1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498
|
/* regcomp.c
*/
/*
* 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
*
* [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
*/
/* This file contains functions for compiling a regular expression. See
* also regexec.c which funnily enough, contains functions for executing
* a regular expression.
*
* This file is also copied at build time to ext/re/re_comp.c, where
* it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
* This causes the main functions to be compiled under new names and with
* debugging support added, which makes "use re 'debug'" work.
*/
/* NOTE: this is derived from Henry Spencer's regexp code, and should not
* confused with the original package (see point 3 below). Thanks, Henry!
*/
/* Additional note: this code is very heavily munged from Henry's version
* in places. In some spots I've traded clarity for efficiency, so don't
* blame Henry for some of the lack of readability.
*/
/* The names of the functions have been changed from regcomp and
* regexec to pregcomp and pregexec in order to avoid conflicts
* with the POSIX routines of the same names.
*/
#ifdef PERL_EXT_RE_BUILD
#include "re_top.h"
#endif
/*
* pregcomp and pregexec -- regsub and regerror are not used in perl
*
* Copyright (c) 1986 by University of Toronto.
* Written by Henry Spencer. Not derived from licensed software.
*
* Permission is granted to anyone to use this software for any
* purpose on any computer system, and to redistribute it freely,
* subject to the following restrictions:
*
* 1. The author is not responsible for the consequences of use of
* this software, no matter how awful, even if they arise
* from defects in it.
*
* 2. The origin of this software must not be misrepresented, either
* by explicit claim or by omission.
*
* 3. Altered versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
*
*
**** Alterations to Henry's code are...
****
**** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
**** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
**** by Larry Wall and others
****
**** You may distribute under the terms of either the GNU General Public
**** License or the Artistic License, as specified in the README file.
*
* Beware that some of this code is subtly aware of the way operator
* precedence is structured in regular expressions. Serious changes in
* regular-expression syntax might require a total rethink.
*/
/* Note on debug output:
*
* This is set up so that -Dr turns on debugging like all other flags that are
* enabled by -DDEBUGGING. -Drv gives more verbose output. This applies to
* all regular expressions encountered in a program, and gives a huge amount of
* output for all but the shortest programs.
*
* The ability to output pattern debugging information lexically, and with much
* finer grained control was added, with 'use re qw(Debug ....);' available even
* in non-DEBUGGING builds. This is accomplished by copying the contents of
* regcomp.c to ext/re/re_comp.c, and regexec.c is copied to ext/re/re_exec.c.
* Those files are compiled and linked into the perl executable, and they are
* compiled essentially as if DEBUGGING were enabled, and controlled by calls
* to re.pm.
*
* That would normally mean linking errors when two functions of the same name
* are attempted to be placed into the same executable. That is solved in one
* of four ways:
* 1) Static functions aren't known outside the file they are in, so for the
* many functions of that type in this file, it just isn't a problem.
* 2) Most externally known functions are enclosed in
* #ifndef PERL_IN_XSUB_RE
* ...
* #endif
* blocks, so there is only one defintion for them in the whole
* executable, the one in regcomp.c (or regexec.c). The implication of
* that is any debugging info that comes from them is controlled only by
* -Dr. Further, any static function they call will also be the version
* in regcomp.c (or regexec.c), so its debugging will also be by -Dr.
* 3) About a dozen external functions are re-#defined in ext/re/re_top.h, to
* have different names, so that what gets loaded in the executable is
* 'Perl_foo' from regcomp.c (and regexec.c), and the identical function
* from re_comp.c (and re_exec.c), but with the name 'my_foo' Debugging
* in the 'Perl_foo' versions is controlled by -Dr, but the 'my_foo'
* versions and their callees are under control of re.pm. The catch is
* that references to all these go through the regexp_engine structure,
* which is initialized in regcomp.h to the Perl_foo versions, and
* substituted out in lexical scopes where 'use re' is in effect to the
* 'my_foo' ones. That structure is public API, so it would be a hard
* sell to add any additional members.
* 4) For functions in regcomp.c and re_comp.c that are called only from,
* respectively, regexec.c and re_exec.c, they can have two different
* names, depending on #ifdef'ing PERL_IN_XSUB_RE, in both regexec.c and
* embed.fnc.
*
* The bottom line is that if you add code to one of the public functions
* listed in ext/re/re_top.h, debugging automagically works. But if you write
* a new function that needs to do debugging or there is a chain of calls from
* it that need to do debugging, all functions in the chain should use options
* 2) or 4) above.
*
* A function may have to be split so that debugging stuff is static, but it
* calls out to some other function that only gets compiled in regcomp.c to
* access data that we don't want to duplicate.
*/
#include "EXTERN.h"
#define PERL_IN_REGCOMP_C
#include "perl.h"
#define REG_COMP_C
#ifdef PERL_IN_XSUB_RE
# include "re_comp.h"
EXTERN_C const struct regexp_engine my_reg_engine;
EXTERN_C const struct regexp_engine wild_reg_engine;
#else
# include "regcomp.h"
#endif
#include "invlist_inline.h"
#include "unicode_constants.h"
#define HAS_NONLATIN1_FOLD_CLOSURE(i) \
_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
#define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
_HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
#ifndef STATIC
#define STATIC static
#endif
/* this is a chain of data about sub patterns we are processing that
need to be handled separately/specially in study_chunk. Its so
we can simulate recursion without losing state. */
struct scan_frame;
typedef struct scan_frame {
regnode *last_regnode; /* last node to process in this frame */
regnode *next_regnode; /* next node to process when last is reached */
U32 prev_recursed_depth;
I32 stopparen; /* what stopparen do we use */
bool in_gosub; /* this or an outer frame is for GOSUB */
struct scan_frame *this_prev_frame; /* this previous frame */
struct scan_frame *prev_frame; /* previous frame */
struct scan_frame *next_frame; /* next frame */
} scan_frame;
/* Certain characters are output as a sequence with the first being a
* backslash. */
#define isBACKSLASHED_PUNCT(c) memCHRs("-[]\\^", c)
struct RExC_state_t {
U32 flags; /* RXf_* are we folding, multilining? */
U32 pm_flags; /* PMf_* stuff from the calling PMOP */
char *precomp; /* uncompiled string. */
char *precomp_end; /* pointer to end of uncompiled string. */
REGEXP *rx_sv; /* The SV that is the regexp. */
regexp *rx; /* perl core regexp structure */
regexp_internal *rxi; /* internal data for regexp object
pprivate field */
char *start; /* Start of input for compile */
char *end; /* End of input for compile */
char *parse; /* Input-scan pointer. */
char *copy_start; /* start of copy of input within
constructed parse string */
char *save_copy_start; /* Provides one level of saving
and restoring 'copy_start' */
char *copy_start_in_input; /* Position in input string
corresponding to copy_start */
SSize_t whilem_seen; /* number of WHILEM in this expr */
regnode *emit_start; /* Start of emitted-code area */
regnode_offset emit; /* Code-emit pointer */
I32 naughty; /* How bad is this pattern? */
I32 sawback; /* Did we see \1, ...? */
SSize_t size; /* Number of regnode equivalents in
pattern */
Size_t sets_depth; /* Counts recursion depth of already-
compiled regex set patterns */
U32 seen;
I32 parens_buf_size; /* #slots malloced open/close_parens */
regnode_offset *open_parens; /* offsets to open parens */
regnode_offset *close_parens; /* offsets to close parens */
HV *paren_names; /* Paren names */
/* position beyond 'precomp' of the warning message furthest away from
* 'precomp'. During the parse, no warnings are raised for any problems
* earlier in the parse than this position. This works if warnings are
* raised the first time a given spot is parsed, and if only one
* independent warning is raised for any given spot */
Size_t latest_warn_offset;
I32 npar; /* Capture buffer count so far in the
parse, (OPEN) plus one. ("par" 0 is
the whole pattern)*/
I32 total_par; /* During initial parse, is either 0,
or -1; the latter indicating a
reparse is needed. After that pass,
it is what 'npar' became after the
pass. Hence, it being > 0 indicates
we are in a reparse situation */
I32 nestroot; /* root parens we are in - used by
accept */
I32 seen_zerolen;
regnode *end_op; /* END node in program */
I32 utf8; /* whether the pattern is utf8 or not */
I32 orig_utf8; /* whether the pattern was originally in utf8 */
/* XXX use this for future optimisation of case
* where pattern must be upgraded to utf8. */
I32 uni_semantics; /* If a d charset modifier should use unicode
rules, even if the pattern is not in
utf8 */
I32 recurse_count; /* Number of recurse regops we have generated */
regnode **recurse; /* Recurse regops */
U8 *study_chunk_recursed; /* bitmap of which subs we have moved
through */
U32 study_chunk_recursed_bytes; /* bytes in bitmap */
I32 in_lookaround;
I32 contains_locale;
I32 override_recoding;
I32 recode_x_to_native;
I32 in_multi_char_class;
int code_index; /* next code_blocks[] slot */
struct reg_code_blocks *code_blocks;/* positions of literal (?{})
within pattern */
SSize_t maxlen; /* mininum possible number of chars in string to match */
scan_frame *frame_head;
scan_frame *frame_last;
U32 frame_count;
AV *warn_text;
HV *unlexed_names;
SV *runtime_code_qr; /* qr with the runtime code blocks */
#ifdef DEBUGGING
const char *lastparse;
I32 lastnum;
U32 study_chunk_recursed_count;
AV *paren_name_list; /* idx -> name */
SV *mysv1;
SV *mysv2;
#define RExC_lastparse (pRExC_state->lastparse)
#define RExC_lastnum (pRExC_state->lastnum)
#define RExC_paren_name_list (pRExC_state->paren_name_list)
#define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
#define RExC_mysv (pRExC_state->mysv1)
#define RExC_mysv1 (pRExC_state->mysv1)
#define RExC_mysv2 (pRExC_state->mysv2)
#endif
bool seen_d_op;
bool strict;
bool study_started;
bool in_script_run;
bool use_BRANCHJ;
bool sWARN_EXPERIMENTAL__VLB;
bool sWARN_EXPERIMENTAL__REGEX_SETS;
};
#define RExC_flags (pRExC_state->flags)
#define RExC_pm_flags (pRExC_state->pm_flags)
#define RExC_precomp (pRExC_state->precomp)
#define RExC_copy_start_in_input (pRExC_state->copy_start_in_input)
#define RExC_copy_start_in_constructed (pRExC_state->copy_start)
#define RExC_save_copy_start_in_constructed (pRExC_state->save_copy_start)
#define RExC_precomp_end (pRExC_state->precomp_end)
#define RExC_rx_sv (pRExC_state->rx_sv)
#define RExC_rx (pRExC_state->rx)
#define RExC_rxi (pRExC_state->rxi)
#define RExC_start (pRExC_state->start)
#define RExC_end (pRExC_state->end)
#define RExC_parse (pRExC_state->parse)
#define RExC_latest_warn_offset (pRExC_state->latest_warn_offset )
#define RExC_whilem_seen (pRExC_state->whilem_seen)
#define RExC_seen_d_op (pRExC_state->seen_d_op) /* Seen something that differs
under /d from /u ? */
#ifdef RE_TRACK_PATTERN_OFFSETS
# define RExC_offsets (RExC_rxi->u.offsets) /* I am not like the
others */
#endif
#define RExC_emit (pRExC_state->emit)
#define RExC_emit_start (pRExC_state->emit_start)
#define RExC_sawback (pRExC_state->sawback)
#define RExC_seen (pRExC_state->seen)
#define RExC_size (pRExC_state->size)
#define RExC_maxlen (pRExC_state->maxlen)
#define RExC_npar (pRExC_state->npar)
#define RExC_total_parens (pRExC_state->total_par)
#define RExC_parens_buf_size (pRExC_state->parens_buf_size)
#define RExC_nestroot (pRExC_state->nestroot)
#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
#define RExC_utf8 (pRExC_state->utf8)
#define RExC_uni_semantics (pRExC_state->uni_semantics)
#define RExC_orig_utf8 (pRExC_state->orig_utf8)
#define RExC_open_parens (pRExC_state->open_parens)
#define RExC_close_parens (pRExC_state->close_parens)
#define RExC_end_op (pRExC_state->end_op)
#define RExC_paren_names (pRExC_state->paren_names)
#define RExC_recurse (pRExC_state->recurse)
#define RExC_recurse_count (pRExC_state->recurse_count)
#define RExC_sets_depth (pRExC_state->sets_depth)
#define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
#define RExC_study_chunk_recursed_bytes \
(pRExC_state->study_chunk_recursed_bytes)
#define RExC_in_lookaround (pRExC_state->in_lookaround)
#define RExC_contains_locale (pRExC_state->contains_locale)
#define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
#ifdef EBCDIC
# define SET_recode_x_to_native(x) \
STMT_START { RExC_recode_x_to_native = (x); } STMT_END
#else
# define SET_recode_x_to_native(x) NOOP
#endif
#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
#define RExC_frame_head (pRExC_state->frame_head)
#define RExC_frame_last (pRExC_state->frame_last)
#define RExC_frame_count (pRExC_state->frame_count)
#define RExC_strict (pRExC_state->strict)
#define RExC_study_started (pRExC_state->study_started)
#define RExC_warn_text (pRExC_state->warn_text)
#define RExC_in_script_run (pRExC_state->in_script_run)
#define RExC_use_BRANCHJ (pRExC_state->use_BRANCHJ)
#define RExC_warned_WARN_EXPERIMENTAL__VLB (pRExC_state->sWARN_EXPERIMENTAL__VLB)
#define RExC_warned_WARN_EXPERIMENTAL__REGEX_SETS (pRExC_state->sWARN_EXPERIMENTAL__REGEX_SETS)
#define RExC_unlexed_names (pRExC_state->unlexed_names)
/* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
* a flag to disable back-off on the fixed/floating substrings - if it's
* a high complexity pattern we assume the benefit of avoiding a full match
* is worth the cost of checking for the substrings even if they rarely help.
*/
#define RExC_naughty (pRExC_state->naughty)
#define TOO_NAUGHTY (10)
#define MARK_NAUGHTY(add) \
if (RExC_naughty < TOO_NAUGHTY) \
RExC_naughty += (add)
#define MARK_NAUGHTY_EXP(exp, add) \
if (RExC_naughty < TOO_NAUGHTY) \
RExC_naughty += RExC_naughty / (exp) + (add)
#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
((*s) == '{' && regcurly(s)))
/*
* Flags to be passed up and down.
*/
#define WORST 0 /* Worst case. */
#define HASWIDTH 0x01 /* Known to not match null strings, could match
non-null ones. */
/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
* character. (There needs to be a case: in the switch statement in regexec.c
* for any node marked SIMPLE.) Note that this is not the same thing as
* REGNODE_SIMPLE */
#define SIMPLE 0x02
#define SPSTART 0x04 /* Starts with * or + */
#define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
#define TRYAGAIN 0x10 /* Weeded out a declaration. */
#define RESTART_PARSE 0x20 /* Need to redo the parse */
#define NEED_UTF8 0x40 /* In conjunction with RESTART_PARSE, need to
calcuate sizes as UTF-8 */
#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
/* whether trie related optimizations are enabled */
#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
#define TRIE_STUDY_OPT
#define FULL_TRIE_STUDY
#define TRIE_STCLASS
#endif
#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
#define PBITVAL(paren) (1 << ((paren) & 7))
#define PAREN_OFFSET(depth) \
(RExC_study_chunk_recursed + (depth) * RExC_study_chunk_recursed_bytes)
#define PAREN_TEST(depth, paren) \
(PBYTE(PAREN_OFFSET(depth), paren) & PBITVAL(paren))
#define PAREN_SET(depth, paren) \
(PBYTE(PAREN_OFFSET(depth), paren) |= PBITVAL(paren))
#define PAREN_UNSET(depth, paren) \
(PBYTE(PAREN_OFFSET(depth), paren) &= ~PBITVAL(paren))
#define REQUIRE_UTF8(flagp) STMT_START { \
if (!UTF) { \
*flagp = RESTART_PARSE|NEED_UTF8; \
return 0; \
} \
} STMT_END
/* /u is to be chosen if we are supposed to use Unicode rules, or if the
* pattern is in UTF-8. This latter condition is in case the outermost rules
* are locale. See GH #17278 */
#define toUSE_UNI_CHARSET_NOT_DEPENDS (RExC_uni_semantics || UTF)
/* Change from /d into /u rules, and restart the parse. RExC_uni_semantics is
* a flag that indicates we need to override /d with /u as a result of
* something in the pattern. It should only be used in regards to calling
* set_regex_charset() or get_regex_charset() */
#define REQUIRE_UNI_RULES(flagp, restart_retval) \
STMT_START { \
if (DEPENDS_SEMANTICS) { \
set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
RExC_uni_semantics = 1; \
if (RExC_seen_d_op && LIKELY(! IN_PARENS_PASS)) { \
/* No need to restart the parse if we haven't seen \
* anything that differs between /u and /d, and no need \
* to restart immediately if we're going to reparse \
* anyway to count parens */ \
*flagp |= RESTART_PARSE; \
return restart_retval; \
} \
} \
} STMT_END
#define REQUIRE_BRANCHJ(flagp, restart_retval) \
STMT_START { \
RExC_use_BRANCHJ = 1; \
*flagp |= RESTART_PARSE; \
return restart_retval; \
} STMT_END
/* Until we have completed the parse, we leave RExC_total_parens at 0 or
* less. After that, it must always be positive, because the whole re is
* considered to be surrounded by virtual parens. Setting it to negative
* indicates there is some construct that needs to know the actual number of
* parens to be properly handled. And that means an extra pass will be
* required after we've counted them all */
#define ALL_PARENS_COUNTED (RExC_total_parens > 0)
#define REQUIRE_PARENS_PASS \
STMT_START { /* No-op if have completed a pass */ \
if (! ALL_PARENS_COUNTED) RExC_total_parens = -1; \
} STMT_END
#define IN_PARENS_PASS (RExC_total_parens < 0)
/* This is used to return failure (zero) early from the calling function if
* various flags in 'flags' are set. Two flags always cause a return:
* 'RESTART_PARSE' and 'NEED_UTF8'. 'extra' can be used to specify any
* additional flags that should cause a return; 0 if none. If the return will
* be done, '*flagp' is first set to be all of the flags that caused the
* return. */
#define RETURN_FAIL_ON_RESTART_OR_FLAGS(flags,flagp,extra) \
STMT_START { \
if ((flags) & (RESTART_PARSE|NEED_UTF8|(extra))) { \
*(flagp) = (flags) & (RESTART_PARSE|NEED_UTF8|(extra)); \
return 0; \
} \
} STMT_END
#define MUST_RESTART(flags) ((flags) & (RESTART_PARSE))
#define RETURN_FAIL_ON_RESTART(flags,flagp) \
RETURN_FAIL_ON_RESTART_OR_FLAGS( flags, flagp, 0)
#define RETURN_FAIL_ON_RESTART_FLAGP(flagp) \
if (MUST_RESTART(*(flagp))) return 0
/* This converts the named class defined in regcomp.h to its equivalent class
* number defined in handy.h. */
#define namedclass_to_classnum(class) ((int) ((class) / 2))
#define classnum_to_namedclass(classnum) ((classnum) * 2)
#define _invlist_union_complement_2nd(a, b, output) \
_invlist_union_maybe_complement_2nd(a, b, TRUE, output)
#define _invlist_intersection_complement_2nd(a, b, output) \
_invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
/* We add a marker if we are deferring expansion of a property that is both
* 1) potentiallly user-defined; and
* 2) could also be an official Unicode property.
*
* Without this marker, any deferred expansion can only be for a user-defined
* one. This marker shouldn't conflict with any that could be in a legal name,
* and is appended to its name to indicate this. There is a string and
* character form */
#define DEFERRED_COULD_BE_OFFICIAL_MARKERs "~"
#define DEFERRED_COULD_BE_OFFICIAL_MARKERc '~'
/* What is infinity for optimization purposes */
#define OPTIMIZE_INFTY SSize_t_MAX
/* About scan_data_t.
During optimisation we recurse through the regexp program performing
various inplace (keyhole style) optimisations. In addition study_chunk
and scan_commit populate this data structure with information about
what strings MUST appear in the pattern. We look for the longest
string that must appear at a fixed location, and we look for the
longest string that may appear at a floating location. So for instance
in the pattern:
/FOO[xX]A.*B[xX]BAR/
Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
strings (because they follow a .* construct). study_chunk will identify
both FOO and BAR as being the longest fixed and floating strings respectively.
The strings can be composites, for instance
/(f)(o)(o)/
will result in a composite fixed substring 'foo'.
For each string some basic information is maintained:
- min_offset
This is the position the string must appear at, or not before.
It also implicitly (when combined with minlenp) tells us how many
characters must match before the string we are searching for.
Likewise when combined with minlenp and the length of the string it
tells us how many characters must appear after the string we have
found.
- max_offset
Only used for floating strings. This is the rightmost point that
the string can appear at. If set to OPTIMIZE_INFTY it indicates that the
string can occur infinitely far to the right.
For fixed strings, it is equal to min_offset.
- minlenp
A pointer to the minimum number of characters of the pattern that the
string was found inside. This is important as in the case of positive
lookahead or positive lookbehind we can have multiple patterns
involved. Consider
/(?=FOO).*F/
The minimum length of the pattern overall is 3, the minimum length
of the lookahead part is 3, but the minimum length of the part that
will actually match is 1. So 'FOO's minimum length is 3, but the
minimum length for the F is 1. This is important as the minimum length
is used to determine offsets in front of and behind the string being
looked for. Since strings can be composites this is the length of the
pattern at the time it was committed with a scan_commit. Note that
the length is calculated by study_chunk, so that the minimum lengths
are not known until the full pattern has been compiled, thus the
pointer to the value.
- lookbehind
In the case of lookbehind the string being searched for can be
offset past the start point of the final matching string.
If this value was just blithely removed from the min_offset it would
invalidate some of the calculations for how many chars must match
before or after (as they are derived from min_offset and minlen and
the length of the string being searched for).
When the final pattern is compiled and the data is moved from the
scan_data_t structure into the regexp structure the information
about lookbehind is factored in, with the information that would
have been lost precalculated in the end_shift field for the
associated string.
The fields pos_min and pos_delta are used to store the minimum offset
and the delta to the maximum offset at the current point in the pattern.
*/
struct scan_data_substrs {
SV *str; /* longest substring found in pattern */
SSize_t min_offset; /* earliest point in string it can appear */
SSize_t max_offset; /* latest point in string it can appear */
SSize_t *minlenp; /* pointer to the minlen relevant to the string */
SSize_t lookbehind; /* is the pos of the string modified by LB */
I32 flags; /* per substring SF_* and SCF_* flags */
};
typedef struct scan_data_t {
/*I32 len_min; unused */
/*I32 len_delta; unused */
SSize_t pos_min;
SSize_t pos_delta;
SV *last_found;
SSize_t last_end; /* min value, <0 unless valid. */
SSize_t last_start_min;
SSize_t last_start_max;
U8 cur_is_floating; /* whether the last_* values should be set as
* the next fixed (0) or floating (1)
* substring */
/* [0] is longest fixed substring so far, [1] is longest float so far */
struct scan_data_substrs substrs[2];
I32 flags; /* common SF_* and SCF_* flags */
I32 whilem_c;
SSize_t *last_closep;
regnode_ssc *start_class;
} scan_data_t;
/*
* Forward declarations for pregcomp()'s friends.
*/
static const scan_data_t zero_scan_data = {
0, 0, NULL, 0, 0, 0, 0,
{
{ NULL, 0, 0, 0, 0, 0 },
{ NULL, 0, 0, 0, 0, 0 },
},
0, 0, NULL, NULL
};
/* study flags */
#define SF_BEFORE_SEOL 0x0001
#define SF_BEFORE_MEOL 0x0002
#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
#define SF_IS_INF 0x0040
#define SF_HAS_PAR 0x0080
#define SF_IN_PAR 0x0100
#define SF_HAS_EVAL 0x0200
/* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
* longest substring in the pattern. When it is not set the optimiser keeps
* track of position, but does not keep track of the actual strings seen,
*
* So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
* /foo/i will not.
*
* Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
* parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
* turned off because of the alternation (BRANCH). */
#define SCF_DO_SUBSTR 0x0400
#define SCF_DO_STCLASS_AND 0x0800
#define SCF_DO_STCLASS_OR 0x1000
#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
#define SCF_WHILEM_VISITED_POS 0x2000
#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
#define SCF_SEEN_ACCEPT 0x8000
#define SCF_TRIE_DOING_RESTUDY 0x10000
#define SCF_IN_DEFINE 0x20000
#define UTF cBOOL(RExC_utf8)
/* The enums for all these are ordered so things work out correctly */
#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
== REGEX_DEPENDS_CHARSET)
#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
>= REGEX_UNICODE_CHARSET)
#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
== REGEX_ASCII_RESTRICTED_CHARSET)
#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
>= REGEX_ASCII_RESTRICTED_CHARSET)
#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
== REGEX_ASCII_MORE_RESTRICTED_CHARSET)
#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
/* For programs that want to be strictly Unicode compatible by dying if any
* attempt is made to match a non-Unicode code point against a Unicode
* property. */
#define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
#define OOB_NAMEDCLASS -1
/* There is no code point that is out-of-bounds, so this is problematic. But
* its only current use is to initialize a variable that is always set before
* looked at. */
#define OOB_UNICODE 0xDEADBEEF
#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
/* length of regex to show in messages that don't mark a position within */
#define RegexLengthToShowInErrorMessages 127
/*
* If MARKER[12] are adjusted, be sure to adjust the constants at the top
* of t/op/regmesg.t, the tests in t/op/re_tests, and those in
* op/pragma/warn/regcomp.
*/
#define MARKER1 "<-- HERE" /* marker as it appears in the description */
#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
#define REPORT_LOCATION " in regex; marked by " MARKER1 \
" in m/%" UTF8f MARKER2 "%" UTF8f "/"
/* The code in this file in places uses one level of recursion with parsing
* rebased to an alternate string constructed by us in memory. This can take
* the form of something that is completely different from the input, or
* something that uses the input as part of the alternate. In the first case,
* there should be no possibility of an error, as we are in complete control of
* the alternate string. But in the second case we don't completely control
* the input portion, so there may be errors in that. Here's an example:
* /[abc\x{DF}def]/ui
* is handled specially because \x{df} folds to a sequence of more than one
* character: 'ss'. What is done is to create and parse an alternate string,
* which looks like this:
* /(?:\x{DF}|[abc\x{DF}def])/ui
* where it uses the input unchanged in the middle of something it constructs,
* which is a branch for the DF outside the character class, and clustering
* parens around the whole thing. (It knows enough to skip the DF inside the
* class while in this substitute parse.) 'abc' and 'def' may have errors that
* need to be reported. The general situation looks like this:
*
* |<------- identical ------>|
* sI tI xI eI
* Input: ---------------------------------------------------------------
* Constructed: ---------------------------------------------------
* sC tC xC eC EC
* |<------- identical ------>|
*
* sI..eI is the portion of the input pattern we are concerned with here.
* sC..EC is the constructed substitute parse string.
* sC..tC is constructed by us
* tC..eC is an exact duplicate of the portion of the input pattern tI..eI.
* In the diagram, these are vertically aligned.
* eC..EC is also constructed by us.
* xC is the position in the substitute parse string where we found a
* problem.
* xI is the position in the original pattern corresponding to xC.
*
* We want to display a message showing the real input string. Thus we need to
* translate from xC to xI. We know that xC >= tC, since the portion of the
* string sC..tC has been constructed by us, and so shouldn't have errors. We
* get:
* xI = tI + (xC - tC)
*
* When the substitute parse is constructed, the code needs to set:
* RExC_start (sC)
* RExC_end (eC)
* RExC_copy_start_in_input (tI)
* RExC_copy_start_in_constructed (tC)
* and restore them when done.
*
* During normal processing of the input pattern, both
* 'RExC_copy_start_in_input' and 'RExC_copy_start_in_constructed' are set to
* sI, so that xC equals xI.
*/
#define sI RExC_precomp
#define eI RExC_precomp_end
#define sC RExC_start
#define eC RExC_end
#define tI RExC_copy_start_in_input
#define tC RExC_copy_start_in_constructed
#define xI(xC) (tI + (xC - tC))
#define xI_offset(xC) (xI(xC) - sI)
#define REPORT_LOCATION_ARGS(xC) \
UTF8fARG(UTF, \
(xI(xC) > eI) /* Don't run off end */ \
? eI - sI /* Length before the <--HERE */ \
: ((xI_offset(xC) >= 0) \
? xI_offset(xC) \
: (Perl_croak(aTHX_ "panic: %s: %d: negative offset: %" \
IVdf " trying to output message for " \
" pattern %.*s", \
__FILE__, __LINE__, (IV) xI_offset(xC), \
((int) (eC - sC)), sC), 0)), \
sI), /* The input pattern printed up to the <--HERE */ \
UTF8fARG(UTF, \
(xI(xC) > eI) ? 0 : eI - xI(xC), /* Length after <--HERE */ \
(xI(xC) > eI) ? eI : xI(xC)) /* pattern after <--HERE */
/* Used to point after bad bytes for an error message, but avoid skipping
* past a nul byte. */
#define SKIP_IF_CHAR(s, e) (!*(s) ? 0 : UTF ? UTF8_SAFE_SKIP(s, e) : 1)
/* Set up to clean up after our imminent demise */
#define PREPARE_TO_DIE \
STMT_START { \
if (RExC_rx_sv) \
SAVEFREESV(RExC_rx_sv); \
if (RExC_open_parens) \
SAVEFREEPV(RExC_open_parens); \
if (RExC_close_parens) \
SAVEFREEPV(RExC_close_parens); \
} STMT_END
/*
* Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
* arg. Show regex, up to a maximum length. If it's too long, chop and add
* "...".
*/
#define _FAIL(code) STMT_START { \
const char *ellipses = ""; \
IV len = RExC_precomp_end - RExC_precomp; \
\
PREPARE_TO_DIE; \
if (len > RegexLengthToShowInErrorMessages) { \
/* chop 10 shorter than the max, to ensure meaning of "..." */ \
len = RegexLengthToShowInErrorMessages - 10; \
ellipses = "..."; \
} \
code; \
} STMT_END
#define FAIL(msg) _FAIL( \
Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
#define FAIL2(msg,arg) _FAIL( \
Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
#define FAIL3(msg,arg1,arg2) _FAIL( \
Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
arg1, arg2, UTF8fARG(UTF, len, RExC_precomp), ellipses))
/*
* Simple_vFAIL -- like FAIL, but marks the current location in the scan
*/
#define Simple_vFAIL(m) STMT_START { \
Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
m, REPORT_LOCATION_ARGS(RExC_parse)); \
} STMT_END
/*
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
*/
#define vFAIL(m) STMT_START { \
PREPARE_TO_DIE; \
Simple_vFAIL(m); \
} STMT_END
/*
* Like Simple_vFAIL(), but accepts two arguments.
*/
#define Simple_vFAIL2(m,a1) STMT_START { \
S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, \
REPORT_LOCATION_ARGS(RExC_parse)); \
} STMT_END
/*
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
*/
#define vFAIL2(m,a1) STMT_START { \
PREPARE_TO_DIE; \
Simple_vFAIL2(m, a1); \
} STMT_END
/*
* Like Simple_vFAIL(), but accepts three arguments.
*/
#define Simple_vFAIL3(m, a1, a2) STMT_START { \
S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, a2, \
REPORT_LOCATION_ARGS(RExC_parse)); \
} STMT_END
/*
* Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
*/
#define vFAIL3(m,a1,a2) STMT_START { \
PREPARE_TO_DIE; \
Simple_vFAIL3(m, a1, a2); \
} STMT_END
/*
* Like Simple_vFAIL(), but accepts four arguments.
*/
#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, a2, a3, \
REPORT_LOCATION_ARGS(RExC_parse)); \
} STMT_END
#define vFAIL4(m,a1,a2,a3) STMT_START { \
PREPARE_TO_DIE; \
Simple_vFAIL4(m, a1, a2, a3); \
} STMT_END
/* A specialized version of vFAIL2 that works with UTF8f */
#define vFAIL2utf8f(m, a1) STMT_START { \
PREPARE_TO_DIE; \
S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, \
REPORT_LOCATION_ARGS(RExC_parse)); \
} STMT_END
#define vFAIL3utf8f(m, a1, a2) STMT_START { \
PREPARE_TO_DIE; \
S_re_croak(aTHX_ UTF, m REPORT_LOCATION, a1, a2, \
REPORT_LOCATION_ARGS(RExC_parse)); \
} STMT_END
/* Setting this to NULL is a signal to not output warnings */
#define TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE \
STMT_START { \
RExC_save_copy_start_in_constructed = RExC_copy_start_in_constructed;\
RExC_copy_start_in_constructed = NULL; \
} STMT_END
#define RESTORE_WARNINGS \
RExC_copy_start_in_constructed = RExC_save_copy_start_in_constructed
/* Since a warning can be generated multiple times as the input is reparsed, we
* output it the first time we come to that point in the parse, but suppress it
* otherwise. 'RExC_copy_start_in_constructed' being NULL is a flag to not
* generate any warnings */
#define TO_OUTPUT_WARNINGS(loc) \
( RExC_copy_start_in_constructed \
&& ((xI(loc)) - RExC_precomp) > (Ptrdiff_t) RExC_latest_warn_offset)
/* After we've emitted a warning, we save the position in the input so we don't
* output it again */
#define UPDATE_WARNINGS_LOC(loc) \
STMT_START { \
if (TO_OUTPUT_WARNINGS(loc)) { \
RExC_latest_warn_offset = MAX(sI, MIN(eI, xI(loc))) \
- RExC_precomp; \
} \
} STMT_END
/* 'warns' is the output of the packWARNx macro used in 'code' */
#define _WARN_HELPER(loc, warns, code) \
STMT_START { \
if (! RExC_copy_start_in_constructed) { \
Perl_croak( aTHX_ "panic! %s: %d: Tried to warn when none" \
" expected at '%s'", \
__FILE__, __LINE__, loc); \
} \
if (TO_OUTPUT_WARNINGS(loc)) { \
if (ckDEAD(warns)) \
PREPARE_TO_DIE; \
code; \
UPDATE_WARNINGS_LOC(loc); \
} \
} STMT_END
/* m is not necessarily a "literal string", in this macro */
#define warn_non_literal_string(loc, packed_warn, m) \
_WARN_HELPER(loc, packed_warn, \
Perl_warner(aTHX_ packed_warn, \
"%s" REPORT_LOCATION, \
m, REPORT_LOCATION_ARGS(loc)))
#define reg_warn_non_literal_string(loc, m) \
warn_non_literal_string(loc, packWARN(WARN_REGEXP), m)
#define ckWARN2_non_literal_string(loc, packwarn, m, a1) \
STMT_START { \
char * format; \
Size_t format_size = strlen(m) + strlen(REPORT_LOCATION)+ 1;\
Newx(format, format_size, char); \
my_strlcpy(format, m, format_size); \
my_strlcat(format, REPORT_LOCATION, format_size); \
SAVEFREEPV(format); \
_WARN_HELPER(loc, packwarn, \
Perl_ck_warner(aTHX_ packwarn, \
format, \
a1, REPORT_LOCATION_ARGS(loc))); \
} STMT_END
#define ckWARNreg(loc,m) \
_WARN_HELPER(loc, packWARN(WARN_REGEXP), \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
m REPORT_LOCATION, \
REPORT_LOCATION_ARGS(loc)))
#define vWARN(loc, m) \
_WARN_HELPER(loc, packWARN(WARN_REGEXP), \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
m REPORT_LOCATION, \
REPORT_LOCATION_ARGS(loc))) \
#define vWARN_dep(loc, m) \
_WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
m REPORT_LOCATION, \
REPORT_LOCATION_ARGS(loc)))
#define ckWARNdep(loc,m) \
_WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
m REPORT_LOCATION, \
REPORT_LOCATION_ARGS(loc)))
#define ckWARNregdep(loc,m) \
_WARN_HELPER(loc, packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
WARN_REGEXP), \
m REPORT_LOCATION, \
REPORT_LOCATION_ARGS(loc)))
#define ckWARN2reg_d(loc,m, a1) \
_WARN_HELPER(loc, packWARN(WARN_REGEXP), \
Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
m REPORT_LOCATION, \
a1, REPORT_LOCATION_ARGS(loc)))
#define ckWARN2reg(loc, m, a1) \
_WARN_HELPER(loc, packWARN(WARN_REGEXP), \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
m REPORT_LOCATION, \
a1, REPORT_LOCATION_ARGS(loc)))
#define vWARN3(loc, m, a1, a2) \
_WARN_HELPER(loc, packWARN(WARN_REGEXP), \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
m REPORT_LOCATION, \
a1, a2, REPORT_LOCATION_ARGS(loc)))
#define ckWARN3reg(loc, m, a1, a2) \
_WARN_HELPER(loc, packWARN(WARN_REGEXP), \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
m REPORT_LOCATION, \
a1, a2, \
REPORT_LOCATION_ARGS(loc)))
#define vWARN4(loc, m, a1, a2, a3) \
_WARN_HELPER(loc, packWARN(WARN_REGEXP), \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
m REPORT_LOCATION, \
a1, a2, a3, \
REPORT_LOCATION_ARGS(loc)))
#define ckWARN4reg(loc, m, a1, a2, a3) \
_WARN_HELPER(loc, packWARN(WARN_REGEXP), \
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
m REPORT_LOCATION, \
a1, a2, a3, \
REPORT_LOCATION_ARGS(loc)))
#define vWARN5(loc, m, a1, a2, a3, a4) \
_WARN_HELPER(loc, packWARN(WARN_REGEXP), \
Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
m REPORT_LOCATION, \
a1, a2, a3, a4, \
REPORT_LOCATION_ARGS(loc)))
#define ckWARNexperimental(loc, class, m) \
STMT_START { \
if (! RExC_warned_ ## class) { /* warn once per compilation */ \
RExC_warned_ ## class = 1; \
_WARN_HELPER(loc, packWARN(class), \
Perl_ck_warner_d(aTHX_ packWARN(class), \
m REPORT_LOCATION, \
REPORT_LOCATION_ARGS(loc)));\
} \
} STMT_END
/* Convert between a pointer to a node and its offset from the beginning of the
* program */
#define REGNODE_p(offset) (RExC_emit_start + (offset))
#define REGNODE_OFFSET(node) ((node) - RExC_emit_start)
/* Macros for recording node offsets. 20001227 mjd@plover.com
* Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
* element 2*n-1 of the array. Element #2n holds the byte length node #n.
* Element 0 holds the number n.
* Position is 1 indexed.
*/
#ifndef RE_TRACK_PATTERN_OFFSETS
#define Set_Node_Offset_To_R(offset,byte)
#define Set_Node_Offset(node,byte)
#define Set_Cur_Node_Offset
#define Set_Node_Length_To_R(node,len)
#define Set_Node_Length(node,len)
#define Set_Node_Cur_Length(node,start)
#define Node_Offset(n)
#define Node_Length(n)
#define Set_Node_Offset_Length(node,offset,len)
#define ProgLen(ri) ri->u.proglen
#define SetProgLen(ri,x) ri->u.proglen = x
#define Track_Code(code)
#else
#define ProgLen(ri) ri->u.offsets[0]
#define SetProgLen(ri,x) ri->u.offsets[0] = x
#define Set_Node_Offset_To_R(offset,byte) STMT_START { \
MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
__LINE__, (int)(offset), (int)(byte))); \
if((offset) < 0) { \
Perl_croak(aTHX_ "value of node is %d in Offset macro", \
(int)(offset)); \
} else { \
RExC_offsets[2*(offset)-1] = (byte); \
} \
} STMT_END
#define Set_Node_Offset(node,byte) \
Set_Node_Offset_To_R(REGNODE_OFFSET(node), (byte)-RExC_start)
#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
#define Set_Node_Length_To_R(node,len) STMT_START { \
MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
__LINE__, (int)(node), (int)(len))); \
if((node) < 0) { \
Perl_croak(aTHX_ "value of node is %d in Length macro", \
(int)(node)); \
} else { \
RExC_offsets[2*(node)] = (len); \
} \
} STMT_END
#define Set_Node_Length(node,len) \
Set_Node_Length_To_R(REGNODE_OFFSET(node), len)
#define Set_Node_Cur_Length(node, start) \
Set_Node_Length(node, RExC_parse - start)
/* Get offsets and lengths */
#define Node_Offset(n) (RExC_offsets[2*(REGNODE_OFFSET(n))-1])
#define Node_Length(n) (RExC_offsets[2*(REGNODE_OFFSET(n))])
#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
Set_Node_Offset_To_R(REGNODE_OFFSET(node), (offset)); \
Set_Node_Length_To_R(REGNODE_OFFSET(node), (len)); \
} STMT_END
#define Track_Code(code) STMT_START { code } STMT_END
#endif
#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
#define EXPERIMENTAL_INPLACESCAN
#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
#ifdef DEBUGGING
int
Perl_re_printf(pTHX_ const char *fmt, ...)
