_ISASCII
op = (LOC) ? POSIXL : POSIXA;
#else
op = POSIXA;
#endif
goto join_posix;
case ANYOF_NCASED:
case ANYOF_LOWER:
case ANYOF_NLOWER:
case ANYOF_UPPER:
case ANYOF_NUPPER:
/* under /a could be alpha */
if (FOLD) {
if (ASCII_RESTRICTED) {
namedclass = ANYOF_ALPHA + (namedclass % 2);
}
else if (! LOC) {
break;
}
}
/* FALLTHROUGH */
/* The rest have more possibilities depending on the charset.
* We take advantage of the enum ordering of the charset
* modifiers to get the exact node type, */
default:
op = POSIXD + get_regex_charset(RExC_flags);
if (op > POSIXA) { /* /aa is same as /a */
op = POSIXA;
}
join_posix:
/* The odd numbered ones are the complements of the
* next-lower even number one */
if (namedclass % 2 == 1) {
invert = ! invert;
namedclass--;
}
arg = namedclass_to_classnum(namedclass);
break;
}
}
else if (value == prevvalue) {
/* Here, the class consists of just a single code point */
if (invert) {
if (! LOC && value == '\n') {
op = REG_ANY; /* Optimize [^\n] */
*flagp |= HASWIDTH|SIMPLE;
RExC_naughty++;
}
}
else if (value < 256 || UTF) {
/* Optimize a single value into an EXACTish node, but not if it
* would require converting the pattern to UTF-8. */
op = compute_EXACTish(pRExC_state);
}
} /* Otherwise is a range */
else if (! LOC) { /* locale could vary these */
if (prevvalue == '0') {
if (value == '9') {
arg = _CC_DIGIT;
op = POSIXA;
}
}
}
/* Here, we have changed <op> away from its initial value iff we found
* an optimization */
if (op != END) {
/* Throw away this ANYOF regnode, and emit the calculated one,
* which should correspond to the beginning, not current, state of
* the parse */
const char * cur_parse = RExC_parse;
RExC_parse = (char *)orig_parse;
if ( SIZE_ONLY) {
if (! LOC) {
/* To get locale nodes to not use the full ANYOF size would
* require moving the code above that writes the portions
* of it that aren't in other nodes to after this point.
* e.g. ANYOF_POSIXL_SET */
RExC_size = orig_size;
}
}
else {
RExC_emit = (regnode *)orig_emit;
if (PL_regkind[op] == POSIXD) {
if (op == POSIXL) {
RExC_contains_locale = 1;
}
if (invert) {
op += NPOSIXD - POSIXD;
}
}
}
ret = reg_node(pRExC_state, op);
if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
if (! SIZE_ONLY) {
FLAGS(ret) = arg;
}
*flagp |= HASWIDTH|SIMPLE;
}
else if (PL_regkind[op] == EXACT) {
alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
TRUE /* downgradable to EXACT */
);
}
RExC_parse = (char *) cur_parse;
SvREFCNT_dec(posixes);
SvREFCNT_dec(nposixes);
SvREFCNT_dec(cp_list);
SvREFCNT_dec(cp_foldable_list);
return ret;
}
}
if (SIZE_ONLY)
return ret;
/****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
/* If folding, we calculate all characters that could fold to or from the
* ones already on the list */
if (cp_foldable_list) {
if (FOLD) {
UV start, end; /* End points of code point ranges */
SV* fold_intersection = NULL;
SV** use_list;
/* Our calculated list will be for Unicode rules. For locale
* matching, we have to keep a separate list that is consulted at
* runtime only when the locale indicates Unicode rules. For
* non-locale, we just use to the general list */
if (LOC) {
use_list = &only_utf8_locale_list;
}
else {
use_list = &cp_list;
}
/* Only the characters in this class that participate in folds need
* be checked. Get the intersection of this class and all the
* possible characters that are foldable. This can quickly narrow
* down a large class */
_invlist_intersection(PL_utf8_foldable, cp_foldable_list,
&fold_intersection);
/* The folds for all the Latin1 characters are hard-coded into this
* program, but we have to go out to disk to get the others. */
if (invlist_highest(cp_foldable_list) >= 256) {
/* This is a hash that for a particular fold gives all
* characters that are involved in it */
if (! PL_utf8_foldclosures) {
/* If the folds haven't been read in, call a fold function
* to force that */
if (! PL_utf8_tofold) {
U8 dummy[UTF8_MAXBYTES_CASE+1];
/* This string is just a short named one above \xff */
to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
assert(PL_utf8_tofold); /* Verify that worked */
}
PL_utf8_foldclosures
= _swash_inversion_hash(PL_utf8_tofold);
}
}
/* Now look at the foldable characters in this class individually */
invlist_iterinit(fold_intersection);
while (invlist_iternext(fold_intersection, &start, &end)) {
UV j;
/* Look at every character in the range */
for (j = start; j <= end; j++) {
U8 foldbuf[UTF8_MAXBYTES_CASE+1];
STRLEN foldlen;
SV** listp;
if (j < 256) {
/* We have the latin1 folding rules hard-coded here so
* that an innocent-looking character class, like
* /[ks]/i won't have to go out to disk to find the
* possible matches. XXX It would be better to
* generate these via regen, in case a new version of
* the Unicode standard adds new mappings, though that
* is not really likely, and may be caught by the
* default: case of the switch below. */
if (IS_IN_SOME_FOLD_L1(j)) {
/* ASCII is always matched; non-ASCII is matched
* only under Unicode rules (which could happen
* under /l if the locale is a UTF-8 one */
if (isASCII(j) || ! DEPENDS_SEMANTICS) {
*use_list = add_cp_to_invlist(*use_list,
PL_fold_latin1[j]);
}
else {
depends_list =
add_cp_to_invlist(depends_list,
PL_fold_latin1[j]);
}
}
if (HAS_NONLATIN1_FOLD_CLOSURE(j)
&& (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
{
/* Certain Latin1 characters have matches outside
* Latin1. To get here, <j> is one of those
* characters. None of these matches is valid for
* ASCII characters under /aa, which is why the 'if'
* just above excludes those. These matches only
* happen when the target string is utf8. The code
* below adds the single fold closures for <j> to the
* inversion list. */
switch (j) {
case 'k':
case 'K':
*use_list =
add_cp_to_invlist(*use_list, KELVIN_SIGN);
break;
case 's':
case 'S':
*use_list = add_cp_to_invlist(*use_list,
LATIN_SMALL_LETTER_LONG_S);
break;
case MICRO_SIGN:
*use_list = add_cp_to_invlist(*use_list,
GREEK_CAPITAL_LETTER_MU);
*use_list = add_cp_to_invlist(*use_list,
GREEK_SMALL_LETTER_MU);
break;
case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
*use_list =
add_cp_to_invlist(*use_list, ANGSTROM_SIGN);
break;
case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
*use_list = add_cp_to_invlist(*use_list,
LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
break;
case LATIN_SMALL_LETTER_SHARP_S:
*use_list = add_cp_to_invlist(*use_list,
LATIN_CAPITAL_LETTER_SHARP_S);
break;
case 'F': case 'f':
case 'I': case 'i':
case 'L': case 'l':
case 'T': case 't':
case 'A': case 'a':
case 'H': case 'h':
case 'J': case 'j':
case 'N': case 'n':
case 'W': case 'w':
case 'Y': case 'y':
/* These all are targets of multi-character
* folds from code points that require UTF8
* to express, so they can't match unless
* the target string is in UTF-8, so no
* action here is necessary, as regexec.c
* properly handles the general case for
* UTF-8 matching and multi-char folds */
break;
default:
/* Use deprecated warning to increase the
* chances of this being output */
ckWARN2reg_d(RExC_parse, "Perl folding rules are not up-to-date for 0x%"UVXf"; please use the perlbug utility to report;", j);
break;
}
}
continue;
}
/* Here is an above Latin1 character. We don't have the
* rules hard-coded for it. First, get its fold. This is
* the simple fold, as the multi-character folds have been
* handled earlier and separated out */
_to_uni_fold_flags(j, foldbuf, &foldlen,
(ASCII_FOLD_RESTRICTED)
? FOLD_FLAGS_NOMIX_ASCII
: 0);
/* Single character fold of above Latin1. Add everything in
* its fold closure to the list that this node should match.
* The fold closures data structure is a hash with the keys
* being the UTF-8 of every character that is folded to, like
* 'k', and the values each an array of all code points that
* fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
* Multi-character folds are not included */
if ((listp = hv_fetch(PL_utf8_foldclosures,
(char *) foldbuf, foldlen, FALSE)))
{
AV* list = (AV*) *listp;
IV k;
for (k = 0; k <= av_tindex(list); k++) {
SV** c_p = av_fetch(list, k, FALSE);
UV c;
if (c_p == NULL) {
Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
}
c = SvUV(*c_p);
/* /aa doesn't allow folds between ASCII and non- */
if ((ASCII_FOLD_RESTRICTED
&& (isASCII(c) != isASCII(j))))
{
continue;
}
/* Folds under /l which cross the 255/256 boundary
* are added to a separate list. (These are valid
* only when the locale is UTF-8.) */
if (c < 256 && LOC) {
*use_list = add_cp_to_invlist(*use_list, c);
continue;
}
if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
{
cp_list = add_cp_to_invlist(cp_list, c);
}
else {
/* Similarly folds involving non-ascii Latin1
* characters under /d are added to their list */
depends_list = add_cp_to_invlist(depends_list,
c);
}
}
}
}
}
SvREFCNT_dec_NN(fold_intersection);
}
/* Now that we have finished adding all the folds, there is no reason
* to keep the foldable list separate */
_invlist_union(cp_list, cp_foldable_list, &cp_list);
SvREFCNT_dec_NN(cp_foldable_list);
}
/* And combine the result (if any) with any inversion list from posix
* classes. The lists are kept separate up to now because we don't want to
* fold the classes (folding of those is automatically handled by the swash
* fetching code) */
if (posixes || nposixes) {
if (posixes && AT_LEAST_ASCII_RESTRICTED) {
/* Under /a and /aa, nothing above ASCII matches these */
_invlist_intersection(posixes,
PL_XPosix_ptrs[_CC_ASCII],
&posixes);
}
if (nposixes) {
if (DEPENDS_SEMANTICS) {
/* Under /d, everything in the upper half of the Latin1 range
* matches these complements */
ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_NON_ASCII_ALL;
}
else if (AT_LEAST_ASCII_RESTRICTED) {
/* Under /a and /aa, everything above ASCII matches these
* complements */
_invlist_union_complement_2nd(nposixes,
PL_XPosix_ptrs[_CC_ASCII],
&nposixes);
}
if (posixes) {
_invlist_union(posixes, nposixes, &posixes);
SvREFCNT_dec_NN(nposixes);
}
else {
posixes = nposixes;
}
}
if (! DEPENDS_SEMANTICS) {
if (cp_list) {
_invlist_union(cp_list, posixes, &cp_list);
SvREFCNT_dec_NN(posixes);
}
else {
cp_list = posixes;
}
}
else {
/* Under /d, we put into a separate list the Latin1 things that
* match only when the target string is utf8 */
SV* nonascii_but_latin1_properties = NULL;
_invlist_intersection(posixes, PL_UpperLatin1,
&nonascii_but_latin1_properties);
_invlist_subtract(posixes, nonascii_but_latin1_properties,
&posixes);
if (cp_list) {
_invlist_union(cp_list, posixes, &cp_list);
SvREFCNT_dec_NN(posixes);
}
else {
cp_list = posixes;
}
if (depends_list) {
_invlist_union(depends_list, nonascii_but_latin1_properties,
&depends_list);
SvREFCNT_dec_NN(nonascii_but_latin1_properties);
}
else {
depends_list = nonascii_but_latin1_properties;
}
}
}
/* And combine the result (if any) with any inversion list from properties.
* The lists are kept separate up to now so that we can distinguish the two
* in regards to matching above-Unicode. A run-time warning is generated
* if a Unicode property is matched against a non-Unicode code point. But,
* we allow user-defined properties to match anything, without any warning,
* and we also suppress the warning if there is a portion of the character
* class that isn't a Unicode property, and which matches above Unicode, \W
* or [\x{110000}] for example.
* (Note that in this case, unlike the Posix one above, there is no
* <depends_list>, because having a Unicode property forces Unicode
* semantics */
if (properties) {
if (cp_list) {
/* If it matters to the final outcome, see if a non-property
* component of the class matches above Unicode. If so, the
* warning gets suppressed. This is true even if just a single
* such code point is specified, as though not strictly correct if
* another such code point is matched against, the fact that they
* are using above-Unicode code points indicates they should know
* the issues involved */
if (warn_super) {
warn_super = ! (invert
^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
}
_invlist_union(properties, cp_list, &cp_list);
SvREFCNT_dec_NN(properties);
}
else {
cp_list = properties;
}
if (warn_super) {
ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
}
}
/* Here, we have calculated what code points should be in the character
* class.
*
* Now we can see about various optimizations. Fold calculation (which we
* did above) needs to take place before inversion. Otherwise /[^k]/i
* would invert to include K, which under /i would match k, which it
* shouldn't. Therefore we can't invert folded locale now, as it won't be
* folded until runtime */
/* If we didn't do folding, it's because some information isn't available
* until runtime; set the run-time fold flag for these. (We don't have to
* worry about properties folding, as that is taken care of by the swash
* fetching). We know to set the flag if we have a non-NULL list for UTF-8
* locales, or the class matches at least one 0-255 range code point */
if (LOC && FOLD) {
if (only_utf8_locale_list) {
ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
}
else if (cp_list) { /* Look to see if there a 0-255 code point is in
the list */
UV start, end;
invlist_iterinit(cp_list);
if (invlist_iternext(cp_list, &start, &end) && start < 256) {
ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
}
invlist_iterfinish(cp_list);
}
}
/* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
* at compile time. Besides not inverting folded locale now, we can't
* invert if there are things such as \w, which aren't known until runtime
* */
if (cp_list
&& invert
&& ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
&& ! depends_list
&& ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
{
_invlist_invert(cp_list);
/* Any swash can't be used as-is, because we've inverted things */
if (swash) {
SvREFCNT_dec_NN(swash);
swash = NULL;
}
/* Clear the invert flag since have just done it here */
invert = FALSE;
}
if (ret_invlist) {
*ret_invlist = cp_list;
SvREFCNT_dec(swash);
/* Discard the generated node */
if (SIZE_ONLY) {
RExC_size = orig_size;
}
else {
RExC_emit = orig_emit;
}
return orig_emit;
}
/* Some character classes are equivalent to other nodes. Such nodes take
* up less room and generally fewer operations to execute than ANYOF nodes.
* Above, we checked for and optimized into some such equivalents for
* certain common classes that are easy to test. Getting to this point in
* the code means that the class didn't get optimized there. Since this
* code is only executed in Pass 2, it is too late to save space--it has
* been allocated in Pass 1, and currently isn't given back. But turning
* things into an EXACTish node can allow the optimizer to join it to any
* adjacent such nodes. And if the class is equivalent to things like /./,
* expensive run-time swashes can be avoided. Now that we have more
* complete information, we can find things necessarily missed by the
* earlier code. I (khw) am not sure how much to look for here. It would
* be easy, but perhaps too slow, to check any candidates against all the
* node types they could possibly match using _invlistEQ(). */
if (cp_list
&& ! invert
&& ! depends_list
&& ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
&& ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
/* We don't optimize if we are supposed to make sure all non-Unicode
* code points raise a warning, as only ANYOF nodes have this check.