{
va_list ap;
int result;
PerlIO *f= Perl_debug_log;
PERL_ARGS_ASSERT_RE_PRINTF;
va_start(ap, fmt);
result = PerlIO_vprintf(f, fmt, ap);
va_end(ap);
return result;
}
int
Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
{
va_list ap;
int result;
PerlIO *f= Perl_debug_log;
PERL_ARGS_ASSERT_RE_INDENTF;
va_start(ap, depth);
PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
result = PerlIO_vprintf(f, fmt, ap);
va_end(ap);
return result;
}
#endif /* DEBUGGING */
#define DEBUG_RExC_seen() \
DEBUG_OPTIMISE_MORE_r({ \
Perl_re_printf( aTHX_ "RExC_seen: "); \
\
if (RExC_seen & REG_ZERO_LEN_SEEN) \
Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
\
if (RExC_seen & REG_LOOKBEHIND_SEEN) \
Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
\
if (RExC_seen & REG_GPOS_SEEN) \
Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
\
if (RExC_seen & REG_RECURSE_SEEN) \
Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
\
if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
\
if (RExC_seen & REG_VERBARG_SEEN) \
Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
\
if (RExC_seen & REG_CUTGROUP_SEEN) \
Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
\
if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
\
if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
\
if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
\
Perl_re_printf( aTHX_ "\n"); \
});
#define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
#ifdef DEBUGGING
static void
S_debug_show_study_flags(pTHX_ U32 flags, const char *open_str,
const char *close_str)
{
if (!flags)
return;
Perl_re_printf( aTHX_ "%s", open_str);
DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_SEOL);
DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_MEOL);
DEBUG_SHOW_STUDY_FLAG(flags, SF_IS_INF);
DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_PAR);
DEBUG_SHOW_STUDY_FLAG(flags, SF_IN_PAR);
DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_EVAL);
DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_SUBSTR);
DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_AND);
DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_OR);
DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS);
DEBUG_SHOW_STUDY_FLAG(flags, SCF_WHILEM_VISITED_POS);
DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_RESTUDY);
DEBUG_SHOW_STUDY_FLAG(flags, SCF_SEEN_ACCEPT);
DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_DOING_RESTUDY);
DEBUG_SHOW_STUDY_FLAG(flags, SCF_IN_DEFINE);
Perl_re_printf( aTHX_ "%s", close_str);
}
static void
S_debug_studydata(pTHX_ const char *where, scan_data_t *data,
U32 depth, int is_inf)
{
DECLARE_AND_GET_RE_DEBUG_FLAGS;
DEBUG_OPTIMISE_MORE_r({
if (!data)
return;
Perl_re_indentf(aTHX_ "%s: Pos:%" IVdf "/%" IVdf " Flags: 0x%" UVXf,
depth,
where,
(IV)data->pos_min,
(IV)data->pos_delta,
(UV)data->flags
);
S_debug_show_study_flags(aTHX_ data->flags," [","]");
Perl_re_printf( aTHX_
" Whilem_c: %" IVdf " Lcp: %" IVdf " %s",
(IV)data->whilem_c,
(IV)(data->last_closep ? *((data)->last_closep) : -1),
is_inf ? "INF " : ""
);
if (data->last_found) {
int i;
Perl_re_printf(aTHX_
"Last:'%s' %" IVdf ":%" IVdf "/%" IVdf,
SvPVX_const(data->last_found),
(IV)data->last_end,
(IV)data->last_start_min,
(IV)data->last_start_max
);
for (i = 0; i < 2; i++) {
Perl_re_printf(aTHX_
" %s%s: '%s' @ %" IVdf "/%" IVdf,
data->cur_is_floating == i ? "*" : "",
i ? "Float" : "Fixed",
SvPVX_const(data->substrs[i].str),
(IV)data->substrs[i].min_offset,
(IV)data->substrs[i].max_offset
);
S_debug_show_study_flags(aTHX_ data->substrs[i].flags," [","]");
}
}
Perl_re_printf( aTHX_ "\n");
});
}
static void
S_debug_peep(pTHX_ const char *str, const RExC_state_t *pRExC_state,
regnode *scan, U32 depth, U32 flags)
{
DECLARE_AND_GET_RE_DEBUG_FLAGS;
DEBUG_OPTIMISE_r({
regnode *Next;
if (!scan)
return;
Next = regnext(scan);
regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
Perl_re_indentf( aTHX_ "%s>%3d: %s (%d)",
depth,
str,
REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),
Next ? (REG_NODE_NUM(Next)) : 0 );
S_debug_show_study_flags(aTHX_ flags," [ ","]");
Perl_re_printf( aTHX_ "\n");
});
}
# define DEBUG_STUDYDATA(where, data, depth, is_inf) \
S_debug_studydata(aTHX_ where, data, depth, is_inf)
# define DEBUG_PEEP(str, scan, depth, flags) \
S_debug_peep(aTHX_ str, pRExC_state, scan, depth, flags)
#else
# define DEBUG_STUDYDATA(where, data, depth, is_inf) NOOP
# define DEBUG_PEEP(str, scan, depth, flags) NOOP
#endif
/* =========================================================
* BEGIN edit_distance stuff.
*
* This calculates how many single character changes of any type are needed to
* transform a string into another one. It is taken from version 3.1 of
*
* https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
*/
/* Our unsorted dictionary linked list. */
/* Note we use UVs, not chars. */
struct dictionary{
UV key;
UV value;
struct dictionary* next;
};
typedef struct dictionary item;
PERL_STATIC_INLINE item*
push(UV key, item* curr)
{
item* head;
Newx(head, 1, item);
head->key = key;
head->value = 0;
head->next = curr;
return head;
}
PERL_STATIC_INLINE item*
find(item* head, UV key)
{
item* iterator = head;
while (iterator){
if (iterator->key == key){
return iterator;
}
iterator = iterator->next;
}
return NULL;
}
PERL_STATIC_INLINE item*
uniquePush(item* head, UV key)
{
item* iterator = head;
while (iterator){
if (iterator->key == key) {
return head;
}
iterator = iterator->next;
}
return push(key, head);
}
PERL_STATIC_INLINE void
dict_free(item* head)
{
item* iterator = head;
while (iterator) {
item* temp = iterator;
iterator = iterator->next;
Safefree(temp);
}
head = NULL;
}
/* End of Dictionary Stuff */
/* All calculations/work are done here */
STATIC int
S_edit_distance(const UV* src,
const UV* tgt,
const STRLEN x, /* length of src[] */
const STRLEN y, /* length of tgt[] */
const SSize_t maxDistance
)
{
item *head = NULL;
UV swapCount, swapScore, targetCharCount, i, j;
UV *scores;
UV score_ceil = x + y;
PERL_ARGS_ASSERT_EDIT_DISTANCE;
/* intialize matrix start values */
Newx(scores, ( (x + 2) * (y + 2)), UV);
scores[0] = score_ceil;
scores[1 * (y + 2) + 0] = score_ceil;
scores[0 * (y + 2) + 1] = score_ceil;
scores[1 * (y + 2) + 1] = 0;
head = uniquePush(uniquePush(head, src[0]), tgt[0]);
/* work loops */
/* i = src index */
/* j = tgt index */
for (i=1;i<=x;i++) {
if (i < x)
head = uniquePush(head, src[i]);
scores[(i+1) * (y + 2) + 1] = i;
scores[(i+1) * (y + 2) + 0] = score_ceil;
swapCount = 0;
for (j=1;j<=y;j++) {
if (i == 1) {
if(j < y)
head = uniquePush(head, tgt[j]);
scores[1 * (y + 2) + (j + 1)] = j;
scores[0 * (y + 2) + (j + 1)] = score_ceil;
}
targetCharCount = find(head, tgt[j-1])->value;
swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
if (src[i-1] != tgt[j-1]){
scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
}
else {
swapCount = j;
scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
}
}
find(head, src[i-1])->value = i;
}
{
IV score = scores[(x+1) * (y + 2) + (y + 1)];
dict_free(head);
Safefree(scores);
return (maxDistance != 0 && maxDistance < score)?(-1):score;
}
}
/* END of edit_distance() stuff
* ========================================================= */
/* Mark that we cannot extend a found fixed substring at this point.
Update the longest found anchored substring or the longest found
floating substrings if needed. */
STATIC void
S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
SSize_t *minlenp, int is_inf)
{
const STRLEN l = CHR_SVLEN(data->last_found);
SV * const longest_sv = data->substrs[data->cur_is_floating].str;
const STRLEN old_l = CHR_SVLEN(longest_sv);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_SCAN_COMMIT;
if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
const U8 i = data->cur_is_floating;
SvSetMagicSV(longest_sv, data->last_found);
data->substrs[i].min_offset = l ? data->last_start_min : data->pos_min;
if (!i) /* fixed */
data->substrs[0].max_offset = data->substrs[0].min_offset;
else { /* float */
data->substrs[1].max_offset =
(is_inf)
? OPTIMIZE_INFTY
: (l
? data->last_start_max
/* temporary underflow guard for 5.32 */
: data->pos_delta < 0 ? OPTIMIZE_INFTY
: (data->pos_delta > OPTIMIZE_INFTY - data->pos_min
? OPTIMIZE_INFTY
: data->pos_min + data->pos_delta));
}
data->substrs[i].flags &= ~SF_BEFORE_EOL;
data->substrs[i].flags |= data->flags & SF_BEFORE_EOL;
data->substrs[i].minlenp = minlenp;
data->substrs[i].lookbehind = 0;
}
SvCUR_set(data->last_found, 0);
{
SV * const sv = data->last_found;
if (SvUTF8(sv) && SvMAGICAL(sv)) {
MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
if (mg)
mg->mg_len = 0;
}
}
data->last_end = -1;
data->flags &= ~SF_BEFORE_EOL;
DEBUG_STUDYDATA("commit", data, 0, is_inf);
}
/* An SSC is just a regnode_charclass_posix with an extra field: the inversion
* list that describes which code points it matches */
STATIC void
S_ssc_anything(pTHX_ regnode_ssc *ssc)
{
/* Set the SSC 'ssc' to match an empty string or any code point */
PERL_ARGS_ASSERT_SSC_ANYTHING;
assert(is_ANYOF_SYNTHETIC(ssc));
/* mortalize so won't leak */
ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
}
STATIC int
S_ssc_is_anything(const regnode_ssc *ssc)
{
/* Returns TRUE if the SSC 'ssc' can match the empty string and any code
* point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
* us anything: if the function returns TRUE, 'ssc' hasn't been restricted
* in any way, so there's no point in using it */
UV start, end;
bool ret;
PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
assert(is_ANYOF_SYNTHETIC(ssc));
if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
return FALSE;
}
/* See if the list consists solely of the range 0 - Infinity */
invlist_iterinit(ssc->invlist);
ret = invlist_iternext(ssc->invlist, &start, &end)
&& start == 0
&& end == UV_MAX;
invlist_iterfinish(ssc->invlist);
if (ret) {
return TRUE;
}
/* If e.g., both \w and \W are set, matches everything */
if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
int i;
for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
return TRUE;
}
}
}
return FALSE;
}
STATIC void
S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
{
/* Initializes the SSC 'ssc'. This includes setting it to match an empty
* string, any code point, or any posix class under locale */
PERL_ARGS_ASSERT_SSC_INIT;
Zero(ssc, 1, regnode_ssc);
set_ANYOF_SYNTHETIC(ssc);
ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
ssc_anything(ssc);
/* If any portion of the regex is to operate under locale rules that aren't
* fully known at compile time, initialization includes it. The reason
* this isn't done for all regexes is that the optimizer was written under
* the assumption that locale was all-or-nothing. Given the complexity and
* lack of documentation in the optimizer, and that there are inadequate
* test cases for locale, many parts of it may not work properly, it is
* safest to avoid locale unless necessary. */
if (RExC_contains_locale) {
ANYOF_POSIXL_SETALL(ssc);
}
else {
ANYOF_POSIXL_ZERO(ssc);
}
}
STATIC int
S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
const regnode_ssc *ssc)
{
/* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
* to the list of code points matched, and locale posix classes; hence does
* not check its flags) */
UV start, end;
bool ret;
PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
assert(is_ANYOF_SYNTHETIC(ssc));
invlist_iterinit(ssc->invlist);
ret = invlist_iternext(ssc->invlist, &start, &end)
&& start == 0
&& end == UV_MAX;
invlist_iterfinish(ssc->invlist);
if (! ret) {
return FALSE;
}
if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
return FALSE;
}
return TRUE;
}
#define INVLIST_INDEX 0
#define ONLY_LOCALE_MATCHES_INDEX 1
#define DEFERRED_USER_DEFINED_INDEX 2
STATIC SV*
S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
const regnode_charclass* const node)
{
/* Returns a mortal inversion list defining which code points are matched
* by 'node', which is of type ANYOF. Handles complementing the result if
* appropriate. If some code points aren't knowable at this time, the
* returned list must, and will, contain every code point that is a
* possibility. */
dVAR;
SV* invlist = NULL;
SV* only_utf8_locale_invlist = NULL;
unsigned int i;
const U32 n = ARG(node);
bool new_node_has_latin1 = FALSE;
const U8 flags = (inRANGE(OP(node), ANYOFH, ANYOFRb))
? 0
: ANYOF_FLAGS(node);
PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
/* Look at the data structure created by S_set_ANYOF_arg() */
if (n != ANYOF_ONLY_HAS_BITMAP) {
SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
AV * const av = MUTABLE_AV(SvRV(rv));
SV **const ary = AvARRAY(av);
assert(RExC_rxi->data->what[n] == 's');
if (av_tindex_skip_len_mg(av) >= DEFERRED_USER_DEFINED_INDEX) {
/* Here there are things that won't be known until runtime -- we
* have to assume it could be anything */
invlist = sv_2mortal(_new_invlist(1));
return _add_range_to_invlist(invlist, 0, UV_MAX);
}
else if (ary[INVLIST_INDEX]) {
/* Use the node's inversion list */
invlist = sv_2mortal(invlist_clone(ary[INVLIST_INDEX], NULL));
}
/* Get the code points valid only under UTF-8 locales */
if ( (flags & ANYOFL_FOLD)
&& av_tindex_skip_len_mg(av) >= ONLY_LOCALE_MATCHES_INDEX)
{
only_utf8_locale_invlist = ary[ONLY_LOCALE_MATCHES_INDEX];
}
}
if (! invlist) {
invlist = sv_2mortal(_new_invlist(0));
}
/* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
* code points, and an inversion list for the others, but if there are code
* points that should match only conditionally on the target string being
* UTF-8, those are placed in the inversion list, and not the bitmap.
* Since there are circumstances under which they could match, they are
* included in the SSC. But if the ANYOF node is to be inverted, we have
* to exclude them here, so that when we invert below, the end result
* actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
* have to do this here before we add the unconditionally matched code
* points */
if (flags & ANYOF_INVERT) {
_invlist_intersection_complement_2nd(invlist,
PL_UpperLatin1,
&invlist);
}
/* Add in the points from the bit map */
if (! inRANGE(OP(node), ANYOFH, ANYOFRb)) {
for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
if (ANYOF_BITMAP_TEST(node, i)) {
unsigned int start = i++;
for (; i < NUM_ANYOF_CODE_POINTS
&& ANYOF_BITMAP_TEST(node, i); ++i)
{
/* empty */
}
invlist = _add_range_to_invlist(invlist, start, i-1);
new_node_has_latin1 = TRUE;
}
}
}
/* If this can match all upper Latin1 code points, have to add them
* as well. But don't add them if inverting, as when that gets done below,
* it would exclude all these characters, including the ones it shouldn't
* that were added just above */
if (! (flags & ANYOF_INVERT) && OP(node) == ANYOFD
&& (flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
{
_invlist_union(invlist, PL_UpperLatin1, &invlist);
}
/* Similarly for these */
if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
_invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
}
if (flags & ANYOF_INVERT) {
_invlist_invert(invlist);
}
else if (flags & ANYOFL_FOLD) {
if (new_node_has_latin1) {
/* Under /li, any 0-255 could fold to any other 0-255, depending on
* the locale. We can skip this if there are no 0-255 at all. */
_invlist_union(invlist, PL_Latin1, &invlist);
invlist = add_cp_to_invlist(invlist, LATIN_SMALL_LETTER_DOTLESS_I);
invlist = add_cp_to_invlist(invlist, LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
}
else {
if (_invlist_contains_cp(invlist, LATIN_SMALL_LETTER_DOTLESS_I)) {
invlist = add_cp_to_invlist(invlist, 'I');
}
if (_invlist_contains_cp(invlist,
LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE))
{
invlist = add_cp_to_invlist(invlist, 'i');
}
}
}
/* Similarly add the UTF-8 locale possible matches. These have to be
* deferred until after the non-UTF-8 locale ones are taken care of just
* above, or it leads to wrong results under ANYOF_INVERT */
if (only_utf8_locale_invlist) {
_invlist_union_maybe_complement_2nd(invlist,
only_utf8_locale_invlist,
flags & ANYOF_INVERT,
&invlist);
}
return invlist;
}
/* These two functions currently do the exact same thing */
#define ssc_init_zero ssc_init
#define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
#define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
/* 'AND' a given class with another one. Can create false positives. 'ssc'
* should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
* 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
STATIC void
S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
const regnode_charclass *and_with)
{
/* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
* another SSC or a regular ANYOF class. Can create false positives. */
SV* anded_cp_list;
U8 and_with_flags = inRANGE(OP(and_with), ANYOFH, ANYOFRb)
? 0
: ANYOF_FLAGS(and_with);
U8 anded_flags;
PERL_ARGS_ASSERT_SSC_AND;
assert(is_ANYOF_SYNTHETIC(ssc));
/* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
* the code point inversion list and just the relevant flags */
if (is_ANYOF_SYNTHETIC(and_with)) {
anded_cp_list = ((regnode_ssc *)and_with)->invlist;
anded_flags = and_with_flags;
/* XXX This is a kludge around what appears to be deficiencies in the
* optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
* there are paths through the optimizer where it doesn't get weeded
* out when it should. And if we don't make some extra provision for
* it like the code just below, it doesn't get added when it should.
* This solution is to add it only when AND'ing, which is here, and
* only when what is being AND'ed is the pristine, original node
* matching anything. Thus it is like adding it to ssc_anything() but
* only when the result is to be AND'ed. Probably the same solution
* could be adopted for the same problem we have with /l matching,
* which is solved differently in S_ssc_init(), and that would lead to
* fewer false positives than that solution has. But if this solution
* creates bugs, the consequences are only that a warning isn't raised
* that should be; while the consequences for having /l bugs is
* incorrect matches */
if (ssc_is_anything((regnode_ssc *)and_with)) {
anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
}
}
else {
anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
if (OP(and_with) == ANYOFD) {
anded_flags = and_with_flags & ANYOF_COMMON_FLAGS;
}
else {
anded_flags = and_with_flags
&( ANYOF_COMMON_FLAGS
|ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
|ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
if (ANYOFL_UTF8_LOCALE_REQD(and_with_flags)) {
anded_flags &=
ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
}
}
}
ANYOF_FLAGS(ssc) &= anded_flags;
/* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
* C2 is the list of code points in 'and-with'; P2, its posix classes.
* 'and_with' may be inverted. When not inverted, we have the situation of
* computing:
* (C1 | P1) & (C2 | P2)
* = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
* = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
* <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
* <= ((C1 & C2) | P1 | P2)
* Alternatively, the last few steps could be:
* = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
* <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
* <= (C1 | C2 | (P1 & P2))
* We favor the second approach if either P1 or P2 is non-empty. This is
* because these components are a barrier to doing optimizations, as what
* they match cannot be known until the moment of matching as they are
* dependent on the current locale, 'AND"ing them likely will reduce or
* eliminate them.
* But we can do better if we know that C1,P1 are in their initial state (a
* frequent occurrence), each matching everything:
* (<everything>) & (C2 | P2) = C2 | P2
* Similarly, if C2,P2 are in their initial state (again a frequent
* occurrence), the result is a no-op
* (C1 | P1) & (<everything>) = C1 | P1
*
* Inverted, we have
* (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
* = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
* <= (C1 & ~C2) | (P1 & ~P2)
* */
if ((and_with_flags & ANYOF_INVERT)
&& ! is_ANYOF_SYNTHETIC(and_with))
{
unsigned int i;
ssc_intersection(ssc,
anded_cp_list,
FALSE /* Has already been inverted */
);
/* If either P1 or P2 is empty, the intersection will be also; can skip
* the loop */
if (! (and_with_flags & ANYOF_MATCHES_POSIXL)) {
ANYOF_POSIXL_ZERO(ssc);
}
else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
/* Note that the Posix class component P from 'and_with' actually
* looks like:
* P = Pa | Pb | ... | Pn
* where each component is one posix class, such as in [\w\s].
* Thus
* ~P = ~(Pa | Pb | ... | Pn)
* = ~Pa & ~Pb & ... & ~Pn
* <= ~Pa | ~Pb | ... | ~Pn
* The last is something we can easily calculate, but unfortunately
* is likely to have many false positives. We could do better
* in some (but certainly not all) instances if two classes in
* P have known relationships. For example
* :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
* So
* :lower: & :print: = :lower:
* And similarly for classes that must be disjoint. For example,
* since \s and \w can have no elements in common based on rules in
* the POSIX standard,
* \w & ^\S = nothing
* Unfortunately, some vendor locales do not meet the Posix
* standard, in particular almost everything by Microsoft.
* The loop below just changes e.g., \w into \W and vice versa */
regnode_charclass_posixl temp;
int add = 1; /* To calculate the index of the complement */
Zero(&temp, 1, regnode_charclass_posixl);
ANYOF_POSIXL_ZERO(&temp);
for (i = 0; i < ANYOF_MAX; i++) {
assert(i % 2 != 0
|| ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
|| ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
ANYOF_POSIXL_SET(&temp, i + add);
}
add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
}
ANYOF_POSIXL_AND(&temp, ssc);
} /* else ssc already has no posixes */
} /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
in its initial state */
else if (! is_ANYOF_SYNTHETIC(and_with)
|| ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
{
/* But if 'ssc' is in its initial state, the result is just 'and_with';
* copy it over 'ssc' */
if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
if (is_ANYOF_SYNTHETIC(and_with)) {
StructCopy(and_with, ssc, regnode_ssc);
}
else {
ssc->invlist = anded_cp_list;
ANYOF_POSIXL_ZERO(ssc);
if (and_with_flags & ANYOF_MATCHES_POSIXL) {
ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
}
}
}
else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
|| (and_with_flags & ANYOF_MATCHES_POSIXL))
{
/* One or the other of P1, P2 is non-empty. */
if (and_with_flags & ANYOF_MATCHES_POSIXL) {
ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
}
ssc_union(ssc, anded_cp_list, FALSE);
}
else { /* P1 = P2 = empty */
ssc_intersection(ssc, anded_cp_list, FALSE);
}
}
}
STATIC void
S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
const regnode_charclass *or_with)
{
/* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
* another SSC or a regular ANYOF class. Can create false positives if
* 'or_with' is to be inverted. */
SV* ored_cp_list;
U8 ored_flags;
U8 or_with_flags = inRANGE(OP(or_with), ANYOFH, ANYOFRb)
? 0
: ANYOF_FLAGS(or_with);
PERL_ARGS_ASSERT_SSC_OR;
assert(is_ANYOF_SYNTHETIC(ssc));
/* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
* the code point inversion list and just the relevant flags */
if (is_ANYOF_SYNTHETIC(or_with)) {
ored_cp_list = ((regnode_ssc*) or_with)->invlist;
ored_flags = or_with_flags;
}
else {
ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
ored_flags = or_with_flags & ANYOF_COMMON_FLAGS;
if (OP(or_with) != ANYOFD) {
ored_flags
|= or_with_flags
& ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
|ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
if (ANYOFL_UTF8_LOCALE_REQD(or_with_flags)) {
ored_flags |=
ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
}
}
}
ANYOF_FLAGS(ssc) |= ored_flags;
/* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
* C2 is the list of code points in 'or-with'; P2, its posix classes.
* 'or_with' may be inverted. When not inverted, we have the simple
* situation of computing:
* (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
* If P1|P2 yields a situation with both a class and its complement are
* set, like having both \w and \W, this matches all code points, and we
* can delete these from the P component of the ssc going forward. XXX We
* might be able to delete all the P components, but I (khw) am not certain
* about this, and it is better to be safe.
*
* Inverted, we have
* (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
* <= (C1 | P1) | ~C2
* <= (C1 | ~C2) | P1
* (which results in actually simpler code than the non-inverted case)
* */
if ((or_with_flags & ANYOF_INVERT)
&& ! is_ANYOF_SYNTHETIC(or_with))
{
/* We ignore P2, leaving P1 going forward */
} /* else Not inverted */
else if (or_with_flags & ANYOF_MATCHES_POSIXL) {
ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
unsigned int i;
for (i = 0; i < ANYOF_MAX; i += 2) {
if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
{
ssc_match_all_cp(ssc);
ANYOF_POSIXL_CLEAR(ssc, i);
ANYOF_POSIXL_CLEAR(ssc, i+1);
}
}
}
}
ssc_union(ssc,
ored_cp_list,
FALSE /* Already has been inverted */
);
}
STATIC void
S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
{
PERL_ARGS_ASSERT_SSC_UNION;
assert(is_ANYOF_SYNTHETIC(ssc));
_invlist_union_maybe_complement_2nd(ssc->invlist,
invlist,
invert2nd,
&ssc->invlist);
}
STATIC void
S_ssc_intersection(pTHX_ regnode_ssc *ssc,
SV* const invlist,
const bool invert2nd)
{
PERL_ARGS_ASSERT_SSC_INTERSECTION;
assert(is_ANYOF_SYNTHETIC(ssc));
_invlist_intersection_maybe_complement_2nd(ssc->invlist,
invlist,
invert2nd,
&ssc->invlist);
}
STATIC void
S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
{
PERL_ARGS_ASSERT_SSC_ADD_RANGE;
assert(is_ANYOF_SYNTHETIC(ssc));
ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
}
STATIC void
S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
{
/* AND just the single code point 'cp' into the SSC 'ssc' */
SV* cp_list = _new_invlist(2);
PERL_ARGS_ASSERT_SSC_CP_AND;
assert(is_ANYOF_SYNTHETIC(ssc));
cp_list = add_cp_to_invlist(cp_list, cp);
ssc_intersection(ssc, cp_list,
FALSE /* Not inverted */
);
SvREFCNT_dec_NN(cp_list);
}
STATIC void
S_ssc_clear_locale(regnode_ssc *ssc)
{
/* Set the SSC 'ssc' to not match any locale things */
PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
assert(is_ANYOF_SYNTHETIC(ssc));
ANYOF_POSIXL_ZERO(ssc);
ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
}
#define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
STATIC bool
S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
{
/* The synthetic start class is used to hopefully quickly winnow down
* places where a pattern could start a match in the target string. If it
* doesn't really narrow things down that much, there isn't much point to
* having the overhead of using it. This function uses some very crude
* heuristics to decide if to use the ssc or not.
*
* It returns TRUE if 'ssc' rules out more than half what it considers to
* be the "likely" possible matches, but of course it doesn't know what the
* actual things being matched are going to be; these are only guesses
*
* For /l matches, it assumes that the only likely matches are going to be
* in the 0-255 range, uniformly distributed, so half of that is 127
* For /a and /d matches, it assumes that the likely matches will be just
* the ASCII range, so half of that is 63
* For /u and there isn't anything matching above the Latin1 range, it
* assumes that that is the only range likely to be matched, and uses
* half that as the cut-off: 127. If anything matches above Latin1,
* it assumes that all of Unicode could match (uniformly), except for
* non-Unicode code points and things in the General Category "Other"
* (unassigned, private use, surrogates, controls and formats). This
* is a much large number. */
U32 count = 0; /* Running total of number of code points matched by
'ssc' */
UV start, end; /* Start and end points of current range in inversion
XXX outdated. UTF-8 locales are common, what about invert? list */
const U32 max_code_points = (LOC)
? 256
: (( ! UNI_SEMANTICS
|| invlist_highest(ssc->invlist) < 256)
? 128
: NON_OTHER_COUNT);
const U32 max_match = max_code_points / 2;
PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
invlist_iterinit(ssc->invlist);
while (invlist_iternext(ssc->invlist, &start, &end)) {
if (start >= max_code_points) {
break;
}
end = MIN(end, max_code_points - 1);
count += end - start + 1;
if (count >= max_match) {
invlist_iterfinish(ssc->invlist);
return FALSE;
}
}
return TRUE;
}
STATIC void
S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
{
/* The inversion list in the SSC is marked mortal; now we need a more
* permanent copy, which is stored the same way that is done in a regular
* ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
* map */
SV* invlist = invlist_clone(ssc->invlist, NULL);
PERL_ARGS_ASSERT_SSC_FINALIZE;
assert(is_ANYOF_SYNTHETIC(ssc));
/* The code in this file assumes that all but these flags aren't relevant
* to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
* by the time we reach here */
assert(! (ANYOF_FLAGS(ssc)
& ~( ANYOF_COMMON_FLAGS
|ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
|ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist, NULL, NULL);
SvREFCNT_dec(invlist);
/* Make sure is clone-safe */
ssc->invlist = NULL;
if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
OP(ssc) = ANYOFPOSIXL;
}
else if (RExC_contains_locale) {
OP(ssc) = ANYOFL;
}
assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
}
#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
? (TRIE_LIST_CUR( idx ) - 1) \
: 0 )
#ifdef DEBUGGING
/*
dump_trie(trie,widecharmap,revcharmap)
dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
These routines dump out a trie in a somewhat readable format.
The _interim_ variants are used for debugging the interim
tables that are used to generate the final compressed
representation which is what dump_trie expects.
Part of the reason for their existence is to provide a form
of documentation as to how the different representations function.
*/
/*
Dumps the final compressed table form of the trie to Perl_debug_log.
Used for debugging make_trie().
*/
STATIC void
S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
AV *revcharmap, U32 depth)
{
U32 state;
SV *sv=sv_newmortal();
int colwidth= widecharmap ? 6 : 4;
U16 word;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_DUMP_TRIE;
Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
depth+1, "Match","Base","Ofs" );
for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
SV ** const tmp = av_fetch( revcharmap, state, 0);
if ( tmp ) {
Perl_re_printf( aTHX_ "%*s",
colwidth,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_ESCAPE_FIRSTCHAR
)
);
}
}
Perl_re_printf( aTHX_ "\n");
Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
for( state = 0 ; state < trie->uniquecharcount ; state++ )
Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
Perl_re_printf( aTHX_ "\n");
for( state = 1 ; state < trie->statecount ; state++ ) {
const U32 base = trie->states[ state ].trans.base;
Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
if ( trie->states[ state ].wordnum ) {
Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
} else {
Perl_re_printf( aTHX_ "%6s", "" );
}
Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
if ( base ) {
U32 ofs = 0;
while( ( base + ofs < trie->uniquecharcount ) ||
( base + ofs - trie->uniquecharcount < trie->lasttrans
&& trie->trans[ base + ofs - trie->uniquecharcount ].check
!= state))
ofs++;
Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
if ( ( base + ofs >= trie->uniquecharcount )
&& ( base + ofs - trie->uniquecharcount
< trie->lasttrans )
&& trie->trans[ base + ofs
- trie->uniquecharcount ].check == state )
{
Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
(UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
);
} else {
Perl_re_printf( aTHX_ "%*s", colwidth," ." );
}
}
Perl_re_printf( aTHX_ "]");
}
Perl_re_printf( aTHX_ "\n" );
}
Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
depth);
for (word=1; word <= trie->wordcount; word++) {
Perl_re_printf( aTHX_ " %d:(%d,%d)",
(int)word, (int)(trie->wordinfo[word].prev),
(int)(trie->wordinfo[word].len));
}
Perl_re_printf( aTHX_ "\n" );
}
/*
Dumps a fully constructed but uncompressed trie in list form.
List tries normally only are used for construction when the number of
possible chars (trie->uniquecharcount) is very high.
Used for debugging make_trie().
*/
STATIC void
S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
HV *widecharmap, AV *revcharmap, U32 next_alloc,
U32 depth)
{
U32 state;
SV *sv=sv_newmortal();
int colwidth= widecharmap ? 6 : 4;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
/* print out the table precompression. */
Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
depth+1 );
Perl_re_indentf( aTHX_ "%s",
depth+1, "------:-----+-----------------\n" );
for( state=1 ; state < next_alloc ; state ++ ) {
U16 charid;
Perl_re_indentf( aTHX_ " %4" UVXf " :",
depth+1, (UV)state );
if ( ! trie->states[ state ].wordnum ) {
Perl_re_printf( aTHX_ "%5s| ","");
} else {
Perl_re_printf( aTHX_ "W%4x| ",
trie->states[ state ].wordnum
);
}
for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
SV ** const tmp = av_fetch( revcharmap,
TRIE_LIST_ITEM(state, charid).forid, 0);
if ( tmp ) {
Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
colwidth,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
colwidth,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
| PERL_PV_ESCAPE_FIRSTCHAR
) ,
TRIE_LIST_ITEM(state, charid).forid,
(UV)TRIE_LIST_ITEM(state, charid).newstate
);
if (!(charid % 10))
Perl_re_printf( aTHX_ "\n%*s| ",
(int)((depth * 2) + 14), "");
}
}
Perl_re_printf( aTHX_ "\n");
}
}
/*
Dumps a fully constructed but uncompressed trie in table form.
This is the normal DFA style state transition table, with a few
twists to facilitate compression later.
Used for debugging make_trie().
*/
STATIC void
S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
HV *widecharmap, AV *revcharmap, U32 next_alloc,
U32 depth)
{
U32 state;
U16 charid;
SV *sv=sv_newmortal();
int colwidth= widecharmap ? 6 : 4;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
/*
print out the table precompression so that we can do a visual check
that they are identical.
*/
Perl_re_indentf( aTHX_ "Char : ", depth+1 );
for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
SV ** const tmp = av_fetch( revcharmap, charid, 0);
if ( tmp ) {
Perl_re_printf( aTHX_ "%*s",
colwidth,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_ESCAPE_FIRSTCHAR
)
);
}
}
Perl_re_printf( aTHX_ "\n");
Perl_re_indentf( aTHX_ "State+-", depth+1 );
for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
}
Perl_re_printf( aTHX_ "\n" );
for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
Perl_re_indentf( aTHX_ "%4" UVXf " : ",
depth+1,
(UV)TRIE_NODENUM( state ) );
for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
if (v)
Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
else
Perl_re_printf( aTHX_ "%*s", colwidth, "." );
}
if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
(UV)trie->trans[ state ].check );
} else {
Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
(UV)trie->trans[ state ].check,
trie->states[ TRIE_NODENUM( state ) ].wordnum );
}
}
}
#endif
/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
startbranch: the first branch in the whole branch sequence
first : start branch of sequence of branch-exact nodes.
May be the same as startbranch
last : Thing following the last branch.
May be the same as tail.
tail : item following the branch sequence
count : words in the sequence
flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
depth : indent depth
Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
A trie is an N'ary tree where the branches are determined by digital
decomposition of the key. IE, at the root node you look up the 1st character and
follow that branch repeat until you find the end of the branches. Nodes can be
marked as "accepting" meaning they represent a complete word. Eg:
/he|she|his|hers/
would convert into the following structure. Numbers represent states, letters
following numbers represent valid transitions on the letter from that state, if
the number is in square brackets it represents an accepting state, otherwise it
will be in parenthesis.
+-h->+-e->[3]-+-r->(8)-+-s->[9]
| |
| (2)
| |
(1) +-i->(6)-+-s->[7]
|
+-s->(3)-+-h->(4)-+-e->[5]
Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
This shows that when matching against the string 'hers' we will begin at state 1
read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
is also accepting. Thus we know that we can match both 'he' and 'hers' with a
single traverse. We store a mapping from accepting to state to which word was
matched, and then when we have multiple possibilities we try to complete the
rest of the regex in the order in which they occurred in the alternation.
The only prior NFA like behaviour that would be changed by the TRIE support is
the silent ignoring of duplicate alternations which are of the form:
/ (DUPE|DUPE) X? (?{ ... }) Y /x
Thus EVAL blocks following a trie may be called a different number of times with
and without the optimisation. With the optimisations dupes will be silently
ignored. This inconsistent behaviour of EVAL type nodes is well established as
the following demonstrates:
'words'=~/(word|word|word)(?{ print $1 })[xyz]/
which prints out 'word' three times, but
'words'=~/(word|word|word)(?{ print $1 })S/
which doesnt print it out at all. This is due to other optimisations kicking in.
Example of what happens on a structural level:
The regexp /(ac|ad|ab)+/ will produce the following debug output:
1: CURLYM[1] {1,32767}(18)
5: BRANCH(8)
6: EXACT <ac>(16)
8: BRANCH(11)
9: EXACT <ad>(16)
11: BRANCH(14)
12: EXACT <ab>(16)
16: SUCCEED(0)
17: NOTHING(18)
18: END(0)
This would be optimizable with startbranch=5, first=5, last=16, tail=16
and should turn into:
1: CURLYM[1] {1,32767}(18)
5: TRIE(16)
[Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
<ac>
<ad>
<ab>
16: SUCCEED(0)
17: NOTHING(18)
18: END(0)
Cases where tail != last would be like /(?foo|bar)baz/:
1: BRANCH(4)
2: EXACT <foo>(8)
4: BRANCH(7)
5: EXACT <bar>(8)
7: TAIL(8)
8: EXACT <baz>(10)
10: END(0)
which would be optimizable with startbranch=1, first=1, last=7, tail=8
and would end up looking like:
1: TRIE(8)
[Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
<foo>
<bar>
7: TAIL(8)
8: EXACT <baz>(10)
10: END(0)
d = uvchr_to_utf8_flags(d, uv, 0);
is the recommended Unicode-aware way of saying
*(d++) = uv;
*/
#define TRIE_STORE_REVCHAR(val) \
STMT_START { \
if (UTF) { \
SV *zlopp = newSV(UTF8_MAXBYTES); \
unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
unsigned char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
*kapow = '\0'; \
SvCUR_set(zlopp, kapow - flrbbbbb); \
SvPOK_on(zlopp); \
SvUTF8_on(zlopp); \
av_push(revcharmap, zlopp); \
} else { \
char ooooff = (char)val; \
av_push(revcharmap, newSVpvn(&ooooff, 1)); \
} \
} STMT_END
/* This gets the next character from the input, folding it if not already
* folded. */
#define TRIE_READ_CHAR STMT_START { \
wordlen++; \
if ( UTF ) { \
/* if it is UTF then it is either already folded, or does not need \
* folding */ \
uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
} \
else if (folder == PL_fold_latin1) { \
/* This folder implies Unicode rules, which in the range expressible \
* by not UTF is the lower case, with the two exceptions, one of \
* which should have been taken care of before calling this */ \
assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
uvc = toLOWER_L1(*uc); \
if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
len = 1; \
} else { \
/* raw data, will be folded later if needed */ \
uvc = (U32)*uc; \
len = 1; \
} \
} STMT_END
#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
U32 ging = TRIE_LIST_LEN( state ) * 2; \
Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
TRIE_LIST_LEN( state ) = ging; \
} \
TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
TRIE_LIST_CUR( state )++; \
} STMT_END
#define TRIE_LIST_NEW(state) STMT_START { \
Newx( trie->states[ state ].trans.list, \
4, reg_trie_trans_le ); \
TRIE_LIST_CUR( state ) = 1; \
TRIE_LIST_LEN( state ) = 4; \
} STMT_END
#define TRIE_HANDLE_WORD(state) STMT_START { \
U16 dupe= trie->states[ state ].wordnum; \
regnode * const noper_next = regnext( noper ); \
\
DEBUG_r({ \
/* store the word for dumping */ \
SV* tmp; \
if (OP(noper) != NOTHING) \
tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
else \
tmp = newSVpvn_utf8( "", 0, UTF ); \
av_push( trie_words, tmp ); \
}); \
\
curword++; \
trie->wordinfo[curword].prev = 0; \
trie->wordinfo[curword].len = wordlen; \
trie->wordinfo[curword].accept = state; \
\
if ( noper_next < tail ) { \
if (!trie->jump) \
trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
sizeof(U16) ); \
trie->jump[curword] = (U16)(noper_next - convert); \
if (!jumper) \
jumper = noper_next; \
if (!nextbranch) \
nextbranch= regnext(cur); \
} \
\
if ( dupe ) { \
/* It's a dupe. Pre-insert into the wordinfo[].prev */\
/* chain, so that when the bits of chain are later */\
/* linked together, the dups appear in the chain */\
trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
trie->wordinfo[dupe].prev = curword; \
} else { \
/* we haven't inserted this word yet. */ \
trie->states[ state ].wordnum = curword; \
} \
} STMT_END
#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
( ( base + charid >= ucharcount \
&& base + charid < ubound \
&& state == trie->trans[ base - ucharcount + charid ].check \
&& trie->trans[ base - ucharcount + charid ].next ) \
? trie->trans[ base - ucharcount + charid ].next \
: ( state==1 ? special : 0 ) \
)
#define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
STMT_START { \
TRIE_BITMAP_SET(trie, uvc); \
/* store the folded codepoint */ \
if ( folder ) \
TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
\
if ( !UTF ) { \
/* store first byte of utf8 representation of */ \
/* variant codepoints */ \
if (! UVCHR_IS_INVARIANT(uvc)) { \
TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
} \
} \
} STMT_END
#define MADE_TRIE 1
#define MADE_JUMP_TRIE 2
#define MADE_EXACT_TRIE 4
STATIC I32
S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
regnode *first, regnode *last, regnode *tail,
U32 word_count, U32 flags, U32 depth)
{
/* first pass, loop through and scan words */
reg_trie_data *trie;
HV *widecharmap = NULL;
AV *revcharmap = newAV();
regnode *cur;
STRLEN len = 0;
UV uvc = 0;
U16 curword = 0;
U32 next_alloc = 0;
regnode *jumper = NULL;
regnode *nextbranch = NULL;
regnode *convert = NULL;
U32 *prev_states; /* temp array mapping each state to previous one */
/* we just use folder as a flag in utf8 */
const U8 * folder = NULL;
/* in the below add_data call we are storing either 'tu' or 'tuaa'
* which stands for one trie structure, one hash, optionally followed
* by two arrays */
#ifdef DEBUGGING
const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuaa"));
AV *trie_words = NULL;
/* along with revcharmap, this only used during construction but both are
* useful during debugging so we store them in the struct when debugging.
*/
#else
const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
STRLEN trie_charcount=0;
#endif
SV *re_trie_maxbuff;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_MAKE_TRIE;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
switch (flags) {
case EXACT: case EXACT_REQ8: case EXACTL: break;
case EXACTFAA:
case EXACTFUP:
case EXACTFU:
case EXACTFLU8: folder = PL_fold_latin1; break;
case EXACTF: folder = PL_fold; break;
default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
}
trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
trie->refcount = 1;
trie->startstate = 1;
trie->wordcount = word_count;
RExC_rxi->data->data[ data_slot ] = (void*)trie;
trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
if (flags == EXACT || flags == EXACT_REQ8 || flags == EXACTL)
trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
trie->wordcount+1, sizeof(reg_trie_wordinfo));
DEBUG_r({
trie_words = newAV();
});
re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, GV_ADD);
assert(re_trie_maxbuff);
if (!SvIOK(re_trie_maxbuff)) {
sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
}
DEBUG_TRIE_COMPILE_r({
Perl_re_indentf( aTHX_
"make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
depth+1,
REG_NODE_NUM(startbranch), REG_NODE_NUM(first),
REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
});
/* Find the node we are going to overwrite */
if ( first == startbranch && OP( last ) != BRANCH ) {
/* whole branch chain */
convert = first;
} else {
/* branch sub-chain */
convert = NEXTOPER( first );
}
/* -- First loop and Setup --
We first traverse the branches and scan each word to determine if it
contains widechars, and how many unique chars there are, this is
important as we have to build a table with at least as many columns as we
have unique chars.
We use an array of integers to represent the character codes 0..255
(trie->charmap) and we use a an HV* to store Unicode characters. We use
the native representation of the character value as the key and IV's for
the coded index.
*TODO* If we keep track of how many times each character is used we can
remap the columns so that the table compression later on is more
efficient in terms of memory by ensuring the most common value is in the
middle and the least common are on the outside. IMO this would be better
than a most to least common mapping as theres a decent chance the most
common letter will share a node with the least common, meaning the node
will not be compressible. With a middle is most common approach the worst
case is when we have the least common nodes twice.
*/
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
regnode *noper = NEXTOPER( cur );
const U8 *uc;
const U8 *e;
int foldlen = 0;
U32 wordlen = 0; /* required init */
STRLEN minchars = 0;
STRLEN maxchars = 0;
bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
bitmap?*/
if (OP(noper) == NOTHING) {
/* skip past a NOTHING at the start of an alternation
* eg, /(?:)a|(?:b)/ should be the same as /a|b/
*
* If the next node is not something we are supposed to process
* we will just ignore it due to the condition guarding the
* next block.
*/
regnode *noper_next= regnext(noper);
if (noper_next < tail)
noper= noper_next;
}
if ( noper < tail
&& ( OP(noper) == flags
|| (flags == EXACT && OP(noper) == EXACT_REQ8)
|| (flags == EXACTFU && ( OP(noper) == EXACTFU_REQ8
|| OP(noper) == EXACTFUP))))
{
uc= (U8*)STRING(noper);
e= uc + STR_LEN(noper);
} else {
trie->minlen= 0;
continue;
}
if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
regardless of encoding */
if (OP( noper ) == EXACTFUP) {
/* false positives are ok, so just set this */
TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
}
}
for ( ; uc < e ; uc += len ) { /* Look at each char in the current
branch */
TRIE_CHARCOUNT(trie)++;
TRIE_READ_CHAR;
/* TRIE_READ_CHAR returns the current character, or its fold if /i
* is in effect. Under /i, this character can match itself, or
* anything that folds to it. If not under /i, it can match just
* itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
* all fold to k, and all are single characters. But some folds
* expand to more than one character, so for example LATIN SMALL
* LIGATURE FFI folds to the three character sequence 'ffi'. If
* the string beginning at 'uc' is 'ffi', it could be matched by
* three characters, or just by the one ligature character. (It
* could also be matched by two characters: LATIN SMALL LIGATURE FF
* followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
* (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
* match.) The trie needs to know the minimum and maximum number
* of characters that could match so that it can use size alone to
* quickly reject many match attempts. The max is simple: it is
* the number of folded characters in this branch (since a fold is
* never shorter than what folds to it. */
maxchars++;
/* And the min is equal to the max if not under /i (indicated by
* 'folder' being NULL), or there are no multi-character folds. If
* there is a multi-character fold, the min is incremented just
* once, for the character that folds to the sequence. Each
* character in the sequence needs to be added to the list below of
* characters in the trie, but we count only the first towards the
* min number of characters needed. This is done through the
* variable 'foldlen', which is returned by the macros that look
* for these sequences as the number of bytes the sequence
* occupies. Each time through the loop, we decrement 'foldlen' by
* how many bytes the current char occupies. Only when it reaches
* 0 do we increment 'minchars' or look for another multi-character
* sequence. */
if (folder == NULL) {
minchars++;
}
else if (foldlen > 0) {
foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
}
else {
minchars++;
/* See if *uc is the beginning of a multi-character fold. If
* so, we decrement the length remaining to look at, to account
* for the current character this iteration. (We can use 'uc'
* instead of the fold returned by TRIE_READ_CHAR because for
* non-UTF, the latin1_safe macro is smart enough to account
* for all the unfolded characters, and because for UTF, the
* string will already have been folded earlier in the
* compilation process */
if (UTF) {
if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
foldlen -= UTF8SKIP(uc);
}
}
else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
foldlen--;
}
}
/* The current character (and any potential folds) should be added
* to the possible matching characters for this position in this
* branch */
if ( uvc < 256 ) {
if ( folder ) {
U8 folded= folder[ (U8) uvc ];
if ( !trie->charmap[ folded ] ) {
trie->charmap[ folded ]=( ++trie->uniquecharcount );
TRIE_STORE_REVCHAR( folded );
}
}
if ( !trie->charmap[ uvc ] ) {
trie->charmap[ uvc ]=( ++trie->uniquecharcount );
TRIE_STORE_REVCHAR( uvc );
}
if ( set_bit ) {
/* store the codepoint in the bitmap, and its folded
* equivalent. */
TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
set_bit = 0; /* We've done our bit :-) */
}
} else {
/* XXX We could come up with the list of code points that fold
* to this using PL_utf8_foldclosures, except not for
* multi-char folds, as there may be multiple combinations
* there that could work, which needs to wait until runtime to
* resolve (The comment about LIGATURE FFI above is such an
* example */
SV** svpp;
if ( !widecharmap )
widecharmap = newHV();
svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
if ( !svpp )
Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
if ( !SvTRUE( *svpp ) ) {
sv_setiv( *svpp, ++trie->uniquecharcount );
TRIE_STORE_REVCHAR(uvc);
}
}
} /* end loop through characters in this branch of the trie */
/* We take the min and max for this branch and combine to find the min
* and max for all branches processed so far */
if( cur == first ) {
trie->minlen = minchars;
trie->maxlen = maxchars;
} else if (minchars < trie->minlen) {
trie->minlen = minchars;
} else if (maxchars > trie->maxlen) {
trie->maxlen = maxchars;
}
} /* end first pass */
DEBUG_TRIE_COMPILE_r(
Perl_re_indentf( aTHX_
"TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
depth+1,
( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
(int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
(int)trie->minlen, (int)trie->maxlen )
);
/*
We now know what we are dealing with in terms of unique chars and
string sizes so we can calculate how much memory a naive
representation using a flat table will take. If it's over a reasonable
limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
conservative but potentially much slower representation using an array
of lists.
At the end we convert both representations into the same compressed
form that will be used in regexec.c for matching with. The latter
is a form that cannot be used to construct with but has memory
properties similar to the list form and access properties similar
to the table form making it both suitable for fast searches and
small enough that its feasable to store for the duration of a program.
See the comment in the code where the compressed table is produced
inplace from the flat tabe representation for an explanation of how
the compression works.
*/
Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
prev_states[1] = 0;
if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
> SvIV(re_trie_maxbuff) )
{
/*
Second Pass -- Array Of Lists Representation
Each state will be represented by a list of charid:state records
(reg_trie_trans_le) the first such element holds the CUR and LEN
points of the allocated array. (See defines above).
We build the initial structure using the lists, and then convert
it into the compressed table form which allows faster lookups
(but cant be modified once converted).
*/
STRLEN transcount = 1;
DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
depth+1));
trie->states = (reg_trie_state *)
PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
sizeof(reg_trie_state) );
TRIE_LIST_NEW(1);
next_alloc = 2;
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
regnode *noper = NEXTOPER( cur );
U32 state = 1; /* required init */
U16 charid = 0; /* sanity init */
U32 wordlen = 0; /* required init */
if (OP(noper) == NOTHING) {
regnode *noper_next= regnext(noper);
if (noper_next < tail)
noper= noper_next;
/* we will undo this assignment if noper does not
* point at a trieable type in the else clause of
* the following statement. */
}
if ( noper < tail
&& ( OP(noper) == flags
|| (flags == EXACT && OP(noper) == EXACT_REQ8)
|| (flags == EXACTFU && ( OP(noper) == EXACTFU_REQ8
|| OP(noper) == EXACTFUP))))
{
const U8 *uc= (U8*)STRING(noper);
const U8 *e= uc + STR_LEN(noper);
for ( ; uc < e ; uc += len ) {
TRIE_READ_CHAR;
if ( uvc < 256 ) {
charid = trie->charmap[ uvc ];
} else {
SV** const svpp = hv_fetch( widecharmap,
(char*)&uvc,
sizeof( UV ),
0);
if ( !svpp ) {
charid = 0;
} else {
charid=(U16)SvIV( *svpp );
}
}
/* charid is now 0 if we dont know the char read, or
* nonzero if we do */
if ( charid ) {
U16 check;
U32 newstate = 0;
charid--;
if ( !trie->states[ state ].trans.list ) {
TRIE_LIST_NEW( state );
}
for ( check = 1;
check <= TRIE_LIST_USED( state );
check++ )
{
if ( TRIE_LIST_ITEM( state, check ).forid
== charid )
{
newstate = TRIE_LIST_ITEM( state, check ).newstate;
break;
}
}
if ( ! newstate ) {
newstate = next_alloc++;
prev_states[newstate] = state;
TRIE_LIST_PUSH( state, charid, newstate );
transcount++;
}
state = newstate;
} else {
Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
}
}
} else {
/* If we end up here it is because we skipped past a NOTHING, but did not end up
* on a trieable type. So we need to reset noper back to point at the first regop
* in the branch before we call TRIE_HANDLE_WORD()
*/
noper= NEXTOPER(cur);
}
TRIE_HANDLE_WORD(state);
} /* end second pass */
/* next alloc is the NEXT state to be allocated */
trie->statecount = next_alloc;
trie->states = (reg_trie_state *)
PerlMemShared_realloc( trie->states,
next_alloc
* sizeof(reg_trie_state) );
/* and now dump it out before we compress it */
DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
revcharmap, next_alloc,
depth+1)
);
trie->trans = (reg_trie_trans *)
PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
{
U32 state;
U32 tp = 0;
U32 zp = 0;
for( state=1 ; state < next_alloc ; state ++ ) {
U32 base=0;
/*
DEBUG_TRIE_COMPILE_MORE_r(
Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
);
*/
if (trie->states[state].trans.list) {
U16 minid=TRIE_LIST_ITEM( state, 1).forid;
U16 maxid=minid;
U16 idx;
for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
if ( forid < minid ) {
minid=forid;
} else if ( forid > maxid ) {
maxid=forid;
}
}
if ( transcount < tp + maxid - minid + 1) {
transcount *= 2;
trie->trans = (reg_trie_trans *)
PerlMemShared_realloc( trie->trans,
transcount
* sizeof(reg_trie_trans) );
Zero( trie->trans + (transcount / 2),
transcount / 2,
reg_trie_trans );
}
base = trie->uniquecharcount + tp - minid;
if ( maxid == minid ) {
U32 set = 0;
for ( ; zp < tp ; zp++ ) {
if ( ! trie->trans[ zp ].next ) {
base = trie->uniquecharcount + zp - minid;
trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
1).newstate;
trie->trans[ zp ].check = state;
set = 1;
break;
}
}
if ( !set ) {
trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
1).newstate;
trie->trans[ tp ].check = state;
tp++;
zp = tp;
}
} else {
for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
const U32 tid = base
- trie->uniquecharcount
+ TRIE_LIST_ITEM( state, idx ).forid;
trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
idx ).newstate;
trie->trans[ tid ].check = state;
}
tp += ( maxid - minid + 1 );
}
Safefree(trie->states[ state ].trans.list);
}
/*
DEBUG_TRIE_COMPILE_MORE_r(
Perl_re_printf( aTHX_ " base: %d\n",base);
);
*/
trie->states[ state ].trans.base=base;
}
trie->lasttrans = tp + 1;
}
} else {
/*
Second Pass -- Flat Table Representation.
we dont use the 0 slot of either trans[] or states[] so we add 1 to
each. We know that we will need Charcount+1 trans at most to store
the data (one row per char at worst case) So we preallocate both
structures assuming worst case.
We then construct the trie using only the .next slots of the entry
structs.
We use the .check field of the first entry of the node temporarily
to make compression both faster and easier by keeping track of how
many non zero fields are in the node.
Since trans are numbered from 1 any 0 pointer in the table is a FAIL
transition.
There are two terms at use here: state as a TRIE_NODEIDX() which is
a number representing the first entry of the node, and state as a
TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
if there are 2 entrys per node. eg:
A B A B
1. 2 4 1. 3 7
2. 0 3 3. 0 5
3. 0 0 5. 0 0
4. 0 0 7. 0 0
The table is internally in the right hand, idx form. However as we
also have to deal with the states array which is indexed by nodenum
we have to use TRIE_NODENUM() to convert.
*/
DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
depth+1));
trie->trans = (reg_trie_trans *)
PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
* trie->uniquecharcount + 1,
sizeof(reg_trie_trans) );
trie->states = (reg_trie_state *)
PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
sizeof(reg_trie_state) );
next_alloc = trie->uniquecharcount + 1;
for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
regnode *noper = NEXTOPER( cur );
U32 state = 1; /* required init */
U16 charid = 0; /* sanity init */
U32 accept_state = 0; /* sanity init */
U32 wordlen = 0; /* required init */
if (OP(noper) == NOTHING) {
regnode *noper_next= regnext(noper);
if (noper_next < tail)
noper= noper_next;
/* we will undo this assignment if noper does not
* point at a trieable type in the else clause of
* the following statement. */
}
if ( noper < tail
&& ( OP(noper) == flags
|| (flags == EXACT && OP(noper) == EXACT_REQ8)
|| (flags == EXACTFU && ( OP(noper) == EXACTFU_REQ8
|| OP(noper) == EXACTFUP))))
{
const U8 *uc= (U8*)STRING(noper);
const U8 *e= uc + STR_LEN(noper);
for ( ; uc < e ; uc += len ) {
TRIE_READ_CHAR;
if ( uvc < 256 ) {
charid = trie->charmap[ uvc ];
} else {
SV* const * const svpp = hv_fetch( widecharmap,
(char*)&uvc,
sizeof( UV ),
0);
charid = svpp ? (U16)SvIV(*svpp) : 0;
}
if ( charid ) {
charid--;
if ( !trie->trans[ state + charid ].next ) {
trie->trans[ state + charid ].next = next_alloc;
trie->trans[ state ].check++;
prev_states[TRIE_NODENUM(next_alloc)]
= TRIE_NODENUM(state);
next_alloc += trie->uniquecharcount;
}
state = trie->trans[ state + charid ].next;
} else {
Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
}
/* charid is now 0 if we dont know the char read, or
* nonzero if we do */
}
} else {
/* If we end up here it is because we skipped past a NOTHING, but did not end up
* on a trieable type. So we need to reset noper back to point at the first regop
* in the branch before we call TRIE_HANDLE_WORD().
*/
noper= NEXTOPER(cur);
}
accept_state = TRIE_NODENUM( state );
TRIE_HANDLE_WORD(accept_state);
} /* end second pass */
/* and now dump it out before we compress it */
DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
revcharmap,
next_alloc, depth+1));
{
/*
* Inplace compress the table.*
For sparse data sets the table constructed by the trie algorithm will
be mostly 0/FAIL transitions or to put it another way mostly empty.
(Note that leaf nodes will not contain any transitions.)
This algorithm compresses the tables by eliminating most such
transitions, at the cost of a modest bit of extra work during lookup:
- Each states[] entry contains a .base field which indicates the
index in the state[] array wheres its transition data is stored.
- If .base is 0 there are no valid transitions from that node.
- If .base is nonzero then charid is added to it to find an entry in
the trans array.
-If trans[states[state].base+charid].check!=state then the
transition is taken to be a 0/Fail transition. Thus if there are fail
transitions at the front of the node then the .base offset will point
somewhere inside the previous nodes data (or maybe even into a node
even earlier), but the .check field determines if the transition is
valid.
XXX - wrong maybe?
The following process inplace converts the table to the compressed
table: We first do not compress the root node 1,and mark all its
.check pointers as 1 and set its .base pointer as 1 as well. This
allows us to do a DFA construction from the compressed table later,
and ensures that any .base pointers we calculate later are greater
than 0.
- We set 'pos' to indicate the first entry of the second node.
- We then iterate over the columns of the node, finding the first and
last used entry at l and m. We then copy l..m into pos..(pos+m-l),
and set the .check pointers accordingly, and advance pos
appropriately and repreat for the next node. Note that when we copy
the next pointers we have to convert them from the original
NODEIDX form to NODENUM form as the former is not valid post
compression.
- If a node has no transitions used we mark its base as 0 and do not
advance the pos pointer.
- If a node only has one transition we use a second pointer into the
structure to fill in allocated fail transitions from other states.
This pointer is independent of the main pointer and scans forward
looking for null transitions that are allocated to a state. When it
finds one it writes the single transition into the "hole". If the
pointer doesnt find one the single transition is appended as normal.
- Once compressed we can Renew/realloc the structures to release the
excess space.
See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
specifically Fig 3.47 and the associated pseudocode.
demq
*/
const U32 laststate = TRIE_NODENUM( next_alloc );
U32 state, charid;
U32 pos = 0, zp=0;
trie->statecount = laststate;
for ( state = 1 ; state < laststate ; state++ ) {
U8 flag = 0;
const U32 stateidx = TRIE_NODEIDX( state );
const U32 o_used = trie->trans[ stateidx ].check;
U32 used = trie->trans[ stateidx ].check;
trie->trans[ stateidx ].check = 0;
for ( charid = 0;
used && charid < trie->uniquecharcount;
charid++ )
{
if ( flag || trie->trans[ stateidx + charid ].next ) {
if ( trie->trans[ stateidx + charid ].next ) {
if (o_used == 1) {
for ( ; zp < pos ; zp++ ) {
if ( ! trie->trans[ zp ].next ) {
break;
}
}
trie->states[ state ].trans.base
= zp
+ trie->uniquecharcount
- charid ;
trie->trans[ zp ].next
= SAFE_TRIE_NODENUM( trie->trans[ stateidx
+ charid ].next );
trie->trans[ zp ].check = state;
if ( ++zp > pos ) pos = zp;
break;
}
used--;
}
if ( !flag ) {
flag = 1;
trie->states[ state ].trans.base
= pos + trie->uniquecharcount - charid ;
}
trie->trans[ pos ].next
= SAFE_TRIE_NODENUM(
trie->trans[ stateidx + charid ].next );
trie->trans[ pos ].check = state;
pos++;
}
}
}
trie->lasttrans = pos + 1;
trie->states = (reg_trie_state *)
PerlMemShared_realloc( trie->states, laststate
* sizeof(reg_trie_state) );
DEBUG_TRIE_COMPILE_MORE_r(
Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
depth+1,
(int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
+ 1 ),
(IV)next_alloc,
(IV)pos,
( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
);
} /* end table compress */
}
DEBUG_TRIE_COMPILE_MORE_r(
Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
depth+1,
(UV)trie->statecount,
(UV)trie->lasttrans)
);
/* resize the trans array to remove unused space */
trie->trans = (reg_trie_trans *)
PerlMemShared_realloc( trie->trans, trie->lasttrans
* sizeof(reg_trie_trans) );
{ /* Modify the program and insert the new TRIE node */
U8 nodetype =(U8)(flags & 0xFF);
char *str=NULL;
#ifdef DEBUGGING
regnode *optimize = NULL;
#ifdef RE_TRACK_PATTERN_OFFSETS
U32 mjd_offset = 0;
U32 mjd_nodelen = 0;
#endif /* RE_TRACK_PATTERN_OFFSETS */
#endif /* DEBUGGING */
/*
This means we convert either the first branch or the first Exact,
depending on whether the thing following (in 'last') is a branch
or not and whther first is the startbranch (ie is it a sub part of
the alternation or is it the whole thing.)
Assuming its a sub part we convert the EXACT otherwise we convert
the whole branch sequence, including the first.
*/
/* Find the node we are going to overwrite */
if ( first != startbranch || OP( last ) == BRANCH ) {
/* branch sub-chain */
NEXT_OFF( first ) = (U16)(last - first);
#ifdef RE_TRACK_PATTERN_OFFSETS
DEBUG_r({
mjd_offset= Node_Offset((convert));
mjd_nodelen= Node_Length((convert));
});
#endif
/* whole branch chain */
}
#ifdef RE_TRACK_PATTERN_OFFSETS
else {
DEBUG_r({
const regnode *nop = NEXTOPER( convert );
mjd_offset= Node_Offset((nop));
mjd_nodelen= Node_Length((nop));
});
}
DEBUG_OPTIMISE_r(
Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
depth+1,
(UV)mjd_offset, (UV)mjd_nodelen)
);
#endif
/* But first we check to see if there is a common prefix we can
split out as an EXACT and put in front of the TRIE node. */
trie->startstate= 1;
if ( trie->bitmap && !widecharmap && !trie->jump ) {
/* we want to find the first state that has more than
* one transition, if that state is not the first state
* then we have a common prefix which we can remove.
*/
U32 state;
for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
U32 ofs = 0;
I32 first_ofs = -1; /* keeps track of the ofs of the first
transition, -1 means none */
U32 count = 0;
const U32 base = trie->states[ state ].trans.base;
/* does this state terminate an alternation? */
if ( trie->states[state].wordnum )
count = 1;
for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
if ( ( base + ofs >= trie->uniquecharcount ) &&
( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
{
if ( ++count > 1 ) {
/* we have more than one transition */
SV **tmp;
U8 *ch;
/* if this is the first state there is no common prefix
* to extract, so we can exit */
if ( state == 1 ) break;
tmp = av_fetch( revcharmap, ofs, 0);
ch = (U8*)SvPV_nolen_const( *tmp );
/* if we are on count 2 then we need to initialize the
* bitmap, and store the previous char if there was one
* in it*/
if ( count == 2 ) {
/* clear the bitmap */
Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
DEBUG_OPTIMISE_r(
Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
depth+1,
(UV)state));
if (first_ofs >= 0) {
SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
DEBUG_OPTIMISE_r(
Perl_re_printf( aTHX_ "%s", (char*)ch)
);
}
}
/* store the current firstchar in the bitmap */
TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
}
first_ofs = ofs;
}
}
if ( count == 1 ) {
/* This state has only one transition, its transition is part
* of a common prefix - we need to concatenate the char it
* represents to what we have so far. */
SV **tmp = av_fetch( revcharmap, first_ofs, 0);
STRLEN len;
char *ch = SvPV( *tmp, len );
DEBUG_OPTIMISE_r({
SV *sv=sv_newmortal();
Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
depth+1,
(UV)state, (UV)first_ofs,
pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
PERL_PV_ESCAPE_FIRSTCHAR
)
);
});
if ( state==1 ) {
OP( convert ) = nodetype;
str=STRING(convert);
setSTR_LEN(convert, 0);
}
assert( ( STR_LEN(convert) + len ) < 256 );
setSTR_LEN(convert, (U8)(STR_LEN(convert) + len));
while (len--)
*str++ = *ch++;
} else {
#ifdef DEBUGGING
if (state>1)
DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
#endif
break;
}
}
trie->prefixlen = (state-1);
if (str) {
regnode *n = convert+NODE_SZ_STR(convert);
assert( NODE_SZ_STR(convert) <= U16_MAX );
NEXT_OFF(convert) = (U16)(NODE_SZ_STR(convert));
trie->startstate = state;
trie->minlen -= (state - 1);
trie->maxlen -= (state - 1);
#ifdef DEBUGGING
/* At least the UNICOS C compiler choked on this
* being argument to DEBUG_r(), so let's just have
* it right here. */
if (
#ifdef PERL_EXT_RE_BUILD
1
#else
DEBUG_r_TEST
#endif
) {
regnode *fix = convert;
U32 word = trie->wordcount;
#ifdef RE_TRACK_PATTERN_OFFSETS
mjd_nodelen++;
#endif
Set_Node_Offset_Length(convert, mjd_offset, state - 1);
while( ++fix < n ) {
Set_Node_Offset_Length(fix, 0, 0);
}
while (word--) {
SV ** const tmp = av_fetch( trie_words, word, 0 );
if (tmp) {
if ( STR_LEN(convert) <= SvCUR(*tmp) )
sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
else
sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
}
}
}
#endif
if (trie->maxlen) {
convert = n;
} else {
NEXT_OFF(convert) = (U16)(tail - convert);
DEBUG_r(optimize= n);
}
}
}
if (!jumper)
jumper = last;
if ( trie->maxlen ) {
NEXT_OFF( convert ) = (U16)(tail - convert);
ARG_SET( convert, data_slot );
/* Store the offset to the first unabsorbed branch in
jump[0], which is otherwise unused by the jump logic.
We use this when dumping a trie and during optimisation. */
if (trie->jump)
trie->jump[0] = (U16)(nextbranch - convert);
/* If the start state is not accepting (meaning there is no empty string/NOTHING)
* and there is a bitmap
* and the first "jump target" node we found leaves enough room
* then convert the TRIE node into a TRIEC node, with the bitmap
* embedded inline in the opcode - this is hypothetically faster.
*/
if ( !trie->states[trie->startstate].wordnum
&& trie->bitmap
&& ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
{
OP( convert ) = TRIEC;
Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
PerlMemShared_free(trie->bitmap);
trie->bitmap= NULL;
} else
OP( convert ) = TRIE;
/* store the type in the flags */
convert->flags = nodetype;
DEBUG_r({
optimize = convert
+ NODE_STEP_REGNODE
+ regarglen[ OP( convert ) ];
});
/* XXX We really should free up the resource in trie now,
as we won't use them - (which resources?) dmq */
}
/* needed for dumping*/
DEBUG_r(if (optimize) {
regnode *opt = convert;
while ( ++opt < optimize) {
Set_Node_Offset_Length(opt, 0, 0);
}
/*
Try to clean up some of the debris left after the
optimisation.
*/
while( optimize < jumper ) {
Track_Code( mjd_nodelen += Node_Length((optimize)); );
OP( optimize ) = OPTIMIZED;
Set_Node_Offset_Length(optimize, 0, 0);
optimize++;
}
Set_Node_Offset_Length(convert, mjd_offset, mjd_nodelen);
});
} /* end node insert */
/* Finish populating the prev field of the wordinfo array. Walk back
* from each accept state until we find another accept state, and if
* so, point the first word's .prev field at the second word. If the
* second already has a .prev field set, stop now. This will be the
* case either if we've already processed that word's accept state,
* or that state had multiple words, and the overspill words were
* already linked up earlier.
*/
{
U16 word;
U32 state;
U16 prev;
for (word=1; word <= trie->wordcount; word++) {
prev = 0;
if (trie->wordinfo[word].prev)
continue;
state = trie->wordinfo[word].accept;
while (state) {
state = prev_states[state];
if (!state)
break;
prev = trie->states[state].wordnum;
if (prev)
break;
}
trie->wordinfo[word].prev = prev;
}
Safefree(prev_states);
}
/* and now dump out the compressed format */
DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
#ifdef DEBUGGING
RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
#else
SvREFCNT_dec_NN(revcharmap);
#endif
return trie->jump
? MADE_JUMP_TRIE
: trie->startstate>1
? MADE_EXACT_TRIE
: MADE_TRIE;
}
STATIC regnode *
S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
{
/* The Trie is constructed and compressed now so we can build a fail array if
* it's needed
This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3.32 in the
"Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
Ullman 1985/88
ISBN 0-201-10088-6
We find the fail state for each state in the trie, this state is the longest
proper suffix of the current state's 'word' that is also a proper prefix of
another word in our trie. State 1 represents the word '' and is thus the
default fail state. This allows the DFA not to have to restart after its
tried and failed a word at a given point, it simply continues as though it
had been matching the other word in the first place.
Consider
'abcdgu'=~/abcdefg|cdgu/
When we get to 'd' we are still matching the first word, we would encounter
'g' which would fail, which would bring us to the state representing 'd' in
the second word where we would try 'g' and succeed, proceeding to match
'cdgu'.
*/
/* add a fail transition */
const U32 trie_offset = ARG(source);
reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
U32 *q;
const U32 ucharcount = trie->uniquecharcount;
const U32 numstates = trie->statecount;
const U32 ubound = trie->lasttrans + ucharcount;
U32 q_read = 0;
U32 q_write = 0;
U32 charid;
U32 base = trie->states[ 1 ].trans.base;
U32 *fail;
reg_ac_data *aho;
const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
regnode *stclass;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
PERL_UNUSED_CONTEXT;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
if ( OP(source) == TRIE ) {
struct regnode_1 *op = (struct regnode_1 *)
PerlMemShared_calloc(1, sizeof(struct regnode_1));
StructCopy(source, op, struct regnode_1);
stclass = (regnode *)op;
} else {
struct regnode_charclass *op = (struct regnode_charclass *)
PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
StructCopy(source, op, struct regnode_charclass);
stclass = (regnode *)op;
}
OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
ARG_SET( stclass, data_slot );
aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
RExC_rxi->data->data[ data_slot ] = (void*)aho;
aho->trie=trie_offset;
aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
Copy( trie->states, aho->states, numstates, reg_trie_state );
Newx( q, numstates, U32);
aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
aho->refcount = 1;
fail = aho->fail;
/* initialize fail[0..1] to be 1 so that we always have
a valid final fail state */
fail[ 0 ] = fail[ 1 ] = 1;
for ( charid = 0; charid < ucharcount ; charid++ ) {
const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
if ( newstate ) {
q[ q_write ] = newstate;
/* set to point at the root */
fail[ q[ q_write++ ] ]=1;
}
}
while ( q_read < q_write) {
const U32 cur = q[ q_read++ % numstates ];
base = trie->states[ cur ].trans.base;
for ( charid = 0 ; charid < ucharcount ; charid++ ) {
const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
if (ch_state) {
U32 fail_state = cur;
U32 fail_base;
do {
fail_state = fail[ fail_state ];
fail_base = aho->states[ fail_state ].trans.base;
} while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
fail[ ch_state ] = fail_state;
if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
{
aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
}
q[ q_write++ % numstates] = ch_state;
}
}
}
/* restore fail[0..1] to 0 so that we "fall out" of the AC loop
when we fail in state 1, this allows us to use the
charclass scan to find a valid start char. This is based on the principle
that theres a good chance the string being searched contains lots of stuff
that cant be a start char.
*/
fail[ 0 ] = fail[ 1 ] = 0;
DEBUG_TRIE_COMPILE_r({
Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
depth, (UV)numstates
);
for( q_read=1; q_read<numstates; q_read++ ) {
Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
}
Perl_re_printf( aTHX_ "\n");
});
Safefree(q);
/*RExC_seen |= REG_TRIEDFA_SEEN;*/
return stclass;
}
/* The below joins as many adjacent EXACTish nodes as possible into a single
* one. The regop may be changed if the node(s) contain certain sequences that
* require special handling. The joining is only done if:
* 1) there is room in the current conglomerated node to entirely contain the
* next one.
* 2) they are compatible node types
*
* The adjacent nodes actually may be separated by NOTHING-kind nodes, and
* these get optimized out
*
* XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
* as possible, even if that means splitting an existing node so that its first
* part is moved to the preceeding node. This would maximise the efficiency of
* memEQ during matching.
*
* If a node is to match under /i (folded), the number of characters it matches
* can be different than its character length if it contains a multi-character
* fold. *min_subtract is set to the total delta number of characters of the
* input nodes.
*
* And *unfolded_multi_char is set to indicate whether or not the node contains
* an unfolded multi-char fold. This happens when it won't be known until
* runtime whether the fold is valid or not; namely
* 1) for EXACTF nodes that contain LATIN SMALL LETTER SHARP S, as only if the
* target string being matched against turns out to be UTF-8 is that fold
* valid; or
* 2) for EXACTFL nodes whose folding rules depend on the locale in force at
* runtime.
* (Multi-char folds whose components are all above the Latin1 range are not
* run-time locale dependent, and have already been folded by the time this
* function is called.)
*
* This is as good a place as any to discuss the design of handling these
* multi-character fold sequences. It's been wrong in Perl for a very long
* time. There are three code points in Unicode whose multi-character folds
* were long ago discovered to mess things up. The previous designs for
* dealing with these involved assigning a special node for them. This
* approach doesn't always work, as evidenced by this example:
* "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
* Both sides fold to "sss", but if the pattern is parsed to create a node that
* would match just the \xDF, it won't be able to handle the case where a
* successful match would have to cross the node's boundary. The new approach
* that hopefully generally solves the problem generates an EXACTFUP node
* that is "sss" in this case.
*
* It turns out that there are problems with all multi-character folds, and not
* just these three. Now the code is general, for all such cases. The
* approach taken is:
* 1) This routine examines each EXACTFish node that could contain multi-
* character folded sequences. Since a single character can fold into
* such a sequence, the minimum match length for this node is less than
* the number of characters in the node. This routine returns in
* *min_subtract how many characters to subtract from the actual
* length of the string to get a real minimum match length; it is 0 if
* there are no multi-char foldeds. This delta is used by the caller to
* adjust the min length of the match, and the delta between min and max,
* so that the optimizer doesn't reject these possibilities based on size
* constraints.
*
* 2) For the sequence involving the LATIN SMALL LETTER SHARP S (U+00DF)
* under /u, we fold it to 'ss' in regatom(), and in this routine, after
* joining, we scan for occurrences of the sequence 'ss' in non-UTF-8
* EXACTFU nodes. The node type of such nodes is then changed to
* EXACTFUP, indicating it is problematic, and needs careful handling.
* (The procedures in step 1) above are sufficient to handle this case in
* UTF-8 encoded nodes.) The reason this is problematic is that this is
* the only case where there is a possible fold length change in non-UTF-8
* patterns. By reserving a special node type for problematic cases, the
* far more common regular EXACTFU nodes can be processed faster.
* regexec.c takes advantage of this.
*
* EXACTFUP has been created as a grab-bag for (hopefully uncommon)
* problematic cases. These all only occur when the pattern is not
* UTF-8. In addition to the 'ss' sequence where there is a possible fold
* length change, it handles the situation where the string cannot be
* entirely folded. The strings in an EXACTFish node are folded as much
* as possible during compilation in regcomp.c. This saves effort in
* regex matching. By using an EXACTFUP node when it is not possible to
* fully fold at compile time, regexec.c can know that everything in an
* EXACTFU node is folded, so folding can be skipped at runtime. The only
* case where folding in EXACTFU nodes can't be done at compile time is
* the presumably uncommon MICRO SIGN, when the pattern isn't UTF-8. This
* is because its fold requires UTF-8 to represent. Thus EXACTFUP nodes
* handle two very different cases. Alternatively, there could have been
* a node type where there are length changes, one for unfolded, and one
* for both. If yet another special case needed to be created, the number
* of required node types would have to go to 7. khw figures that even
* though there are plenty of node types to spare, that the maintenance
* cost wasn't worth the small speedup of doing it that way, especially
* since he thinks the MICRO SIGN is rarely encountered in practice.
*
* There are other cases where folding isn't done at compile time, but
* none of them are under /u, and hence not for EXACTFU nodes. The folds
* in EXACTFL nodes aren't known until runtime, and vary as the locale
* changes. Some folds in EXACTF depend on if the runtime target string
* is UTF-8 or not. (regatom() will create an EXACTFU node even under /di
* when no fold in it depends on the UTF-8ness of the target string.)
*
* 3) A problem remains for unfolded multi-char folds. (These occur when the
* validity of the fold won't be known until runtime, and so must remain
* unfolded for now. This happens for the sharp s in EXACTF and EXACTFAA
* nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
* be an EXACTF node with a UTF-8 pattern.) They also occur for various
* folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
* The reason this is a problem is that the optimizer part of regexec.c
* (probably unwittingly, in Perl_regexec_flags()) makes an assumption
* that a character in the pattern corresponds to at most a single
* character in the target string. (And I do mean character, and not byte
* here, unlike other parts of the documentation that have never been
* updated to account for multibyte Unicode.) Sharp s in EXACTF and
* EXACTFL nodes can match the two character string 'ss'; in EXACTFAA
* nodes it can match "\x{17F}\x{17F}". These, along with other ones in
* EXACTFL nodes, violate the assumption, and they are the only instances
* where it is violated. I'm reluctant to try to change the assumption,
* as the code involved is impenetrable to me (khw), so instead the code
* here punts. This routine examines EXACTFL nodes, and (when the pattern
* isn't UTF-8) EXACTF and EXACTFAA for such unfolded folds, and returns a
* boolean indicating whether or not the node contains such a fold. When
* it is true, the caller sets a flag that later causes the optimizer in
* this file to not set values for the floating and fixed string lengths,
* and thus avoids the optimizer code in regexec.c that makes the invalid
* assumption. Thus, there is no optimization based on string lengths for
* EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
* EXACTF and EXACTFAA nodes that contain the sharp s. (The reason the
* assumption is wrong only in these cases is that all other non-UTF-8
* folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
* their expanded versions. (Again, we can't prefold sharp s to 'ss' in
* EXACTF nodes because we don't know at compile time if it actually
* matches 'ss' or not. For EXACTF nodes it will match iff the target
* string is in UTF-8. This is in contrast to EXACTFU nodes, where it
* always matches; and EXACTFAA where it never does. In an EXACTFAA node
* in a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
* problem; but in a non-UTF8 pattern, folding it to that above-Latin1
* string would require the pattern to be forced into UTF-8, the overhead
* of which we want to avoid. Similarly the unfolded multi-char folds in
* EXACTFL nodes will match iff the locale at the time of match is a UTF-8
* locale.)
*
* Similarly, the code that generates tries doesn't currently handle
* not-already-folded multi-char folds, and it looks like a pain to change
* that. Therefore, trie generation of EXACTFAA nodes with the sharp s
* doesn't work. Instead, such an EXACTFAA is turned into a new regnode,
* EXACTFAA_NO_TRIE, which the trie code knows not to handle. Most people
* using /iaa matching will be doing so almost entirely with ASCII
* strings, so this should rarely be encountered in practice */
STATIC U32
S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
UV *min_subtract, bool *unfolded_multi_char,
U32 flags, regnode *val, U32 depth)
{
/* Merge several consecutive EXACTish nodes into one. */
regnode *n = regnext(scan);
U32 stringok = 1;
regnode *next = scan + NODE_SZ_STR(scan);
U32 merged = 0;
U32 stopnow = 0;
#ifdef DEBUGGING
regnode *stop = scan;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
#else
PERL_UNUSED_ARG(depth);
#endif
PERL_ARGS_ASSERT_JOIN_EXACT;
#ifndef EXPERIMENTAL_INPLACESCAN
PERL_UNUSED_ARG(flags);
PERL_UNUSED_ARG(val);
#endif
DEBUG_PEEP("join", scan, depth, 0);
assert(PL_regkind[OP(scan)] == EXACT);
/* Look through the subsequent nodes in the chain. Skip NOTHING, merge
* EXACT ones that are mergeable to the current one. */
while ( n
&& ( PL_regkind[OP(n)] == NOTHING
|| (stringok && PL_regkind[OP(n)] == EXACT))
&& NEXT_OFF(n)
&& NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
{
if (OP(n) == TAIL || n > next)
stringok = 0;
if (PL_regkind[OP(n)] == NOTHING) {
DEBUG_PEEP("skip:", n, depth, 0);
NEXT_OFF(scan) += NEXT_OFF(n);
next = n + NODE_STEP_REGNODE;
#ifdef DEBUGGING
if (stringok)
stop = n;
#endif
n = regnext(n);
}
else if (stringok) {
const unsigned int oldl = STR_LEN(scan);
regnode * const nnext = regnext(n);
/* XXX I (khw) kind of doubt that this works on platforms (should
* Perl ever run on one) where U8_MAX is above 255 because of lots
* of other assumptions */
/* Don't join if the sum can't fit into a single node */
if (oldl + STR_LEN(n) > U8_MAX)
break;
/* Joining something that requires UTF-8 with something that
* doesn't, means the result requires UTF-8. */
if (OP(scan) == EXACT && (OP(n) == EXACT_REQ8)) {
OP(scan) = EXACT_REQ8;
}
else if (OP(scan) == EXACT_REQ8 && (OP(n) == EXACT)) {
; /* join is compatible, no need to change OP */
}
else if ((OP(scan) == EXACTFU) && (OP(n) == EXACTFU_REQ8)) {
OP(scan) = EXACTFU_REQ8;
}
else if ((OP(scan) == EXACTFU_REQ8) && (OP(n) == EXACTFU)) {
; /* join is compatible, no need to change OP */
}
else if (OP(scan) == EXACTFU && OP(n) == EXACTFU) {
; /* join is compatible, no need to change OP */
}
else if (OP(scan) == EXACTFU && OP(n) == EXACTFU_S_EDGE) {
/* Under /di, temporary EXACTFU_S_EDGE nodes are generated,
* which can join with EXACTFU ones. We check for this case
* here. These need to be resolved to either EXACTFU or
* EXACTF at joining time. They have nothing in them that
* would forbid them from being the more desirable EXACTFU
* nodes except that they begin and/or end with a single [Ss].