* */
&& ! ((ANYOF_FLAGS(ret) | ANYOF_WARN_SUPER) && ALWAYS_WARN_SUPER))
{
UV start, end;
U8 op = END; /* The optimzation node-type */
const char * cur_parse= RExC_parse;
invlist_iterinit(cp_list);
if (! invlist_iternext(cp_list, &start, &end)) {
/* Here, the list is empty. This happens, for example, when a
* Unicode property is the only thing in the character class, and
* it doesn't match anything. (perluniprops.pod notes such
* properties) */
op = OPFAIL;
*flagp |= HASWIDTH|SIMPLE;
}
else if (start == end) { /* The range is a single code point */
if (! invlist_iternext(cp_list, &start, &end)
/* Don't do this optimization if it would require changing
* the pattern to UTF-8 */
&& (start < 256 || UTF))
{
/* Here, the list contains a single code point. Can optimize
* into an EXACTish node */
value = start;
if (! FOLD) {
op = EXACT;
}
else if (LOC) {
/* A locale node under folding with one code point can be
* an EXACTFL, as its fold won't be calculated until
* runtime */
op = EXACTFL;
}
else {
/* Here, we are generally folding, but there is only one
* code point to match. If we have to, we use an EXACT
* node, but it would be better for joining with adjacent
* nodes in the optimization pass if we used the same
* EXACTFish node that any such are likely to be. We can
* do this iff the code point doesn't participate in any
* folds. For example, an EXACTF of a colon is the same as
* an EXACT one, since nothing folds to or from a colon. */
if (value < 256) {
if (IS_IN_SOME_FOLD_L1(value)) {
op = EXACT;
}
}
else {
if (_invlist_contains_cp(PL_utf8_foldable, value)) {
op = EXACT;
}
}
/* If we haven't found the node type, above, it means we
* can use the prevailing one */
if (op == END) {
op = compute_EXACTish(pRExC_state);
}
}
}
}
else if (start == 0) {
if (end == UV_MAX) {
op = SANY;
*flagp |= HASWIDTH|SIMPLE;
RExC_naughty++;
}
else if (end == '\n' - 1
&& invlist_iternext(cp_list, &start, &end)
&& start == '\n' + 1 && end == UV_MAX)
{
op = REG_ANY;
*flagp |= HASWIDTH|SIMPLE;
RExC_naughty++;
}
}
invlist_iterfinish(cp_list);
if (op != END) {
RExC_parse = (char *)orig_parse;
RExC_emit = (regnode *)orig_emit;
ret = reg_node(pRExC_state, op);
RExC_parse = (char *)cur_parse;
if (PL_regkind[op] == EXACT) {
alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
TRUE /* downgradable to EXACT */
);
}
SvREFCNT_dec_NN(cp_list);
return ret;
}
}
/* Here, <cp_list> contains all the code points we can determine at
* compile time that match under all conditions. Go through it, and
* for things that belong in the bitmap, put them there, and delete from
* <cp_list>. While we are at it, see if everything above 255 is in the
* list, and if so, set a flag to speed up execution */
populate_ANYOF_from_invlist(ret, &cp_list);
if (invert) {
ANYOF_FLAGS(ret) |= ANYOF_INVERT;
}
/* Here, the bitmap has been populated with all the Latin1 code points that
* always match. Can now add to the overall list those that match only
* when the target string is UTF-8 (<depends_list>). */
if (depends_list) {
if (cp_list) {
_invlist_union(cp_list, depends_list, &cp_list);
SvREFCNT_dec_NN(depends_list);
}
else {
cp_list = depends_list;
}
ANYOF_FLAGS(ret) |= ANYOF_UTF8;
}
/* If there is a swash and more than one element, we can't use the swash in
* the optimization below. */
if (swash && element_count > 1) {
SvREFCNT_dec_NN(swash);
swash = NULL;
}
set_ANYOF_arg(pRExC_state, ret, cp_list,
(HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
? listsv : NULL,
only_utf8_locale_list,
swash, has_user_defined_property);
*flagp |= HASWIDTH|SIMPLE;
if (ANYOF_FLAGS(ret) & ANYOF_LOCALE_FLAGS) {
RExC_contains_locale = 1;
}
return ret;
}
#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
STATIC void
S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
regnode* const node,
SV* const cp_list,
SV* const runtime_defns,
SV* const only_utf8_locale_list,
SV* const swash,
const bool has_user_defined_property)
{
/* Sets the arg field of an ANYOF-type node 'node', using information about
* the node passed-in. If there is nothing outside the node's bitmap, the
* arg is set to ANYOF_NONBITMAP_EMPTY. Otherwise, it sets the argument to
* the count returned by add_data(), having allocated and stored an array,
* av, that that count references, as follows:
* av[0] stores the character class description in its textual form.
* This is used later (regexec.c:Perl_regclass_swash()) to
* initialize the appropriate swash, and is also useful for dumping
* the regnode. This is set to &PL_sv_undef if the textual
* description is not needed at run-time (as happens if the other
* elements completely define the class)
* av[1] if &PL_sv_undef, is a placeholder to later contain the swash
* computed from av[0]. But if no further computation need be done,
* the swash is stored here now (and av[0] is &PL_sv_undef).
* av[2] stores the inversion list of code points that match only if the
* current locale is UTF-8
* av[3] stores the cp_list inversion list for use in addition or instead
* of av[0]; used only if cp_list exists and av[1] is &PL_sv_undef.
* (Otherwise everything needed is already in av[0] and av[1])
* av[4] is set if any component of the class is from a user-defined
* property; used only if av[3] exists */
UV n;
PERL_ARGS_ASSERT_SET_ANYOF_ARG;
if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
assert(! (ANYOF_FLAGS(node)
& (ANYOF_UTF8|ANYOF_NONBITMAP_NON_UTF8)));
ARG_SET(node, ANYOF_NONBITMAP_EMPTY);
}
else {
AV * const av = newAV();
SV *rv;
assert(ANYOF_FLAGS(node)
& (ANYOF_UTF8|ANYOF_NONBITMAP_NON_UTF8|ANYOF_LOC_FOLD));
av_store(av, 0, (runtime_defns)
? SvREFCNT_inc(runtime_defns) : &PL_sv_undef);
if (swash) {
av_store(av, 1, swash);
SvREFCNT_dec_NN(cp_list);
}
else {
av_store(av, 1, &PL_sv_undef);
if (cp_list) {
av_store(av, 3, cp_list);
av_store(av, 4, newSVuv(has_user_defined_property));
}
}
if (only_utf8_locale_list) {
av_store(av, 2, only_utf8_locale_list);
}
else {
av_store(av, 2, &PL_sv_undef);
}
rv = newRV_noinc(MUTABLE_SV(av));
n = add_data(pRExC_state, STR_WITH_LEN("s"));
RExC_rxi->data->data[n] = (void*)rv;
ARG_SET(node, n);
}
}
/* reg_skipcomment()
Absorbs an /x style # comments from the input stream.
Returns true if there is more text remaining in the stream.
Will set the REG_RUN_ON_COMMENT_SEEN flag if the comment
terminates the pattern without including a newline.
Note its the callers responsibility to ensure that we are
actually in /x mode
*/
STATIC bool
S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
{
bool ended = 0;
PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
while (RExC_parse < RExC_end)
if (*RExC_parse++ == '\n') {
ended = 1;
break;
}
if (!ended) {
/* we ran off the end of the pattern without ending
the comment, so we have to add an \n when wrapping */
RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
return 0;
} else
return 1;
}
/* nextchar()
Advances the parse position, and optionally absorbs
"whitespace" from the inputstream.
Without /x "whitespace" means (?#...) style comments only,
with /x this means (?#...) and # comments and whitespace proper.
Returns the RExC_parse point from BEFORE the scan occurs.
This is the /x friendly way of saying RExC_parse++.
*/
STATIC char*
S_nextchar(pTHX_ RExC_state_t *pRExC_state)
{
char* const retval = RExC_parse++;
PERL_ARGS_ASSERT_NEXTCHAR;
for (;;) {
if (RExC_end - RExC_parse >= 3
&& *RExC_parse == '('
&& RExC_parse[1] == '?'
&& RExC_parse[2] == '#')
{
while (*RExC_parse != ')') {
if (RExC_parse == RExC_end)
FAIL("Sequence (?#... not terminated");
RExC_parse++;
}
RExC_parse++;
continue;
}
if (RExC_flags & RXf_PMf_EXTENDED) {
if (isSPACE(*RExC_parse)) {
RExC_parse++;
continue;
}
else if (*RExC_parse == '#') {
if ( reg_skipcomment( pRExC_state ) )
continue;
}
}
return retval;
}
}
/*
- reg_node - emit a node
*/
STATIC regnode * /* Location. */
S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
{
dVAR;
regnode *ptr;
regnode * const ret = RExC_emit;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REG_NODE;
if (SIZE_ONLY) {
SIZE_ALIGN(RExC_size);
RExC_size += 1;
return(ret);
}
if (RExC_emit >= RExC_emit_bound)
Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
op, RExC_emit, RExC_emit_bound);
NODE_ALIGN_FILL(ret);
ptr = ret;
FILL_ADVANCE_NODE(ptr, op);
#ifdef RE_TRACK_PATTERN_OFFSETS
if (RExC_offsets) { /* MJD */
MJD_OFFSET_DEBUG(
("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
"reg_node", __LINE__,
PL_reg_name[op],
(UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
? "Overwriting end of array!\n" : "OK",
(UV)(RExC_emit - RExC_emit_start),
(UV)(RExC_parse - RExC_start),
(UV)RExC_offsets[0]));
Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
}
#endif
RExC_emit = ptr;
return(ret);
}
/*
- reganode - emit a node with an argument
*/
STATIC regnode * /* Location. */
S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
{
dVAR;
regnode *ptr;
regnode * const ret = RExC_emit;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGANODE;
if (SIZE_ONLY) {
SIZE_ALIGN(RExC_size);
RExC_size += 2;
/*
We can't do this:
assert(2==regarglen[op]+1);
Anything larger than this has to allocate the extra amount.
If we changed this to be:
RExC_size += (1 + regarglen[op]);
then it wouldn't matter. Its not clear what side effect
might come from that so its not done so far.
-- dmq
*/
return(ret);
}
if (RExC_emit >= RExC_emit_bound)
Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
op, RExC_emit, RExC_emit_bound);
NODE_ALIGN_FILL(ret);
ptr = ret;
FILL_ADVANCE_NODE_ARG(ptr, op, arg);
#ifdef RE_TRACK_PATTERN_OFFSETS
if (RExC_offsets) { /* MJD */
MJD_OFFSET_DEBUG(
("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
"reganode",
__LINE__,
PL_reg_name[op],
(UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
"Overwriting end of array!\n" : "OK",
(UV)(RExC_emit - RExC_emit_start),
(UV)(RExC_parse - RExC_start),
(UV)RExC_offsets[0]));
Set_Cur_Node_Offset;
}
#endif
RExC_emit = ptr;
return(ret);
}
/*
- reguni - emit (if appropriate) a Unicode character
*/
PERL_STATIC_INLINE STRLEN
S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
{
dVAR;
PERL_ARGS_ASSERT_REGUNI;
return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
}
/*
- reginsert - insert an operator in front of already-emitted operand
*
* Means relocating the operand.
*/
STATIC void
S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
{
dVAR;
regnode *src;
regnode *dst;
regnode *place;
const int offset = regarglen[(U8)op];
const int size = NODE_STEP_REGNODE + offset;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGINSERT;
PERL_UNUSED_ARG(depth);
/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
if (SIZE_ONLY) {
RExC_size += size;
return;
}
src = RExC_emit;
RExC_emit += size;
dst = RExC_emit;
if (RExC_open_parens) {
int paren;
/*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
for ( paren=0 ; paren < RExC_npar ; paren++ ) {
if ( RExC_open_parens[paren] >= opnd ) {
/*DEBUG_PARSE_FMT("open"," - %d",size);*/
RExC_open_parens[paren] += size;
} else {
/*DEBUG_PARSE_FMT("open"," - %s","ok");*/
}
if ( RExC_close_parens[paren] >= opnd ) {
/*DEBUG_PARSE_FMT("close"," - %d",size);*/
RExC_close_parens[paren] += size;
} else {
/*DEBUG_PARSE_FMT("close"," - %s","ok");*/
}
}
}
while (src > opnd) {
StructCopy(--src, --dst, regnode);
#ifdef RE_TRACK_PATTERN_OFFSETS
if (RExC_offsets) { /* MJD 20010112 */
MJD_OFFSET_DEBUG(
("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
"reg_insert",
__LINE__,
PL_reg_name[op],
(UV)(dst - RExC_emit_start) > RExC_offsets[0]
? "Overwriting end of array!\n" : "OK",
(UV)(src - RExC_emit_start),
(UV)(dst - RExC_emit_start),
(UV)RExC_offsets[0]));
Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
}
#endif
}
place = opnd; /* Op node, where operand used to be. */
#ifdef RE_TRACK_PATTERN_OFFSETS
if (RExC_offsets) { /* MJD */
MJD_OFFSET_DEBUG(
("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
"reginsert",
__LINE__,
PL_reg_name[op],
(UV)(place - RExC_emit_start) > RExC_offsets[0]
? "Overwriting end of array!\n" : "OK",
(UV)(place - RExC_emit_start),
(UV)(RExC_parse - RExC_start),
(UV)RExC_offsets[0]));
Set_Node_Offset(place, RExC_parse);
Set_Node_Length(place, 1);
}
#endif
src = NEXTOPER(place);
FILL_ADVANCE_NODE(place, op);
Zero(src, offset, regnode);
}
/*
- regtail - set the next-pointer at the end of a node chain of p to val.
- SEE ALSO: regtail_study
*/
/* TODO: All three parms should be const */
STATIC void
S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p,
const regnode *val,U32 depth)
{
dVAR;
regnode *scan;
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGTAIL;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
if (SIZE_ONLY)
return;
/* Find last node. */
scan = p;
for (;;) {
regnode * const temp = regnext(scan);
DEBUG_PARSE_r({
SV * const mysv=sv_newmortal();
DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
regprop(RExC_rx, mysv, scan, NULL);
PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
(temp == NULL ? "->" : ""),
(temp == NULL ? PL_reg_name[OP(val)] : "")
);
});
if (temp == NULL)
break;
scan = temp;
}
if (reg_off_by_arg[OP(scan)]) {
ARG_SET(scan, val - scan);
}
else {
NEXT_OFF(scan) = val - scan;
}
}
#ifdef DEBUGGING
/*
- regtail_study - set the next-pointer at the end of a node chain of p to val.
- Look for optimizable sequences at the same time.
- currently only looks for EXACT chains.
This is experimental code. The idea is to use this routine to perform
in place optimizations on branches and groups as they are constructed,
with the long term intention of removing optimization from study_chunk so
that it is purely analytical.
Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
to control which is which.
*/
/* TODO: All four parms should be const */
STATIC U8
S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p,
const regnode *val,U32 depth)
{
dVAR;
regnode *scan;
U8 exact = PSEUDO;
#ifdef EXPERIMENTAL_INPLACESCAN
I32 min = 0;
#endif
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGTAIL_STUDY;
if (SIZE_ONLY)
return exact;
/* Find last node. */
scan = p;
for (;;) {
regnode * const temp = regnext(scan);
#ifdef EXPERIMENTAL_INPLACESCAN
if (PL_regkind[OP(scan)] == EXACT) {
bool unfolded_multi_char; /* Unexamined in this routine */
if (join_exact(pRExC_state, scan, &min,
&unfolded_multi_char, 1, val, depth+1))
return EXACT;
}
#endif
if ( exact ) {
switch (OP(scan)) {
case EXACT:
case EXACTF:
case EXACTFA_NO_TRIE:
case EXACTFA:
case EXACTFU:
case EXACTFU_SS:
case EXACTFL:
if( exact == PSEUDO )
exact= OP(scan);
else if ( exact != OP(scan) )
exact= 0;
case NOTHING:
break;
default:
exact= 0;
}
}
DEBUG_PARSE_r({
SV * const mysv=sv_newmortal();
DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
regprop(RExC_rx, mysv, scan, NULL);
PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
SvPV_nolen_const(mysv),
REG_NODE_NUM(scan),
PL_reg_name[exact]);
});
if (temp == NULL)
break;
scan = temp;
}
DEBUG_PARSE_r({
SV * const mysv_val=sv_newmortal();
DEBUG_PARSE_MSG("");
regprop(RExC_rx, mysv_val, val, NULL);
PerlIO_printf(Perl_debug_log,
"~ attach to %s (%"IVdf") offset to %"IVdf"\n",
SvPV_nolen_const(mysv_val),
(IV)REG_NODE_NUM(val),
(IV)(val - scan)
);
});
if (reg_off_by_arg[OP(scan)]) {
ARG_SET(scan, val - scan);
}
else {
NEXT_OFF(scan) = val - scan;
}
return exact;
}
#endif
/*
- regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
*/
#ifdef DEBUGGING
static void
S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
{
int bit;
int set=0;
ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
if (flags & (1<<bit)) {
if (!set++ && lead)
PerlIO_printf(Perl_debug_log, "%s",lead);
PerlIO_printf(Perl_debug_log, "%s ",PL_reg_intflags_name[bit]);
}
}
if (lead) {
if (set)
PerlIO_printf(Perl_debug_log, "\n");
else
PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
}
}
static void
S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
{
int bit;
int set=0;
regex_charset cs;
ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
if (flags & (1<<bit)) {
if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
continue;
}
if (!set++ && lead)
PerlIO_printf(Perl_debug_log, "%s",lead);
PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
}
}
if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
if (!set++ && lead) {
PerlIO_printf(Perl_debug_log, "%s",lead);
}
switch (cs) {
case REGEX_UNICODE_CHARSET:
PerlIO_printf(Perl_debug_log, "UNICODE");
break;
case REGEX_LOCALE_CHARSET:
PerlIO_printf(Perl_debug_log, "LOCALE");
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
break;
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
break;
default:
PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
break;
}
}
if (lead) {
if (set)
PerlIO_printf(Perl_debug_log, "\n");
else
PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
}
}
#endif
void
Perl_regdump(pTHX_ const regexp *r)
{
#ifdef DEBUGGING
dVAR;
SV * const sv = sv_newmortal();
SV *dsv= sv_newmortal();
RXi_GET_DECL(r,ri);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGDUMP;
(void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
/* Header fields of interest. */
if (r->anchored_substr) {
RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
RE_SV_DUMPLEN(r->anchored_substr), 30);