* The reason this is problematic is because they could be
* joined in this loop with an adjacent node that ends and/or
* begins with [Ss] which would then form the sequence 'ss',
* which matches differently under /di than /ui, in which case
* EXACTFU can't be used. If the 'ss' sequence doesn't get
* formed, the nodes get absorbed into any adjacent EXACTFU
* node. And if the only adjacent node is EXACTF, they get
* absorbed into that, under the theory that a longer node is
* better than two shorter ones, even if one is EXACTFU. Note
* that EXACTFU_REQ8 is generated only for UTF-8 patterns,
* and the EXACTFU_S_EDGE ones only for non-UTF-8. */
if (STRING(n)[STR_LEN(n)-1] == 's') {
/* Here the joined node would end with 's'. If the node
* following the combination is an EXACTF one, it's better to
* join this trailing edge 's' node with that one, leaving the
* current one in 'scan' be the more desirable EXACTFU */
if (OP(nnext) == EXACTF) {
break;
}
OP(scan) = EXACTFU_S_EDGE;
} /* Otherwise, the beginning 's' of the 2nd node just
becomes an interior 's' in 'scan' */
}
else if (OP(scan) == EXACTF && OP(n) == EXACTF) {
; /* join is compatible, no need to change OP */
}
else if (OP(scan) == EXACTF && OP(n) == EXACTFU_S_EDGE) {
/* EXACTF nodes are compatible for joining with EXACTFU_S_EDGE
* nodes. But the latter nodes can be also joined with EXACTFU
* ones, and that is a better outcome, so if the node following
* 'n' is EXACTFU, quit now so that those two can be joined
* later */
if (OP(nnext) == EXACTFU) {
break;
}
/* The join is compatible, and the combined node will be
* EXACTF. (These don't care if they begin or end with 's' */
}
else if (OP(scan) == EXACTFU_S_EDGE && OP(n) == EXACTFU_S_EDGE) {
if ( STRING(scan)[STR_LEN(scan)-1] == 's'
&& STRING(n)[0] == 's')
{
/* When combined, we have the sequence 'ss', which means we
* have to remain /di */
OP(scan) = EXACTF;
}
}
else if (OP(scan) == EXACTFU_S_EDGE && OP(n) == EXACTFU) {
if (STRING(n)[0] == 's') {
; /* Here the join is compatible and the combined node
starts with 's', no need to change OP */
}
else { /* Now the trailing 's' is in the interior */
OP(scan) = EXACTFU;
}
}
else if (OP(scan) == EXACTFU_S_EDGE && OP(n) == EXACTF) {
/* The join is compatible, and the combined node will be
* EXACTF. (These don't care if they begin or end with 's' */
OP(scan) = EXACTF;
}
else if (OP(scan) != OP(n)) {
/* The only other compatible joinings are the same node type */
break;
}
DEBUG_PEEP("merg", n, depth, 0);
merged++;
NEXT_OFF(scan) += NEXT_OFF(n);
assert( ( STR_LEN(scan) + STR_LEN(n) ) < 256 );
setSTR_LEN(scan, (U8)(STR_LEN(scan) + STR_LEN(n)));
next = n + NODE_SZ_STR(n);
/* Now we can overwrite *n : */
Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
#ifdef DEBUGGING
stop = next - 1;
#endif
n = nnext;
if (stopnow) break;
}
#ifdef EXPERIMENTAL_INPLACESCAN
if (flags && !NEXT_OFF(n)) {
DEBUG_PEEP("atch", val, depth, 0);
if (reg_off_by_arg[OP(n)]) {
ARG_SET(n, val - n);
}
else {
NEXT_OFF(n) = val - n;
}
stopnow = 1;
}
#endif
}
/* This temporary node can now be turned into EXACTFU, and must, as
* regexec.c doesn't handle it */
if (OP(scan) == EXACTFU_S_EDGE) {
OP(scan) = EXACTFU;
}
*min_subtract = 0;
*unfolded_multi_char = FALSE;
/* Here, all the adjacent mergeable EXACTish nodes have been merged. We
* can now analyze for sequences of problematic code points. (Prior to
* this final joining, sequences could have been split over boundaries, and
* hence missed). The sequences only happen in folding, hence for any
* non-EXACT EXACTish node */
if (OP(scan) != EXACT && OP(scan) != EXACT_REQ8 && OP(scan) != EXACTL) {
U8* s0 = (U8*) STRING(scan);
U8* s = s0;
U8* s_end = s0 + STR_LEN(scan);
int total_count_delta = 0; /* Total delta number of characters that
multi-char folds expand to */
/* One pass is made over the node's string looking for all the
* possibilities. To avoid some tests in the loop, there are two main
* cases, for UTF-8 patterns (which can't have EXACTF nodes) and
* non-UTF-8 */
if (UTF) {
U8* folded = NULL;
if (OP(scan) == EXACTFL) {
U8 *d;
/* An EXACTFL node would already have been changed to another
* node type unless there is at least one character in it that
* is problematic; likely a character whose fold definition
* won't be known until runtime, and so has yet to be folded.
* For all but the UTF-8 locale, folds are 1-1 in length, but
* to handle the UTF-8 case, we need to create a temporary
* folded copy using UTF-8 locale rules in order to analyze it.
* This is because our macros that look to see if a sequence is
* a multi-char fold assume everything is folded (otherwise the
* tests in those macros would be too complicated and slow).
* Note that here, the non-problematic folds will have already
* been done, so we can just copy such characters. We actually
* don't completely fold the EXACTFL string. We skip the
* unfolded multi-char folds, as that would just create work
* below to figure out the size they already are */
Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
d = folded;
while (s < s_end) {
STRLEN s_len = UTF8SKIP(s);
if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
Copy(s, d, s_len, U8);
d += s_len;
}
else if (is_FOLDS_TO_MULTI_utf8(s)) {
*unfolded_multi_char = TRUE;
Copy(s, d, s_len, U8);
d += s_len;
}
else if (isASCII(*s)) {
*(d++) = toFOLD(*s);
}
else {
STRLEN len;
_toFOLD_utf8_flags(s, s_end, d, &len, FOLD_FLAGS_FULL);
d += len;
}
s += s_len;
}
/* Point the remainder of the routine to look at our temporary
* folded copy */
s = folded;
s_end = d;
} /* End of creating folded copy of EXACTFL string */
/* Examine the string for a multi-character fold sequence. UTF-8
* patterns have all characters pre-folded by the time this code is
* executed */
while (s < s_end - 1) /* Can stop 1 before the end, as minimum
length sequence we are looking for is 2 */
{
int count = 0; /* How many characters in a multi-char fold */
int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
if (! len) { /* Not a multi-char fold: get next char */
s += UTF8SKIP(s);
continue;
}
{ /* Here is a generic multi-char fold. */
U8* multi_end = s + len;
/* Count how many characters are in it. In the case of
* /aa, no folds which contain ASCII code points are
* allowed, so check for those, and skip if found. */
if (OP(scan) != EXACTFAA && OP(scan) != EXACTFAA_NO_TRIE) {
count = utf8_length(s, multi_end);
s = multi_end;
}
else {
while (s < multi_end) {
if (isASCII(*s)) {
s++;
goto next_iteration;
}
else {
s += UTF8SKIP(s);
}
count++;
}
}
}
/* The delta is how long the sequence is minus 1 (1 is how long
* the character that folds to the sequence is) */
total_count_delta += count - 1;
next_iteration: ;
}
/* We created a temporary folded copy of the string in EXACTFL
* nodes. Therefore we need to be sure it doesn't go below zero,
* as the real string could be shorter */
if (OP(scan) == EXACTFL) {
int total_chars = utf8_length((U8*) STRING(scan),
(U8*) STRING(scan) + STR_LEN(scan));
if (total_count_delta > total_chars) {
total_count_delta = total_chars;
}
}
*min_subtract += total_count_delta;
Safefree(folded);
}
else if (OP(scan) == EXACTFAA) {
/* Non-UTF-8 pattern, EXACTFAA node. There can't be a multi-char
* fold to the ASCII range (and there are no existing ones in the
* upper latin1 range). But, as outlined in the comments preceding
* this function, we need to flag any occurrences of the sharp s.
* This character forbids trie formation (because of added
* complexity) */
#if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
|| (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
|| UNICODE_DOT_DOT_VERSION > 0)
while (s < s_end) {
if (*s == LATIN_SMALL_LETTER_SHARP_S) {
OP(scan) = EXACTFAA_NO_TRIE;
*unfolded_multi_char = TRUE;
break;
}
s++;
}
}
else if (OP(scan) != EXACTFAA_NO_TRIE) {
/* Non-UTF-8 pattern, not EXACTFAA node. Look for the multi-char
* folds that are all Latin1. As explained in the comments
* preceding this function, we look also for the sharp s in EXACTF
* and EXACTFL nodes; it can be in the final position. Otherwise
* we can stop looking 1 byte earlier because have to find at least
* two characters for a multi-fold */
const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
? s_end
: s_end -1;
while (s < upper) {
int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
if (! len) { /* Not a multi-char fold. */
if (*s == LATIN_SMALL_LETTER_SHARP_S
&& (OP(scan) == EXACTF || OP(scan) == EXACTFL))
{
*unfolded_multi_char = TRUE;
}
s++;
continue;
}
if (len == 2
&& isALPHA_FOLD_EQ(*s, 's')
&& isALPHA_FOLD_EQ(*(s+1), 's'))
{
/* EXACTF nodes need to know that the minimum length
* changed so that a sharp s in the string can match this
* ss in the pattern, but they remain EXACTF nodes, as they
* won't match this unless the target string is in UTF-8,
* which we don't know until runtime. EXACTFL nodes can't
* transform into EXACTFU nodes */
if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
OP(scan) = EXACTFUP;
}
}
*min_subtract += len - 1;
s += len;
}
#endif
}
}
#ifdef DEBUGGING
/* Allow dumping but overwriting the collection of skipped
* ops and/or strings with fake optimized ops */
n = scan + NODE_SZ_STR(scan);
while (n <= stop) {
OP(n) = OPTIMIZED;
FLAGS(n) = 0;
NEXT_OFF(n) = 0;
n++;
}
#endif
DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl", scan, depth, 0);});
return stopnow;
}
/* REx optimizer. Converts nodes into quicker variants "in place".
Finds fixed substrings. */
/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
to the position after last scanned or to NULL. */
#define INIT_AND_WITHP \
assert(!and_withp); \
Newx(and_withp, 1, regnode_ssc); \
SAVEFREEPV(and_withp)
static void
S_unwind_scan_frames(pTHX_ const void *p)
{
scan_frame *f= (scan_frame *)p;
do {
scan_frame *n= f->next_frame;
Safefree(f);
f= n;
} while (f);
}
/* Follow the next-chain of the current node and optimize away
all the NOTHINGs from it.
*/
STATIC void
S_rck_elide_nothing(pTHX_ regnode *node)
{
dVAR;
PERL_ARGS_ASSERT_RCK_ELIDE_NOTHING;
if (OP(node) != CURLYX) {
const int max = (reg_off_by_arg[OP(node)]
? I32_MAX
/* I32 may be smaller than U16 on CRAYs! */
: (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
int off = (reg_off_by_arg[OP(node)] ? ARG(node) : NEXT_OFF(node));
int noff;
regnode *n = node;
/* Skip NOTHING and LONGJMP. */
while (
(n = regnext(n))
&& (
(PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
|| ((OP(n) == LONGJMP) && (noff = ARG(n)))
)
&& off + noff < max
) {
off += noff;
}
if (reg_off_by_arg[OP(node)])
ARG(node) = off;
else
NEXT_OFF(node) = off;
}
return;
}
/* the return from this sub is the minimum length that could possibly match */
STATIC SSize_t
S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
SSize_t *minlenp, SSize_t *deltap,
regnode *last,
scan_data_t *data,
I32 stopparen,
U32 recursed_depth,
regnode_ssc *and_withp,
U32 flags, U32 depth, bool was_mutate_ok)
/* scanp: Start here (read-write). */
/* deltap: Write maxlen-minlen here. */
/* last: Stop before this one. */
/* data: string data about the pattern */
/* stopparen: treat close N as END */
/* recursed: which subroutines have we recursed into */
/* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
{
dVAR;
SSize_t final_minlen;
/* There must be at least this number of characters to match */
SSize_t min = 0;
I32 pars = 0, code;
regnode *scan = *scanp, *next;
SSize_t delta = 0;
int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
int is_inf_internal = 0; /* The studied chunk is infinite */
I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
scan_data_t data_fake;
SV *re_trie_maxbuff = NULL;
regnode *first_non_open = scan;
SSize_t stopmin = OPTIMIZE_INFTY;
scan_frame *frame = NULL;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_STUDY_CHUNK;
RExC_study_started= 1;
Zero(&data_fake, 1, scan_data_t);
if ( depth == 0 ) {
while (first_non_open && OP(first_non_open) == OPEN)
first_non_open=regnext(first_non_open);
}
fake_study_recurse:
DEBUG_r(
RExC_study_chunk_recursed_count++;
);
DEBUG_OPTIMISE_MORE_r(
{
Perl_re_indentf( aTHX_ "study_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
depth, (long)stopparen,
(unsigned long)RExC_study_chunk_recursed_count,
(unsigned long)depth, (unsigned long)recursed_depth,
scan,
last);
if (recursed_depth) {
U32 i;
U32 j;
for ( j = 0 ; j < recursed_depth ; j++ ) {
for ( i = 0 ; i < (U32)RExC_total_parens ; i++ ) {
if (PAREN_TEST(j, i) && (!j || !PAREN_TEST(j - 1, i))) {
Perl_re_printf( aTHX_ " %d",(int)i);
break;
}
}
if ( j + 1 < recursed_depth ) {
Perl_re_printf( aTHX_ ",");
}
}
}
Perl_re_printf( aTHX_ "\n");
}
);
while ( scan && OP(scan) != END && scan < last ){
UV min_subtract = 0; /* How mmany chars to subtract from the minimum
node length to get a real minimum (because
the folded version may be shorter) */
bool unfolded_multi_char = FALSE;
/* avoid mutating ops if we are anywhere within the recursed or
* enframed handling for a GOSUB: the outermost level will handle it.
*/
bool mutate_ok = was_mutate_ok && !(frame && frame->in_gosub);
/* Peephole optimizer: */
DEBUG_STUDYDATA("Peep", data, depth, is_inf);
DEBUG_PEEP("Peep", scan, depth, flags);
/* The reason we do this here is that we need to deal with things like
* /(?:f)(?:o)(?:o)/ which cant be dealt with by the normal EXACT
* parsing code, as each (?:..) is handled by a different invocation of
* reg() -- Yves
*/
if (PL_regkind[OP(scan)] == EXACT
&& OP(scan) != LEXACT
&& OP(scan) != LEXACT_REQ8
&& mutate_ok
) {
join_exact(pRExC_state, scan, &min_subtract, &unfolded_multi_char,
0, NULL, depth + 1);
}
/* Follow the next-chain of the current node and optimize
away all the NOTHINGs from it.
*/
rck_elide_nothing(scan);
/* The principal pseudo-switch. Cannot be a switch, since we look into
* several different things. */
if ( OP(scan) == DEFINEP ) {
SSize_t minlen = 0;
SSize_t deltanext = 0;
SSize_t fake_last_close = 0;
I32 f = SCF_IN_DEFINE;
StructCopy(&zero_scan_data, &data_fake, scan_data_t);
scan = regnext(scan);
assert( OP(scan) == IFTHEN );
DEBUG_PEEP("expect IFTHEN", scan, depth, flags);
data_fake.last_closep= &fake_last_close;
minlen = *minlenp;
next = regnext(scan);
scan = NEXTOPER(NEXTOPER(scan));
DEBUG_PEEP("scan", scan, depth, flags);
DEBUG_PEEP("next", next, depth, flags);
/* we suppose the run is continuous, last=next...
* NOTE we dont use the return here! */
/* DEFINEP study_chunk() recursion */
(void)study_chunk(pRExC_state, &scan, &minlen,
&deltanext, next, &data_fake, stopparen,
recursed_depth, NULL, f, depth+1, mutate_ok);
scan = next;
} else
if (
OP(scan) == BRANCH ||
OP(scan) == BRANCHJ ||
OP(scan) == IFTHEN
) {
next = regnext(scan);
code = OP(scan);
/* The op(next)==code check below is to see if we
* have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
* IFTHEN is special as it might not appear in pairs.
* Not sure whether BRANCH-BRANCHJ is possible, regardless
* we dont handle it cleanly. */
if (OP(next) == code || code == IFTHEN) {
/* NOTE - There is similar code to this block below for
* handling TRIE nodes on a re-study. If you change stuff here
* check there too. */
SSize_t max1 = 0, min1 = OPTIMIZE_INFTY, num = 0;
regnode_ssc accum;
regnode * const startbranch=scan;
if (flags & SCF_DO_SUBSTR) {
/* Cannot merge strings after this. */
scan_commit(pRExC_state, data, minlenp, is_inf);
}
if (flags & SCF_DO_STCLASS)
ssc_init_zero(pRExC_state, &accum);
while (OP(scan) == code) {
SSize_t deltanext, minnext, fake;
I32 f = 0;
regnode_ssc this_class;
DEBUG_PEEP("Branch", scan, depth, flags);
num++;
StructCopy(&zero_scan_data, &data_fake, scan_data_t);
if (data) {
data_fake.whilem_c = data->whilem_c;
data_fake.last_closep = data->last_closep;
}
else
data_fake.last_closep = &fake;
data_fake.pos_delta = delta;
next = regnext(scan);
scan = NEXTOPER(scan); /* everything */
if (code != BRANCH) /* everything but BRANCH */
scan = NEXTOPER(scan);
if (flags & SCF_DO_STCLASS) {
ssc_init(pRExC_state, &this_class);
data_fake.start_class = &this_class;
f = SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
/* we suppose the run is continuous, last=next...*/
/* recurse study_chunk() for each BRANCH in an alternation */
minnext = study_chunk(pRExC_state, &scan, minlenp,
&deltanext, next, &data_fake, stopparen,
recursed_depth, NULL, f, depth+1,
mutate_ok);
if (min1 > minnext)
min1 = minnext;
if (deltanext == OPTIMIZE_INFTY) {
is_inf = is_inf_internal = 1;
max1 = OPTIMIZE_INFTY;
} else if (max1 < minnext + deltanext)
max1 = minnext + deltanext;
scan = next;
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SCF_SEEN_ACCEPT) {
if ( stopmin > minnext)
stopmin = min + min1;
flags &= ~SCF_DO_SUBSTR;
if (data)
data->flags |= SCF_SEEN_ACCEPT;
}
if (data) {
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
}
if (flags & SCF_DO_STCLASS)
ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
}
if (code == IFTHEN && num < 2) /* Empty ELSE branch */
min1 = 0;
if (flags & SCF_DO_SUBSTR) {
data->pos_min += min1;
if (data->pos_delta >= OPTIMIZE_INFTY - (max1 - min1))
data->pos_delta = OPTIMIZE_INFTY;
else
data->pos_delta += max1 - min1;
if (max1 != min1 || is_inf)
data->cur_is_floating = 1;
}
min += min1;
if (delta == OPTIMIZE_INFTY
|| OPTIMIZE_INFTY - delta - (max1 - min1) < 0)
delta = OPTIMIZE_INFTY;
else
delta += max1 - min1;
if (flags & SCF_DO_STCLASS_OR) {
ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
if (min1) {
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
flags &= ~SCF_DO_STCLASS;
}
}
else if (flags & SCF_DO_STCLASS_AND) {
if (min1) {
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
flags &= ~SCF_DO_STCLASS;
}
else {
/* Switch to OR mode: cache the old value of
* data->start_class */
INIT_AND_WITHP;
StructCopy(data->start_class, and_withp, regnode_ssc);
flags &= ~SCF_DO_STCLASS_AND;
StructCopy(&accum, data->start_class, regnode_ssc);
flags |= SCF_DO_STCLASS_OR;
}
}
if (PERL_ENABLE_TRIE_OPTIMISATION
&& OP(startbranch) == BRANCH
&& mutate_ok
) {
/* demq.
Assuming this was/is a branch we are dealing with: 'scan'
now points at the item that follows the branch sequence,
whatever it is. We now start at the beginning of the
sequence and look for subsequences of
BRANCH->EXACT=>x1
BRANCH->EXACT=>x2
tail
which would be constructed from a pattern like
/A|LIST|OF|WORDS/
If we can find such a subsequence we need to turn the first
element into a trie and then add the subsequent branch exact
strings to the trie.
We have two cases
1. patterns where the whole set of branches can be
converted.
2. patterns where only a subset can be converted.
In case 1 we can replace the whole set with a single regop
for the trie. In case 2 we need to keep the start and end
branches so
'BRANCH EXACT; BRANCH EXACT; BRANCH X'
becomes BRANCH TRIE; BRANCH X;
There is an additional case, that being where there is a
common prefix, which gets split out into an EXACT like node
preceding the TRIE node.
If x(1..n)==tail then we can do a simple trie, if not we make
a "jump" trie, such that when we match the appropriate word
we "jump" to the appropriate tail node. Essentially we turn
a nested if into a case structure of sorts.
*/
int made=0;
if (!re_trie_maxbuff) {
re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
if (!SvIOK(re_trie_maxbuff))
sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
}
if ( SvIV(re_trie_maxbuff)>=0 ) {
regnode *cur;
regnode *first = (regnode *)NULL;
regnode *prev = (regnode *)NULL;
regnode *tail = scan;
U8 trietype = 0;
U32 count=0;
/* var tail is used because there may be a TAIL
regop in the way. Ie, the exacts will point to the
thing following the TAIL, but the last branch will
point at the TAIL. So we advance tail. If we
have nested (?:) we may have to move through several
tails.
*/
while ( OP( tail ) == TAIL ) {
/* this is the TAIL generated by (?:) */
tail = regnext( tail );
}
DEBUG_TRIE_COMPILE_r({
regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
Perl_re_indentf( aTHX_ "%s %" UVuf ":%s\n",
depth+1,
"Looking for TRIE'able sequences. Tail node is ",
(UV) REGNODE_OFFSET(tail),
SvPV_nolen_const( RExC_mysv )
);
});
/*
Step through the branches
cur represents each branch,
noper is the first thing to be matched as part
of that branch
noper_next is the regnext() of that node.
We normally handle a case like this
/FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
support building with NOJUMPTRIE, which restricts
the trie logic to structures like /FOO|BAR/.
If noper is a trieable nodetype then the branch is
a possible optimization target. If we are building
under NOJUMPTRIE then we require that noper_next is
the same as scan (our current position in the regex
program).
Once we have two or more consecutive such branches
we can create a trie of the EXACT's contents and
stitch it in place into the program.
If the sequence represents all of the branches in
the alternation we replace the entire thing with a
single TRIE node.
Otherwise when it is a subsequence we need to
stitch it in place and replace only the relevant
branches. This means the first branch has to remain
as it is used by the alternation logic, and its
next pointer, and needs to be repointed at the item
on the branch chain following the last branch we
have optimized away.
This could be either a BRANCH, in which case the
subsequence is internal, or it could be the item
following the branch sequence in which case the
subsequence is at the end (which does not
necessarily mean the first node is the start of the
alternation).
TRIE_TYPE(X) is a define which maps the optype to a
trietype.
optype | trietype
----------------+-----------
NOTHING | NOTHING
EXACT | EXACT
EXACT_REQ8 | EXACT
EXACTFU | EXACTFU
EXACTFU_REQ8 | EXACTFU
EXACTFUP | EXACTFU
EXACTFAA | EXACTFAA
EXACTL | EXACTL
EXACTFLU8 | EXACTFLU8
*/
#define TRIE_TYPE(X) ( ( NOTHING == (X) ) \
? NOTHING \
: ( EXACT == (X) || EXACT_REQ8 == (X) ) \
? EXACT \
: ( EXACTFU == (X) \
|| EXACTFU_REQ8 == (X) \
|| EXACTFUP == (X) ) \
? EXACTFU \
: ( EXACTFAA == (X) ) \
? EXACTFAA \
: ( EXACTL == (X) ) \
? EXACTL \
: ( EXACTFLU8 == (X) ) \
? EXACTFLU8 \
: 0 )
/* dont use tail as the end marker for this traverse */
for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
regnode * const noper = NEXTOPER( cur );
U8 noper_type = OP( noper );
U8 noper_trietype = TRIE_TYPE( noper_type );
#if defined(DEBUGGING) || defined(NOJUMPTRIE)
regnode * const noper_next = regnext( noper );
U8 noper_next_type = (noper_next && noper_next < tail) ? OP(noper_next) : 0;
U8 noper_next_trietype = (noper_next && noper_next < tail) ? TRIE_TYPE( noper_next_type ) :0;
#endif
DEBUG_TRIE_COMPILE_r({
regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
Perl_re_indentf( aTHX_ "- %d:%s (%d)",
depth+1,
REG_NODE_NUM(cur), SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
Perl_re_printf( aTHX_ " -> %d:%s",
REG_NODE_NUM(noper), SvPV_nolen_const(RExC_mysv));
if ( noper_next ) {
regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
Perl_re_printf( aTHX_ "\t=> %d:%s\t",
REG_NODE_NUM(noper_next), SvPV_nolen_const(RExC_mysv));
}
Perl_re_printf( aTHX_ "(First==%d,Last==%d,Cur==%d,tt==%s,ntt==%s,nntt==%s)\n",
REG_NODE_NUM(first), REG_NODE_NUM(prev), REG_NODE_NUM(cur),
PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
);
});
/* Is noper a trieable nodetype that can be merged
* with the current trie (if there is one)? */
if ( noper_trietype
&&
(
( noper_trietype == NOTHING )
|| ( trietype == NOTHING )
|| ( trietype == noper_trietype )
)
#ifdef NOJUMPTRIE
&& noper_next >= tail
#endif
&& count < U16_MAX)
{
/* Handle mergable triable node Either we are
* the first node in a new trieable sequence,
* in which case we do some bookkeeping,
* otherwise we update the end pointer. */
if ( !first ) {
first = cur;
if ( noper_trietype == NOTHING ) {
#if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
regnode * const noper_next = regnext( noper );
U8 noper_next_type = (noper_next && noper_next < tail) ? OP(noper_next) : 0;
U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
#endif
if ( noper_next_trietype ) {
trietype = noper_next_trietype;
} else if (noper_next_type) {
/* a NOTHING regop is 1 regop wide.
* We need at least two for a trie
* so we can't merge this in */
first = NULL;
}
} else {
trietype = noper_trietype;
}
} else {
if ( trietype == NOTHING )
trietype = noper_trietype;
prev = cur;
}
if (first)
count++;
} /* end handle mergable triable node */
else {
/* handle unmergable node -
* noper may either be a triable node which can
* not be tried together with the current trie,
* or a non triable node */
if ( prev ) {
/* If last is set and trietype is not
* NOTHING then we have found at least two
* triable branch sequences in a row of a
* similar trietype so we can turn them
* into a trie. If/when we allow NOTHING to
* start a trie sequence this condition
* will be required, and it isn't expensive
* so we leave it in for now. */
if ( trietype && trietype != NOTHING )
make_trie( pRExC_state,
startbranch, first, cur, tail,
count, trietype, depth+1 );
prev = NULL; /* note: we clear/update
first, trietype etc below,
so we dont do it here */
}
if ( noper_trietype
#ifdef NOJUMPTRIE
&& noper_next >= tail
#endif
){
/* noper is triable, so we can start a new
* trie sequence */
count = 1;
first = cur;
trietype = noper_trietype;
} else if (first) {
/* if we already saw a first but the
* current node is not triable then we have
* to reset the first information. */
count = 0;
first = NULL;
trietype = 0;
}
} /* end handle unmergable node */
} /* loop over branches */
DEBUG_TRIE_COMPILE_r({
regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
Perl_re_indentf( aTHX_ "- %s (%d) <SCAN FINISHED> ",
depth+1, SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur));
Perl_re_printf( aTHX_ "(First==%d, Last==%d, Cur==%d, tt==%s)\n",
REG_NODE_NUM(first), REG_NODE_NUM(prev), REG_NODE_NUM(cur),
PL_reg_name[trietype]
);
});
if ( prev && trietype ) {
if ( trietype != NOTHING ) {
/* the last branch of the sequence was part of
* a trie, so we have to construct it here
* outside of the loop */
made= make_trie( pRExC_state, startbranch,
first, scan, tail, count,
trietype, depth+1 );
#ifdef TRIE_STUDY_OPT
if ( ((made == MADE_EXACT_TRIE &&
startbranch == first)
|| ( first_non_open == first )) &&
depth==0 ) {
flags |= SCF_TRIE_RESTUDY;
if ( startbranch == first
&& scan >= tail )
{
RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
}
}
#endif
} else {
/* at this point we know whatever we have is a
* NOTHING sequence/branch AND if 'startbranch'
* is 'first' then we can turn the whole thing
* into a NOTHING
*/
if ( startbranch == first ) {
regnode *opt;
/* the entire thing is a NOTHING sequence,
* something like this: (?:|) So we can
* turn it into a plain NOTHING op. */
DEBUG_TRIE_COMPILE_r({
regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
Perl_re_indentf( aTHX_ "- %s (%d) <NOTHING BRANCH SEQUENCE>\n",
depth+1,
SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur));
});
OP(startbranch)= NOTHING;
NEXT_OFF(startbranch)= tail - startbranch;
for ( opt= startbranch + 1; opt < tail ; opt++ )
OP(opt)= OPTIMIZED;
}
}
} /* end if ( prev) */
} /* TRIE_MAXBUF is non zero */
} /* do trie */
}
else if ( code == BRANCHJ ) { /* single branch is optimized. */
scan = NEXTOPER(NEXTOPER(scan));
} else /* single branch is optimized. */
scan = NEXTOPER(scan);
continue;
} else if (OP(scan) == SUSPEND || OP(scan) == GOSUB) {
I32 paren = 0;
regnode *start = NULL;
regnode *end = NULL;
U32 my_recursed_depth= recursed_depth;
if (OP(scan) != SUSPEND) { /* GOSUB */
/* Do setup, note this code has side effects beyond
* the rest of this block. Specifically setting
* RExC_recurse[] must happen at least once during
* study_chunk(). */
paren = ARG(scan);
RExC_recurse[ARG2L(scan)] = scan;
start = REGNODE_p(RExC_open_parens[paren]);
end = REGNODE_p(RExC_close_parens[paren]);
/* NOTE we MUST always execute the above code, even
* if we do nothing with a GOSUB */
if (
( flags & SCF_IN_DEFINE )
||
(
(is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
&&
( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
)
) {
/* no need to do anything here if we are in a define. */
/* or we are after some kind of infinite construct
* so we can skip recursing into this item.
* Since it is infinite we will not change the maxlen
* or delta, and if we miss something that might raise
* the minlen it will merely pessimise a little.
*
* Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
* might result in a minlen of 1 and not of 4,
* but this doesn't make us mismatch, just try a bit
* harder than we should.
*
* However we must assume this GOSUB is infinite, to
* avoid wrongly applying other optimizations in the
* enclosing scope - see GH 18096, for example.
*/
is_inf = is_inf_internal = 1;
scan= regnext(scan);
continue;
}
if (
!recursed_depth
|| !PAREN_TEST(recursed_depth - 1, paren)
) {
/* it is quite possible that there are more efficient ways
* to do this. We maintain a bitmap per level of recursion
* of which patterns we have entered so we can detect if a
* pattern creates a possible infinite loop. When we
* recurse down a level we copy the previous levels bitmap
* down. When we are at recursion level 0 we zero the top
* level bitmap. It would be nice to implement a different
* more efficient way of doing this. In particular the top
* level bitmap may be unnecessary.
*/
if (!recursed_depth) {
Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
} else {
Copy(PAREN_OFFSET(recursed_depth - 1),
PAREN_OFFSET(recursed_depth),
RExC_study_chunk_recursed_bytes, U8);
}
/* we havent recursed into this paren yet, so recurse into it */
DEBUG_STUDYDATA("gosub-set", data, depth, is_inf);
PAREN_SET(recursed_depth, paren);
my_recursed_depth= recursed_depth + 1;
} else {
DEBUG_STUDYDATA("gosub-inf", data, depth, is_inf);
/* some form of infinite recursion, assume infinite length
* */
if (flags & SCF_DO_SUBSTR) {
scan_commit(pRExC_state, data, minlenp, is_inf);
data->cur_is_floating = 1;
}
is_inf = is_inf_internal = 1;
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
ssc_anything(data->start_class);
flags &= ~SCF_DO_STCLASS;
start= NULL; /* reset start so we dont recurse later on. */
}
} else {
paren = stopparen;
start = scan + 2;
end = regnext(scan);
}
if (start) {
scan_frame *newframe;
assert(end);
if (!RExC_frame_last) {
Newxz(newframe, 1, scan_frame);
SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
RExC_frame_head= newframe;
RExC_frame_count++;
} else if (!RExC_frame_last->next_frame) {
Newxz(newframe, 1, scan_frame);
RExC_frame_last->next_frame= newframe;
newframe->prev_frame= RExC_frame_last;
RExC_frame_count++;
} else {
newframe= RExC_frame_last->next_frame;
}
RExC_frame_last= newframe;
newframe->next_regnode = regnext(scan);
newframe->last_regnode = last;
newframe->stopparen = stopparen;
newframe->prev_recursed_depth = recursed_depth;
newframe->this_prev_frame= frame;
newframe->in_gosub = (
(frame && frame->in_gosub) || OP(scan) == GOSUB
);
DEBUG_STUDYDATA("frame-new", data, depth, is_inf);
DEBUG_PEEP("fnew", scan, depth, flags);
frame = newframe;
scan = start;
stopparen = paren;
last = end;
depth = depth + 1;
recursed_depth= my_recursed_depth;
continue;
}
}
else if ( OP(scan) == EXACT
|| OP(scan) == LEXACT
|| OP(scan) == EXACT_REQ8
|| OP(scan) == LEXACT_REQ8
|| OP(scan) == EXACTL)
{
SSize_t bytelen = STR_LEN(scan), charlen;
UV uc;
assert(bytelen);
if (UTF) {
const U8 * const s = (U8*)STRING(scan);
uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
charlen = utf8_length(s, s + bytelen);
} else {
uc = *((U8*)STRING(scan));
charlen = bytelen;
}
min += charlen;
if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
/* The code below prefers earlier match for fixed
offset, later match for variable offset. */
if (data->last_end == -1) { /* Update the start info. */
data->last_start_min = data->pos_min;
data->last_start_max =
is_inf ? OPTIMIZE_INFTY
: (data->pos_delta > OPTIMIZE_INFTY - data->pos_min)
? OPTIMIZE_INFTY : data->pos_min + data->pos_delta;
}
sv_catpvn(data->last_found, STRING(scan), bytelen);
if (UTF)
SvUTF8_on(data->last_found);
{
SV * const sv = data->last_found;
MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
mg_find(sv, PERL_MAGIC_utf8) : NULL;
if (mg && mg->mg_len >= 0)
mg->mg_len += charlen;
}
data->last_end = data->pos_min + charlen;
data->pos_min += charlen; /* As in the first entry. */
data->flags &= ~SF_BEFORE_EOL;
}
/* ANDing the code point leaves at most it, and not in locale, and
* can't match null string */
if (flags & SCF_DO_STCLASS_AND) {
ssc_cp_and(data->start_class, uc);
ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
ssc_clear_locale(data->start_class);
}
else if (flags & SCF_DO_STCLASS_OR) {
ssc_add_cp(data->start_class, uc);
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
/* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
}
flags &= ~SCF_DO_STCLASS;
}
else if (PL_regkind[OP(scan)] == EXACT) {
/* But OP != EXACT!, so is EXACTFish */
SSize_t bytelen = STR_LEN(scan), charlen;
const U8 * s = (U8*)STRING(scan);
/* Replace a length 1 ASCII fold pair node with an ANYOFM node,
* with the mask set to the complement of the bit that differs
* between upper and lower case, and the lowest code point of the
* pair (which the '&' forces) */
if ( bytelen == 1
&& isALPHA_A(*s)
&& ( OP(scan) == EXACTFAA
|| ( OP(scan) == EXACTFU
&& ! HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(*s)))
&& mutate_ok
) {
U8 mask = ~ ('A' ^ 'a'); /* These differ in just one bit */
OP(scan) = ANYOFM;
ARG_SET(scan, *s & mask);
FLAGS(scan) = mask;
/* we're not EXACTFish any more, so restudy */
continue;
}
/* Search for fixed substrings supports EXACT only. */
if (flags & SCF_DO_SUBSTR) {
assert(data);
scan_commit(pRExC_state, data, minlenp, is_inf);
}
charlen = UTF ? (SSize_t) utf8_length(s, s + bytelen) : bytelen;
if (unfolded_multi_char) {
RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
}
min += charlen - min_subtract;
assert (min >= 0);
delta += min_subtract;
if (flags & SCF_DO_SUBSTR) {
data->pos_min += charlen - min_subtract;
if (data->pos_min < 0) {
data->pos_min = 0;
}
data->pos_delta += min_subtract;
if (min_subtract) {
data->cur_is_floating = 1; /* float */
}
}
if (flags & SCF_DO_STCLASS) {
SV* EXACTF_invlist = make_exactf_invlist(pRExC_state, scan);
assert(EXACTF_invlist);
if (flags & SCF_DO_STCLASS_AND) {
if (OP(scan) != EXACTFL)
ssc_clear_locale(data->start_class);
ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
ANYOF_POSIXL_ZERO(data->start_class);
ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
}
else { /* SCF_DO_STCLASS_OR */
ssc_union(data->start_class, EXACTF_invlist, FALSE);
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
/* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
}
flags &= ~SCF_DO_STCLASS;
SvREFCNT_dec(EXACTF_invlist);
}
}
else if (REGNODE_VARIES(OP(scan))) {
SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
I32 fl = 0, f = flags;
regnode * const oscan = scan;
regnode_ssc this_class;
regnode_ssc *oclass = NULL;
I32 next_is_eval = 0;
switch (PL_regkind[OP(scan)]) {
case WHILEM: /* End of (?:...)* . */
scan = NEXTOPER(scan);
goto finish;
case PLUS:
if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
next = NEXTOPER(scan);
if ( OP(next) == EXACT
|| OP(next) == LEXACT
|| OP(next) == EXACT_REQ8
|| OP(next) == LEXACT_REQ8
|| OP(next) == EXACTL
|| (flags & SCF_DO_STCLASS))
{
mincount = 1;
maxcount = REG_INFTY;
next = regnext(scan);
scan = NEXTOPER(scan);
goto do_curly;
}
}
if (flags & SCF_DO_SUBSTR)
data->pos_min++;
min++;
/* FALLTHROUGH */
case STAR:
next = NEXTOPER(scan);
/* This temporary node can now be turned into EXACTFU, and
* must, as regexec.c doesn't handle it */
if (OP(next) == EXACTFU_S_EDGE && mutate_ok) {
OP(next) = EXACTFU;
}
if ( STR_LEN(next) == 1
&& isALPHA_A(* STRING(next))
&& ( OP(next) == EXACTFAA
|| ( OP(next) == EXACTFU
&& ! HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(* STRING(next))))
&& mutate_ok
) {
/* These differ in just one bit */
U8 mask = ~ ('A' ^ 'a');
assert(isALPHA_A(* STRING(next)));
/* Then replace it by an ANYOFM node, with
* the mask set to the complement of the
* bit that differs between upper and lower
* case, and the lowest code point of the
* pair (which the '&' forces) */
OP(next) = ANYOFM;
ARG_SET(next, *STRING(next) & mask);
FLAGS(next) = mask;
}
if (flags & SCF_DO_STCLASS) {
mincount = 0;
maxcount = REG_INFTY;
next = regnext(scan);
scan = NEXTOPER(scan);
goto do_curly;
}
if (flags & SCF_DO_SUBSTR) {
scan_commit(pRExC_state, data, minlenp, is_inf);
/* Cannot extend fixed substrings */
data->cur_is_floating = 1; /* float */
}
is_inf = is_inf_internal = 1;
scan = regnext(scan);
goto optimize_curly_tail;
case CURLY:
if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
&& (scan->flags == stopparen))
{
mincount = 1;
maxcount = 1;
} else {
mincount = ARG1(scan);
maxcount = ARG2(scan);
}
next = regnext(scan);
if (OP(scan) == CURLYX) {
I32 lp = (data ? *(data->last_closep) : 0);
scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
}
scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
next_is_eval = (OP(scan) == EVAL);
do_curly:
if (flags & SCF_DO_SUBSTR) {
if (mincount == 0)
scan_commit(pRExC_state, data, minlenp, is_inf);
/* Cannot extend fixed substrings */
pos_before = data->pos_min;
}
if (data) {
fl = data->flags;
data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
if (is_inf)
data->flags |= SF_IS_INF;
}
if (flags & SCF_DO_STCLASS) {
ssc_init(pRExC_state, &this_class);
oclass = data->start_class;
data->start_class = &this_class;
f |= SCF_DO_STCLASS_AND;
f &= ~SCF_DO_STCLASS_OR;
}
/* Exclude from super-linear cache processing any {n,m}
regops for which the combination of input pos and regex
pos is not enough information to determine if a match
will be possible.
For example, in the regex /foo(bar\s*){4,8}baz/ with the
regex pos at the \s*, the prospects for a match depend not
only on the input position but also on how many (bar\s*)
repeats into the {4,8} we are. */
if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
f &= ~SCF_WHILEM_VISITED_POS;
/* This will finish on WHILEM, setting scan, or on NULL: */
/* recurse study_chunk() on loop bodies */
minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
last, data, stopparen, recursed_depth, NULL,
(mincount == 0
? (f & ~SCF_DO_SUBSTR)
: f)
, depth+1, mutate_ok);
if (flags & SCF_DO_STCLASS)
data->start_class = oclass;
if (mincount == 0 || minnext == 0) {
if (flags & SCF_DO_STCLASS_OR) {
ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
}
else if (flags & SCF_DO_STCLASS_AND) {
/* Switch to OR mode: cache the old value of
* data->start_class */
INIT_AND_WITHP;
StructCopy(data->start_class, and_withp, regnode_ssc);
flags &= ~SCF_DO_STCLASS_AND;
StructCopy(&this_class, data->start_class, regnode_ssc);
flags |= SCF_DO_STCLASS_OR;
ANYOF_FLAGS(data->start_class)
|= SSC_MATCHES_EMPTY_STRING;
}
} else { /* Non-zero len */
if (flags & SCF_DO_STCLASS_OR) {
ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
}
else if (flags & SCF_DO_STCLASS_AND)
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
flags &= ~SCF_DO_STCLASS;
}
if (!scan) /* It was not CURLYX, but CURLY. */
scan = next;
if (((flags & (SCF_TRIE_DOING_RESTUDY|SCF_DO_SUBSTR))==SCF_DO_SUBSTR)
/* ? quantifier ok, except for (?{ ... }) */
&& (next_is_eval || !(mincount == 0 && maxcount == 1))
&& (minnext == 0) && (deltanext == 0)
&& data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
&& maxcount <= REG_INFTY/3) /* Complement check for big
count */
{
_WARN_HELPER(RExC_precomp_end, packWARN(WARN_REGEXP),
Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
"Quantifier unexpected on zero-length expression "
"in regex m/%" UTF8f "/",
UTF8fARG(UTF, RExC_precomp_end - RExC_precomp,
RExC_precomp)));
}
if ( ( minnext > 0 && mincount >= SSize_t_MAX / minnext )
|| min >= SSize_t_MAX - minnext * mincount )
{
FAIL("Regexp out of space");
}
min += minnext * mincount;
is_inf_internal |= deltanext == OPTIMIZE_INFTY
|| (maxcount == REG_INFTY && minnext + deltanext > 0);
is_inf |= is_inf_internal;
if (is_inf) {
delta = OPTIMIZE_INFTY;
} else {
delta += (minnext + deltanext) * maxcount
- minnext * mincount;
}
/* Try powerful optimization CURLYX => CURLYN. */
if ( OP(oscan) == CURLYX && data
&& data->flags & SF_IN_PAR
&& !(data->flags & SF_HAS_EVAL)
&& !deltanext && minnext == 1
&& mutate_ok
) {
/* Try to optimize to CURLYN. */
regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
regnode * const nxt1 = nxt;
#ifdef DEBUGGING
regnode *nxt2;
#endif
/* Skip open. */
nxt = regnext(nxt);
if (!REGNODE_SIMPLE(OP(nxt))
&& !(PL_regkind[OP(nxt)] == EXACT
&& STR_LEN(nxt) == 1))
goto nogo;
#ifdef DEBUGGING
nxt2 = nxt;
#endif
nxt = regnext(nxt);
if (OP(nxt) != CLOSE)
goto nogo;
if (RExC_open_parens) {
/*open->CURLYM*/
RExC_open_parens[ARG(nxt1)] = REGNODE_OFFSET(oscan);
/*close->while*/
RExC_close_parens[ARG(nxt1)] = REGNODE_OFFSET(nxt) + 2;
}
/* Now we know that nxt2 is the only contents: */
oscan->flags = (U8)ARG(nxt);
OP(oscan) = CURLYN;
OP(nxt1) = NOTHING; /* was OPEN. */
#ifdef DEBUGGING
OP(nxt1 + 1) = OPTIMIZED; /* was count. */
NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
OP(nxt) = OPTIMIZED; /* was CLOSE. */
OP(nxt + 1) = OPTIMIZED; /* was count. */
NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
#endif
}
nogo:
/* Try optimization CURLYX => CURLYM. */
if ( OP(oscan) == CURLYX && data
&& !(data->flags & SF_HAS_PAR)
&& !(data->flags & SF_HAS_EVAL)
&& !deltanext /* atom is fixed width */
&& minnext != 0 /* CURLYM can't handle zero width */
/* Nor characters whose fold at run-time may be
* multi-character */
&& ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
&& mutate_ok
) {
/* XXXX How to optimize if data == 0? */
/* Optimize to a simpler form. */
regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
regnode *nxt2;
OP(oscan) = CURLYM;
while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
&& (OP(nxt2) != WHILEM))
nxt = nxt2;
OP(nxt2) = SUCCEED; /* Whas WHILEM */
/* Need to optimize away parenths. */
if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
/* Set the parenth number. */
regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
oscan->flags = (U8)ARG(nxt);
if (RExC_open_parens) {
/*open->CURLYM*/
RExC_open_parens[ARG(nxt1)] = REGNODE_OFFSET(oscan);
/*close->NOTHING*/
RExC_close_parens[ARG(nxt1)] = REGNODE_OFFSET(nxt2)
+ 1;
}
OP(nxt1) = OPTIMIZED; /* was OPEN. */
OP(nxt) = OPTIMIZED; /* was CLOSE. */
#ifdef DEBUGGING
OP(nxt1 + 1) = OPTIMIZED; /* was count. */
OP(nxt + 1) = OPTIMIZED; /* was count. */
NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
#endif
#if 0
while ( nxt1 && (OP(nxt1) != WHILEM)) {
regnode *nnxt = regnext(nxt1);
if (nnxt == nxt) {
if (reg_off_by_arg[OP(nxt1)])
ARG_SET(nxt1, nxt2 - nxt1);
else if (nxt2 - nxt1 < U16_MAX)
NEXT_OFF(nxt1) = nxt2 - nxt1;
else
OP(nxt) = NOTHING; /* Cannot beautify */
}
nxt1 = nnxt;
}
#endif
/* Optimize again: */
/* recurse study_chunk() on optimised CURLYX => CURLYM */
study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
NULL, stopparen, recursed_depth, NULL, 0,
depth+1, mutate_ok);
}
else
oscan->flags = 0;
}
else if ((OP(oscan) == CURLYX)
&& (flags & SCF_WHILEM_VISITED_POS)
/* See the comment on a similar expression above.
However, this time it's not a subexpression
we care about, but the expression itself. */
&& (maxcount == REG_INFTY)
&& data) {
/* This stays as CURLYX, we can put the count/of pair. */
/* Find WHILEM (as in regexec.c) */
regnode *nxt = oscan + NEXT_OFF(oscan);
if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
nxt += ARG(nxt);
nxt = PREVOPER(nxt);
if (nxt->flags & 0xf) {
/* we've already set whilem count on this node */
} else if (++data->whilem_c < 16) {
assert(data->whilem_c <= RExC_whilem_seen);
nxt->flags = (U8)(data->whilem_c
| (RExC_whilem_seen << 4)); /* On WHILEM */
}
}
if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (flags & SCF_DO_SUBSTR) {
SV *last_str = NULL;
STRLEN last_chrs = 0;
int counted = mincount != 0;
if (data->last_end > 0 && mincount != 0) { /* Ends with a
string. */
SSize_t b = pos_before >= data->last_start_min
? pos_before : data->last_start_min;
STRLEN l;
const char * const s = SvPV_const(data->last_found, l);
SSize_t old = b - data->last_start_min;
assert(old >= 0);
if (UTF)
old = utf8_hop_forward((U8*)s, old,
(U8 *) SvEND(data->last_found))
- (U8*)s;
l -= old;
/* Get the added string: */
last_str = newSVpvn_utf8(s + old, l, UTF);
last_chrs = UTF ? utf8_length((U8*)(s + old),
(U8*)(s + old + l)) : l;
if (deltanext == 0 && pos_before == b) {
/* What was added is a constant string */
if (mincount > 1) {
SvGROW(last_str, (mincount * l) + 1);
repeatcpy(SvPVX(last_str) + l,
SvPVX_const(last_str), l,
mincount - 1);
SvCUR_set(last_str, SvCUR(last_str) * mincount);
/* Add additional parts. */
SvCUR_set(data->last_found,
SvCUR(data->last_found) - l);
sv_catsv(data->last_found, last_str);
{
SV * sv = data->last_found;
MAGIC *mg =
SvUTF8(sv) && SvMAGICAL(sv) ?
mg_find(sv, PERL_MAGIC_utf8) : NULL;
if (mg && mg->mg_len >= 0)
mg->mg_len += last_chrs * (mincount-1);
}
last_chrs *= mincount;
data->last_end += l * (mincount - 1);
}
} else {
/* start offset must point into the last copy */
data->last_start_min += minnext * (mincount - 1);
data->last_start_max =
is_inf
? OPTIMIZE_INFTY
: data->last_start_max +
(maxcount - 1) * (minnext + data->pos_delta);
}
}
/* It is counted once already... */
data->pos_min += minnext * (mincount - counted);
#if 0
Perl_re_printf( aTHX_ "counted=%" UVuf " deltanext=%" UVuf
" OPTIMIZE_INFTY=%" UVuf " minnext=%" UVuf
" maxcount=%" UVuf " mincount=%" UVuf "\n",
(UV)counted, (UV)deltanext, (UV)OPTIMIZE_INFTY, (UV)minnext, (UV)maxcount,
(UV)mincount);
if (deltanext != OPTIMIZE_INFTY)
Perl_re_printf( aTHX_ "LHS=%" UVuf " RHS=%" UVuf "\n",
(UV)(-counted * deltanext + (minnext + deltanext) * maxcount
- minnext * mincount), (UV)(OPTIMIZE_INFTY - data->pos_delta));
#endif
if (deltanext == OPTIMIZE_INFTY
|| -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= OPTIMIZE_INFTY - data->pos_delta)
data->pos_delta = OPTIMIZE_INFTY;
else
data->pos_delta += - counted * deltanext +
(minnext + deltanext) * maxcount - minnext * mincount;
if (mincount != maxcount) {
/* Cannot extend fixed substrings found inside
the group. */
scan_commit(pRExC_state, data, minlenp, is_inf);
if (mincount && last_str) {
SV * const sv = data->last_found;
MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
mg_find(sv, PERL_MAGIC_utf8) : NULL;
if (mg)
mg->mg_len = -1;
sv_setsv(sv, last_str);
data->last_end = data->pos_min;
data->last_start_min = data->pos_min - last_chrs;
data->last_start_max = is_inf
? OPTIMIZE_INFTY
: data->pos_min + data->pos_delta - last_chrs;
}
data->cur_is_floating = 1; /* float */
}
SvREFCNT_dec(last_str);
}
if (data && (fl & SF_HAS_EVAL))
data->flags |= SF_HAS_EVAL;
optimize_curly_tail:
rck_elide_nothing(oscan);
continue;
default:
Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
OP(scan));
case REF:
case CLUMP:
if (flags & SCF_DO_SUBSTR) {
/* Cannot expect anything... */
scan_commit(pRExC_state, data, minlenp, is_inf);
data->cur_is_floating = 1; /* float */
}
is_inf = is_inf_internal = 1;
if (flags & SCF_DO_STCLASS_OR) {
if (OP(scan) == CLUMP) {
/* Actually is any start char, but very few code points
* aren't start characters */
ssc_match_all_cp(data->start_class);
}
else {
ssc_anything(data->start_class);
}
}
flags &= ~SCF_DO_STCLASS;
break;
}
}
else if (OP(scan) == LNBREAK) {
if (flags & SCF_DO_STCLASS) {
if (flags & SCF_DO_STCLASS_AND) {
ssc_intersection(data->start_class,
PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
ssc_clear_locale(data->start_class);
ANYOF_FLAGS(data->start_class)
&= ~SSC_MATCHES_EMPTY_STRING;
}
else if (flags & SCF_DO_STCLASS_OR) {
ssc_union(data->start_class,
PL_XPosix_ptrs[_CC_VERTSPACE],
FALSE);
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
/* See commit msg for
* 749e076fceedeb708a624933726e7989f2302f6a */
ANYOF_FLAGS(data->start_class)
&= ~SSC_MATCHES_EMPTY_STRING;
}
flags &= ~SCF_DO_STCLASS;
}
min++;
if (delta != OPTIMIZE_INFTY)
delta++; /* Because of the 2 char string cr-lf */
if (flags & SCF_DO_SUBSTR) {
/* Cannot expect anything... */
scan_commit(pRExC_state, data, minlenp, is_inf);
data->pos_min += 1;
if (data->pos_delta != OPTIMIZE_INFTY) {
data->pos_delta += 1;
}
data->cur_is_floating = 1; /* float */
}
}
else if (REGNODE_SIMPLE(OP(scan))) {
if (flags & SCF_DO_SUBSTR) {
scan_commit(pRExC_state, data, minlenp, is_inf);
data->pos_min++;
}
min++;
if (flags & SCF_DO_STCLASS) {
bool invert = 0;
SV* my_invlist = NULL;
U8 namedclass;
/* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
/* Some of the logic below assumes that switching
locale on will only add false positives. */
switch (OP(scan)) {
default:
#ifdef DEBUGGING
Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
OP(scan));
#endif
case SANY:
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
ssc_match_all_cp(data->start_class);
break;
case REG_ANY:
{
SV* REG_ANY_invlist = _new_invlist(2);
REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
'\n');
if (flags & SCF_DO_STCLASS_OR) {
ssc_union(data->start_class,
REG_ANY_invlist,
TRUE /* TRUE => invert, hence all but \n
*/
);
}
else if (flags & SCF_DO_STCLASS_AND) {
ssc_intersection(data->start_class,
REG_ANY_invlist,
TRUE /* TRUE => invert */
);
ssc_clear_locale(data->start_class);
}
SvREFCNT_dec_NN(REG_ANY_invlist);
}
break;
case ANYOFD:
case ANYOFL:
case ANYOFPOSIXL:
case ANYOFH:
case ANYOFHb:
case ANYOFHr:
case ANYOFHs:
case ANYOF:
if (flags & SCF_DO_STCLASS_AND)
ssc_and(pRExC_state, data->start_class,
(regnode_charclass *) scan);
else
ssc_or(pRExC_state, data->start_class,
(regnode_charclass *) scan);
break;
case NANYOFM: /* NANYOFM already contains the inversion of the
input ANYOF data, so, unlike things like
NPOSIXA, don't change 'invert' to TRUE */
/* FALLTHROUGH */
case ANYOFM:
{
SV* cp_list = get_ANYOFM_contents(scan);
if (flags & SCF_DO_STCLASS_OR) {
ssc_union(data->start_class, cp_list, invert);
}
else if (flags & SCF_DO_STCLASS_AND) {
ssc_intersection(data->start_class, cp_list, invert);
}
SvREFCNT_dec_NN(cp_list);
break;
}
case ANYOFR:
case ANYOFRb:
{
SV* cp_list = NULL;
cp_list = _add_range_to_invlist(cp_list,
ANYOFRbase(scan),
ANYOFRbase(scan) + ANYOFRdelta(scan));
if (flags & SCF_DO_STCLASS_OR) {
ssc_union(data->start_class, cp_list, invert);
}
else if (flags & SCF_DO_STCLASS_AND) {
ssc_intersection(data->start_class, cp_list, invert);
}
SvREFCNT_dec_NN(cp_list);
break;
}
case NPOSIXL:
invert = 1;
/* FALLTHROUGH */
case POSIXL:
namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
if (flags & SCF_DO_STCLASS_AND) {
bool was_there = cBOOL(
ANYOF_POSIXL_TEST(data->start_class,
namedclass));
ANYOF_POSIXL_ZERO(data->start_class);
if (was_there) { /* Do an AND */
ANYOF_POSIXL_SET(data->start_class, namedclass);
}
/* No individual code points can now match */
data->start_class->invlist
= sv_2mortal(_new_invlist(0));
}
else {
int complement = namedclass + ((invert) ? -1 : 1);
assert(flags & SCF_DO_STCLASS_OR);
/* If the complement of this class was already there,
* the result is that they match all code points,
* (\d + \D == everything). Remove the classes from
* future consideration. Locale is not relevant in
* this case */
if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
ssc_match_all_cp(data->start_class);
ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
ANYOF_POSIXL_CLEAR(data->start_class, complement);
}
else { /* The usual case; just add this class to the
existing set */
ANYOF_POSIXL_SET(data->start_class, namedclass);
}
}
break;
case NPOSIXA: /* For these, we always know the exact set of
what's matched */
invert = 1;
/* FALLTHROUGH */
case POSIXA:
my_invlist = invlist_clone(PL_Posix_ptrs[FLAGS(scan)], NULL);
goto join_posix_and_ascii;
case NPOSIXD:
case NPOSIXU:
invert = 1;
/* FALLTHROUGH */
case POSIXD:
case POSIXU:
my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)], NULL);
/* NPOSIXD matches all upper Latin1 code points unless the
* target string being matched is UTF-8, which is
* unknowable until match time. Since we are going to
* invert, we want to get rid of all of them so that the
* inversion will match all */
if (OP(scan) == NPOSIXD) {
_invlist_subtract(my_invlist, PL_UpperLatin1,
&my_invlist);
}
join_posix_and_ascii:
if (flags & SCF_DO_STCLASS_AND) {
ssc_intersection(data->start_class, my_invlist, invert);
ssc_clear_locale(data->start_class);
}
else {
assert(flags & SCF_DO_STCLASS_OR);
ssc_union(data->start_class, my_invlist, invert);
}
SvREFCNT_dec(my_invlist);
}
if (flags & SCF_DO_STCLASS_OR)
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
flags &= ~SCF_DO_STCLASS;
}
}
else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
data->flags |= (OP(scan) == MEOL
? SF_BEFORE_MEOL
: SF_BEFORE_SEOL);
scan_commit(pRExC_state, data, minlenp, is_inf);
}
else if ( PL_regkind[OP(scan)] == BRANCHJ
/* Lookbehind, or need to calculate parens/evals/stclass: */
&& (scan->flags || data || (flags & SCF_DO_STCLASS))
&& (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
{
if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
|| OP(scan) == UNLESSM )
{
/* Negative Lookahead/lookbehind
In this case we can't do fixed string optimisation.
*/
SSize_t deltanext, minnext, fake = 0;
regnode *nscan;
regnode_ssc intrnl;
int f = 0;
StructCopy(&zero_scan_data, &data_fake, scan_data_t);
if (data) {
data_fake.whilem_c = data->whilem_c;
data_fake.last_closep = data->last_closep;
}
else
data_fake.last_closep = &fake;
data_fake.pos_delta = delta;
if ( flags & SCF_DO_STCLASS && !scan->flags
&& OP(scan) == IFMATCH ) { /* Lookahead */
ssc_init(pRExC_state, &intrnl);
data_fake.start_class = &intrnl;
f |= SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
next = regnext(scan);
nscan = NEXTOPER(NEXTOPER(scan));
/* recurse study_chunk() for lookahead body */
minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
last, &data_fake, stopparen,
recursed_depth, NULL, f, depth+1,
mutate_ok);
if (scan->flags) {
if ( deltanext < 0
|| deltanext > (I32) U8_MAX
|| minnext > (I32)U8_MAX
|| minnext + deltanext > (I32)U8_MAX)
{
FAIL2("Lookbehind longer than %" UVuf " not implemented",
(UV)U8_MAX);
}
/* The 'next_off' field has been repurposed to count the
* additional starting positions to try beyond the initial
* one. (This leaves it at 0 for non-variable length
* matches to avoid breakage for those not using this
* extension) */
if (deltanext) {
scan->next_off = deltanext;
ckWARNexperimental(RExC_parse,
WARN_EXPERIMENTAL__VLB,
"Variable length lookbehind is experimental");
}
scan->flags = (U8)minnext + deltanext;
}
if (data) {
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
}
if (f & SCF_DO_STCLASS_AND) {
if (flags & SCF_DO_STCLASS_OR) {
/* OR before, AND after: ideally we would recurse with
* data_fake to get the AND applied by study of the
* remainder of the pattern, and then derecurse;
* *** HACK *** for now just treat as "no information".
* See [perl #56690].
*/
ssc_init(pRExC_state, data->start_class);
} else {
/* AND before and after: combine and continue. These
* assertions are zero-length, so can match an EMPTY
* string */
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
ANYOF_FLAGS(data->start_class)
|= SSC_MATCHES_EMPTY_STRING;
}
}
}
#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
else {
/* Positive Lookahead/lookbehind
In this case we can do fixed string optimisation,
but we must be careful about it. Note in the case of
lookbehind the positions will be offset by the minimum
length of the pattern, something we won't know about
until after the recurse.
*/
SSize_t deltanext, fake = 0;
regnode *nscan;
regnode_ssc intrnl;
int f = 0;
/* We use SAVEFREEPV so that when the full compile
is finished perl will clean up the allocated
minlens when it's all done. This way we don't
have to worry about freeing them when we know
they wont be used, which would be a pain.
*/
SSize_t *minnextp;
Newx( minnextp, 1, SSize_t );
SAVEFREEPV(minnextp);
if (data) {
StructCopy(data, &data_fake, scan_data_t);
if ((flags & SCF_DO_SUBSTR) && data->last_found) {
f |= SCF_DO_SUBSTR;
if (scan->flags)
scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
data_fake.last_found=newSVsv(data->last_found);
}
}
else
data_fake.last_closep = &fake;
data_fake.flags = 0;
data_fake.substrs[0].flags = 0;
data_fake.substrs[1].flags = 0;
data_fake.pos_delta = delta;
if (is_inf)
data_fake.flags |= SF_IS_INF;
if ( flags & SCF_DO_STCLASS && !scan->flags
&& OP(scan) == IFMATCH ) { /* Lookahead */
ssc_init(pRExC_state, &intrnl);
data_fake.start_class = &intrnl;
f |= SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
next = regnext(scan);
nscan = NEXTOPER(NEXTOPER(scan));
/* positive lookahead study_chunk() recursion */
*minnextp = study_chunk(pRExC_state, &nscan, minnextp,
&deltanext, last, &data_fake,
stopparen, recursed_depth, NULL,
f, depth+1, mutate_ok);
if (scan->flags) {
assert(0); /* This code has never been tested since this
is normally not compiled */
if ( deltanext < 0
|| deltanext > (I32) U8_MAX
|| *minnextp > (I32)U8_MAX
|| *minnextp + deltanext > (I32)U8_MAX)
{
FAIL2("Lookbehind longer than %" UVuf " not implemented",
(UV)U8_MAX);
}
if (deltanext) {
scan->next_off = deltanext;
}
scan->flags = (U8)*minnextp + deltanext;
}
*minnextp += min;
if (f & SCF_DO_STCLASS_AND) {
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
}
if (data) {
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
int i;
if (RExC_rx->minlen<*minnextp)
RExC_rx->minlen=*minnextp;
scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
SvREFCNT_dec_NN(data_fake.last_found);
for (i = 0; i < 2; i++) {
if (data_fake.substrs[i].minlenp != minlenp) {
data->substrs[i].min_offset =
data_fake.substrs[i].min_offset;
data->substrs[i].max_offset =
data_fake.substrs[i].max_offset;
data->substrs[i].minlenp =
data_fake.substrs[i].minlenp;
data->substrs[i].lookbehind += scan->flags;
}
}
}
}
}
#endif
}
else if (OP(scan) == OPEN) {
if (stopparen != (I32)ARG(scan))
pars++;
}
else if (OP(scan) == CLOSE) {
if (stopparen == (I32)ARG(scan)) {
break;
}
if ((I32)ARG(scan) == is_par) {
next = regnext(scan);
if ( next && (OP(next) != WHILEM) && next < last)
is_par = 0; /* Disable optimization */
}
if (data)
*(data->last_closep) = ARG(scan);
}
else if (OP(scan) == EVAL) {
if (data)
data->flags |= SF_HAS_EVAL;
}
else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
if (flags & SCF_DO_SUBSTR) {
scan_commit(pRExC_state, data, minlenp, is_inf);
flags &= ~SCF_DO_SUBSTR;
}
if (data && OP(scan)==ACCEPT) {
data->flags |= SCF_SEEN_ACCEPT;
if (stopmin > min)
stopmin = min;
}
}
else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
{
if (flags & SCF_DO_SUBSTR) {
scan_commit(pRExC_state, data, minlenp, is_inf);
data->cur_is_floating = 1; /* float */
}
is_inf = is_inf_internal = 1;
if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
ssc_anything(data->start_class);
flags &= ~SCF_DO_STCLASS;
}
else if (OP(scan) == GPOS) {
if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
!(delta || is_inf || (data && data->pos_delta)))
{
if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
RExC_rx->intflags |= PREGf_ANCH_GPOS;
if (RExC_rx->gofs < (STRLEN)min)
RExC_rx->gofs = min;
} else {
RExC_rx->intflags |= PREGf_GPOS_FLOAT;
RExC_rx->gofs = 0;
}
}
#ifdef TRIE_STUDY_OPT
#ifdef FULL_TRIE_STUDY
else if (PL_regkind[OP(scan)] == TRIE) {
/* NOTE - There is similar code to this block above for handling
BRANCH nodes on the initial study. If you change stuff here
check there too. */
regnode *trie_node= scan;
regnode *tail= regnext(scan);
reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
SSize_t max1 = 0, min1 = OPTIMIZE_INFTY;
regnode_ssc accum;
if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
/* Cannot merge strings after this. */
scan_commit(pRExC_state, data, minlenp, is_inf);
}
if (flags & SCF_DO_STCLASS)
ssc_init_zero(pRExC_state, &accum);
if (!trie->jump) {
min1= trie->minlen;
max1= trie->maxlen;
} else {
const regnode *nextbranch= NULL;
U32 word;
for ( word=1 ; word <= trie->wordcount ; word++)
{
SSize_t deltanext=0, minnext=0, f = 0, fake;
regnode_ssc this_class;
StructCopy(&zero_scan_data, &data_fake, scan_data_t);
if (data) {
data_fake.whilem_c = data->whilem_c;
data_fake.last_closep = data->last_closep;
}
else
data_fake.last_closep = &fake;
data_fake.pos_delta = delta;
if (flags & SCF_DO_STCLASS) {
ssc_init(pRExC_state, &this_class);
data_fake.start_class = &this_class;
f = SCF_DO_STCLASS_AND;
}
if (flags & SCF_WHILEM_VISITED_POS)
f |= SCF_WHILEM_VISITED_POS;
if (trie->jump[word]) {
if (!nextbranch)
nextbranch = trie_node + trie->jump[0];
scan= trie_node + trie->jump[word];
/* We go from the jump point to the branch that follows
it. Note this means we need the vestigal unused
branches even though they arent otherwise used. */
/* optimise study_chunk() for TRIE */
minnext = study_chunk(pRExC_state, &scan, minlenp,
&deltanext, (regnode *)nextbranch, &data_fake,
stopparen, recursed_depth, NULL, f, depth+1,
mutate_ok);
}
if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
nextbranch= regnext((regnode*)nextbranch);
if (min1 > (SSize_t)(minnext + trie->minlen))
min1 = minnext + trie->minlen;
if (deltanext == OPTIMIZE_INFTY) {
is_inf = is_inf_internal = 1;
max1 = OPTIMIZE_INFTY;
} else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
max1 = minnext + deltanext + trie->maxlen;
if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
pars++;
if (data_fake.flags & SCF_SEEN_ACCEPT) {
if ( stopmin > min + min1)
stopmin = min + min1;
flags &= ~SCF_DO_SUBSTR;
if (data)
data->flags |= SCF_SEEN_ACCEPT;
}
if (data) {
if (data_fake.flags & SF_HAS_EVAL)
data->flags |= SF_HAS_EVAL;
data->whilem_c = data_fake.whilem_c;
}
if (flags & SCF_DO_STCLASS)
ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
}
}
if (flags & SCF_DO_SUBSTR) {
data->pos_min += min1;
data->pos_delta += max1 - min1;
if (max1 != min1 || is_inf)
data->cur_is_floating = 1; /* float */
}
min += min1;
if (delta != OPTIMIZE_INFTY) {
if (OPTIMIZE_INFTY - (max1 - min1) >= delta)
delta += max1 - min1;
else
delta = OPTIMIZE_INFTY;
}
if (flags & SCF_DO_STCLASS_OR) {
ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
if (min1) {
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
flags &= ~SCF_DO_STCLASS;
}
}
else if (flags & SCF_DO_STCLASS_AND) {
if (min1) {
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
flags &= ~SCF_DO_STCLASS;
}
else {
/* Switch to OR mode: cache the old value of
* data->start_class */
INIT_AND_WITHP;
StructCopy(data->start_class, and_withp, regnode_ssc);
flags &= ~SCF_DO_STCLASS_AND;
StructCopy(&accum, data->start_class, regnode_ssc);
flags |= SCF_DO_STCLASS_OR;
}
}
scan= tail;
continue;
}
#else
else if (PL_regkind[OP(scan)] == TRIE) {
reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
U8*bang=NULL;
min += trie->minlen;
delta += (trie->maxlen - trie->minlen);
flags &= ~SCF_DO_STCLASS; /* xxx */
if (flags & SCF_DO_SUBSTR) {
/* Cannot expect anything... */
scan_commit(pRExC_state, data, minlenp, is_inf);
data->pos_min += trie->minlen;
data->pos_delta += (trie->maxlen - trie->minlen);
if (trie->maxlen != trie->minlen)
data->cur_is_floating = 1; /* float */
}
if (trie->jump) /* no more substrings -- for now /grr*/
flags &= ~SCF_DO_SUBSTR;
}
else if (OP(scan) == REGEX_SET) {
Perl_croak(aTHX_ "panic: %s regnode should be resolved"
" before optimization", reg_name[REGEX_SET]);
}
#endif /* old or new */
#endif /* TRIE_STUDY_OPT */
/* Else: zero-length, ignore. */
scan = regnext(scan);
}
finish:
if (frame) {
/* we need to unwind recursion. */
depth = depth - 1;
DEBUG_STUDYDATA("frame-end", data, depth, is_inf);
DEBUG_PEEP("fend", scan, depth, flags);
/* restore previous context */
last = frame->last_regnode;
scan = frame->next_regnode;
stopparen = frame->stopparen;
recursed_depth = frame->prev_recursed_depth;
RExC_frame_last = frame->prev_frame;
frame = frame->this_prev_frame;
goto fake_study_recurse;
}
assert(!frame);
DEBUG_STUDYDATA("pre-fin", data, depth, is_inf);
*scanp = scan;
*deltap = is_inf_internal ? OPTIMIZE_INFTY : delta;
if (flags & SCF_DO_SUBSTR && is_inf)
data->pos_delta = OPTIMIZE_INFTY - data->pos_min;
if (is_par > (I32)U8_MAX)
is_par = 0;
if (is_par && pars==1 && data) {
data->flags |= SF_IN_PAR;
data->flags &= ~SF_HAS_PAR;
}
else if (pars && data) {
data->flags |= SF_HAS_PAR;
data->flags &= ~SF_IN_PAR;
}
if (flags & SCF_DO_STCLASS_OR)
ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
if (flags & SCF_TRIE_RESTUDY)
data->flags |= SCF_TRIE_RESTUDY;
DEBUG_STUDYDATA("post-fin", data, depth, is_inf);
final_minlen = min < stopmin
? min : stopmin;
if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
if (final_minlen > OPTIMIZE_INFTY - delta)
RExC_maxlen = OPTIMIZE_INFTY;
else if (RExC_maxlen < final_minlen + delta)
RExC_maxlen = final_minlen + delta;
}
return final_minlen;
}
STATIC U32
S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
{
U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
PERL_ARGS_ASSERT_ADD_DATA;
Renewc(RExC_rxi->data,
sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
char, struct reg_data);
if(count)
Renew(RExC_rxi->data->what, count + n, U8);
else
Newx(RExC_rxi->data->what, n, U8);
RExC_rxi->data->count = count + n;
Copy(s, RExC_rxi->data->what + count, n, U8);
return count;
}
/*XXX: todo make this not included in a non debugging perl, but appears to be
* used anyway there, in 'use re' */
#ifndef PERL_IN_XSUB_RE
void
Perl_reginitcolors(pTHX)
{
const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
if (s) {
char *t = savepv(s);
int i = 0;
PL_colors[0] = t;
while (++i < 6) {
t = strchr(t, '\t');
if (t) {
*t = '\0';
PL_colors[i] = ++t;
}
else
PL_colors[i] = t = (char *)"";
}
} else {
int i = 0;
while (i < 6)
PL_colors[i++] = (char *)"";
}
PL_colorset = 1;
}
#endif
#ifdef TRIE_STUDY_OPT
#define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
STMT_START { \
if ( \
(data.flags & SCF_TRIE_RESTUDY) \
&& ! restudied++ \
) { \
dOsomething; \
goto reStudy; \
} \
} STMT_END
#else
#define CHECK_RESTUDY_GOTO_butfirst
#endif
/*
* pregcomp - compile a regular expression into internal code
*
* Decides which engine's compiler to call based on the hint currently in
* scope
*/
#ifndef PERL_IN_XSUB_RE
/* return the currently in-scope regex engine (or the default if none) */
regexp_engine const *
Perl_current_re_engine(pTHX)
{
if (IN_PERL_COMPILETIME) {
HV * const table = GvHV(PL_hintgv);
SV **ptr;
if (!table || !(PL_hints & HINT_LOCALIZE_HH))
return &PL_core_reg_engine;
ptr = hv_fetchs(table, "regcomp", FALSE);
if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
return &PL_core_reg_engine;
return INT2PTR(regexp_engine*, SvIV(*ptr));
}
else {
SV *ptr;
if (!PL_curcop->cop_hints_hash)
return &PL_core_reg_engine;
ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
return &PL_core_reg_engine;
return INT2PTR(regexp_engine*, SvIV(ptr));
}
}
REGEXP *
Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
{
regexp_engine const *eng = current_re_engine();
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_PREGCOMP;
/* Dispatch a request to compile a regexp to correct regexp engine. */
DEBUG_COMPILE_r({
Perl_re_printf( aTHX_ "Using engine %" UVxf "\n",
PTR2UV(eng));
});
return CALLREGCOMP_ENG(eng, pattern, flags);
}
#endif
/* public(ish) entry point for the perl core's own regex compiling code.
* It's actually a wrapper for Perl_re_op_compile that only takes an SV
* pattern rather than a list of OPs, and uses the internal engine rather
* than the current one */
REGEXP *
Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
{
SV *pat = pattern; /* defeat constness! */
PERL_ARGS_ASSERT_RE_COMPILE;
return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
#ifdef PERL_IN_XSUB_RE
&my_reg_engine,
#else
&PL_core_reg_engine,
#endif
NULL, NULL, rx_flags, 0);
}
static void
S_free_codeblocks(pTHX_ struct reg_code_blocks *cbs)
{
int n;
if (--cbs->refcnt > 0)
return;
for (n = 0; n < cbs->count; n++) {
REGEXP *rx = cbs->cb[n].src_regex;
if (rx) {
cbs->cb[n].src_regex = NULL;
SvREFCNT_dec_NN(rx);
}
}
Safefree(cbs->cb);
Safefree(cbs);
}
static struct reg_code_blocks *
S_alloc_code_blocks(pTHX_ int ncode)
{
struct reg_code_blocks *cbs;
Newx(cbs, 1, struct reg_code_blocks);
cbs->count = ncode;
cbs->refcnt = 1;
SAVEDESTRUCTOR_X(S_free_codeblocks, cbs);
if (ncode)
Newx(cbs->cb, ncode, struct reg_code_block);
else
cbs->cb = NULL;
return cbs;
}
/* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
* blocks, recalculate the indices. Update pat_p and plen_p in-place to
* point to the realloced string and length.
*
* This is essentially a copy of Perl_bytes_to_utf8() with the code index
* stuff added */
static void
S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
char **pat_p, STRLEN *plen_p, int num_code_blocks)
{
U8 *const src = (U8*)*pat_p;
U8 *dst, *d;
int n=0;
STRLEN s = 0;
bool do_end = 0;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
DEBUG_PARSE_r(Perl_re_printf( aTHX_
"UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
/* 1 for each byte + 1 for each byte that expands to two, + trailing NUL */
Newx(dst, *plen_p + variant_under_utf8_count(src, src + *plen_p) + 1, U8);
d = dst;
while (s < *plen_p) {
append_utf8_from_native_byte(src[s], &d);
if (n < num_code_blocks) {
assert(pRExC_state->code_blocks);
if (!do_end && pRExC_state->code_blocks->cb[n].start == s) {
pRExC_state->code_blocks->cb[n].start = d - dst - 1;
assert(*(d - 1) == '(');
do_end = 1;
}
else if (do_end && pRExC_state->code_blocks->cb[n].end == s) {
pRExC_state->code_blocks->cb[n].end = d - dst - 1;
assert(*(d - 1) == ')');
do_end = 0;
n++;
}
}
s++;
}
*d = '\0';
*plen_p = d - dst;
*pat_p = (char*) dst;
SAVEFREEPV(*pat_p);
RExC_orig_utf8 = RExC_utf8 = 1;
}
/* S_concat_pat(): concatenate a list of args to the pattern string pat,
* while recording any code block indices, and handling overloading,
* nested qr// objects etc. If pat is null, it will allocate a new
* string, or just return the first arg, if there's only one.
*
* Returns the malloced/updated pat.
* patternp and pat_count is the array of SVs to be concatted;
* oplist is the optional list of ops that generated the SVs;
* recompile_p is a pointer to a boolean that will be set if
* the regex will need to be recompiled.
* delim, if non-null is an SV that will be inserted between each element
*/
static SV*
S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
SV *pat, SV ** const patternp, int pat_count,
OP *oplist, bool *recompile_p, SV *delim)
{
SV **svp;
int n = 0;
bool use_delim = FALSE;
bool alloced = FALSE;
/* if we know we have at least two args, create an empty string,
* then concatenate args to that. For no args, return an empty string */
if (!pat && pat_count != 1) {
pat = newSVpvs("");
SAVEFREESV(pat);
alloced = TRUE;
}
for (svp = patternp; svp < patternp + pat_count; svp++) {
SV *sv;
SV *rx = NULL;
STRLEN orig_patlen = 0;
bool code = 0;
SV *msv = use_delim ? delim : *svp;
if (!msv) msv = &PL_sv_undef;
/* if we've got a delimiter, we go round the loop twice for each
* svp slot (except the last), using the delimiter the second
* time round */
if (use_delim) {
svp--;
use_delim = FALSE;
}
else if (delim)
use_delim = TRUE;
if (SvTYPE(msv) == SVt_PVAV) {
/* we've encountered an interpolated array within
* the pattern, e.g. /...@a..../. Expand the list of elements,
* then recursively append elements.
* The code in this block is based on S_pushav() */
AV *const av = (AV*)msv;
const SSize_t maxarg = AvFILL(av) + 1;
SV **array;
if (oplist) {
assert(oplist->op_type == OP_PADAV
|| oplist->op_type == OP_RV2AV);
oplist = OpSIBLING(oplist);
}
if (SvRMAGICAL(av)) {
SSize_t i;
Newx(array, maxarg, SV*);
SAVEFREEPV(array);
for (i=0; i < maxarg; i++) {
SV ** const svp = av_fetch(av, i, FALSE);
array[i] = svp ? *svp : &PL_sv_undef;
}
}
else
array = AvARRAY(av);
pat = S_concat_pat(aTHX_ pRExC_state, pat,
array, maxarg, NULL, recompile_p,
/* $" */
GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
continue;
}
/* we make the assumption here that each op in the list of
* op_siblings maps to one SV pushed onto the stack,
* except for code blocks, with have both an OP_NULL and
* an OP_CONST.
* This allows us to match up the list of SVs against the
* list of OPs to find the next code block.
*
* Note that PUSHMARK PADSV PADSV ..
* is optimised to
* PADRANGE PADSV PADSV ..
* so the alignment still works. */
if (oplist) {
if (oplist->op_type == OP_NULL
&& (oplist->op_flags & OPf_SPECIAL))
{
assert(n < pRExC_state->code_blocks->count);
pRExC_state->code_blocks->cb[n].start = pat ? SvCUR(pat) : 0;
pRExC_state->code_blocks->cb[n].block = oplist;
pRExC_state->code_blocks->cb[n].src_regex = NULL;
n++;
code = 1;
oplist = OpSIBLING(oplist); /* skip CONST */
assert(oplist);
}
oplist = OpSIBLING(oplist);;
}
/* apply magic and QR overloading to arg */
SvGETMAGIC(msv);
if (SvROK(msv) && SvAMAGIC(msv)) {
SV *sv = AMG_CALLunary(msv, regexp_amg);
if (sv) {
if (SvROK(sv))
sv = SvRV(sv);
if (SvTYPE(sv) != SVt_REGEXP)
Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
msv = sv;
}
}
/* try concatenation overload ... */
if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
(sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
{
sv_setsv(pat, sv);
/* overloading involved: all bets are off over literal
* code. Pretend we haven't seen it */
if (n)
pRExC_state->code_blocks->count -= n;
n = 0;
}
else {
/* ... or failing that, try "" overload */
while (SvAMAGIC(msv)
&& (sv = AMG_CALLunary(msv, string_amg))
&& sv != msv
&& !( SvROK(msv)
&& SvROK(sv)
&& SvRV(msv) == SvRV(sv))
) {
msv = sv;
SvGETMAGIC(msv);
}
if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
msv = SvRV(msv);
if (pat) {
/* this is a partially unrolled
* sv_catsv_nomg(pat, msv);
* that allows us to adjust code block indices if
* needed */
STRLEN dlen;
char *dst = SvPV_force_nomg(pat, dlen);
orig_patlen = dlen;
if (SvUTF8(msv) && !SvUTF8(pat)) {
S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
sv_setpvn(pat, dst, dlen);
SvUTF8_on(pat);
}
sv_catsv_nomg(pat, msv);
rx = msv;
}
else {
/* We have only one SV to process, but we need to verify
* it is properly null terminated or we will fail asserts
* later. In theory we probably shouldn't get such SV's,
* but if we do we should handle it gracefully. */
if ( SvTYPE(msv) != SVt_PV || (SvLEN(msv) > SvCUR(msv) && *(SvEND(msv)) == 0) || SvIsCOW_shared_hash(msv) ) {
/* not a string, or a string with a trailing null */
pat = msv;
} else {
/* a string with no trailing null, we need to copy it
* so it has a trailing null */
pat = sv_2mortal(newSVsv(msv));
}
}
if (code)
pRExC_state->code_blocks->cb[n-1].end = SvCUR(pat)-1;
}
/* extract any code blocks within any embedded qr//'s */
if (rx && SvTYPE(rx) == SVt_REGEXP
&& RX_ENGINE((REGEXP*)rx)->op_comp)
{
RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
if (ri->code_blocks && ri->code_blocks->count) {
int i;
/* the presence of an embedded qr// with code means
* we should always recompile: the text of the
* qr// may not have changed, but it may be a
* different closure than last time */
*recompile_p = 1;
if (pRExC_state->code_blocks) {
int new_count = pRExC_state->code_blocks->count
+ ri->code_blocks->count;
Renew(pRExC_state->code_blocks->cb,
new_count, struct reg_code_block);
pRExC_state->code_blocks->count = new_count;
}
else
pRExC_state->code_blocks = S_alloc_code_blocks(aTHX_
ri->code_blocks->count);
for (i=0; i < ri->code_blocks->count; i++) {
struct reg_code_block *src, *dst;
STRLEN offset = orig_patlen
+ ReANY((REGEXP *)rx)->pre_prefix;
assert(n < pRExC_state->code_blocks->count);
src = &ri->code_blocks->cb[i];
dst = &pRExC_state->code_blocks->cb[n];
dst->start = src->start + offset;
dst->end = src->end + offset;
dst->block = src->block;
dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
src->src_regex
? src->src_regex
: (REGEXP*)rx);
n++;
}
}
}
}
/* avoid calling magic multiple times on a single element e.g. =~ $qr */
if (alloced)
SvSETMAGIC(pat);
return pat;
}
/* see if there are any run-time code blocks in the pattern.
* False positives are allowed */
static bool
S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
char *pat, STRLEN plen)
{
int n = 0;
STRLEN s;
PERL_UNUSED_CONTEXT;
for (s = 0; s < plen; s++) {
if ( pRExC_state->code_blocks
&& n < pRExC_state->code_blocks->count
&& s == pRExC_state->code_blocks->cb[n].start)
{
s = pRExC_state->code_blocks->cb[n].end;
n++;
continue;
}
/* TODO ideally should handle [..], (#..), /#.../x to reduce false
* positives here */
if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
(pat[s+2] == '{'
|| (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
)
return 1;
}
return 0;
}
/* Handle run-time code blocks. We will already have compiled any direct
* or indirect literal code blocks. Now, take the pattern 'pat' and make a
* copy of it, but with any literal code blocks blanked out and
* appropriate chars escaped; then feed it into
*
* eval "qr'modified_pattern'"
*
* For example,
*
* a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
*
* becomes
*
* qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
*
* After eval_sv()-ing that, grab any new code blocks from the returned qr
* and merge them with any code blocks of the original regexp.