PerlIO_printf(Perl_debug_log,
"anchored %s%s at %"IVdf" ",
s, RE_SV_TAIL(r->anchored_substr),
(IV)r->anchored_offset);
} else if (r->anchored_utf8) {
RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
RE_SV_DUMPLEN(r->anchored_utf8), 30);
PerlIO_printf(Perl_debug_log,
"anchored utf8 %s%s at %"IVdf" ",
s, RE_SV_TAIL(r->anchored_utf8),
(IV)r->anchored_offset);
}
if (r->float_substr) {
RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
RE_SV_DUMPLEN(r->float_substr), 30);
PerlIO_printf(Perl_debug_log,
"floating %s%s at %"IVdf"..%"UVuf" ",
s, RE_SV_TAIL(r->float_substr),
(IV)r->float_min_offset, (UV)r->float_max_offset);
} else if (r->float_utf8) {
RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
RE_SV_DUMPLEN(r->float_utf8), 30);
PerlIO_printf(Perl_debug_log,
"floating utf8 %s%s at %"IVdf"..%"UVuf" ",
s, RE_SV_TAIL(r->float_utf8),
(IV)r->float_min_offset, (UV)r->float_max_offset);
}
if (r->check_substr || r->check_utf8)
PerlIO_printf(Perl_debug_log,
(const char *)
(r->check_substr == r->float_substr
&& r->check_utf8 == r->float_utf8
? "(checking floating" : "(checking anchored"));
if (r->intflags & PREGf_NOSCAN)
PerlIO_printf(Perl_debug_log, " noscan");
if (r->extflags & RXf_CHECK_ALL)
PerlIO_printf(Perl_debug_log, " isall");
if (r->check_substr || r->check_utf8)
PerlIO_printf(Perl_debug_log, ") ");
if (ri->regstclass) {
regprop(r, sv, ri->regstclass, NULL);
PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
}
if (r->intflags & PREGf_ANCH) {
PerlIO_printf(Perl_debug_log, "anchored");
if (r->intflags & PREGf_ANCH_BOL)
PerlIO_printf(Perl_debug_log, "(BOL)");
if (r->intflags & PREGf_ANCH_MBOL)
PerlIO_printf(Perl_debug_log, "(MBOL)");
if (r->intflags & PREGf_ANCH_SBOL)
PerlIO_printf(Perl_debug_log, "(SBOL)");
if (r->intflags & PREGf_ANCH_GPOS)
PerlIO_printf(Perl_debug_log, "(GPOS)");
PerlIO_putc(Perl_debug_log, ' ');
}
if (r->intflags & PREGf_GPOS_SEEN)
PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
if (r->intflags & PREGf_SKIP)
PerlIO_printf(Perl_debug_log, "plus ");
if (r->intflags & PREGf_IMPLICIT)
PerlIO_printf(Perl_debug_log, "implicit ");
PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
if (r->extflags & RXf_EVAL_SEEN)
PerlIO_printf(Perl_debug_log, "with eval ");
PerlIO_printf(Perl_debug_log, "\n");
DEBUG_FLAGS_r({
regdump_extflags("r->extflags: ",r->extflags);
regdump_intflags("r->intflags: ",r->intflags);
});
#else
PERL_ARGS_ASSERT_REGDUMP;
PERL_UNUSED_CONTEXT;
PERL_UNUSED_ARG(r);
#endif /* DEBUGGING */
}
/*
- regprop - printable representation of opcode, with run time support
*/
void
Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo)
{
#ifdef DEBUGGING
dVAR;
int k;
/* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
static const char * const anyofs[] = {
#if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
|| _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \
|| _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \
|| _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \
|| _CC_PSXSPC != 13 || _CC_CNTRL != 14 || _CC_ASCII != 15 \
|| _CC_VERTSPACE != 16
#error Need to adjust order of anyofs[]
#endif
"\\w",
"\\W",
"\\d",
"\\D",
"[:alpha:]",
"[:^alpha:]",
"[:lower:]",
"[:^lower:]",
"[:upper:]",
"[:^upper:]",
"[:punct:]",
"[:^punct:]",
"[:print:]",
"[:^print:]",
"[:alnum:]",
"[:^alnum:]",
"[:graph:]",
"[:^graph:]",
"[:cased:]",
"[:^cased:]",
"\\s",
"\\S",
"[:blank:]",
"[:^blank:]",
"[:xdigit:]",
"[:^xdigit:]",
"[:space:]",
"[:^space:]",
"[:cntrl:]",
"[:^cntrl:]",
"[:ascii:]",
"[:^ascii:]",
"\\v",
"\\V"
};
RXi_GET_DECL(prog,progi);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGPROP;
sv_setpvs(sv, "");
if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
/* It would be nice to FAIL() here, but this may be called from
regexec.c, and it would be hard to supply pRExC_state. */
Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
(int)OP(o), (int)REGNODE_MAX);
sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
k = PL_regkind[OP(o)];
if (k == EXACT) {
sv_catpvs(sv, " ");
/* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
* is a crude hack but it may be the best for now since
* we have no flag "this EXACTish node was UTF-8"
* --jhi */
pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
PERL_PV_ESCAPE_UNI_DETECT |
PERL_PV_ESCAPE_NONASCII |
PERL_PV_PRETTY_ELLIPSES |
PERL_PV_PRETTY_LTGT |
PERL_PV_PRETTY_NOCLEAR
);
} else if (k == TRIE) {
/* print the details of the trie in dumpuntil instead, as
* progi->data isn't available here */
const char op = OP(o);
const U32 n = ARG(o);
const reg_ac_data * const ac = IS_TRIE_AC(op) ?
(reg_ac_data *)progi->data->data[n] :
NULL;
const reg_trie_data * const trie
= (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
DEBUG_TRIE_COMPILE_r(
Perl_sv_catpvf(aTHX_ sv,
"<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
(UV)trie->startstate,
(IV)trie->statecount-1, /* -1 because of the unused 0 element */
(UV)trie->wordcount,
(UV)trie->minlen,
(UV)trie->maxlen,
(UV)TRIE_CHARCOUNT(trie),
(UV)trie->uniquecharcount
);
);
if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
sv_catpvs(sv, "[");
(void) put_latin1_charclass_innards(sv, IS_ANYOF_TRIE(op)
? ANYOF_BITMAP(o)
: TRIE_BITMAP(trie));
sv_catpvs(sv, "]");
}
} else if (k == CURLY) {
if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
}
else if (k == WHILEM && o->flags) /* Ordinal/of */
Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
else if (k == REF || k == OPEN || k == CLOSE
|| k == GROUPP || OP(o)==ACCEPT)
{
Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
if ( RXp_PAREN_NAMES(prog) ) {
if ( k != REF || (OP(o) < NREF)) {
AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
SV **name= av_fetch(list, ARG(o), 0 );
if (name)
Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
}
else {
AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
I32 *nums=(I32*)SvPVX(sv_dat);
SV **name= av_fetch(list, nums[0], 0 );
I32 n;
if (name) {
for ( n=0; n<SvIVX(sv_dat); n++ ) {
Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
(n ? "," : ""), (IV)nums[n]);
}
Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
}
}
}
if ( k == REF && reginfo) {
U32 n = ARG(o); /* which paren pair */
I32 ln = prog->offs[n].start;
if (prog->lastparen < n || ln == -1)
Perl_sv_catpvf(aTHX_ sv, ": FAIL");
else if (ln == prog->offs[n].end)
Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
else {
const char *s = reginfo->strbeg + ln;
Perl_sv_catpvf(aTHX_ sv, ": ");
Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
}
}
} else if (k == GOSUB)
/* Paren and offset */
Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));
else if (k == VERB) {
if (!o->flags)
Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
} else if (k == LOGICAL)
/* 2: embedded, otherwise 1 */
Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
else if (k == ANYOF) {
const U8 flags = ANYOF_FLAGS(o);
int do_sep = 0;
if (flags & ANYOF_LOCALE_FLAGS)
sv_catpvs(sv, "{loc}");
if (flags & ANYOF_LOC_FOLD)
sv_catpvs(sv, "{i}");
Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
if (flags & ANYOF_INVERT)
sv_catpvs(sv, "^");
/* output what the standard cp 0-255 bitmap matches */
do_sep = put_latin1_charclass_innards(sv, ANYOF_BITMAP(o));
/* output any special charclass tests (used entirely under use
* locale) * */
if (ANYOF_POSIXL_TEST_ANY_SET(o)) {
int i;
for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
if (ANYOF_POSIXL_TEST(o,i)) {
sv_catpv(sv, anyofs[i]);
do_sep = 1;
}
}
}
if ((flags & (ANYOF_ABOVE_LATIN1_ALL
|ANYOF_UTF8
|ANYOF_NONBITMAP_NON_UTF8
|ANYOF_LOC_FOLD)))
{
if (do_sep) {
Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]);
if (flags & ANYOF_INVERT)
/*make sure the invert info is in each */
sv_catpvs(sv, "^");
}
if (flags & ANYOF_NON_UTF8_NON_ASCII_ALL) {
sv_catpvs(sv, "{non-utf8-latin1-all}");
}
/* output information about the unicode matching */
if (flags & ANYOF_ABOVE_LATIN1_ALL)