*
* If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
* instead, just save the qr and return FALSE; this tells our caller that
* the original pattern needs upgrading to utf8.
*/
static bool
S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
char *pat, STRLEN plen)
{
SV *qr;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
if (pRExC_state->runtime_code_qr) {
/* this is the second time we've been called; this should
* only happen if the main pattern got upgraded to utf8
* during compilation; re-use the qr we compiled first time
* round (which should be utf8 too)
*/
qr = pRExC_state->runtime_code_qr;
pRExC_state->runtime_code_qr = NULL;
assert(RExC_utf8 && SvUTF8(qr));
}
else {
int n = 0;
STRLEN s;
char *p, *newpat;
int newlen = plen + 7; /* allow for "qr''xx\0" extra chars */
SV *sv, *qr_ref;
dSP;
/* determine how many extra chars we need for ' and \ escaping */
for (s = 0; s < plen; s++) {
if (pat[s] == '\'' || pat[s] == '\\')
newlen++;
}
Newx(newpat, newlen, char);
p = newpat;
*p++ = 'q'; *p++ = 'r'; *p++ = '\'';
for (s = 0; s < plen; s++) {
if ( pRExC_state->code_blocks
&& n < pRExC_state->code_blocks->count
&& s == pRExC_state->code_blocks->cb[n].start)
{
/* blank out literal code block so that they aren't
* recompiled: eg change from/to:
* /(?{xyz})/
* /(?=====)/
* and
* /(??{xyz})/
* /(?======)/
* and
* /(?(?{xyz}))/
* /(?(?=====))/
*/
assert(pat[s] == '(');
assert(pat[s+1] == '?');
*p++ = '(';
*p++ = '?';
s += 2;
while (s < pRExC_state->code_blocks->cb[n].end) {
*p++ = '=';
s++;
}
*p++ = ')';
n++;
continue;
}
if (pat[s] == '\'' || pat[s] == '\\')
*p++ = '\\';
*p++ = pat[s];
}
*p++ = '\'';
if (pRExC_state->pm_flags & RXf_PMf_EXTENDED) {
*p++ = 'x';
if (pRExC_state->pm_flags & RXf_PMf_EXTENDED_MORE) {
*p++ = 'x';
}
}
*p++ = '\0';
DEBUG_COMPILE_r({
Perl_re_printf( aTHX_
"%sre-parsing pattern for runtime code:%s %s\n",
PL_colors[4], PL_colors[5], newpat);
});
sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
Safefree(newpat);
ENTER;
SAVETMPS;
save_re_context();
PUSHSTACKi(PERLSI_REQUIRE);
/* G_RE_REPARSING causes the toker to collapse \\ into \ when
* parsing qr''; normally only q'' does this. It also alters
* hints handling */
eval_sv(sv, G_SCALAR|G_RE_REPARSING);
SvREFCNT_dec_NN(sv);
SPAGAIN;
qr_ref = POPs;
PUTBACK;
{
SV * const errsv = ERRSV;
if (SvTRUE_NN(errsv))
/* use croak_sv ? */
Perl_croak_nocontext("%" SVf, SVfARG(errsv));
}
assert(SvROK(qr_ref));
qr = SvRV(qr_ref);
assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
/* the leaving below frees the tmp qr_ref.
* Give qr a life of its own */
SvREFCNT_inc(qr);
POPSTACK;
FREETMPS;
LEAVE;
}
if (!RExC_utf8 && SvUTF8(qr)) {
/* first time through; the pattern got upgraded; save the
* qr for the next time through */
assert(!pRExC_state->runtime_code_qr);
pRExC_state->runtime_code_qr = qr;
return 0;
}
/* extract any code blocks within the returned qr// */
/* merge the main (r1) and run-time (r2) code blocks into one */
{
RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
struct reg_code_block *new_block, *dst;
RExC_state_t * const r1 = pRExC_state; /* convenient alias */
int i1 = 0, i2 = 0;
int r1c, r2c;
if (!r2->code_blocks || !r2->code_blocks->count) /* we guessed wrong */
{
SvREFCNT_dec_NN(qr);
return 1;
}
if (!r1->code_blocks)
r1->code_blocks = S_alloc_code_blocks(aTHX_ 0);
r1c = r1->code_blocks->count;
r2c = r2->code_blocks->count;
Newx(new_block, r1c + r2c, struct reg_code_block);
dst = new_block;
while (i1 < r1c || i2 < r2c) {
struct reg_code_block *src;
bool is_qr = 0;
if (i1 == r1c) {
src = &r2->code_blocks->cb[i2++];
is_qr = 1;
}
else if (i2 == r2c)
src = &r1->code_blocks->cb[i1++];
else if ( r1->code_blocks->cb[i1].start
< r2->code_blocks->cb[i2].start)
{
src = &r1->code_blocks->cb[i1++];
assert(src->end < r2->code_blocks->cb[i2].start);
}
else {
assert( r1->code_blocks->cb[i1].start
> r2->code_blocks->cb[i2].start);
src = &r2->code_blocks->cb[i2++];
is_qr = 1;
assert(src->end < r1->code_blocks->cb[i1].start);
}
assert(pat[src->start] == '(');
assert(pat[src->end] == ')');
dst->start = src->start;
dst->end = src->end;
dst->block = src->block;
dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
: src->src_regex;
dst++;
}
r1->code_blocks->count += r2c;
Safefree(r1->code_blocks->cb);
r1->code_blocks->cb = new_block;
}
SvREFCNT_dec_NN(qr);
return 1;
}
STATIC bool
S_setup_longest(pTHX_ RExC_state_t *pRExC_state,
struct reg_substr_datum *rsd,
struct scan_data_substrs *sub,
STRLEN longest_length)
{
/* This is the common code for setting up the floating and fixed length
* string data extracted from Perl_re_op_compile() below. Returns a boolean
* as to whether succeeded or not */
I32 t;
SSize_t ml;
bool eol = cBOOL(sub->flags & SF_BEFORE_EOL);
bool meol = cBOOL(sub->flags & SF_BEFORE_MEOL);
if (! (longest_length
|| (eol /* Can't have SEOL and MULTI */
&& (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
)
/* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
|| (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
{
return FALSE;
}
/* copy the information about the longest from the reg_scan_data
over to the program. */
if (SvUTF8(sub->str)) {
rsd->substr = NULL;
rsd->utf8_substr = sub->str;
} else {
rsd->substr = sub->str;
rsd->utf8_substr = NULL;
}
/* end_shift is how many chars that must be matched that
follow this item. We calculate it ahead of time as once the
lookbehind offset is added in we lose the ability to correctly
calculate it.*/
ml = sub->minlenp ? *(sub->minlenp) : (SSize_t)longest_length;
rsd->end_shift = ml - sub->min_offset
- longest_length
/* XXX SvTAIL is always false here - did you mean FBMcf_TAIL
* intead? - DAPM
+ (SvTAIL(sub->str) != 0)
*/
+ sub->lookbehind;
t = (eol/* Can't have SEOL and MULTI */
&& (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
fbm_compile(sub->str, t ? FBMcf_TAIL : 0);
return TRUE;
}
STATIC void
S_set_regex_pv(pTHX_ RExC_state_t *pRExC_state, REGEXP *Rx)
{
/* Calculates and sets in the compiled pattern 'Rx' the string to compile,
* properly wrapped with the right modifiers */
bool has_p = ((RExC_rx->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
bool has_charset = RExC_utf8 || (get_regex_charset(RExC_rx->extflags)
!= REGEX_DEPENDS_CHARSET);
/* The caret is output if there are any defaults: if not all the STD
* flags are set, or if no character set specifier is needed */
bool has_default =
(((RExC_rx->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
|| ! has_charset);
bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
== REG_RUN_ON_COMMENT_SEEN);
U8 reganch = (U8)((RExC_rx->extflags & RXf_PMf_STD_PMMOD)
>> RXf_PMf_STD_PMMOD_SHIFT);
const char *fptr = STD_PAT_MODS; /*"msixxn"*/
char *p;
STRLEN pat_len = RExC_precomp_end - RExC_precomp;
/* We output all the necessary flags; we never output a minus, as all
* those are defaults, so are
* covered by the caret */
const STRLEN wraplen = pat_len + has_p + has_runon
+ has_default /* If needs a caret */
+ PL_bitcount[reganch] /* 1 char for each set standard flag */
/* If needs a character set specifier */
+ ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ (sizeof("(?:)") - 1);
PERL_ARGS_ASSERT_SET_REGEX_PV;
/* make sure PL_bitcount bounds not exceeded */
assert(sizeof(STD_PAT_MODS) <= 8);
p = sv_grow(MUTABLE_SV(Rx), wraplen + 1); /* +1 for the ending NUL */
SvPOK_on(Rx);
if (RExC_utf8)
SvFLAGS(Rx) |= SVf_UTF8;
*p++='('; *p++='?';
/* If a default, cover it using the caret */
if (has_default) {
*p++= DEFAULT_PAT_MOD;
}
if (has_charset) {
STRLEN len;
const char* name;
name = get_regex_charset_name(RExC_rx->extflags, &len);
if (strEQ(name, DEPENDS_PAT_MODS)) { /* /d under UTF-8 => /u */
assert(RExC_utf8);
name = UNICODE_PAT_MODS;
len = sizeof(UNICODE_PAT_MODS) - 1;
}
Copy(name, p, len, char);
p += len;
}
if (has_p)
*p++ = KEEPCOPY_PAT_MOD; /*'p'*/
{
char ch;
while((ch = *fptr++)) {
if(reganch & 1)
*p++ = ch;
reganch >>= 1;
}
}
*p++ = ':';
Copy(RExC_precomp, p, pat_len, char);
assert ((RX_WRAPPED(Rx) - p) < 16);
RExC_rx->pre_prefix = p - RX_WRAPPED(Rx);
p += pat_len;
/* Adding a trailing \n causes this to compile properly:
my $R = qr / A B C # D E/x; /($R)/
Otherwise the parens are considered part of the comment */
if (has_runon)
*p++ = '\n';
*p++ = ')';
*p = 0;
SvCUR_set(Rx, p - RX_WRAPPED(Rx));
}
/*
* Perl_re_op_compile - the perl internal RE engine's function to compile a
* regular expression into internal code.
* The pattern may be passed either as:
* a list of SVs (patternp plus pat_count)
* a list of OPs (expr)
* If both are passed, the SV list is used, but the OP list indicates
* which SVs are actually pre-compiled code blocks
*
* The SVs in the list have magic and qr overloading applied to them (and
* the list may be modified in-place with replacement SVs in the latter
* case).
*
* If the pattern hasn't changed from old_re, then old_re will be
* returned.
*
* eng is the current engine. If that engine has an op_comp method, then
* handle directly (i.e. we assume that op_comp was us); otherwise, just
* do the initial concatenation of arguments and pass on to the external
* engine.
*
* If is_bare_re is not null, set it to a boolean indicating whether the
* arg list reduced (after overloading) to a single bare regex which has
* been returned (i.e. /$qr/).
*
* orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
*
* pm_flags contains the PMf_* flags, typically based on those from the
* pm_flags field of the related PMOP. Currently we're only interested in
* PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL, PMf_WILDCARD.
*
* For many years this code had an initial sizing pass that calculated
* (sometimes incorrectly, leading to security holes) the size needed for the
* compiled pattern. That was changed by commit
* 7c932d07cab18751bfc7515b4320436273a459e2 in 5.29, which reallocs the size, a
* node at a time, as parsing goes along. Patches welcome to fix any obsolete
* references to this sizing pass.
*
* Now, an initial crude guess as to the size needed is made, based on the
* length of the pattern. Patches welcome to improve that guess. That amount
* of space is malloc'd and then immediately freed, and then clawed back node
* by node. This design is to minimze, to the extent possible, memory churn
* when doing the reallocs.
*
* A separate parentheses counting pass may be needed in some cases.
* (Previously the sizing pass did this.) Patches welcome to reduce the number
* of these cases.
*
* The existence of a sizing pass necessitated design decisions that are no
* longer needed. There are potential areas of simplification.
*
* Beware that the optimization-preparation code in here knows about some
* of the structure of the compiled regexp. [I'll say.]
*/
REGEXP *
Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
OP *expr, const regexp_engine* eng, REGEXP *old_re,
bool *is_bare_re, const U32 orig_rx_flags, const U32 pm_flags)
{
dVAR;
REGEXP *Rx; /* Capital 'R' means points to a REGEXP */
STRLEN plen;
char *exp;
regnode *scan;
I32 flags;
SSize_t minlen = 0;
U32 rx_flags;
SV *pat;
SV** new_patternp = patternp;
/* these are all flags - maybe they should be turned
* into a single int with different bit masks */
I32 sawlookahead = 0;
I32 sawplus = 0;
I32 sawopen = 0;
I32 sawminmod = 0;
regex_charset initial_charset = get_regex_charset(orig_rx_flags);
bool recompile = 0;
bool runtime_code = 0;
scan_data_t data;
RExC_state_t RExC_state;
RExC_state_t * const pRExC_state = &RExC_state;
#ifdef TRIE_STUDY_OPT
int restudied = 0;
RExC_state_t copyRExC_state;
#endif
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_RE_OP_COMPILE;
DEBUG_r(if (!PL_colorset) reginitcolors());
pRExC_state->warn_text = NULL;
pRExC_state->unlexed_names = NULL;
pRExC_state->code_blocks = NULL;
if (is_bare_re)
*is_bare_re = FALSE;
if (expr && (expr->op_type == OP_LIST ||
(expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
/* allocate code_blocks if needed */
OP *o;
int ncode = 0;
for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
ncode++; /* count of DO blocks */
if (ncode)
pRExC_state->code_blocks = S_alloc_code_blocks(aTHX_ ncode);
}
if (!pat_count) {
/* compile-time pattern with just OP_CONSTs and DO blocks */
int n;
OP *o;
/* find how many CONSTs there are */
assert(expr);
n = 0;
if (expr->op_type == OP_CONST)
n = 1;
else
for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
if (o->op_type == OP_CONST)
n++;
}
/* fake up an SV array */
assert(!new_patternp);
Newx(new_patternp, n, SV*);
SAVEFREEPV(new_patternp);
pat_count = n;
n = 0;
if (expr->op_type == OP_CONST)
new_patternp[n] = cSVOPx_sv(expr);
else
for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
if (o->op_type == OP_CONST)
new_patternp[n++] = cSVOPo_sv;
}
}
DEBUG_PARSE_r(Perl_re_printf( aTHX_
"Assembling pattern from %d elements%s\n", pat_count,
orig_rx_flags & RXf_SPLIT ? " for split" : ""));
/* set expr to the first arg op */
if (pRExC_state->code_blocks && pRExC_state->code_blocks->count
&& expr->op_type != OP_CONST)
{
expr = cLISTOPx(expr)->op_first;
assert( expr->op_type == OP_PUSHMARK
|| (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
|| expr->op_type == OP_PADRANGE);
expr = OpSIBLING(expr);
}
pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
expr, &recompile, NULL);
/* handle bare (possibly after overloading) regex: foo =~ $re */
{
SV *re = pat;
if (SvROK(re))
re = SvRV(re);
if (SvTYPE(re) == SVt_REGEXP) {
if (is_bare_re)
*is_bare_re = TRUE;
SvREFCNT_inc(re);
DEBUG_PARSE_r(Perl_re_printf( aTHX_
"Precompiled pattern%s\n",
orig_rx_flags & RXf_SPLIT ? " for split" : ""));
return (REGEXP*)re;
}
}
exp = SvPV_nomg(pat, plen);
if (!eng->op_comp) {
if ((SvUTF8(pat) && IN_BYTES)
|| SvGMAGICAL(pat) || SvAMAGIC(pat))
{
/* make a temporary copy; either to convert to bytes,
* or to avoid repeating get-magic / overloaded stringify */
pat = newSVpvn_flags(exp, plen, SVs_TEMP |
(IN_BYTES ? 0 : SvUTF8(pat)));
}
return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
}
/* ignore the utf8ness if the pattern is 0 length */
RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
RExC_uni_semantics = 0;
RExC_contains_locale = 0;
RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
RExC_in_script_run = 0;
RExC_study_started = 0;
pRExC_state->runtime_code_qr = NULL;
RExC_frame_head= NULL;
RExC_frame_last= NULL;
RExC_frame_count= 0;
RExC_latest_warn_offset = 0;
RExC_use_BRANCHJ = 0;
RExC_warned_WARN_EXPERIMENTAL__VLB = 0;
RExC_warned_WARN_EXPERIMENTAL__REGEX_SETS = 0;
RExC_total_parens = 0;
RExC_open_parens = NULL;
RExC_close_parens = NULL;
RExC_paren_names = NULL;
RExC_size = 0;
RExC_seen_d_op = FALSE;
#ifdef DEBUGGING
RExC_paren_name_list = NULL;
#endif
DEBUG_r({
RExC_mysv1= sv_newmortal();
RExC_mysv2= sv_newmortal();
});
DEBUG_COMPILE_r({
SV *dsv= sv_newmortal();
RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, PL_dump_re_max_len);
Perl_re_printf( aTHX_ "%sCompiling REx%s %s\n",
PL_colors[4], PL_colors[5], s);
});
/* we jump here if we have to recompile, e.g., from upgrading the pattern
* to utf8 */
if ((pm_flags & PMf_USE_RE_EVAL)
/* this second condition covers the non-regex literal case,
* i.e. $foo =~ '(?{})'. */
|| (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
)
runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
redo_parse:
/* return old regex if pattern hasn't changed */
/* XXX: note in the below we have to check the flags as well as the
* pattern.
*
* Things get a touch tricky as we have to compare the utf8 flag
* independently from the compile flags. */
if ( old_re
&& !recompile
&& !!RX_UTF8(old_re) == !!RExC_utf8
&& ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
&& RX_PRECOMP(old_re)
&& RX_PRELEN(old_re) == plen
&& memEQ(RX_PRECOMP(old_re), exp, plen)
&& !runtime_code /* with runtime code, always recompile */ )
{
DEBUG_COMPILE_r({
SV *dsv= sv_newmortal();
RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, PL_dump_re_max_len);
Perl_re_printf( aTHX_ "%sSkipping recompilation of unchanged REx%s %s\n",
PL_colors[4], PL_colors[5], s);
});
return old_re;
}
/* Allocate the pattern's SV */
RExC_rx_sv = Rx = (REGEXP*) newSV_type(SVt_REGEXP);
RExC_rx = ReANY(Rx);
if ( RExC_rx == NULL )
FAIL("Regexp out of space");
rx_flags = orig_rx_flags;
if ( toUSE_UNI_CHARSET_NOT_DEPENDS
&& initial_charset == REGEX_DEPENDS_CHARSET)
{
/* Set to use unicode semantics if the pattern is in utf8 and has the
* 'depends' charset specified, as it means unicode when utf8 */
set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
RExC_uni_semantics = 1;
}
RExC_pm_flags = pm_flags;
if (runtime_code) {
assert(TAINTING_get || !TAINT_get);
if (TAINT_get)
Perl_croak(aTHX_ "Eval-group in insecure regular expression");
if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
/* whoops, we have a non-utf8 pattern, whilst run-time code
* got compiled as utf8. Try again with a utf8 pattern */
S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
pRExC_state->code_blocks ? pRExC_state->code_blocks->count : 0);
goto redo_parse;
}
}
assert(!pRExC_state->runtime_code_qr);
RExC_sawback = 0;
RExC_seen = 0;
RExC_maxlen = 0;
RExC_in_lookaround = 0;
RExC_seen_zerolen = *exp == '^' ? -1 : 0;
RExC_recode_x_to_native = 0;
RExC_in_multi_char_class = 0;
RExC_start = RExC_copy_start_in_constructed = RExC_copy_start_in_input = RExC_precomp = exp;
RExC_precomp_end = RExC_end = exp + plen;
RExC_nestroot = 0;
RExC_whilem_seen = 0;
RExC_end_op = NULL;
RExC_recurse = NULL;
RExC_study_chunk_recursed = NULL;
RExC_study_chunk_recursed_bytes= 0;
RExC_recurse_count = 0;
RExC_sets_depth = 0;
pRExC_state->code_index = 0;
/* Initialize the string in the compiled pattern. This is so that there is
* something to output if necessary */
set_regex_pv(pRExC_state, Rx);
DEBUG_PARSE_r({
Perl_re_printf( aTHX_
"Starting parse and generation\n");
RExC_lastnum=0;
RExC_lastparse=NULL;
});
/* Allocate space and zero-initialize. Note, the two step process
of zeroing when in debug mode, thus anything assigned has to
happen after that */
if (! RExC_size) {
/* On the first pass of the parse, we guess how big this will be. Then
* we grow in one operation to that amount and then give it back. As
* we go along, we re-allocate what we need.
*
* XXX Currently the guess is essentially that the pattern will be an
* EXACT node with one byte input, one byte output. This is crude, and
* better heuristics are welcome.
*
* On any subsequent passes, we guess what we actually computed in the
* latest earlier pass. Such a pass probably didn't complete so is
* missing stuff. We could improve those guesses by knowing where the
* parse stopped, and use the length so far plus apply the above
* assumption to what's left. */
RExC_size = STR_SZ(RExC_end - RExC_start);
}
Newxc(RExC_rxi, sizeof(regexp_internal) + RExC_size, char, regexp_internal);
if ( RExC_rxi == NULL )
FAIL("Regexp out of space");
Zero(RExC_rxi, sizeof(regexp_internal) + RExC_size, char);
RXi_SET( RExC_rx, RExC_rxi );
/* We start from 0 (over from 0 in the case this is a reparse. The first
* node parsed will give back any excess memory we have allocated so far).
* */
RExC_size = 0;
/* non-zero initialization begins here */
RExC_rx->engine= eng;
RExC_rx->extflags = rx_flags;
RXp_COMPFLAGS(RExC_rx) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
if (pm_flags & PMf_IS_QR) {
RExC_rxi->code_blocks = pRExC_state->code_blocks;
if (RExC_rxi->code_blocks) {
RExC_rxi->code_blocks->refcnt++;
}
}
RExC_rx->intflags = 0;
RExC_flags = rx_flags; /* don't let top level (?i) bleed */
RExC_parse = exp;
/* This NUL is guaranteed because the pattern comes from an SV*, and the sv
* code makes sure the final byte is an uncounted NUL. But should this
* ever not be the case, lots of things could read beyond the end of the
* buffer: loops like
* while(isFOO(*RExC_parse)) RExC_parse++;
* strchr(RExC_parse, "foo");
* etc. So it is worth noting. */
assert(*RExC_end == '\0');
RExC_naughty = 0;
RExC_npar = 1;
RExC_parens_buf_size = 0;
RExC_emit_start = RExC_rxi->program;
pRExC_state->code_index = 0;
*((char*) RExC_emit_start) = (char) REG_MAGIC;
RExC_emit = 1;
/* Do the parse */
if (reg(pRExC_state, 0, &flags, 1)) {
/* Success!, But we may need to redo the parse knowing how many parens
* there actually are */
if (IN_PARENS_PASS) {
flags |= RESTART_PARSE;
}
/* We have that number in RExC_npar */
RExC_total_parens = RExC_npar;
/* XXX For backporting, use long jumps if there is any possibility of
* overflow */
if (RExC_size > U16_MAX && ! RExC_use_BRANCHJ) {
RExC_use_BRANCHJ = TRUE;
flags |= RESTART_PARSE;
}
}
else if (! MUST_RESTART(flags)) {
ReREFCNT_dec(Rx);
Perl_croak(aTHX_ "panic: reg returned failure to re_op_compile, flags=%#" UVxf, (UV) flags);
}
/* Here, we either have success, or we have to redo the parse for some reason */
if (MUST_RESTART(flags)) {
/* It's possible to write a regexp in ascii that represents Unicode
codepoints outside of the byte range, such as via \x{100}. If we
detect such a sequence we have to convert the entire pattern to utf8
and then recompile, as our sizing calculation will have been based
on 1 byte == 1 character, but we will need to use utf8 to encode
at least some part of the pattern, and therefore must convert the whole
thing.
-- dmq */
if (flags & NEED_UTF8) {
/* We have stored the offset of the final warning output so far.
* That must be adjusted. Any variant characters between the start
* of the pattern and this warning count for 2 bytes in the final,
* so just add them again */
if (UNLIKELY(RExC_latest_warn_offset > 0)) {
RExC_latest_warn_offset +=
variant_under_utf8_count((U8 *) exp, (U8 *) exp
+ RExC_latest_warn_offset);
}
S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
pRExC_state->code_blocks ? pRExC_state->code_blocks->count : 0);
DEBUG_PARSE_r(Perl_re_printf( aTHX_ "Need to redo parse after upgrade\n"));
}
else {
DEBUG_PARSE_r(Perl_re_printf( aTHX_ "Need to redo parse\n"));
}
if (ALL_PARENS_COUNTED) {
/* Make enough room for all the known parens, and zero it */
Renew(RExC_open_parens, RExC_total_parens, regnode_offset);
Zero(RExC_open_parens, RExC_total_parens, regnode_offset);
RExC_open_parens[0] = 1; /* +1 for REG_MAGIC */
Renew(RExC_close_parens, RExC_total_parens, regnode_offset);
Zero(RExC_close_parens, RExC_total_parens, regnode_offset);
}
else { /* Parse did not complete. Reinitialize the parentheses
structures */
RExC_total_parens = 0;
if (RExC_open_parens) {
Safefree(RExC_open_parens);
RExC_open_parens = NULL;
}
if (RExC_close_parens) {
Safefree(RExC_close_parens);
RExC_close_parens = NULL;
}
}
/* Clean up what we did in this parse */
SvREFCNT_dec_NN(RExC_rx_sv);
goto redo_parse;
}
/* Here, we have successfully parsed and generated the pattern's program
* for the regex engine. We are ready to finish things up and look for
* optimizations. */
/* Update the string to compile, with correct modifiers, etc */
set_regex_pv(pRExC_state, Rx);
RExC_rx->nparens = RExC_total_parens - 1;
/* Uses the upper 4 bits of the FLAGS field, so keep within that size */
if (RExC_whilem_seen > 15)
RExC_whilem_seen = 15;
DEBUG_PARSE_r({
Perl_re_printf( aTHX_
"Required size %" IVdf " nodes\n", (IV)RExC_size);
RExC_lastnum=0;
RExC_lastparse=NULL;
});
#ifdef RE_TRACK_PATTERN_OFFSETS
DEBUG_OFFSETS_r(Perl_re_printf( aTHX_
"%s %" UVuf " bytes for offset annotations.\n",
RExC_offsets ? "Got" : "Couldn't get",
(UV)((RExC_offsets[0] * 2 + 1))));
DEBUG_OFFSETS_r(if (RExC_offsets) {
const STRLEN len = RExC_offsets[0];
STRLEN i;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
Perl_re_printf( aTHX_
"Offsets: [%" UVuf "]\n\t", (UV)RExC_offsets[0]);
for (i = 1; i <= len; i++) {
if (RExC_offsets[i*2-1] || RExC_offsets[i*2])
Perl_re_printf( aTHX_ "%" UVuf ":%" UVuf "[%" UVuf "] ",
(UV)i, (UV)RExC_offsets[i*2-1], (UV)RExC_offsets[i*2]);
}
Perl_re_printf( aTHX_ "\n");
});
#else
SetProgLen(RExC_rxi,RExC_size);
#endif
DEBUG_DUMP_PRE_OPTIMIZE_r({
SV * const sv = sv_newmortal();
RXi_GET_DECL(RExC_rx, ri);
DEBUG_RExC_seen();
Perl_re_printf( aTHX_ "Program before optimization:\n");
(void)dumpuntil(RExC_rx, ri->program, ri->program + 1, NULL, NULL,
sv, 0, 0);
});
DEBUG_OPTIMISE_r(
Perl_re_printf( aTHX_ "Starting post parse optimization\n");
);
/* XXXX To minimize changes to RE engine we always allocate
3-units-long substrs field. */
Newx(RExC_rx->substrs, 1, struct reg_substr_data);
if (RExC_recurse_count) {
Newx(RExC_recurse, RExC_recurse_count, regnode *);
SAVEFREEPV(RExC_recurse);
}
if (RExC_seen & REG_RECURSE_SEEN) {
/* Note, RExC_total_parens is 1 + the number of parens in a pattern.
* So its 1 if there are no parens. */
RExC_study_chunk_recursed_bytes= (RExC_total_parens >> 3) +
((RExC_total_parens & 0x07) != 0);
Newx(RExC_study_chunk_recursed,
RExC_study_chunk_recursed_bytes * RExC_total_parens, U8);
SAVEFREEPV(RExC_study_chunk_recursed);
}
reStudy:
RExC_rx->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
DEBUG_r(
RExC_study_chunk_recursed_count= 0;
);
Zero(RExC_rx->substrs, 1, struct reg_substr_data);
if (RExC_study_chunk_recursed) {
Zero(RExC_study_chunk_recursed,
RExC_study_chunk_recursed_bytes * RExC_total_parens, U8);
}
#ifdef TRIE_STUDY_OPT
if (!restudied) {
StructCopy(&zero_scan_data, &data, scan_data_t);
copyRExC_state = RExC_state;
} else {
U32 seen=RExC_seen;
DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "Restudying\n"));
RExC_state = copyRExC_state;
if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
else
RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
StructCopy(&zero_scan_data, &data, scan_data_t);
}
#else
StructCopy(&zero_scan_data, &data, scan_data_t);
#endif
/* Dig out information for optimizations. */
RExC_rx->extflags = RExC_flags; /* was pm_op */
/*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
if (UTF)
SvUTF8_on(Rx); /* Unicode in it? */
RExC_rxi->regstclass = NULL;
if (RExC_naughty >= TOO_NAUGHTY) /* Probably an expensive pattern. */
RExC_rx->intflags |= PREGf_NAUGHTY;
scan = RExC_rxi->program + 1; /* First BRANCH. */
/* testing for BRANCH here tells us whether there is "must appear"
data in the pattern. If there is then we can use it for optimisations */
if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /* Only one top-level choice.
*/
SSize_t fake;
STRLEN longest_length[2];
regnode_ssc ch_class; /* pointed to by data */
int stclass_flag;
SSize_t last_close = 0; /* pointed to by data */
regnode *first= scan;
regnode *first_next= regnext(first);
int i;
/*
* Skip introductions and multiplicators >= 1
* so that we can extract the 'meat' of the pattern that must
* match in the large if() sequence following.
* NOTE that EXACT is NOT covered here, as it is normally
* picked up by the optimiser separately.
*
* This is unfortunate as the optimiser isnt handling lookahead
* properly currently.
*
*/
while ((OP(first) == OPEN && (sawopen = 1)) ||
/* An OR of *one* alternative - should not happen now. */
(OP(first) == BRANCH && OP(first_next) != BRANCH) ||
/* for now we can't handle lookbehind IFMATCH*/
(OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
(OP(first) == PLUS) ||
(OP(first) == MINMOD) ||
/* An {n,m} with n>0 */
(PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
(OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
{
/*
* the only op that could be a regnode is PLUS, all the rest
* will be regnode_1 or regnode_2.
*
* (yves doesn't think this is true)
*/
if (OP(first) == PLUS)
sawplus = 1;
else {
if (OP(first) == MINMOD)
sawminmod = 1;
first += regarglen[OP(first)];
}
first = NEXTOPER(first);
first_next= regnext(first);
}
/* Starting-point info. */
again:
DEBUG_PEEP("first:", first, 0, 0);
/* Ignore EXACT as we deal with it later. */
if (PL_regkind[OP(first)] == EXACT) {
if ( OP(first) == EXACT
|| OP(first) == LEXACT
|| OP(first) == EXACT_REQ8
|| OP(first) == LEXACT_REQ8
|| OP(first) == EXACTL)
{
NOOP; /* Empty, get anchored substr later. */
}
else
RExC_rxi->regstclass = first;
}
#ifdef TRIE_STCLASS
else if (PL_regkind[OP(first)] == TRIE &&
((reg_trie_data *)RExC_rxi->data->data[ ARG(first) ])->minlen>0)
{
/* this can happen only on restudy */
RExC_rxi->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
}
#endif
else if (REGNODE_SIMPLE(OP(first)))
RExC_rxi->regstclass = first;
else if (PL_regkind[OP(first)] == BOUND ||
PL_regkind[OP(first)] == NBOUND)
RExC_rxi->regstclass = first;
else if (PL_regkind[OP(first)] == BOL) {
RExC_rx->intflags |= (OP(first) == MBOL
? PREGf_ANCH_MBOL
: PREGf_ANCH_SBOL);
first = NEXTOPER(first);
goto again;
}
else if (OP(first) == GPOS) {
RExC_rx->intflags |= PREGf_ANCH_GPOS;
first = NEXTOPER(first);
goto again;
}
else if ((!sawopen || !RExC_sawback) &&
!sawlookahead &&
(OP(first) == STAR &&
PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
!(RExC_rx->intflags & PREGf_ANCH) && !pRExC_state->code_blocks)
{
/* turn .* into ^.* with an implied $*=1 */
const int type =
(OP(NEXTOPER(first)) == REG_ANY)
? PREGf_ANCH_MBOL
: PREGf_ANCH_SBOL;
RExC_rx->intflags |= (type | PREGf_IMPLICIT);
first = NEXTOPER(first);
goto again;
}
if (sawplus && !sawminmod && !sawlookahead
&& (!sawopen || !RExC_sawback)
&& !pRExC_state->code_blocks) /* May examine pos and $& */
/* x+ must match at the 1st pos of run of x's */
RExC_rx->intflags |= PREGf_SKIP;
/* Scan is after the zeroth branch, first is atomic matcher. */
#ifdef TRIE_STUDY_OPT
DEBUG_PARSE_r(
if (!restudied)
Perl_re_printf( aTHX_ "first at %" IVdf "\n",
(IV)(first - scan + 1))
);
#else
DEBUG_PARSE_r(
Perl_re_printf( aTHX_ "first at %" IVdf "\n",
(IV)(first - scan + 1))
);
#endif
/*
* If there's something expensive in the r.e., find the
* longest literal string that must appear and make it the
* regmust. Resolve ties in favor of later strings, since
* the regstart check works with the beginning of the r.e.
* and avoiding duplication strengthens checking. Not a
* strong reason, but sufficient in the absence of others.
* [Now we resolve ties in favor of the earlier string if
* it happens that c_offset_min has been invalidated, since the
* earlier string may buy us something the later one won't.]
*/
data.substrs[0].str = newSVpvs("");
data.substrs[1].str = newSVpvs("");
data.last_found = newSVpvs("");
data.cur_is_floating = 0; /* initially any found substring is fixed */
ENTER_with_name("study_chunk");
SAVEFREESV(data.substrs[0].str);
SAVEFREESV(data.substrs[1].str);
SAVEFREESV(data.last_found);
first = scan;
if (!RExC_rxi->regstclass) {
ssc_init(pRExC_state, &ch_class);
data.start_class = &ch_class;
stclass_flag = SCF_DO_STCLASS_AND;
} else /* XXXX Check for BOUND? */
stclass_flag = 0;
data.last_closep = &last_close;
DEBUG_RExC_seen();
/*
* MAIN ENTRY FOR study_chunk() FOR m/PATTERN/
* (NO top level branches)
*/
minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
scan + RExC_size, /* Up to end */
&data, -1, 0, NULL,
SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
| (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
0, TRUE);
CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
if ( RExC_total_parens == 1 && !data.cur_is_floating
&& data.last_start_min == 0 && data.last_end > 0
&& !RExC_seen_zerolen
&& !(RExC_seen & REG_VERBARG_SEEN)
&& !(RExC_seen & REG_GPOS_SEEN)
){
RExC_rx->extflags |= RXf_CHECK_ALL;
}
scan_commit(pRExC_state, &data,&minlen, 0);
/* XXX this is done in reverse order because that's the way the
* code was before it was parameterised. Don't know whether it
* actually needs doing in reverse order. DAPM */
for (i = 1; i >= 0; i--) {
longest_length[i] = CHR_SVLEN(data.substrs[i].str);
if ( !( i
&& SvCUR(data.substrs[0].str) /* ok to leave SvCUR */
&& data.substrs[0].min_offset
== data.substrs[1].min_offset
&& SvCUR(data.substrs[0].str)
== SvCUR(data.substrs[1].str)
)
&& S_setup_longest (aTHX_ pRExC_state,
&(RExC_rx->substrs->data[i]),
&(data.substrs[i]),
longest_length[i]))
{
RExC_rx->substrs->data[i].min_offset =
data.substrs[i].min_offset - data.substrs[i].lookbehind;
RExC_rx->substrs->data[i].max_offset = data.substrs[i].max_offset;
/* Don't offset infinity */
if (data.substrs[i].max_offset < OPTIMIZE_INFTY)
RExC_rx->substrs->data[i].max_offset -= data.substrs[i].lookbehind;
SvREFCNT_inc_simple_void_NN(data.substrs[i].str);
}
else {
RExC_rx->substrs->data[i].substr = NULL;
RExC_rx->substrs->data[i].utf8_substr = NULL;
longest_length[i] = 0;
}
}
LEAVE_with_name("study_chunk");
if (RExC_rxi->regstclass
&& (OP(RExC_rxi->regstclass) == REG_ANY || OP(RExC_rxi->regstclass) == SANY))
RExC_rxi->regstclass = NULL;
if ((!(RExC_rx->substrs->data[0].substr || RExC_rx->substrs->data[0].utf8_substr)
|| RExC_rx->substrs->data[0].min_offset)
&& stclass_flag
&& ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
&& is_ssc_worth_it(pRExC_state, data.start_class))
{
const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
ssc_finalize(pRExC_state, data.start_class);
Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
StructCopy(data.start_class,
(regnode_ssc*)RExC_rxi->data->data[n],
regnode_ssc);
RExC_rxi->regstclass = (regnode*)RExC_rxi->data->data[n];
RExC_rx->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
regprop(RExC_rx, sv, (regnode*)data.start_class, NULL, pRExC_state);
Perl_re_printf( aTHX_
"synthetic stclass \"%s\".\n",
SvPVX_const(sv));});
data.start_class = NULL;
}
/* A temporary algorithm prefers floated substr to fixed one of
* same length to dig more info. */
i = (longest_length[0] <= longest_length[1]);
RExC_rx->substrs->check_ix = i;
RExC_rx->check_end_shift = RExC_rx->substrs->data[i].end_shift;
RExC_rx->check_substr = RExC_rx->substrs->data[i].substr;
RExC_rx->check_utf8 = RExC_rx->substrs->data[i].utf8_substr;
RExC_rx->check_offset_min = RExC_rx->substrs->data[i].min_offset;
RExC_rx->check_offset_max = RExC_rx->substrs->data[i].max_offset;
if (!i && (RExC_rx->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS)))
RExC_rx->intflags |= PREGf_NOSCAN;
if ((RExC_rx->check_substr || RExC_rx->check_utf8) ) {
RExC_rx->extflags |= RXf_USE_INTUIT;
if (SvTAIL(RExC_rx->check_substr ? RExC_rx->check_substr : RExC_rx->check_utf8))
RExC_rx->extflags |= RXf_INTUIT_TAIL;
}
/* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
if ( (STRLEN)minlen < longest_length[1] )
minlen= longest_length[1];
if ( (STRLEN)minlen < longest_length[0] )
minlen= longest_length[0];
*/
}
else {
/* Several toplevels. Best we can is to set minlen. */
SSize_t fake;
regnode_ssc ch_class;
SSize_t last_close = 0;
DEBUG_PARSE_r(Perl_re_printf( aTHX_ "\nMulti Top Level\n"));
scan = RExC_rxi->program + 1;
ssc_init(pRExC_state, &ch_class);
data.start_class = &ch_class;
data.last_closep = &last_close;
DEBUG_RExC_seen();
/*
* MAIN ENTRY FOR study_chunk() FOR m/P1|P2|.../
* (patterns WITH top level branches)
*/
minlen = study_chunk(pRExC_state,
&scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
? SCF_TRIE_DOING_RESTUDY
: 0),
0, TRUE);
CHECK_RESTUDY_GOTO_butfirst(NOOP);
RExC_rx->check_substr = NULL;
RExC_rx->check_utf8 = NULL;
RExC_rx->substrs->data[0].substr = NULL;
RExC_rx->substrs->data[0].utf8_substr = NULL;
RExC_rx->substrs->data[1].substr = NULL;
RExC_rx->substrs->data[1].utf8_substr = NULL;
if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
&& is_ssc_worth_it(pRExC_state, data.start_class))
{
const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
ssc_finalize(pRExC_state, data.start_class);
Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
StructCopy(data.start_class,
(regnode_ssc*)RExC_rxi->data->data[n],
regnode_ssc);
RExC_rxi->regstclass = (regnode*)RExC_rxi->data->data[n];
RExC_rx->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
regprop(RExC_rx, sv, (regnode*)data.start_class, NULL, pRExC_state);
Perl_re_printf( aTHX_
"synthetic stclass \"%s\".\n",
SvPVX_const(sv));});
data.start_class = NULL;
}
}
if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
RExC_rx->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
RExC_rx->maxlen = REG_INFTY;
}
else {
RExC_rx->maxlen = RExC_maxlen;
}
/* Guard against an embedded (?=) or (?<=) with a longer minlen than
the "real" pattern. */
DEBUG_OPTIMISE_r({
Perl_re_printf( aTHX_ "minlen: %" IVdf " RExC_rx->minlen:%" IVdf " maxlen:%" IVdf "\n",
(IV)minlen, (IV)RExC_rx->minlen, (IV)RExC_maxlen);
});
RExC_rx->minlenret = minlen;
if (RExC_rx->minlen < minlen)
RExC_rx->minlen = minlen;
if (RExC_seen & REG_RECURSE_SEEN ) {
RExC_rx->intflags |= PREGf_RECURSE_SEEN;
Newx(RExC_rx->recurse_locinput, RExC_rx->nparens + 1, char *);
}
if (RExC_seen & REG_GPOS_SEEN)
RExC_rx->intflags |= PREGf_GPOS_SEEN;
if (RExC_seen & REG_LOOKBEHIND_SEEN)
RExC_rx->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
lookbehind */
if (pRExC_state->code_blocks)
RExC_rx->extflags |= RXf_EVAL_SEEN;
if (RExC_seen & REG_VERBARG_SEEN)
{
RExC_rx->intflags |= PREGf_VERBARG_SEEN;
RExC_rx->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
}
if (RExC_seen & REG_CUTGROUP_SEEN)
RExC_rx->intflags |= PREGf_CUTGROUP_SEEN;
if (pm_flags & PMf_USE_RE_EVAL)
RExC_rx->intflags |= PREGf_USE_RE_EVAL;
if (RExC_paren_names)
RXp_PAREN_NAMES(RExC_rx) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
else
RXp_PAREN_NAMES(RExC_rx) = NULL;
/* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
* so it can be used in pp.c */
if (RExC_rx->intflags & PREGf_ANCH)
RExC_rx->extflags |= RXf_IS_ANCHORED;
{
/* this is used to identify "special" patterns that might result
* in Perl NOT calling the regex engine and instead doing the match "itself",
* particularly special cases in split//. By having the regex compiler
* do this pattern matching at a regop level (instead of by inspecting the pattern)
* we avoid weird issues with equivalent patterns resulting in different behavior,
* AND we allow non Perl engines to get the same optimizations by the setting the
* flags appropriately - Yves */
regnode *first = RExC_rxi->program + 1;
U8 fop = OP(first);
regnode *next = regnext(first);
U8 nop = OP(next);
if (PL_regkind[fop] == NOTHING && nop == END)
RExC_rx->extflags |= RXf_NULL;
else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
/* when fop is SBOL first->flags will be true only when it was
* produced by parsing /\A/, and not when parsing /^/. This is
* very important for the split code as there we want to
* treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
* See rt #122761 for more details. -- Yves */
RExC_rx->extflags |= RXf_START_ONLY;
else if (fop == PLUS
&& PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
&& nop == END)
RExC_rx->extflags |= RXf_WHITE;
else if ( RExC_rx->extflags & RXf_SPLIT
&& ( fop == EXACT || fop == LEXACT
|| fop == EXACT_REQ8 || fop == LEXACT_REQ8
|| fop == EXACTL)
&& STR_LEN(first) == 1
&& *(STRING(first)) == ' '
&& nop == END )
RExC_rx->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
}
if (RExC_contains_locale) {
RXp_EXTFLAGS(RExC_rx) |= RXf_TAINTED;
}
#ifdef DEBUGGING
if (RExC_paren_names) {
RExC_rxi->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
RExC_rxi->data->data[RExC_rxi->name_list_idx]
= (void*)SvREFCNT_inc(RExC_paren_name_list);
} else
#endif
RExC_rxi->name_list_idx = 0;
while ( RExC_recurse_count > 0 ) {
const regnode *scan = RExC_recurse[ --RExC_recurse_count ];
/*
* This data structure is set up in study_chunk() and is used
* to calculate the distance between a GOSUB regopcode and
* the OPEN/CURLYM (CURLYM's are special and can act like OPEN's)
* it refers to.
*
* If for some reason someone writes code that optimises
* away a GOSUB opcode then the assert should be changed to
* an if(scan) to guard the ARG2L_SET() - Yves
*
*/
assert(scan && OP(scan) == GOSUB);
ARG2L_SET( scan, RExC_open_parens[ARG(scan)] - REGNODE_OFFSET(scan));
}
Newxz(RExC_rx->offs, RExC_total_parens, regexp_paren_pair);
/* assume we don't need to swap parens around before we match */
DEBUG_TEST_r({
Perl_re_printf( aTHX_ "study_chunk_recursed_count: %lu\n",
(unsigned long)RExC_study_chunk_recursed_count);
});
DEBUG_DUMP_r({
DEBUG_RExC_seen();
Perl_re_printf( aTHX_ "Final program:\n");
regdump(RExC_rx);
});
if (RExC_open_parens) {
Safefree(RExC_open_parens);
RExC_open_parens = NULL;
}
if (RExC_close_parens) {
Safefree(RExC_close_parens);
RExC_close_parens = NULL;
}
#ifdef USE_ITHREADS
/* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
* by setting the regexp SV to readonly-only instead. If the
* pattern's been recompiled, the USEDness should remain. */
if (old_re && SvREADONLY(old_re))
SvREADONLY_on(Rx);
#endif
return Rx;
}
SV*
Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
const U32 flags)
{
PERL_ARGS_ASSERT_REG_NAMED_BUFF;
PERL_UNUSED_ARG(value);
if (flags & RXapif_FETCH) {
return reg_named_buff_fetch(rx, key, flags);
} else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
Perl_croak_no_modify();
return NULL;
} else if (flags & RXapif_EXISTS) {
return reg_named_buff_exists(rx, key, flags)
? &PL_sv_yes
: &PL_sv_no;
} else if (flags & RXapif_REGNAMES) {
return reg_named_buff_all(rx, flags);
} else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
return reg_named_buff_scalar(rx, flags);
} else {
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
return NULL;
}
}
SV*
Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
const U32 flags)
{
PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
PERL_UNUSED_ARG(lastkey);
if (flags & RXapif_FIRSTKEY)
return reg_named_buff_firstkey(rx, flags);
else if (flags & RXapif_NEXTKEY)
return reg_named_buff_nextkey(rx, flags);
else {
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
(int)flags);
return NULL;
}
}
SV*
Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
const U32 flags)
{
SV *ret;
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
if (rx && RXp_PAREN_NAMES(rx)) {
HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
if (he_str) {
IV i;
SV* sv_dat=HeVAL(he_str);
I32 *nums=(I32*)SvPVX(sv_dat);
AV * const retarray = (flags & RXapif_ALL) ? newAV() : NULL;
for ( i=0; i<SvIVX(sv_dat); i++ ) {
if ((I32)(rx->nparens) >= nums[i]
&& rx->offs[nums[i]].start != -1
&& rx->offs[nums[i]].end != -1)
{
ret = newSVpvs("");
CALLREG_NUMBUF_FETCH(r, nums[i], ret);
if (!retarray)
return ret;
} else {
if (retarray)
ret = newSVsv(&PL_sv_undef);
}
if (retarray)
av_push(retarray, ret);
}
if (retarray)
return newRV_noinc(MUTABLE_SV(retarray));
}
}
return NULL;
}
bool
Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
const U32 flags)
{
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
if (rx && RXp_PAREN_NAMES(rx)) {
if (flags & RXapif_ALL) {
return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
} else {
SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
if (sv) {
SvREFCNT_dec_NN(sv);
return TRUE;
} else {
return FALSE;
}
}
} else {
return FALSE;
}
}
SV*
Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
if ( rx && RXp_PAREN_NAMES(rx) ) {
(void)hv_iterinit(RXp_PAREN_NAMES(rx));
return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
} else {
return FALSE;
}
}
SV*
Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = ReANY(r);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
if (rx && RXp_PAREN_NAMES(rx)) {
HV *hv = RXp_PAREN_NAMES(rx);
HE *temphe;
while ( (temphe = hv_iternext_flags(hv, 0)) ) {
IV i;
IV parno = 0;
SV* sv_dat = HeVAL(temphe);
I32 *nums = (I32*)SvPVX(sv_dat);
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
if ((I32)(rx->lastparen) >= nums[i] &&
rx->offs[nums[i]].start != -1 &&
rx->offs[nums[i]].end != -1)
{
parno = nums[i];
break;
}
}
if (parno || flags & RXapif_ALL) {
return newSVhek(HeKEY_hek(temphe));
}
}
}
return NULL;
}
SV*
Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
{
SV *ret;
AV *av;
SSize_t length;
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
if (rx && RXp_PAREN_NAMES(rx)) {
if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
} else if (flags & RXapif_ONE) {
ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
av = MUTABLE_AV(SvRV(ret));
length = av_tindex(av);
SvREFCNT_dec_NN(ret);
return newSViv(length + 1);
} else {
Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
(int)flags);
return NULL;
}
}
return &PL_sv_undef;
}
SV*
Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = ReANY(r);
AV *av = newAV();
PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
if (rx && RXp_PAREN_NAMES(rx)) {
HV *hv= RXp_PAREN_NAMES(rx);
HE *temphe;
(void)hv_iterinit(hv);
while ( (temphe = hv_iternext_flags(hv, 0)) ) {
IV i;
IV parno = 0;
SV* sv_dat = HeVAL(temphe);
I32 *nums = (I32*)SvPVX(sv_dat);
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
if ((I32)(rx->lastparen) >= nums[i] &&
rx->offs[nums[i]].start != -1 &&
rx->offs[nums[i]].end != -1)
{
parno = nums[i];
break;
}
}
if (parno || flags & RXapif_ALL) {
av_push(av, newSVhek(HeKEY_hek(temphe)));
}
}
}
return newRV_noinc(MUTABLE_SV(av));
}
void
Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
SV * const sv)
{
struct regexp *const rx = ReANY(r);
char *s = NULL;
SSize_t i = 0;
SSize_t s1, t1;
I32 n = paren;
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
if ( n == RX_BUFF_IDX_CARET_PREMATCH
|| n == RX_BUFF_IDX_CARET_FULLMATCH
|| n == RX_BUFF_IDX_CARET_POSTMATCH
)
{
bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
if (!keepcopy) {
/* on something like
* $r = qr/.../;
* /$qr/p;
* the KEEPCOPY is set on the PMOP rather than the regex */
if (PL_curpm && r == PM_GETRE(PL_curpm))
keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
}
if (!keepcopy)
goto ret_undef;
}
if (!rx->subbeg)
goto ret_undef;
if (n == RX_BUFF_IDX_CARET_FULLMATCH)
/* no need to distinguish between them any more */
n = RX_BUFF_IDX_FULLMATCH;
if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
&& rx->offs[0].start != -1)
{
/* $`, ${^PREMATCH} */
i = rx->offs[0].start;
s = rx->subbeg;
}
else
if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
&& rx->offs[0].end != -1)
{
/* $', ${^POSTMATCH} */
s = rx->subbeg - rx->suboffset + rx->offs[0].end;
i = rx->sublen + rx->suboffset - rx->offs[0].end;
}
else
if (inRANGE(n, 0, (I32)rx->nparens) &&
(s1 = rx->offs[n].start) != -1 &&
(t1 = rx->offs[n].end) != -1)
{
/* $&, ${^MATCH}, $1 ... */
i = t1 - s1;
s = rx->subbeg + s1 - rx->suboffset;
} else {
goto ret_undef;
}
assert(s >= rx->subbeg);
assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
if (i >= 0) {
#ifdef NO_TAINT_SUPPORT
sv_setpvn(sv, s, i);
#else
const int oldtainted = TAINT_get;
TAINT_NOT;
sv_setpvn(sv, s, i);
TAINT_set(oldtainted);
#endif
if (RXp_MATCH_UTF8(rx))
SvUTF8_on(sv);
else
SvUTF8_off(sv);
if (TAINTING_get) {
if (RXp_MATCH_TAINTED(rx)) {
if (SvTYPE(sv) >= SVt_PVMG) {
MAGIC* const mg = SvMAGIC(sv);
MAGIC* mgt;
TAINT;
SvMAGIC_set(sv, mg->mg_moremagic);
SvTAINT(sv);
if ((mgt = SvMAGIC(sv))) {
mg->mg_moremagic = mgt;
SvMAGIC_set(sv, mg);
}
} else {
TAINT;
SvTAINT(sv);
}
} else
SvTAINTED_off(sv);
}
} else {
ret_undef:
sv_set_undef(sv);
return;
}
}
void
Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
SV const * const value)
{
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
PERL_UNUSED_ARG(rx);
PERL_UNUSED_ARG(paren);
PERL_UNUSED_ARG(value);
if (!PL_localizing)
Perl_croak_no_modify();
}
I32
Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
const I32 paren)
{
struct regexp *const rx = ReANY(r);
I32 i;
I32 s1, t1;
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
if ( paren == RX_BUFF_IDX_CARET_PREMATCH
|| paren == RX_BUFF_IDX_CARET_FULLMATCH
|| paren == RX_BUFF_IDX_CARET_POSTMATCH
)
{
bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
if (!keepcopy) {
/* on something like
* $r = qr/.../;
* /$qr/p;
* the KEEPCOPY is set on the PMOP rather than the regex */
if (PL_curpm && r == PM_GETRE(PL_curpm))
keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
}
if (!keepcopy)
goto warn_undef;
}
/* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
switch (paren) {
case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
case RX_BUFF_IDX_PREMATCH: /* $` */
if (rx->offs[0].start != -1) {
i = rx->offs[0].start;
if (i > 0) {
s1 = 0;
t1 = i;
goto getlen;
}
}
return 0;
case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
case RX_BUFF_IDX_POSTMATCH: /* $' */
if (rx->offs[0].end != -1) {
i = rx->sublen - rx->offs[0].end;
if (i > 0) {
s1 = rx->offs[0].end;
t1 = rx->sublen;
goto getlen;
}
}
return 0;
default: /* $& / ${^MATCH}, $1, $2, ... */
if (paren <= (I32)rx->nparens &&
(s1 = rx->offs[paren].start) != -1 &&
(t1 = rx->offs[paren].end) != -1)
{
i = t1 - s1;
goto getlen;
} else {
warn_undef:
if (ckWARN(WARN_UNINITIALIZED))
report_uninit((const SV *)sv);
return 0;
}
}
getlen:
if (i > 0 && RXp_MATCH_UTF8(rx)) {
const char * const s = rx->subbeg - rx->suboffset + s1;
const U8 *ep;
STRLEN el;
i = t1 - s1;
if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
i = el;
}
return i;
}
SV*
Perl_reg_qr_package(pTHX_ REGEXP * const rx)
{
PERL_ARGS_ASSERT_REG_QR_PACKAGE;
PERL_UNUSED_ARG(rx);
if (0)
return NULL;
else
return newSVpvs("Regexp");
}
/* Scans the name of a named buffer from the pattern.
* If flags is REG_RSN_RETURN_NULL returns null.
* If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
* If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
* to the parsed name as looked up in the RExC_paren_names hash.
* If there is an error throws a vFAIL().. type exception.
*/
#define REG_RSN_RETURN_NULL 0
#define REG_RSN_RETURN_NAME 1
#define REG_RSN_RETURN_DATA 2
STATIC SV*
S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
{
char *name_start = RExC_parse;
SV* sv_name;
PERL_ARGS_ASSERT_REG_SCAN_NAME;
assert (RExC_parse <= RExC_end);
if (RExC_parse == RExC_end) NOOP;
else if (isIDFIRST_lazy_if_safe(RExC_parse, RExC_end, UTF)) {
/* Note that the code here assumes well-formed UTF-8. Skip IDFIRST by
* using do...while */
if (UTF)
do {
RExC_parse += UTF8SKIP(RExC_parse);
} while ( RExC_parse < RExC_end
&& isWORDCHAR_utf8_safe((U8*)RExC_parse, (U8*) RExC_end));
else
do {
RExC_parse++;
} while (RExC_parse < RExC_end && isWORDCHAR(*RExC_parse));
} else {
RExC_parse++; /* so the <- from the vFAIL is after the offending
character */
vFAIL("Group name must start with a non-digit word character");
}
sv_name = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
SVs_TEMP | (UTF ? SVf_UTF8 : 0));
if ( flags == REG_RSN_RETURN_NAME)
return sv_name;
else if (flags==REG_RSN_RETURN_DATA) {
HE *he_str = NULL;
SV *sv_dat = NULL;
if ( ! sv_name ) /* should not happen*/
Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
if (RExC_paren_names)
he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
if ( he_str )
sv_dat = HeVAL(he_str);
if ( ! sv_dat ) { /* Didn't find group */
/* It might be a forward reference; we can't fail until we
* know, by completing the parse to get all the groups, and
* then reparsing */
if (ALL_PARENS_COUNTED) {
vFAIL("Reference to nonexistent named group");
}
else {
REQUIRE_PARENS_PASS;
}
}
return sv_dat;
}
Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
(unsigned long) flags);
}
#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
if (RExC_lastparse!=RExC_parse) { \
Perl_re_printf( aTHX_ "%s", \
Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse, \
RExC_end - RExC_parse, 16, \
"", "", \
PERL_PV_ESCAPE_UNI_DETECT | \
PERL_PV_PRETTY_ELLIPSES | \
PERL_PV_PRETTY_LTGT | \
PERL_PV_ESCAPE_RE | \
PERL_PV_PRETTY_EXACTSIZE \
) \
); \
} else \
Perl_re_printf( aTHX_ "%16s",""); \
\
if (RExC_lastnum!=RExC_emit) \
Perl_re_printf( aTHX_ "|%4zu", RExC_emit); \
else \
Perl_re_printf( aTHX_ "|%4s",""); \
Perl_re_printf( aTHX_ "|%*s%-4s", \
(int)((depth*2)), "", \
(funcname) \
); \
RExC_lastnum=RExC_emit; \
RExC_lastparse=RExC_parse; \
})
#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
DEBUG_PARSE_MSG((funcname)); \
Perl_re_printf( aTHX_ "%4s","\n"); \
})
#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({\
DEBUG_PARSE_MSG((funcname)); \
Perl_re_printf( aTHX_ fmt "\n",args); \
})
/* This section of code defines the inversion list object and its methods. The
* interfaces are highly subject to change, so as much as possible is static to
* this file. An inversion list is here implemented as a malloc'd C UV array
* as an SVt_INVLIST scalar.
*
* An inversion list for Unicode is an array of code points, sorted by ordinal
* number. Each element gives the code point that begins a range that extends
* up-to but not including the code point given by the next element. The final
* element gives the first code point of a range that extends to the platform's
* infinity. The even-numbered elements (invlist[0], invlist[2], invlist[4],
* ...) give ranges whose code points are all in the inversion list. We say
* that those ranges are in the set. The odd-numbered elements give ranges
* whose code points are not in the inversion list, and hence not in the set.
* Thus, element [0] is the first code point in the list. Element [1]
* is the first code point beyond that not in the list; and element [2] is the
* first code point beyond that that is in the list. In other words, the first
* range is invlist[0]..(invlist[1]-1), and all code points in that range are
* in the inversion list. The second range is invlist[1]..(invlist[2]-1), and
* all code points in that range are not in the inversion list. The third
* range invlist[2]..(invlist[3]-1) gives code points that are in the inversion
* list, and so forth. Thus every element whose index is divisible by two
* gives the beginning of a range that is in the list, and every element whose
* index is not divisible by two gives the beginning of a range not in the
* list. If the final element's index is divisible by two, the inversion list
* extends to the platform's infinity; otherwise the highest code point in the
* inversion list is the contents of that element minus 1.
*
* A range that contains just a single code point N will look like
* invlist[i] == N
* invlist[i+1] == N+1
*
* If N is UV_MAX (the highest representable code point on the machine), N+1 is
* impossible to represent, so element [i+1] is omitted. The single element
* inversion list
* invlist[0] == UV_MAX
* contains just UV_MAX, but is interpreted as matching to infinity.
*
* Taking the complement (inverting) an inversion list is quite simple, if the
* first element is 0, remove it; otherwise add a 0 element at the beginning.
* This implementation reserves an element at the beginning of each inversion
* list to always contain 0; there is an additional flag in the header which
* indicates if the list begins at the 0, or is offset to begin at the next
* element. This means that the inversion list can be inverted without any
* copying; just flip the flag.
*
* More about inversion lists can be found in "Unicode Demystified"
* Chapter 13 by Richard Gillam, published by Addison-Wesley.
*
* The inversion list data structure is currently implemented as an SV pointing
* to an array of UVs that the SV thinks are bytes. This allows us to have an
* array of UV whose memory management is automatically handled by the existing
* facilities for SV's.
*
* Some of the methods should always be private to the implementation, and some
* should eventually be made public */
/* The header definitions are in F<invlist_inline.h> */
#ifndef PERL_IN_XSUB_RE
PERL_STATIC_INLINE UV*
S__invlist_array_init(SV* const invlist, const bool will_have_0)
{
/* Returns a pointer to the first element in the inversion list's array.
* This is called upon initialization of an inversion list. Where the
* array begins depends on whether the list has the code point U+0000 in it
* or not. The other parameter tells it whether the code that follows this
* call is about to put a 0 in the inversion list or not. The first
* element is either the element reserved for 0, if TRUE, or the element
* after it, if FALSE */
bool* offset = get_invlist_offset_addr(invlist);
UV* zero_addr = (UV *) SvPVX(invlist);
PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
/* Must be empty */
assert(! _invlist_len(invlist));
*zero_addr = 0;
/* 1^1 = 0; 1^0 = 1 */
*offset = 1 ^ will_have_0;
return zero_addr + *offset;
}
STATIC void
S_invlist_replace_list_destroys_src(pTHX_ SV * dest, SV * src)
{
/* Replaces the inversion list in 'dest' with the one from 'src'. It
* steals the list from 'src', so 'src' is made to have a NULL list. This
* is similar to what SvSetMagicSV() would do, if it were implemented on
* inversion lists, though this routine avoids a copy */
const UV src_len = _invlist_len(src);
const bool src_offset = *get_invlist_offset_addr(src);
const STRLEN src_byte_len = SvLEN(src);
char * array = SvPVX(src);
const int oldtainted = TAINT_get;
PERL_ARGS_ASSERT_INVLIST_REPLACE_LIST_DESTROYS_SRC;
assert(is_invlist(src));
assert(is_invlist(dest));
assert(! invlist_is_iterating(src));
assert(SvCUR(src) == 0 || SvCUR(src) < SvLEN(src));
/* Make sure it ends in the right place with a NUL, as our inversion list
* manipulations aren't careful to keep this true, but sv_usepvn_flags()
* asserts it */
array[src_byte_len - 1] = '\0';
TAINT_NOT; /* Otherwise it breaks */
sv_usepvn_flags(dest,
(char *) array,
src_byte_len - 1,
/* This flag is documented to cause a copy to be avoided */
SV_HAS_TRAILING_NUL);
TAINT_set(oldtainted);
SvPV_set(src, 0);
SvLEN_set(src, 0);
SvCUR_set(src, 0);
/* Finish up copying over the other fields in an inversion list */
*get_invlist_offset_addr(dest) = src_offset;
invlist_set_len(dest, src_len, src_offset);
*get_invlist_previous_index_addr(dest) = 0;
invlist_iterfinish(dest);
}
PERL_STATIC_INLINE IV*
S_get_invlist_previous_index_addr(SV* invlist)
{
/* Return the address of the IV that is reserved to hold the cached index
* */
PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
assert(is_invlist(invlist));
return &(((XINVLIST*) SvANY(invlist))->prev_index);
}
PERL_STATIC_INLINE IV
S_invlist_previous_index(SV* const invlist)
{
/* Returns cached index of previous search */
PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
return *get_invlist_previous_index_addr(invlist);
}
PERL_STATIC_INLINE void
S_invlist_set_previous_index(SV* const invlist, const IV index)
{
/* Caches <index> for later retrieval */
PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
assert(index == 0 || index < (int) _invlist_len(invlist));
*get_invlist_previous_index_addr(invlist) = index;
}
PERL_STATIC_INLINE void
S_invlist_trim(SV* invlist)
{
/* Free the not currently-being-used space in an inversion list */
/* But don't free up the space needed for the 0 UV that is always at the
* beginning of the list, nor the trailing NUL */
const UV min_size = TO_INTERNAL_SIZE(1) + 1;
PERL_ARGS_ASSERT_INVLIST_TRIM;
assert(is_invlist(invlist));
SvPV_renew(invlist, MAX(min_size, SvCUR(invlist) + 1));
}
PERL_STATIC_INLINE void
S_invlist_clear(pTHX_ SV* invlist) /* Empty the inversion list */
{
PERL_ARGS_ASSERT_INVLIST_CLEAR;
assert(is_invlist(invlist));
invlist_set_len(invlist, 0, 0);
invlist_trim(invlist);
}
#endif /* ifndef PERL_IN_XSUB_RE */
PERL_STATIC_INLINE bool
S_invlist_is_iterating(SV* const invlist)
{
PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
}
#ifndef PERL_IN_XSUB_RE
PERL_STATIC_INLINE UV
S_invlist_max(SV* const invlist)
{
/* Returns the maximum number of elements storable in the inversion list's
* array, without having to realloc() */
PERL_ARGS_ASSERT_INVLIST_MAX;
assert(is_invlist(invlist));
/* Assumes worst case, in which the 0 element is not counted in the
* inversion list, so subtracts 1 for that */
return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
: FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
}
STATIC void
S_initialize_invlist_guts(pTHX_ SV* invlist, const Size_t initial_size)
{
PERL_ARGS_ASSERT_INITIALIZE_INVLIST_GUTS;
/* First 1 is in case the zero element isn't in the list; second 1 is for
* trailing NUL */
SvGROW(invlist, TO_INTERNAL_SIZE(initial_size + 1) + 1);
invlist_set_len(invlist, 0, 0);
/* Force iterinit() to be used to get iteration to work */
invlist_iterfinish(invlist);
*get_invlist_previous_index_addr(invlist) = 0;
SvPOK_on(invlist); /* This allows B to extract the PV */
}
SV*
Perl__new_invlist(pTHX_ IV initial_size)
{
/* Return a pointer to a newly constructed inversion list, with enough
* space to store 'initial_size' elements. If that number is negative, a
* system default is used instead */
SV* new_list;
if (initial_size < 0) {
initial_size = 10;
}
new_list = newSV_type(SVt_INVLIST);
initialize_invlist_guts(new_list, initial_size);
return new_list;
}
SV*
Perl__new_invlist_C_array(pTHX_ const UV* const list)
{
/* Return a pointer to a newly constructed inversion list, initialized to
* point to <list>, which has to be in the exact correct inversion list
* form, including internal fields. Thus this is a dangerous routine that
* should not be used in the wrong hands. The passed in 'list' contains
* several header fields at the beginning that are not part of the
* inversion list body proper */
const STRLEN length = (STRLEN) list[0];
const UV version_id = list[1];
const bool offset = cBOOL(list[2]);
#define HEADER_LENGTH 3
/* If any of the above changes in any way, you must change HEADER_LENGTH
* (if appropriate) and regenerate INVLIST_VERSION_ID by running
* perl -E 'say int(rand 2**31-1)'
*/
#define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
data structure type, so that one being
passed in can be validated to be an
inversion list of the correct vintage.
*/
SV* invlist = newSV_type(SVt_INVLIST);
PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
if (version_id != INVLIST_VERSION_ID) {
Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
}
/* The generated array passed in includes header elements that aren't part
* of the list proper, so start it just after them */
SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
SvLEN_set(invlist, 0); /* Means we own the contents, and the system
shouldn't touch it */
*(get_invlist_offset_addr(invlist)) = offset;
/* The 'length' passed to us is the physical number of elements in the
* inversion list. But if there is an offset the logical number is one
* less than that */
invlist_set_len(invlist, length - offset, offset);
invlist_set_previous_index(invlist, 0);
/* Initialize the iteration pointer. */
invlist_iterfinish(invlist);
SvREADONLY_on(invlist);
SvPOK_on(invlist);
return invlist;
}
STATIC void
S__append_range_to_invlist(pTHX_ SV* const invlist,
const UV start, const UV end)
{
/* Subject to change or removal. Append the range from 'start' to 'end' at
* the end of the inversion list. The range must be above any existing
* ones. */
UV* array;
UV max = invlist_max(invlist);
UV len = _invlist_len(invlist);
bool offset;
PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
if (len == 0) { /* Empty lists must be initialized */
offset = start != 0;
array = _invlist_array_init(invlist, ! offset);
}
else {
/* Here, the existing list is non-empty. The current max entry in the
* list is generally the first value not in the set, except when the
* set extends to the end of permissible values, in which case it is
* the first entry in that final set, and so this call is an attempt to
* append out-of-order */
UV final_element = len - 1;
array = invlist_array(invlist);
if ( array[final_element] > start
|| ELEMENT_RANGE_MATCHES_INVLIST(final_element))
{
Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%" UVuf ", start=%" UVuf ", match=%c",
array[final_element], start,
ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
}
/* Here, it is a legal append. If the new range begins 1 above the end
* of the range below it, it is extending the range below it, so the
* new first value not in the set is one greater than the newly
* extended range. */
offset = *get_invlist_offset_addr(invlist);
if (array[final_element] == start) {
if (end != UV_MAX) {
array[final_element] = end + 1;
}
else {
/* But if the end is the maximum representable on the machine,
* assume that infinity was actually what was meant. Just let
* the range that this would extend to have no end */
invlist_set_len(invlist, len - 1, offset);
}
return;
}
}
/* Here the new range doesn't extend any existing set. Add it */
len += 2; /* Includes an element each for the start and end of range */
/* If wll overflow the existing space, extend, which may cause the array to
* be moved */
if (max < len) {
invlist_extend(invlist, len);
/* Have to set len here to avoid assert failure in invlist_array() */
invlist_set_len(invlist, len, offset);
array = invlist_array(invlist);
}
else {
invlist_set_len(invlist, len, offset);
}
/* The next item on the list starts the range, the one after that is
* one past the new range. */
array[len - 2] = start;
if (end != UV_MAX) {
array[len - 1] = end + 1;
}
else {
/* But if the end is the maximum representable on the machine, just let
* the range have no end */
invlist_set_len(invlist, len - 1, offset);
}
}
SSize_t
Perl__invlist_search(SV* const invlist, const UV cp)
{
/* Searches the inversion list for the entry that contains the input code
* point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
* return value is the index into the list's array of the range that
* contains <cp>, that is, 'i' such that
* array[i] <= cp < array[i+1]
*/
IV low = 0;
IV mid;
IV high = _invlist_len(invlist);
const IV highest_element = high - 1;
const UV* array;
PERL_ARGS_ASSERT__INVLIST_SEARCH;
/* If list is empty, return failure. */
if (high == 0) {
return -1;
}
/* (We can't get the array unless we know the list is non-empty) */
array = invlist_array(invlist);
mid = invlist_previous_index(invlist);
assert(mid >=0);
if (mid > highest_element) {
mid = highest_element;
}
/* <mid> contains the cache of the result of the previous call to this
* function (0 the first time). See if this call is for the same result,
* or if it is for mid-1. This is under the theory that calls to this
* function will often be for related code points that are near each other.
* And benchmarks show that caching gives better results. We also test
* here if the code point is within the bounds of the list. These tests
* replace others that would have had to be made anyway to make sure that
* the array bounds were not exceeded, and these give us extra information
* at the same time */
if (cp >= array[mid]) {
if (cp >= array[highest_element]) {
return highest_element;
}
/* Here, array[mid] <= cp < array[highest_element]. This means that
* the final element is not the answer, so can exclude it; it also
* means that <mid> is not the final element, so can refer to 'mid + 1'
* safely */
if (cp < array[mid + 1]) {
return mid;
}
high--;
low = mid + 1;
}
else { /* cp < aray[mid] */
if (cp < array[0]) { /* Fail if outside the array */
return -1;
}
high = mid;
if (cp >= array[mid - 1]) {
goto found_entry;
}
}
/* Binary search. What we are looking for is <i> such that
* array[i] <= cp < array[i+1]
* The loop below converges on the i+1. Note that there may not be an
* (i+1)th element in the array, and things work nonetheless */
while (low < high) {
mid = (low + high) / 2;
assert(mid <= highest_element);
if (array[mid] <= cp) { /* cp >= array[mid] */
low = mid + 1;
/* We could do this extra test to exit the loop early.
if (cp < array[low]) {
return mid;
}
*/
}
else { /* cp < array[mid] */
high = mid;
}
}
found_entry:
high--;
invlist_set_previous_index(invlist, high);
return high;
}
void
Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
const bool complement_b, SV** output)
{
/* Take the union of two inversion lists and point '*output' to it. On
* input, '*output' MUST POINT TO NULL OR TO AN SV* INVERSION LIST (possibly
* even 'a' or 'b'). If to an inversion list, the contents of the original
* list will be replaced by the union. The first list, 'a', may be
* NULL, in which case a copy of the second list is placed in '*output'.
* If 'complement_b' is TRUE, the union is taken of the complement
* (inversion) of 'b' instead of b itself.
*
* The basis for this comes from "Unicode Demystified" Chapter 13 by
* Richard Gillam, published by Addison-Wesley, and explained at some
* length there. The preface says to incorporate its examples into your
* code at your own risk.
*
* The algorithm is like a merge sort. */
const UV* array_a; /* a's array */
const UV* array_b;
UV len_a; /* length of a's array */
UV len_b;
SV* u; /* the resulting union */
UV* array_u;
UV len_u = 0;
UV i_a = 0; /* current index into a's array */
UV i_b = 0;
UV i_u = 0;
/* running count, as explained in the algorithm source book; items are
* stopped accumulating and are output when the count changes to/from 0.
* The count is incremented when we start a range that's in an input's set,
* and decremented when we start a range that's not in a set. So this
* variable can be 0, 1, or 2. When it is 0 neither input is in their set,
* and hence nothing goes into the union; 1, just one of the inputs is in
* its set (and its current range gets added to the union); and 2 when both
* inputs are in their sets. */
UV count = 0;
PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
assert(a != b);
assert(*output == NULL || is_invlist(*output));
len_b = _invlist_len(b);
if (len_b == 0) {
/* Here, 'b' is empty, hence it's complement is all possible code
* points. So if the union includes the complement of 'b', it includes
* everything, and we need not even look at 'a'. It's easiest to
* create a new inversion list that matches everything. */
if (complement_b) {
SV* everything = _add_range_to_invlist(NULL, 0, UV_MAX);
if (*output == NULL) { /* If the output didn't exist, just point it
at the new list */
*output = everything;
}
else { /* Otherwise, replace its contents with the new list */
invlist_replace_list_destroys_src(*output, everything);
SvREFCNT_dec_NN(everything);
}
return;
}
/* Here, we don't want the complement of 'b', and since 'b' is empty,
* the union will come entirely from 'a'. If 'a' is NULL or empty, the
* output will be empty */
if (a == NULL || _invlist_len(a) == 0) {
if (*output == NULL) {
*output = _new_invlist(0);
}
else {
invlist_clear(*output);
}
return;
}
/* Here, 'a' is not empty, but 'b' is, so 'a' entirely determines the
* union. We can just return a copy of 'a' if '*output' doesn't point
* to an existing list */
if (*output == NULL) {
*output = invlist_clone(a, NULL);
return;
}
/* If the output is to overwrite 'a', we have a no-op, as it's
* already in 'a' */
if (*output == a) {
return;
}
/* Here, '*output' is to be overwritten by 'a' */
u = invlist_clone(a, NULL);
invlist_replace_list_destroys_src(*output, u);
SvREFCNT_dec_NN(u);
return;
}
/* Here 'b' is not empty. See about 'a' */
if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
/* Here, 'a' is empty (and b is not). That means the union will come
* entirely from 'b'. If '*output' is NULL, we can directly return a
* clone of 'b'. Otherwise, we replace the contents of '*output' with
* the clone */
SV ** dest = (*output == NULL) ? output : &u;
*dest = invlist_clone(b, NULL);
if (complement_b) {
_invlist_invert(*dest);
}
if (dest == &u) {
invlist_replace_list_destroys_src(*output, u);
SvREFCNT_dec_NN(u);
}
return;
}
/* Here both lists exist and are non-empty */
array_a = invlist_array(a);
array_b = invlist_array(b);
/* If are to take the union of 'a' with the complement of b, set it
* up so are looking at b's complement. */
if (complement_b) {
/* To complement, we invert: if the first element is 0, remove it. To
* do this, we just pretend the array starts one later */
if (array_b[0] == 0) {
array_b++;
len_b--;
}
else {
/* But if the first element is not zero, we pretend the list starts
* at the 0 that is always stored immediately before the array. */
array_b--;
len_b++;
}
}
/* Size the union for the worst case: that the sets are completely
* disjoint */
u = _new_invlist(len_a + len_b);
/* Will contain U+0000 if either component does */
array_u = _invlist_array_init(u, ( len_a > 0 && array_a[0] == 0)
|| (len_b > 0 && array_b[0] == 0));
/* Go through each input list item by item, stopping when have exhausted
* one of them */
while (i_a < len_a && i_b < len_b) {
UV cp; /* The element to potentially add to the union's array */
bool cp_in_set; /* is it in the input list's set or not */
/* We need to take one or the other of the two inputs for the union.
* Since we are merging two sorted lists, we take the smaller of the
* next items. In case of a tie, we take first the one that is in its
* set. If we first took the one not in its set, it would decrement
* the count, possibly to 0 which would cause it to be output as ending
* the range, and the next time through we would take the same number,
* and output it again as beginning the next range. By doing it the
* opposite way, there is no possibility that the count will be
* momentarily decremented to 0, and thus the two adjoining ranges will
* be seamlessly merged. (In a tie and both are in the set or both not
* in the set, it doesn't matter which we take first.) */
if ( array_a[i_a] < array_b[i_b]
|| ( array_a[i_a] == array_b[i_b]
&& ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
{
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
cp = array_a[i_a++];
}
else {
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
cp = array_b[i_b++];
}
/* Here, have chosen which of the two inputs to look at. Only output
* if the running count changes to/from 0, which marks the
* beginning/end of a range that's in the set */
if (cp_in_set) {
if (count == 0) {
array_u[i_u++] = cp;
}
count++;
}
else {
count--;
if (count == 0) {
array_u[i_u++] = cp;
}
}
}
/* The loop above increments the index into exactly one of the input lists
* each iteration, and ends when either index gets to its list end. That
* means the other index is lower than its end, and so something is
* remaining in that one. We decrement 'count', as explained below, if
* that list is in its set. (i_a and i_b each currently index the element
* beyond the one we care about.) */
if ( (i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
|| (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
{
count--;
}
/* Above we decremented 'count' if the list that had unexamined elements in
* it was in its set. This has made it so that 'count' being non-zero
* means there isn't anything left to output; and 'count' equal to 0 means
* that what is left to output is precisely that which is left in the
* non-exhausted input list.
*
* To see why, note first that the exhausted input obviously has nothing
* left to add to the union. If it was in its set at its end, that means
* the set extends from here to the platform's infinity, and hence so does
* the union and the non-exhausted set is irrelevant. The exhausted set
* also contributed 1 to 'count'. If 'count' was 2, it got decremented to
* 1, but if it was 1, the non-exhausted set wasn't in its set, and so
* 'count' remains at 1. This is consistent with the decremented 'count'
* != 0 meaning there's nothing left to add to the union.
*
* But if the exhausted input wasn't in its set, it contributed 0 to
* 'count', and the rest of the union will be whatever the other input is.
* If 'count' was 0, neither list was in its set, and 'count' remains 0;
* otherwise it gets decremented to 0. This is consistent with 'count'
* == 0 meaning the remainder of the union is whatever is left in the
* non-exhausted list. */
if (count != 0) {
len_u = i_u;
}
else {
IV copy_count = len_a - i_a;
if (copy_count > 0) { /* The non-exhausted input is 'a' */
Copy(array_a + i_a, array_u + i_u, copy_count, UV);
}
else { /* The non-exhausted input is b */
copy_count = len_b - i_b;
Copy(array_b + i_b, array_u + i_u, copy_count, UV);
}
len_u = i_u + copy_count;
}
/* Set the result to the final length, which can change the pointer to
* array_u, so re-find it. (Note that it is unlikely that this will
* change, as we are shrinking the space, not enlarging it) */
if (len_u != _invlist_len(u)) {
invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
invlist_trim(u);
array_u = invlist_array(u);
}
if (*output == NULL) { /* Simply return the new inversion list */
*output = u;
}
else {
/* Otherwise, overwrite the inversion list that was in '*output'. We
* could instead free '*output', and then set it to 'u', but experience
* has shown [perl #127392] that if the input is a mortal, we can get a
* huge build-up of these during regex compilation before they get
* freed. */
invlist_replace_list_destroys_src(*output, u);
SvREFCNT_dec_NN(u);
}
return;
}
void
Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
const bool complement_b, SV** i)
{
/* Take the intersection of two inversion lists and point '*i' to it. On
* input, '*i' MUST POINT TO NULL OR TO AN SV* INVERSION LIST (possibly
* even 'a' or 'b'). If to an inversion list, the contents of the original
* list will be replaced by the intersection. The first list, 'a', may be
* NULL, in which case '*i' will be an empty list. If 'complement_b' is
* TRUE, the result will be the intersection of 'a' and the complement (or
* inversion) of 'b' instead of 'b' directly.
*
* The basis for this comes from "Unicode Demystified" Chapter 13 by
* Richard Gillam, published by Addison-Wesley, and explained at some
* length there. The preface says to incorporate its examples into your
* code at your own risk. In fact, it had bugs
*
* The algorithm is like a merge sort, and is essentially the same as the
* union above
*/
const UV* array_a; /* a's array */
const UV* array_b;
UV len_a; /* length of a's array */
UV len_b;
SV* r; /* the resulting intersection */
UV* array_r;
UV len_r = 0;
UV i_a = 0; /* current index into a's array */
UV i_b = 0;
UV i_r = 0;
/* running count of how many of the two inputs are postitioned at ranges
* that are in their sets. As explained in the algorithm source book,
* items are stopped accumulating and are output when the count changes
* to/from 2. The count is incremented when we start a range that's in an
* input's set, and decremented when we start a range that's not in a set.