sv_catpvs(sv, "{unicode_all}");
else if (ARG(o) != ANYOF_NONBITMAP_EMPTY) {
SV *lv; /* Set if there is something outside the bit map. */
bool byte_output = FALSE; /* If something in the bitmap has
been output */
SV *only_utf8_locale;
/* Get the stuff that wasn't in the bitmap */
(void) _get_regclass_nonbitmap_data(prog, o, FALSE,
&lv, &only_utf8_locale);
if (lv && lv != &PL_sv_undef) {
char *s = savesvpv(lv);
char * const origs = s;
while (*s && *s != '\n')
s++;
if (*s == '\n') {
const char * const t = ++s;
if (flags & ANYOF_NONBITMAP_NON_UTF8) {
sv_catpvs(sv, "{outside bitmap}");
}
else {
sv_catpvs(sv, "{utf8}");
}
if (byte_output) {
sv_catpvs(sv, " ");
}
while (*s) {
if (*s == '\n') {
/* Truncate very long output */
if (s - origs > 256) {
Perl_sv_catpvf(aTHX_ sv,
"%.*s...",
(int) (s - origs - 1),
t);
goto out_dump;
}
*s = ' ';
}
else if (*s == '\t') {
*s = '-';
}
s++;
}
if (s[-1] == ' ')
s[-1] = 0;
sv_catpv(sv, t);
}
out_dump:
Safefree(origs);
SvREFCNT_dec_NN(lv);
}
if ((flags & ANYOF_LOC_FOLD)
&& only_utf8_locale
&& only_utf8_locale != &PL_sv_undef)
{
UV start, end;
int max_entries = 256;
sv_catpvs(sv, "{utf8 locale}");
invlist_iterinit(only_utf8_locale);
while (invlist_iternext(only_utf8_locale,
&start, &end)) {
put_range(sv, start, end);
max_entries --;
if (max_entries < 0) {
sv_catpvs(sv, "...");
break;
}
}
invlist_iterfinish(only_utf8_locale);
}
}
}
Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
}
else if (k == POSIXD || k == NPOSIXD) {
U8 index = FLAGS(o) * 2;
if (index < C_ARRAY_LENGTH(anyofs)) {
if (*anyofs[index] != '[') {
sv_catpv(sv, "[");
}
sv_catpv(sv, anyofs[index]);
if (*anyofs[index] != '[') {
sv_catpv(sv, "]");
}
}
else {
Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
}
}
else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
#else
PERL_UNUSED_CONTEXT;
PERL_UNUSED_ARG(sv);
PERL_UNUSED_ARG(o);
PERL_UNUSED_ARG(prog);
PERL_UNUSED_ARG(reginfo);
#endif /* DEBUGGING */
}
SV *
Perl_re_intuit_string(pTHX_ REGEXP * const r)
{ /* Assume that RE_INTUIT is set */
dVAR;
struct regexp *const prog = ReANY(r);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_RE_INTUIT_STRING;
PERL_UNUSED_CONTEXT;
DEBUG_COMPILE_r(
{
const char * const s = SvPV_nolen_const(prog->check_substr
? prog->check_substr : prog->check_utf8);
if (!PL_colorset) reginitcolors();
PerlIO_printf(Perl_debug_log,
"%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
PL_colors[4],
prog->check_substr ? "" : "utf8 ",
PL_colors[5],PL_colors[0],
s,
PL_colors[1],
(strlen(s) > 60 ? "..." : ""));
} );
return prog->check_substr ? prog->check_substr : prog->check_utf8;
}
/*
pregfree()
handles refcounting and freeing the perl core regexp structure. When
it is necessary to actually free the structure the first thing it
does is call the 'free' method of the regexp_engine associated to
the regexp, allowing the handling of the void *pprivate; member
first. (This routine is not overridable by extensions, which is why
the extensions free is called first.)
See regdupe and regdupe_internal if you change anything here.
*/
#ifndef PERL_IN_XSUB_RE
void
Perl_pregfree(pTHX_ REGEXP *r)
{
SvREFCNT_dec(r);
}
void
Perl_pregfree2(pTHX_ REGEXP *rx)
{
dVAR;
struct regexp *const r = ReANY(rx);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_PREGFREE2;
if (r->mother_re) {
ReREFCNT_dec(r->mother_re);
} else {
CALLREGFREE_PVT(rx); /* free the private data */
SvREFCNT_dec(RXp_PAREN_NAMES(r));
Safefree(r->xpv_len_u.xpvlenu_pv);
}
if (r->substrs) {
SvREFCNT_dec(r->anchored_substr);
SvREFCNT_dec(r->anchored_utf8);
SvREFCNT_dec(r->float_substr);
SvREFCNT_dec(r->float_utf8);
Safefree(r->substrs);
}
RX_MATCH_COPY_FREE(rx);
#ifdef PERL_ANY_COW
SvREFCNT_dec(r->saved_copy);
#endif
Safefree(r->offs);
SvREFCNT_dec(r->qr_anoncv);
rx->sv_u.svu_rx = 0;
}
/* reg_temp_copy()
This is a hacky workaround to the structural issue of match results
being stored in the regexp structure which is in turn stored in
PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
could be PL_curpm in multiple contexts, and could require multiple
result sets being associated with the pattern simultaneously, such
as when doing a recursive match with (??{$qr})
The solution is to make a lightweight copy of the regexp structure
when a qr// is returned from the code executed by (??{$qr}) this
lightweight copy doesn't actually own any of its data except for
the starp/end and the actual regexp structure itself.
*/
REGEXP *
Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
{
struct regexp *ret;
struct regexp *const r = ReANY(rx);
const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
PERL_ARGS_ASSERT_REG_TEMP_COPY;
if (!ret_x)
ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
else {
SvOK_off((SV *)ret_x);
if (islv) {
/* For PVLVs, SvANY points to the xpvlv body while sv_u points
to the regexp. (For SVt_REGEXPs, sv_upgrade has already
made both spots point to the same regexp body.) */
REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
assert(!SvPVX(ret_x));
ret_x->sv_u.svu_rx = temp->sv_any;
temp->sv_any = NULL;
SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
SvREFCNT_dec_NN(temp);
/* SvCUR still resides in the xpvlv struct, so the regexp copy-
ing below will not set it. */
SvCUR_set(ret_x, SvCUR(rx));
}
}
/* This ensures that SvTHINKFIRST(sv) is true, and hence that
sv_force_normal(sv) is called. */
SvFAKE_on(ret_x);
ret = ReANY(ret_x);
SvFLAGS(ret_x) |= SvUTF8(rx);
/* We share the same string buffer as the original regexp, on which we
hold a reference count, incremented when mother_re is set below.
The string pointer is copied here, being part of the regexp struct.
*/
memcpy(&(ret->xpv_cur), &(r->xpv_cur),
sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
if (r->offs) {
const I32 npar = r->nparens+1;
Newx(ret->offs, npar, regexp_paren_pair);
Copy(r->offs, ret->offs, npar, regexp_paren_pair);
}
if (r->substrs) {
Newx(ret->substrs, 1, struct reg_substr_data);
StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
SvREFCNT_inc_void(ret->anchored_substr);
SvREFCNT_inc_void(ret->anchored_utf8);
SvREFCNT_inc_void(ret->float_substr);
SvREFCNT_inc_void(ret->float_utf8);
/* check_substr and check_utf8, if non-NULL, point to either their
anchored or float namesakes, and don't hold a second reference. */
}
RX_MATCH_COPIED_off(ret_x);
#ifdef PERL_ANY_COW
ret->saved_copy = NULL;
#endif
ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
SvREFCNT_inc_void(ret->qr_anoncv);
return ret_x;
}
#endif
/* regfree_internal()
Free the private data in a regexp. This is overloadable by
extensions. Perl takes care of the regexp structure in pregfree(),
this covers the *pprivate pointer which technically perl doesn't
know about, however of course we have to handle the
regexp_internal structure when no extension is in use.
Note this is called before freeing anything in the regexp
structure.
*/
void
Perl_regfree_internal(pTHX_ REGEXP * const rx)
{
dVAR;
struct regexp *const r = ReANY(rx);
RXi_GET_DECL(r,ri);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_REGFREE_INTERNAL;
DEBUG_COMPILE_r({
if (!PL_colorset)
reginitcolors();
{
SV *dsv= sv_newmortal();
RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
PL_colors[4],PL_colors[5],s);
}
});
#ifdef RE_TRACK_PATTERN_OFFSETS
if (ri->u.offsets)
Safefree(ri->u.offsets); /* 20010421 MJD */
#endif
if (ri->code_blocks) {
int n;
for (n = 0; n < ri->num_code_blocks; n++)
SvREFCNT_dec(ri->code_blocks[n].src_regex);
Safefree(ri->code_blocks);
}
if (ri->data) {
int n = ri->data->count;
while (--n >= 0) {
/* If you add a ->what type here, update the comment in regcomp.h */
switch (ri->data->what[n]) {
case 'a':
case 'r':
case 's':
case 'S':
case 'u':
SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
break;
case 'f':
Safefree(ri->data->data[n]);
break;
case 'l':
case 'L':
break;
case 'T':
{ /* Aho Corasick add-on structure for a trie node.
Used in stclass optimization only */
U32 refcount;
reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
OP_REFCNT_LOCK;
refcount = --aho->refcount;
OP_REFCNT_UNLOCK;
if ( !refcount ) {
PerlMemShared_free(aho->states);
PerlMemShared_free(aho->fail);
/* do this last!!!! */
PerlMemShared_free(ri->data->data[n]);
PerlMemShared_free(ri->regstclass);
}
}
break;
case 't':
{
/* trie structure. */
U32 refcount;
reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
OP_REFCNT_LOCK;
refcount = --trie->refcount;
OP_REFCNT_UNLOCK;
if ( !refcount ) {
PerlMemShared_free(trie->charmap);
PerlMemShared_free(trie->states);
PerlMemShared_free(trie->trans);
if (trie->bitmap)
PerlMemShared_free(trie->bitmap);
if (trie->jump)
PerlMemShared_free(trie->jump);
PerlMemShared_free(trie->wordinfo);
/* do this last!!!! */
PerlMemShared_free(ri->data->data[n]);
}
}
break;
default:
Perl_croak(aTHX_ "panic: regfree data code '%c'",
ri->data->what[n]);
}
}
Safefree(ri->data->what);
Safefree(ri->data);
}
Safefree(ri);
}
#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
/*
re_dup - duplicate a regexp.
This routine is expected to clone a given regexp structure. It is only
compiled under USE_ITHREADS.
After all of the core data stored in struct regexp is duplicated
the regexp_engine.dupe method is used to copy any private data
stored in the *pprivate pointer. This allows extensions to handle
any duplication it needs to do.
See pregfree() and regfree_internal() if you change anything here.
*/
#if defined(USE_ITHREADS)
#ifndef PERL_IN_XSUB_RE
void
Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
{
dVAR;
I32 npar;
const struct regexp *r = ReANY(sstr);
struct regexp *ret = ReANY(dstr);
PERL_ARGS_ASSERT_RE_DUP_GUTS;
npar = r->nparens+1;
Newx(ret->offs, npar, regexp_paren_pair);
Copy(r->offs, ret->offs, npar, regexp_paren_pair);
if (ret->substrs) {
/* Do it this way to avoid reading from *r after the StructCopy().
That way, if any of the sv_dup_inc()s dislodge *r from the L1
cache, it doesn't matter. */
const bool anchored = r->check_substr
? r->check_substr == r->anchored_substr
: r->check_utf8 == r->anchored_utf8;
Newx(ret->substrs, 1, struct reg_substr_data);
StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
ret->float_substr = sv_dup_inc(ret->float_substr, param);
ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
/* check_substr and check_utf8, if non-NULL, point to either their
anchored or float namesakes, and don't hold a second reference. */
if (ret->check_substr) {
if (anchored) {
assert(r->check_utf8 == r->anchored_utf8);
ret->check_substr = ret->anchored_substr;
ret->check_utf8 = ret->anchored_utf8;
} else {
assert(r->check_substr == r->float_substr);
assert(r->check_utf8 == r->float_utf8);
ret->check_substr = ret->float_substr;
ret->check_utf8 = ret->float_utf8;
}
} else if (ret->check_utf8) {
if (anchored) {
ret->check_utf8 = ret->anchored_utf8;
} else {
ret->check_utf8 = ret->float_utf8;
}
}
}
RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
if (ret->pprivate)
RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
if (RX_MATCH_COPIED(dstr))
ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
else
ret->subbeg = NULL;
#ifdef PERL_ANY_COW
ret->saved_copy = NULL;
#endif
/* Whether mother_re be set or no, we need to copy the string. We
cannot refrain from copying it when the storage points directly to
our mother regexp, because that's
1: a buffer in a different thread
2: something we no longer hold a reference on
so we need to copy it locally. */
RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
ret->mother_re = NULL;
}
#endif /* PERL_IN_XSUB_RE */
/*
regdupe_internal()
This is the internal complement to regdupe() which is used to copy
the structure pointed to by the *pprivate pointer in the regexp.
This is the core version of the extension overridable cloning hook.
The regexp structure being duplicated will be copied by perl prior
to this and will be provided as the regexp *r argument, however
with the /old/ structures pprivate pointer value. Thus this routine
may override any copying normally done by perl.
It returns a pointer to the new regexp_internal structure.
*/
void *
Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
{
dVAR;
struct regexp *const r = ReANY(rx);
regexp_internal *reti;
int len;
RXi_GET_DECL(r,ri);
PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
len = ProgLen(ri);
Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
char, regexp_internal);
Copy(ri->program, reti->program, len+1, regnode);
reti->num_code_blocks = ri->num_code_blocks;
if (ri->code_blocks) {
int n;
Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
struct reg_code_block);
Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
struct reg_code_block);
for (n = 0; n < ri->num_code_blocks; n++)
reti->code_blocks[n].src_regex = (REGEXP*)
sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
}
else
reti->code_blocks = NULL;
reti->regstclass = NULL;
if (ri->data) {
struct reg_data *d;
const int count = ri->data->count;
int i;
Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
char, struct reg_data);
Newx(d->what, count, U8);
d->count = count;
for (i = 0; i < count; i++) {
d->what[i] = ri->data->what[i];
switch (d->what[i]) {
/* see also regcomp.h and regfree_internal() */
case 'a': /* actually an AV, but the dup function is identical. */
case 'r':
case 's':
case 'S':
case 'u': /* actually an HV, but the dup function is identical. */
d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
break;
case 'f':
/* This is cheating. */
Newx(d->data[i], 1, regnode_ssc);
StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
reti->regstclass = (regnode*)d->data[i];
break;
case 'T':
/* Trie stclasses are readonly and can thus be shared
* without duplication. We free the stclass in pregfree
* when the corresponding reg_ac_data struct is freed.
*/
reti->regstclass= ri->regstclass;
/* Fall through */
case 't':
OP_REFCNT_LOCK;
((reg_trie_data*)ri->data->data[i])->refcount++;
OP_REFCNT_UNLOCK;
/* Fall through */
case 'l':
case 'L':
d->data[i] = ri->data->data[i];
break;
default:
Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'",
ri->data->what[i]);
}
}
reti->data = d;
}
else
reti->data = NULL;
reti->name_list_idx = ri->name_list_idx;
#ifdef RE_TRACK_PATTERN_OFFSETS
if (ri->u.offsets) {
Newx(reti->u.offsets, 2*len+1, U32);
Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
}
#else
SetProgLen(reti,len);
#endif
return (void*)reti;
}
#endif /* USE_ITHREADS */
#ifndef PERL_IN_XSUB_RE
/*
- regnext - dig the "next" pointer out of a node
*/
regnode *
Perl_regnext(pTHX_ regnode *p)
{
dVAR;
I32 offset;
if (!p)
return(NULL);
if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
(int)OP(p), (int)REGNODE_MAX);
}
offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
if (offset == 0)
return(NULL);
return(p+offset);
}
#endif
STATIC void
S_re_croak2(pTHX_ bool utf8, const char* pat1,const char* pat2,...)
{
va_list args;
STRLEN l1 = strlen(pat1);
STRLEN l2 = strlen(pat2);
char buf[512];
SV *msv;
const char *message;
PERL_ARGS_ASSERT_RE_CROAK2;
if (l1 > 510)
l1 = 510;
if (l1 + l2 > 510)
l2 = 510 - l1;
Copy(pat1, buf, l1 , char);
Copy(pat2, buf + l1, l2 , char);
buf[l1 + l2] = '\n';
buf[l1 + l2 + 1] = '\0';
va_start(args, pat2);
msv = vmess(buf, &args);
va_end(args);
message = SvPV_const(msv,l1);
if (l1 > 512)
l1 = 512;
Copy(message, buf, l1 , char);
/* l1-1 to avoid \n */
Perl_croak(aTHX_ "%"UTF8f, UTF8fARG(utf8, l1-1, buf));
}
/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
#ifndef PERL_IN_XSUB_RE
void
Perl_save_re_context(pTHX)
{
dVAR;
I32 nparens = -1;
I32 i;
/* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
if (PL_curpm) {
const REGEXP * const rx = PM_GETRE(PL_curpm);
if (rx)
nparens = RX_NPARENS(rx);
}
/* RT #124109. This is a complete hack; in the SWASHNEW case we know
* that PL_curpm will be null, but that utf8.pm and the modules it
* loads will only use $1..$3.
* The t/porting/re_context.t test file checks this assumption.
*/
if (nparens == -1)
nparens = 3;
for (i = 1; i <= nparens; i++) {
char digits[TYPE_CHARS(long)];
const STRLEN len = my_snprintf(digits, sizeof(digits),
"%lu", (long)i);
GV *const *const gvp
= (GV**)hv_fetch(PL_defstash, digits, len, 0);
if (gvp) {
GV * const gv = *gvp;
if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
save_scalar(gv);
}
}
}
#endif
#ifdef DEBUGGING
STATIC void
S_put_byte(pTHX_ SV *sv, int c)
{
PERL_ARGS_ASSERT_PUT_BYTE;
if (!isPRINT(c)) {
switch (c) {
case '\r': Perl_sv_catpvf(aTHX_ sv, "\\r"); break;
case '\n': Perl_sv_catpvf(aTHX_ sv, "\\n"); break;
case '\t': Perl_sv_catpvf(aTHX_ sv, "\\t"); break;
case '\f': Perl_sv_catpvf(aTHX_ sv, "\\f"); break;
case '\a': Perl_sv_catpvf(aTHX_ sv, "\\a"); break;
default:
Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
break;
}
}
else {
const char string = c;
if (c == '-' || c == ']' || c == '\\' || c == '^')
sv_catpvs(sv, "\\");
sv_catpvn(sv, &string, 1);
}
}
STATIC void
S_put_range(pTHX_ SV *sv, UV start, UV end)
{
/* Appends to 'sv' a displayable version of the range of code points from
* 'start' to 'end' */
assert(start <= end);
PERL_ARGS_ASSERT_PUT_RANGE;
if (end - start < 3) { /* Individual chars in short ranges */
for (; start <= end; start++)
put_byte(sv, start);
}
else if ( end > 255
|| ! isALPHANUMERIC(start)
|| ! isALPHANUMERIC(end)
|| isDIGIT(start) != isDIGIT(end)
|| isUPPER(start) != isUPPER(end)
|| isLOWER(start) != isLOWER(end)
/* This final test should get optimized out except on EBCDIC
* platforms, where it causes ranges that cross discontinuities
* like i/j to be shown as hex instead of the misleading,
* e.g. H-K (since that range includes more than H, I, J, K).
* */
|| (end - start) != NATIVE_TO_ASCII(end) - NATIVE_TO_ASCII(start))
{
Perl_sv_catpvf(aTHX_ sv, "\\x{%02" UVXf "}-\\x{%02" UVXf "}",
start,
(end < 256) ? end : 255);
}
else { /* Here, the ends of the range are both digits, or both uppercase,
or both lowercase; and there's no discontinuity in the range
(which could happen on EBCDIC platforms) */
put_byte(sv, start);
sv_catpvs(sv, "-");
put_byte(sv, end);
}
}
STATIC bool
S_put_latin1_charclass_innards(pTHX_ SV *sv, char *bitmap)
{
/* Appends to 'sv' a displayable version of the innards of the bracketed
* character class whose bitmap is 'bitmap'; Returns 'TRUE' if it actually
* output anything */
int i;
bool has_output_anything = FALSE;
PERL_ARGS_ASSERT_PUT_LATIN1_CHARCLASS_INNARDS;
for (i = 0; i < 256; i++) {
if (BITMAP_TEST((U8 *) bitmap,i)) {
/* The character at index i should be output. Find the next
* character that should NOT be output */
int j;
for (j = i + 1; j < 256; j++) {
if (! BITMAP_TEST((U8 *) bitmap, j)) {
break;
}
}
/* Everything between them is a single range that should be output
* */
put_range(sv, i, j - 1);
has_output_anything = TRUE;
i = j;
}
}
return has_output_anything;
}
#define CLEAR_OPTSTART \
if (optstart) STMT_START { \
DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, \
" (%"IVdf" nodes)\n", (IV)(node - optstart))); \
optstart=NULL; \
} STMT_END
#define DUMPUNTIL(b,e) \
CLEAR_OPTSTART; \
node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
STATIC const regnode *
S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
const regnode *last, const regnode *plast,
SV* sv, I32 indent, U32 depth)
{
dVAR;
U8 op = PSEUDO; /* Arbitrary non-END op. */
const regnode *next;
const regnode *optstart= NULL;
RXi_GET_DECL(r,ri);
GET_RE_DEBUG_FLAGS_DECL;
PERL_ARGS_ASSERT_DUMPUNTIL;
#ifdef DEBUG_DUMPUNTIL
PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
last ? last-start : 0,plast ? plast-start : 0);
#endif
if (plast && plast < last)
last= plast;
while (PL_regkind[op] != END && (!last || node < last)) {
/* While that wasn't END last time... */
NODE_ALIGN(node);
op = OP(node);
if (op == CLOSE || op == WHILEM)
indent--;
next = regnext((regnode *)node);
/* Where, what. */
if (OP(node) == OPTIMIZED) {
if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
optstart = node;
else
goto after_print;
} else
CLEAR_OPTSTART;
regprop(r, sv, node, NULL);
PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
(int)(2*indent + 1), "", SvPVX_const(sv));
if (OP(node) != OPTIMIZED) {
if (next == NULL) /* Next ptr. */
PerlIO_printf(Perl_debug_log, " (0)");
else if (PL_regkind[(U8)op] == BRANCH
&& PL_regkind[OP(next)] != BRANCH )
PerlIO_printf(Perl_debug_log, " (FAIL)");
else
PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
(void)PerlIO_putc(Perl_debug_log, '\n');
}
after_print:
if (PL_regkind[(U8)op] == BRANCHJ) {
assert(next);
{
const regnode *nnode = (OP(next) == LONGJMP
? regnext((regnode *)next)
: next);
if (last && nnode > last)
nnode = last;
DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
}
}
else if (PL_regkind[(U8)op] == BRANCH) {
assert(next);
DUMPUNTIL(NEXTOPER(node), next);
}
else if ( PL_regkind[(U8)op] == TRIE ) {
const regnode *this_trie = node;
const char op = OP(node);
const U32 n = ARG(node);
const reg_ac_data * const ac = op>=AHOCORASICK ?
(reg_ac_data *)ri->data->data[n] :
NULL;
const reg_trie_data * const trie =
(reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
#ifdef DEBUGGING
AV *const trie_words
= MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
#endif
const regnode *nextbranch= NULL;
I32 word_idx;
sv_setpvs(sv, "");
for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
PerlIO_printf(Perl_debug_log, "%*s%s ",
(int)(2*(indent+3)), "",
elem_ptr
? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
SvCUR(*elem_ptr), 60,
PL_colors[0], PL_colors[1],
(SvUTF8(*elem_ptr)
? PERL_PV_ESCAPE_UNI
: 0)
| PERL_PV_PRETTY_ELLIPSES
| PERL_PV_PRETTY_LTGT
)
: "???"
);
if (trie->jump) {
U16 dist= trie->jump[word_idx+1];
PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
(UV)((dist ? this_trie + dist : next) - start));
if (dist) {
if (!nextbranch)
nextbranch= this_trie + trie->jump[0];
DUMPUNTIL(this_trie + dist, nextbranch);
}
if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
nextbranch= regnext((regnode *)nextbranch);
} else {
PerlIO_printf(Perl_debug_log, "\n");
}
}
if (last && next > last)
node= last;
else
node= next;
}
else if ( op == CURLY ) { /* "next" might be very big: optimizer */
DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
}
else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
assert(next);
DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
}
else if ( op == PLUS || op == STAR) {
DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
}
else if (PL_regkind[(U8)op] == ANYOF) {
/* arglen 1 + class block */
node += 1 + ((ANYOF_FLAGS(node) & ANYOF_POSIXL)
? ANYOF_POSIXL_SKIP
: ANYOF_SKIP);
node = NEXTOPER(node);
}
else if (PL_regkind[(U8)op] == EXACT) {
/* Literal string, where present. */
node += NODE_SZ_STR(node) - 1;
node = NEXTOPER(node);
}
else {
node = NEXTOPER(node);
node += regarglen[(U8)op];
}
if (op == CURLYX || op == OPEN)
indent++;
}
CLEAR_OPTSTART;
#ifdef DEBUG_DUMPUNTIL
PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
#endif
return node;
}
#endif /* DEBUGGING */
/*
* Local variables:
* c-indentation-style: bsd
* c-basic-offset: 4
* indent-tabs-mode: nil
* End:
*
* ex: set ts=8 sts=4 sw=4 et:
*/
|