* Only when it is 2 are we in the intersection. */
UV count = 0;
PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
assert(a != b);
assert(*i == NULL || is_invlist(*i));
/* Special case if either one is empty */
len_a = (a == NULL) ? 0 : _invlist_len(a);
if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
if (len_a != 0 && complement_b) {
/* Here, 'a' is not empty, therefore from the enclosing 'if', 'b'
* must be empty. Here, also we are using 'b's complement, which
* hence must be every possible code point. Thus the intersection
* is simply 'a'. */
if (*i == a) { /* No-op */
return;
}
if (*i == NULL) {
*i = invlist_clone(a, NULL);
return;
}
r = invlist_clone(a, NULL);
invlist_replace_list_destroys_src(*i, r);
SvREFCNT_dec_NN(r);
return;
}
/* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
* intersection must be empty */
if (*i == NULL) {
*i = _new_invlist(0);
return;
}
invlist_clear(*i);
return;
}
/* Here both lists exist and are non-empty */
array_a = invlist_array(a);
array_b = invlist_array(b);
/* If are to take the intersection of 'a' with the complement of b, set it
* up so are looking at b's complement. */
if (complement_b) {
/* To complement, we invert: if the first element is 0, remove it. To
* do this, we just pretend the array starts one later */
if (array_b[0] == 0) {
array_b++;
len_b--;
}
else {
/* But if the first element is not zero, we pretend the list starts
* at the 0 that is always stored immediately before the array. */
array_b--;
len_b++;
}
}
/* Size the intersection for the worst case: that the intersection ends up
* fragmenting everything to be completely disjoint */
r= _new_invlist(len_a + len_b);
/* Will contain U+0000 iff both components do */
array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
&& len_b > 0 && array_b[0] == 0);
/* Go through each list item by item, stopping when have exhausted one of
* them */
while (i_a < len_a && i_b < len_b) {
UV cp; /* The element to potentially add to the intersection's
array */
bool cp_in_set; /* Is it in the input list's set or not */
/* We need to take one or the other of the two inputs for the
* intersection. Since we are merging two sorted lists, we take the
* smaller of the next items. In case of a tie, we take first the one
* that is not in its set (a difference from the union algorithm). If
* we first took the one in its set, it would increment the count,
* possibly to 2 which would cause it to be output as starting a range
* in the intersection, and the next time through we would take that
* same number, and output it again as ending the set. By doing the
* opposite of this, there is no possibility that the count will be
* momentarily incremented to 2. (In a tie and both are in the set or
* both not in the set, it doesn't matter which we take first.) */
if ( array_a[i_a] < array_b[i_b]
|| ( array_a[i_a] == array_b[i_b]
&& ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
{
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
cp = array_a[i_a++];
}
else {
cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
cp= array_b[i_b++];
}
/* Here, have chosen which of the two inputs to look at. Only output
* if the running count changes to/from 2, which marks the
* beginning/end of a range that's in the intersection */
if (cp_in_set) {
count++;
if (count == 2) {
array_r[i_r++] = cp;
}
}
else {
if (count == 2) {
array_r[i_r++] = cp;
}
count--;
}
}
/* The loop above increments the index into exactly one of the input lists
* each iteration, and ends when either index gets to its list end. That
* means the other index is lower than its end, and so something is
* remaining in that one. We increment 'count', as explained below, if the
* exhausted list was in its set. (i_a and i_b each currently index the
* element beyond the one we care about.) */
if ( (i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
|| (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
{
count++;
}
/* Above we incremented 'count' if the exhausted list was in its set. This
* has made it so that 'count' being below 2 means there is nothing left to
* output; otheriwse what's left to add to the intersection is precisely
* that which is left in the non-exhausted input list.
*
* To see why, note first that the exhausted input obviously has nothing
* left to affect the intersection. If it was in its set at its end, that
* means the set extends from here to the platform's infinity, and hence
* anything in the non-exhausted's list will be in the intersection, and
* anything not in it won't be. Hence, the rest of the intersection is
* precisely what's in the non-exhausted list The exhausted set also
* contributed 1 to 'count', meaning 'count' was at least 1. Incrementing
* it means 'count' is now at least 2. This is consistent with the
* incremented 'count' being >= 2 means to add the non-exhausted list to
* the intersection.
*
* But if the exhausted input wasn't in its set, it contributed 0 to
* 'count', and the intersection can't include anything further; the
* non-exhausted set is irrelevant. 'count' was at most 1, and doesn't get
* incremented. This is consistent with 'count' being < 2 meaning nothing
* further to add to the intersection. */
if (count < 2) { /* Nothing left to put in the intersection. */
len_r = i_r;
}
else { /* copy the non-exhausted list, unchanged. */
IV copy_count = len_a - i_a;
if (copy_count > 0) { /* a is the one with stuff left */
Copy(array_a + i_a, array_r + i_r, copy_count, UV);
}
else { /* b is the one with stuff left */
copy_count = len_b - i_b;
Copy(array_b + i_b, array_r + i_r, copy_count, UV);
}
len_r = i_r + copy_count;
}
/* Set the result to the final length, which can change the pointer to
* array_r, so re-find it. (Note that it is unlikely that this will
* change, as we are shrinking the space, not enlarging it) */
if (len_r != _invlist_len(r)) {
invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
invlist_trim(r);
array_r = invlist_array(r);
}
if (*i == NULL) { /* Simply return the calculated intersection */
*i = r;
}
else { /* Otherwise, replace the existing inversion list in '*i'. We could
instead free '*i', and then set it to 'r', but experience has
shown [perl #127392] that if the input is a mortal, we can get a
huge build-up of these during regex compilation before they get
freed. */
if (len_r) {
invlist_replace_list_destroys_src(*i, r);
}
else {
invlist_clear(*i);
}
SvREFCNT_dec_NN(r);
}
return;
}
SV*
Perl__add_range_to_invlist(pTHX_ SV* invlist, UV start, UV end)
{
/* Add the range from 'start' to 'end' inclusive to the inversion list's
* set. A pointer to the inversion list is returned. This may actually be
* a new list, in which case the passed in one has been destroyed. The
* passed-in inversion list can be NULL, in which case a new one is created
* with just the one range in it. The new list is not necessarily
* NUL-terminated. Space is not freed if the inversion list shrinks as a
* result of this function. The gain would not be large, and in many
* cases, this is called multiple times on a single inversion list, so
* anything freed may almost immediately be needed again.
*
* This used to mostly call the 'union' routine, but that is much more
* heavyweight than really needed for a single range addition */
UV* array; /* The array implementing the inversion list */
UV len; /* How many elements in 'array' */
SSize_t i_s; /* index into the invlist array where 'start'
should go */
SSize_t i_e = 0; /* And the index where 'end' should go */
UV cur_highest; /* The highest code point in the inversion list
upon entry to this function */
/* This range becomes the whole inversion list if none already existed */
if (invlist == NULL) {
invlist = _new_invlist(2);
_append_range_to_invlist(invlist, start, end);
return invlist;
}
/* Likewise, if the inversion list is currently empty */
len = _invlist_len(invlist);
if (len == 0) {
_append_range_to_invlist(invlist, start, end);
return invlist;
}
/* Starting here, we have to know the internals of the list */
array = invlist_array(invlist);
/* If the new range ends higher than the current highest ... */
cur_highest = invlist_highest(invlist);
if (end > cur_highest) {
/* If the whole range is higher, we can just append it */
if (start > cur_highest) {
_append_range_to_invlist(invlist, start, end);
return invlist;
}
/* Otherwise, add the portion that is higher ... */
_append_range_to_invlist(invlist, cur_highest + 1, end);
/* ... and continue on below to handle the rest. As a result of the
* above append, we know that the index of the end of the range is the
* final even numbered one of the array. Recall that the final element
* always starts a range that extends to infinity. If that range is in
* the set (meaning the set goes from here to infinity), it will be an
* even index, but if it isn't in the set, it's odd, and the final
* range in the set is one less, which is even. */
if (end == UV_MAX) {
i_e = len;
}
else {
i_e = len - 2;
}
}
/* We have dealt with appending, now see about prepending. If the new
* range starts lower than the current lowest ... */
if (start < array[0]) {
/* Adding something which has 0 in it is somewhat tricky, and uncommon.
* Let the union code handle it, rather than having to know the
* trickiness in two code places. */
if (UNLIKELY(start == 0)) {
SV* range_invlist;
range_invlist = _new_invlist(2);
_append_range_to_invlist(range_invlist, start, end);
_invlist_union(invlist, range_invlist, &invlist);
SvREFCNT_dec_NN(range_invlist);
return invlist;
}
/* If the whole new range comes before the first entry, and doesn't
* extend it, we have to insert it as an additional range */
if (end < array[0] - 1) {
i_s = i_e = -1;
goto splice_in_new_range;
}
/* Here the new range adjoins the existing first range, extending it
* downwards. */
array[0] = start;
/* And continue on below to handle the rest. We know that the index of
* the beginning of the range is the first one of the array */
i_s = 0;
}
else { /* Not prepending any part of the new range to the existing list.
* Find where in the list it should go. This finds i_s, such that:
* invlist[i_s] <= start < array[i_s+1]
*/
i_s = _invlist_search(invlist, start);
}
/* At this point, any extending before the beginning of the inversion list
* and/or after the end has been done. This has made it so that, in the
* code below, each endpoint of the new range is either in a range that is
* in the set, or is in a gap between two ranges that are. This means we
* don't have to worry about exceeding the array bounds.
*
* Find where in the list the new range ends (but we can skip this if we
* have already determined what it is, or if it will be the same as i_s,
* which we already have computed) */
if (i_e == 0) {
i_e = (start == end)
? i_s
: _invlist_search(invlist, end);
}
/* Here generally invlist[i_e] <= end < array[i_e+1]. But if invlist[i_e]
* is a range that goes to infinity there is no element at invlist[i_e+1],
* so only the first relation holds. */
if ( ! ELEMENT_RANGE_MATCHES_INVLIST(i_s)) {
/* Here, the ranges on either side of the beginning of the new range
* are in the set, and this range starts in the gap between them.
*
* The new range extends the range above it downwards if the new range
* ends at or above that range's start */
const bool extends_the_range_above = ( end == UV_MAX
|| end + 1 >= array[i_s+1]);
/* The new range extends the range below it upwards if it begins just
* after where that range ends */
if (start == array[i_s]) {
/* If the new range fills the entire gap between the other ranges,
* they will get merged together. Other ranges may also get
* merged, depending on how many of them the new range spans. In
* the general case, we do the merge later, just once, after we
* figure out how many to merge. But in the case where the new
* range exactly spans just this one gap (possibly extending into
* the one above), we do the merge here, and an early exit. This
* is done here to avoid having to special case later. */
if (i_e - i_s <= 1) {
/* If i_e - i_s == 1, it means that the new range terminates
* within the range above, and hence 'extends_the_range_above'
* must be true. (If the range above it extends to infinity,
* 'i_s+2' will be above the array's limit, but 'len-i_s-2'
* will be 0, so no harm done.) */
if (extends_the_range_above) {
Move(array + i_s + 2, array + i_s, len - i_s - 2, UV);
invlist_set_len(invlist,
len - 2,
*(get_invlist_offset_addr(invlist)));
return invlist;
}
/* Here, i_e must == i_s. We keep them in sync, as they apply
* to the same range, and below we are about to decrement i_s
* */
i_e--;
}
/* Here, the new range is adjacent to the one below. (It may also
* span beyond the range above, but that will get resolved later.)
* Extend the range below to include this one. */
array[i_s] = (end == UV_MAX) ? UV_MAX : end + 1;
i_s--;
start = array[i_s];
}
else if (extends_the_range_above) {
/* Here the new range only extends the range above it, but not the
* one below. It merges with the one above. Again, we keep i_e
* and i_s in sync if they point to the same range */
if (i_e == i_s) {
i_e++;
}
i_s++;
array[i_s] = start;
}
}
/* Here, we've dealt with the new range start extending any adjoining
* existing ranges.
*
* If the new range extends to infinity, it is now the final one,
* regardless of what was there before */
if (UNLIKELY(end == UV_MAX)) {
invlist_set_len(invlist, i_s + 1, *(get_invlist_offset_addr(invlist)));
return invlist;
}
/* If i_e started as == i_s, it has also been dealt with,
* and been updated to the new i_s, which will fail the following if */
if (! ELEMENT_RANGE_MATCHES_INVLIST(i_e)) {
/* Here, the ranges on either side of the end of the new range are in
* the set, and this range ends in the gap between them.
*
* If this range is adjacent to (hence extends) the range above it, it
* becomes part of that range; likewise if it extends the range below,
* it becomes part of that range */
if (end + 1 == array[i_e+1]) {
i_e++;
array[i_e] = start;
}
else if (start <= array[i_e]) {
array[i_e] = end + 1;
i_e--;
}
}
if (i_s == i_e) {
/* If the range fits entirely in an existing range (as possibly already
* extended above), it doesn't add anything new */
if (ELEMENT_RANGE_MATCHES_INVLIST(i_s)) {
return invlist;
}
/* Here, no part of the range is in the list. Must add it. It will
* occupy 2 more slots */
splice_in_new_range:
invlist_extend(invlist, len + 2);
array = invlist_array(invlist);
/* Move the rest of the array down two slots. Don't include any
* trailing NUL */
Move(array + i_e + 1, array + i_e + 3, len - i_e - 1, UV);
/* Do the actual splice */
array[i_e+1] = start;
array[i_e+2] = end + 1;
invlist_set_len(invlist, len + 2, *(get_invlist_offset_addr(invlist)));
return invlist;
}
/* Here the new range crossed the boundaries of a pre-existing range. The
* code above has adjusted things so that both ends are in ranges that are
* in the set. This means everything in between must also be in the set.
* Just squash things together */
Move(array + i_e + 1, array + i_s + 1, len - i_e - 1, UV);
invlist_set_len(invlist,
len - i_e + i_s,
*(get_invlist_offset_addr(invlist)));
return invlist;
}
SV*
Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
UV** other_elements_ptr)
{
/* Create and return an inversion list whose contents are to be populated
* by the caller. The caller gives the number of elements (in 'size') and
* the very first element ('element0'). This function will set
* '*other_elements_ptr' to an array of UVs, where the remaining elements
* are to be placed.
*
* Obviously there is some trust involved that the caller will properly
* fill in the other elements of the array.
*
* (The first element needs to be passed in, as the underlying code does
* things differently depending on whether it is zero or non-zero) */
SV* invlist = _new_invlist(size);
bool offset;
PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
invlist = add_cp_to_invlist(invlist, element0);
offset = *get_invlist_offset_addr(invlist);
invlist_set_len(invlist, size, offset);
*other_elements_ptr = invlist_array(invlist) + 1;
return invlist;
}
#endif
#ifndef PERL_IN_XSUB_RE
void
Perl__invlist_invert(pTHX_ SV* const invlist)
{
/* Complement the input inversion list. This adds a 0 if the list didn't
* have a zero; removes it otherwise. As described above, the data
* structure is set up so that this is very efficient */
PERL_ARGS_ASSERT__INVLIST_INVERT;
assert(! invlist_is_iterating(invlist));
/* The inverse of matching nothing is matching everything */
if (_invlist_len(invlist) == 0) {
_append_range_to_invlist(invlist, 0, UV_MAX);
return;
}
*get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
}
SV*
Perl_invlist_clone(pTHX_ SV* const invlist, SV* new_invlist)
{
/* Return a new inversion list that is a copy of the input one, which is
* unchanged. The new list will not be mortal even if the old one was. */
const STRLEN nominal_length = _invlist_len(invlist);
const STRLEN physical_length = SvCUR(invlist);
const bool offset = *(get_invlist_offset_addr(invlist));
PERL_ARGS_ASSERT_INVLIST_CLONE;
if (new_invlist == NULL) {
new_invlist = _new_invlist(nominal_length);
}
else {
sv_upgrade(new_invlist, SVt_INVLIST);
initialize_invlist_guts(new_invlist, nominal_length);
}
*(get_invlist_offset_addr(new_invlist)) = offset;
invlist_set_len(new_invlist, nominal_length, offset);
Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
return new_invlist;
}
#endif
PERL_STATIC_INLINE UV
S_invlist_lowest(SV* const invlist)
{
/* Returns the lowest code point that matches an inversion list. This API
* has an ambiguity, as it returns 0 under either the lowest is actually
* 0, or if the list is empty. If this distinction matters to you, check
* for emptiness before calling this function */
UV len = _invlist_len(invlist);
UV *array;
PERL_ARGS_ASSERT_INVLIST_LOWEST;
if (len == 0) {
return 0;
}
array = invlist_array(invlist);
return array[0];
}
STATIC SV *
S_invlist_contents(pTHX_ SV* const invlist, const bool traditional_style)
{
/* Get the contents of an inversion list into a string SV so that they can
* be printed out. If 'traditional_style' is TRUE, it uses the format
* traditionally done for debug tracing; otherwise it uses a format
* suitable for just copying to the output, with blanks between ranges and
* a dash between range components */
UV start, end;
SV* output;
const char intra_range_delimiter = (traditional_style ? '\t' : '-');
const char inter_range_delimiter = (traditional_style ? '\n' : ' ');
if (traditional_style) {
output = newSVpvs("\n");
}
else {
output = newSVpvs("");
}
PERL_ARGS_ASSERT_INVLIST_CONTENTS;
assert(! invlist_is_iterating(invlist));
invlist_iterinit(invlist);
while (invlist_iternext(invlist, &start, &end)) {
if (end == UV_MAX) {
Perl_sv_catpvf(aTHX_ output, "%04" UVXf "%cINFTY%c",
start, intra_range_delimiter,
inter_range_delimiter);
}
else if (end != start) {
Perl_sv_catpvf(aTHX_ output, "%04" UVXf "%c%04" UVXf "%c",
start,
intra_range_delimiter,
end, inter_range_delimiter);
}
else {
Perl_sv_catpvf(aTHX_ output, "%04" UVXf "%c",
start, inter_range_delimiter);
}
}
if (SvCUR(output) && ! traditional_style) {/* Get rid of trailing blank */
SvCUR_set(output, SvCUR(output) - 1);
}
return output;
}
#ifndef PERL_IN_XSUB_RE
void
Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
const char * const indent, SV* const invlist)
{
/* Designed to be called only by do_sv_dump(). Dumps out the ranges of the
* inversion list 'invlist' to 'file' at 'level' Each line is prefixed by
* the string 'indent'. The output looks like this:
[0] 0x000A .. 0x000D
[2] 0x0085
[4] 0x2028 .. 0x2029
[6] 0x3104 .. INFTY
* This means that the first range of code points matched by the list are
* 0xA through 0xD; the second range contains only the single code point
* 0x85, etc. An inversion list is an array of UVs. Two array elements
* are used to define each range (except if the final range extends to
* infinity, only a single element is needed). The array index of the
* first element for the corresponding range is given in brackets. */
UV start, end;
STRLEN count = 0;
PERL_ARGS_ASSERT__INVLIST_DUMP;
if (invlist_is_iterating(invlist)) {
Perl_dump_indent(aTHX_ level, file,
"%sCan't dump inversion list because is in middle of iterating\n",
indent);
return;
}
invlist_iterinit(invlist);
while (invlist_iternext(invlist, &start, &end)) {
if (end == UV_MAX) {
Perl_dump_indent(aTHX_ level, file,
"%s[%" UVuf "] 0x%04" UVXf " .. INFTY\n",
indent, (UV)count, start);
}
else if (end != start) {
Perl_dump_indent(aTHX_ level, file,
"%s[%" UVuf "] 0x%04" UVXf " .. 0x%04" UVXf "\n",
indent, (UV)count, start, end);
}
else {
Perl_dump_indent(aTHX_ level, file, "%s[%" UVuf "] 0x%04" UVXf "\n",
indent, (UV)count, start);
}
count += 2;
}
}
#endif
#if defined(PERL_ARGS_ASSERT__INVLISTEQ) && !defined(PERL_IN_XSUB_RE)
bool
Perl__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
{
/* Return a boolean as to if the two passed in inversion lists are
* identical. The final argument, if TRUE, says to take the complement of
* the second inversion list before doing the comparison */
const UV len_a = _invlist_len(a);
UV len_b = _invlist_len(b);
const UV* array_a = NULL;
const UV* array_b = NULL;
PERL_ARGS_ASSERT__INVLISTEQ;
/* This code avoids accessing the arrays unless it knows the length is
* non-zero */
if (len_a == 0) {
if (len_b == 0) {
return ! complement_b;
}
}
else {
array_a = invlist_array(a);
}
if (len_b != 0) {
array_b = invlist_array(b);
}
/* If are to compare 'a' with the complement of b, set it
* up so are looking at b's complement. */
if (complement_b) {
/* The complement of nothing is everything, so <a> would have to have
* just one element, starting at zero (ending at infinity) */
if (len_b == 0) {
return (len_a == 1 && array_a[0] == 0);
}
if (array_b[0] == 0) {
/* Otherwise, to complement, we invert. Here, the first element is
* 0, just remove it. To do this, we just pretend the array starts
* one later */
array_b++;
len_b--;
}
else {
/* But if the first element is not zero, we pretend the list starts
* at the 0 that is always stored immediately before the array. */
array_b--;
len_b++;
}
}
return len_a == len_b
&& memEQ(array_a, array_b, len_a * sizeof(array_a[0]));
}
#endif
/*
* As best we can, determine the characters that can match the start of
* the given EXACTF-ish node. This is for use in creating ssc nodes, so there
* can be false positive matches
*
* Returns the invlist as a new SV*; it is the caller's responsibility to
* call SvREFCNT_dec() when done with it.
*/
STATIC SV*
S_make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
{
dVAR;
const U8 * s = (U8*)STRING(node);
SSize_t bytelen = STR_LEN(node);
UV uc;
/* Start out big enough for 2 separate code points */
SV* invlist = _new_invlist(4);
PERL_ARGS_ASSERT_MAKE_EXACTF_INVLIST;
if (! UTF) {
uc = *s;
/* We punt and assume can match anything if the node begins
* with a multi-character fold. Things are complicated. For
* example, /ffi/i could match any of:
* "\N{LATIN SMALL LIGATURE FFI}"
* "\N{LATIN SMALL LIGATURE FF}I"
* "F\N{LATIN SMALL LIGATURE FI}"
* plus several other things; and making sure we have all the
* possibilities is hard. */
if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
}
else {
/* Any Latin1 range character can potentially match any
* other depending on the locale, and in Turkic locales, U+130 and
* U+131 */
if (OP(node) == EXACTFL) {
_invlist_union(invlist, PL_Latin1, &invlist);
invlist = add_cp_to_invlist(invlist,
LATIN_SMALL_LETTER_DOTLESS_I);
invlist = add_cp_to_invlist(invlist,
LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
}
else {
/* But otherwise, it matches at least itself. We can
* quickly tell if it has a distinct fold, and if so,
* it matches that as well */
invlist = add_cp_to_invlist(invlist, uc);
if (IS_IN_SOME_FOLD_L1(uc))
invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
}
/* Some characters match above-Latin1 ones under /i. This
* is true of EXACTFL ones when the locale is UTF-8 */
if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
&& (! isASCII(uc) || (OP(node) != EXACTFAA
&& OP(node) != EXACTFAA_NO_TRIE)))
{
add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
}
}
}
else { /* Pattern is UTF-8 */
U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
const U8* e = s + bytelen;
IV fc;
fc = uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
/* The only code points that aren't folded in a UTF EXACTFish
* node are the problematic ones in EXACTFL nodes */
if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
/* We need to check for the possibility that this EXACTFL
* node begins with a multi-char fold. Therefore we fold
* the first few characters of it so that we can make that
* check */
U8 *d = folded;
int i;
fc = -1;
for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
if (isASCII(*s)) {
*(d++) = (U8) toFOLD(*s);
if (fc < 0) { /* Save the first fold */
fc = *(d-1);
}
s++;
}
else {
STRLEN len;
UV fold = toFOLD_utf8_safe(s, e, d, &len);
if (fc < 0) { /* Save the first fold */
fc = fold;
}
d += len;
s += UTF8SKIP(s);
}
}
/* And set up so the code below that looks in this folded
* buffer instead of the node's string */
e = d;
s = folded;
}
/* When we reach here 's' points to the fold of the first
* character(s) of the node; and 'e' points to far enough along
* the folded string to be just past any possible multi-char
* fold.
*
* Unlike the non-UTF-8 case, the macro for determining if a
* string is a multi-char fold requires all the characters to
* already be folded. This is because of all the complications
* if not. Note that they are folded anyway, except in EXACTFL
* nodes. Like the non-UTF case above, we punt if the node
* begins with a multi-char fold */
if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
}
else { /* Single char fold */
unsigned int k;
U32 first_fold;
const U32 * remaining_folds;
Size_t folds_count;
/* It matches itself */
invlist = add_cp_to_invlist(invlist, fc);
/* ... plus all the things that fold to it, which are found in
* PL_utf8_foldclosures */
folds_count = _inverse_folds(fc, &first_fold,
&remaining_folds);
for (k = 0; k < folds_count; k++) {
UV c = (k == 0) ? first_fold : remaining_folds[k-1];
/* /aa doesn't allow folds between ASCII and non- */
if ( (OP(node) == EXACTFAA || OP(node) == EXACTFAA_NO_TRIE)
&& isASCII(c) != isASCII(fc))
{
continue;
}
invlist = add_cp_to_invlist(invlist, c);
}
if (OP(node) == EXACTFL) {
/* If either [iI] are present in an EXACTFL node the above code
* should have added its normal case pair, but under a Turkish
* locale they could match instead the case pairs from it. Add
* those as potential matches as well */
if (isALPHA_FOLD_EQ(fc, 'I')) {
invlist = add_cp_to_invlist(invlist,
LATIN_SMALL_LETTER_DOTLESS_I);
invlist = add_cp_to_invlist(invlist,
LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
}
else if (fc == LATIN_SMALL_LETTER_DOTLESS_I) {
invlist = add_cp_to_invlist(invlist, 'I');
}
else if (fc == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
invlist = add_cp_to_invlist(invlist, 'i');
}
}
}
}
return invlist;
}
#undef HEADER_LENGTH
#undef TO_INTERNAL_SIZE
#undef FROM_INTERNAL_SIZE
#undef INVLIST_VERSION_ID
/* End of inversion list object */
STATIC void
S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
{
/* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
* constructs, and updates RExC_flags with them. On input, RExC_parse
* should point to the first flag; it is updated on output to point to the
* final ')' or ':'. There needs to be at least one flag, or this will
* abort */
/* for (?g), (?gc), and (?o) warnings; warning
about (?c) will warn about (?g) -- japhy */
#define WASTED_O 0x01
#define WASTED_G 0x02
#define WASTED_C 0x04
#define WASTED_GC (WASTED_G|WASTED_C)
I32 wastedflags = 0x00;
U32 posflags = 0, negflags = 0;
U32 *flagsp = &posflags;
char has_charset_modifier = '\0';
regex_charset cs;
bool has_use_defaults = FALSE;
const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
int x_mod_count = 0;
PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
/* '^' as an initial flag sets certain defaults */
if (UCHARAT(RExC_parse) == '^') {
RExC_parse++;
has_use_defaults = TRUE;
STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
cs = (toUSE_UNI_CHARSET_NOT_DEPENDS)
? REGEX_UNICODE_CHARSET
: REGEX_DEPENDS_CHARSET;
set_regex_charset(&RExC_flags, cs);
}
else {
cs = get_regex_charset(RExC_flags);
if ( cs == REGEX_DEPENDS_CHARSET
&& (toUSE_UNI_CHARSET_NOT_DEPENDS))
{
cs = REGEX_UNICODE_CHARSET;
}
}
while (RExC_parse < RExC_end) {
/* && memCHRs("iogcmsx", *RExC_parse) */
/* (?g), (?gc) and (?o) are useless here
and must be globally applied -- japhy */
if ((RExC_pm_flags & PMf_WILDCARD)) {
if (flagsp == & negflags) {
if (*RExC_parse == 'm') {
RExC_parse++;
/* diag_listed_as: Use of %s is not allowed in Unicode
property wildcard subpatterns in regex; marked by <--
HERE in m/%s/ */
vFAIL("Use of modifier '-m' is not allowed in Unicode"
" property wildcard subpatterns");
}
}
else {
if (*RExC_parse == 's') {
goto modifier_illegal_in_wildcard;
}
}
}
switch (*RExC_parse) {
/* Code for the imsxn flags */
CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
case LOCALE_PAT_MOD:
if (has_charset_modifier) {
goto excess_modifier;
}
else if (flagsp == &negflags) {
goto neg_modifier;
}
cs = REGEX_LOCALE_CHARSET;
has_charset_modifier = LOCALE_PAT_MOD;
break;
case UNICODE_PAT_MOD:
if (has_charset_modifier) {
goto excess_modifier;
}
else if (flagsp == &negflags) {
goto neg_modifier;
}
cs = REGEX_UNICODE_CHARSET;
has_charset_modifier = UNICODE_PAT_MOD;
break;
case ASCII_RESTRICT_PAT_MOD:
if (flagsp == &negflags) {
goto neg_modifier;
}
if (has_charset_modifier) {
if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
goto excess_modifier;
}
/* Doubled modifier implies more restricted */
cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
}
else {
cs = REGEX_ASCII_RESTRICTED_CHARSET;
}
has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
break;
case DEPENDS_PAT_MOD:
if (has_use_defaults) {
goto fail_modifiers;
}
else if (flagsp == &negflags) {
goto neg_modifier;
}
else if (has_charset_modifier) {
goto excess_modifier;
}
/* The dual charset means unicode semantics if the
* pattern (or target, not known until runtime) are
* utf8, or something in the pattern indicates unicode
* semantics */
cs = (toUSE_UNI_CHARSET_NOT_DEPENDS)
? REGEX_UNICODE_CHARSET
: REGEX_DEPENDS_CHARSET;
has_charset_modifier = DEPENDS_PAT_MOD;
break;
excess_modifier:
RExC_parse++;
if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
}
else if (has_charset_modifier == *(RExC_parse - 1)) {
vFAIL2("Regexp modifier \"%c\" may not appear twice",
*(RExC_parse - 1));
}
else {
vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
}
NOT_REACHED; /*NOTREACHED*/
neg_modifier:
RExC_parse++;
vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
*(RExC_parse - 1));
NOT_REACHED; /*NOTREACHED*/
case GLOBAL_PAT_MOD: /* 'g' */
if (RExC_pm_flags & PMf_WILDCARD) {
goto modifier_illegal_in_wildcard;
}
/*FALLTHROUGH*/
case ONCE_PAT_MOD: /* 'o' */
if (ckWARN(WARN_REGEXP)) {
const I32 wflagbit = *RExC_parse == 'o'
? WASTED_O
: WASTED_G;
if (! (wastedflags & wflagbit) ) {
wastedflags |= wflagbit;
/* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
vWARN5(
RExC_parse + 1,
"Useless (%s%c) - %suse /%c modifier",
flagsp == &negflags ? "?-" : "?",
*RExC_parse,
flagsp == &negflags ? "don't " : "",
*RExC_parse
);
}
}
break;
case CONTINUE_PAT_MOD: /* 'c' */
if (RExC_pm_flags & PMf_WILDCARD) {
goto modifier_illegal_in_wildcard;
}
if (ckWARN(WARN_REGEXP)) {
if (! (wastedflags & WASTED_C) ) {
wastedflags |= WASTED_GC;
/* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
vWARN3(
RExC_parse + 1,
"Useless (%sc) - %suse /gc modifier",
flagsp == &negflags ? "?-" : "?",
flagsp == &negflags ? "don't " : ""
);
}
}
break;
case KEEPCOPY_PAT_MOD: /* 'p' */
if (RExC_pm_flags & PMf_WILDCARD) {
goto modifier_illegal_in_wildcard;
}
if (flagsp == &negflags) {
ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
} else {
*flagsp |= RXf_PMf_KEEPCOPY;
}
break;
case '-':
/* A flag is a default iff it is following a minus, so
* if there is a minus, it means will be trying to
* re-specify a default which is an error */
if (has_use_defaults || flagsp == &negflags) {
goto fail_modifiers;
}
flagsp = &negflags;
wastedflags = 0; /* reset so (?g-c) warns twice */
x_mod_count = 0;
break;
case ':':
case ')':
if ( (RExC_pm_flags & PMf_WILDCARD)
&& cs != REGEX_ASCII_MORE_RESTRICTED_CHARSET)
{
RExC_parse++;
/* diag_listed_as: Use of %s is not allowed in Unicode
property wildcard subpatterns in regex; marked by <--
HERE in m/%s/ */
vFAIL2("Use of modifier '%c' is not allowed in Unicode"
" property wildcard subpatterns",
has_charset_modifier);
}
if ((posflags & (RXf_PMf_EXTENDED|RXf_PMf_EXTENDED_MORE)) == RXf_PMf_EXTENDED) {
negflags |= RXf_PMf_EXTENDED_MORE;
}
RExC_flags |= posflags;
if (negflags & RXf_PMf_EXTENDED) {
negflags |= RXf_PMf_EXTENDED_MORE;
}
RExC_flags &= ~negflags;
set_regex_charset(&RExC_flags, cs);
return;
default:
fail_modifiers:
RExC_parse += SKIP_IF_CHAR(RExC_parse, RExC_end);
/* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
vFAIL2utf8f("Sequence (%" UTF8f "...) not recognized",
UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
NOT_REACHED; /*NOTREACHED*/
}
RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
}
vFAIL("Sequence (?... not terminated");
modifier_illegal_in_wildcard:
RExC_parse++;
/* diag_listed_as: Use of %s is not allowed in Unicode property wildcard
subpatterns in regex; marked by <-- HERE in m/%s/ */
vFAIL2("Use of modifier '%c' is not allowed in Unicode property wildcard"
" subpatterns", *(RExC_parse - 1));
}
/*
- reg - regular expression, i.e. main body or parenthesized thing
*
* Caller must absorb opening parenthesis.
*
* Combining parenthesis handling with the base level of regular expression
* is a trifle forced, but the need to tie the tails of the branches to what
* follows makes it hard to avoid.
*/
#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
#ifdef DEBUGGING
#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
#else
#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
#endif
STATIC regnode_offset
S_handle_named_backref(pTHX_ RExC_state_t *pRExC_state,
I32 *flagp,
char * parse_start,
char ch
)
{
regnode_offset ret;
char* name_start = RExC_parse;
U32 num = 0;
SV *sv_dat = reg_scan_name(pRExC_state, REG_RSN_RETURN_DATA);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_HANDLE_NAMED_BACKREF;
if (RExC_parse == name_start || *RExC_parse != ch) {
/* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
vFAIL2("Sequence %.3s... not terminated", parse_start);
}
if (sv_dat) {
num = add_data( pRExC_state, STR_WITH_LEN("S"));
RExC_rxi->data->data[num]=(void*)sv_dat;
SvREFCNT_inc_simple_void_NN(sv_dat);
}
RExC_sawback = 1;
ret = reganode(pRExC_state,
((! FOLD)
? REFN
: (ASCII_FOLD_RESTRICTED)
? REFFAN
: (AT_LEAST_UNI_SEMANTICS)
? REFFUN
: (LOC)
? REFFLN
: REFFN),
num);
*flagp |= HASWIDTH;
Set_Node_Offset(REGNODE_p(ret), parse_start+1);
Set_Node_Cur_Length(REGNODE_p(ret), parse_start);
nextchar(pRExC_state);
return ret;
}
/* On success, returns the offset at which any next node should be placed into
* the regex engine program being compiled.
*
* Returns 0 otherwise, with *flagp set to indicate why:
* TRYAGAIN at the end of (?) that only sets flags.
* RESTART_PARSE if the parse needs to be restarted, or'd with
* NEED_UTF8 if the pattern needs to be upgraded to UTF-8.
* Otherwise would only return 0 if regbranch() returns 0, which cannot
* happen. */
STATIC regnode_offset
S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp, U32 depth)
/* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
* 2 is like 1, but indicates that nextchar() has been called to advance
* RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and
* this flag alerts us to the need to check for that */
{
regnode_offset ret = 0; /* Will be the head of the group. */
regnode_offset br;
regnode_offset lastbr;
regnode_offset ender = 0;
I32 parno = 0;
I32 flags;
U32 oregflags = RExC_flags;
bool have_branch = 0;
bool is_open = 0;
I32 freeze_paren = 0;
I32 after_freeze = 0;
I32 num; /* numeric backreferences */
SV * max_open; /* Max number of unclosed parens */
I32 was_in_lookaround = RExC_in_lookaround;
char * parse_start = RExC_parse; /* MJD */
char * const oregcomp_parse = RExC_parse;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REG;
DEBUG_PARSE("reg ");
max_open = get_sv(RE_COMPILE_RECURSION_LIMIT, GV_ADD);
assert(max_open);
if (!SvIOK(max_open)) {
sv_setiv(max_open, RE_COMPILE_RECURSION_INIT);
}
if (depth > 4 * (UV) SvIV(max_open)) { /* We increase depth by 4 for each
open paren */
vFAIL("Too many nested open parens");
}
*flagp = 0; /* Tentatively. */
/* Having this true makes it feasible to have a lot fewer tests for the
* parse pointer being in scope. For example, we can write
* while(isFOO(*RExC_parse)) RExC_parse++;
* instead of
* while(RExC_parse < RExC_end && isFOO(*RExC_parse)) RExC_parse++;
*/
assert(*RExC_end == '\0');
/* Make an OPEN node, if parenthesized. */
if (paren) {
/* Under /x, space and comments can be gobbled up between the '(' and
* here (if paren ==2). The forms '(*VERB' and '(?...' disallow such
* intervening space, as the sequence is a token, and a token should be
* indivisible */
bool has_intervening_patws = (paren == 2)
&& *(RExC_parse - 1) != '(';
if (RExC_parse >= RExC_end) {
vFAIL("Unmatched (");
}
if (paren == 'r') { /* Atomic script run */
paren = '>';
goto parse_rest;
}
else if ( *RExC_parse == '*') { /* (*VERB:ARG), (*construct:...) */
char *start_verb = RExC_parse + 1;
STRLEN verb_len;
char *start_arg = NULL;
unsigned char op = 0;
int arg_required = 0;
int internal_argval = -1; /* if >-1 we are not allowed an argument*/
bool has_upper = FALSE;
if (has_intervening_patws) {
RExC_parse++; /* past the '*' */
/* For strict backwards compatibility, don't change the message
* now that we also have lowercase operands */
if (isUPPER(*RExC_parse)) {
vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
}
else {
vFAIL("In '(*...)', the '(' and '*' must be adjacent");
}
}
while (RExC_parse < RExC_end && *RExC_parse != ')' ) {
if ( *RExC_parse == ':' ) {
start_arg = RExC_parse + 1;
break;
}
else if (! UTF) {
if (isUPPER(*RExC_parse)) {
has_upper = TRUE;
}
RExC_parse++;
}
else {
RExC_parse += UTF8SKIP(RExC_parse);
}
}
verb_len = RExC_parse - start_verb;
if ( start_arg ) {
if (RExC_parse >= RExC_end) {
goto unterminated_verb_pattern;
}
RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
while ( RExC_parse < RExC_end && *RExC_parse != ')' ) {
RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
}
if ( RExC_parse >= RExC_end || *RExC_parse != ')' ) {
unterminated_verb_pattern:
if (has_upper) {
vFAIL("Unterminated verb pattern argument");
}
else {
vFAIL("Unterminated '(*...' argument");
}
}
} else {
if ( RExC_parse >= RExC_end || *RExC_parse != ')' ) {
if (has_upper) {
vFAIL("Unterminated verb pattern");
}
else {
vFAIL("Unterminated '(*...' construct");
}
}
}
/* Here, we know that RExC_parse < RExC_end */
switch ( *start_verb ) {
case 'A': /* (*ACCEPT) */
if ( memEQs(start_verb, verb_len,"ACCEPT") ) {
op = ACCEPT;
internal_argval = RExC_nestroot;
}
break;
case 'C': /* (*COMMIT) */
if ( memEQs(start_verb, verb_len,"COMMIT") )
op = COMMIT;
break;
case 'F': /* (*FAIL) */
if ( verb_len==1 || memEQs(start_verb, verb_len,"FAIL") ) {
op = OPFAIL;
}
break;
case ':': /* (*:NAME) */
case 'M': /* (*MARK:NAME) */
if ( verb_len==0 || memEQs(start_verb, verb_len,"MARK") ) {
op = MARKPOINT;
arg_required = 1;
}
break;
case 'P': /* (*PRUNE) */
if ( memEQs(start_verb, verb_len,"PRUNE") )
op = PRUNE;
break;
case 'S': /* (*SKIP) */
if ( memEQs(start_verb, verb_len,"SKIP") )
op = SKIP;
break;
case 'T': /* (*THEN) */
/* [19:06] <TimToady> :: is then */
if ( memEQs(start_verb, verb_len,"THEN") ) {
op = CUTGROUP;
RExC_seen |= REG_CUTGROUP_SEEN;
}
break;
case 'a':
if ( memEQs(start_verb, verb_len, "asr")
|| memEQs(start_verb, verb_len, "atomic_script_run"))
{
paren = 'r'; /* Mnemonic: recursed run */
goto script_run;
}
else if (memEQs(start_verb, verb_len, "atomic")) {
paren = 't'; /* AtOMIC */
goto alpha_assertions;
}
break;
case 'p':
if ( memEQs(start_verb, verb_len, "plb")
|| memEQs(start_verb, verb_len, "positive_lookbehind"))
{
paren = 'b';
goto lookbehind_alpha_assertions;
}
else if ( memEQs(start_verb, verb_len, "pla")
|| memEQs(start_verb, verb_len, "positive_lookahead"))
{
paren = 'a';
goto alpha_assertions;
}
break;
case 'n':
if ( memEQs(start_verb, verb_len, "nlb")
|| memEQs(start_verb, verb_len, "negative_lookbehind"))
{
paren = 'B';
goto lookbehind_alpha_assertions;
}
else if ( memEQs(start_verb, verb_len, "nla")
|| memEQs(start_verb, verb_len, "negative_lookahead"))
{
paren = 'A';
goto alpha_assertions;
}
break;
case 's':
if ( memEQs(start_verb, verb_len, "sr")
|| memEQs(start_verb, verb_len, "script_run"))
{
regnode_offset atomic;
paren = 's';
script_run:
/* This indicates Unicode rules. */
REQUIRE_UNI_RULES(flagp, 0);
if (! start_arg) {
goto no_colon;
}
RExC_parse = start_arg;
if (RExC_in_script_run) {
/* Nested script runs are treated as no-ops, because
* if the nested one fails, the outer one must as
* well. It could fail sooner, and avoid (??{} with
* side effects, but that is explicitly documented as
* undefined behavior. */
ret = 0;
if (paren == 's') {
paren = ':';
goto parse_rest;
}
/* But, the atomic part of a nested atomic script run
* isn't a no-op, but can be treated just like a '(?>'
* */
paren = '>';
goto parse_rest;
}
if (paren == 's') {
/* Here, we're starting a new regular script run */
ret = reg_node(pRExC_state, SROPEN);
RExC_in_script_run = 1;
is_open = 1;
goto parse_rest;
}
/* Here, we are starting an atomic script run. This is
* handled by recursing to deal with the atomic portion
* separately, enclosed in SROPEN ... SRCLOSE nodes */
ret = reg_node(pRExC_state, SROPEN);
RExC_in_script_run = 1;
atomic = reg(pRExC_state, 'r', &flags, depth);
if (flags & (RESTART_PARSE|NEED_UTF8)) {
*flagp = flags & (RESTART_PARSE|NEED_UTF8);
return 0;
}
if (! REGTAIL(pRExC_state, ret, atomic)) {
REQUIRE_BRANCHJ(flagp, 0);
}
if (! REGTAIL(pRExC_state, atomic, reg_node(pRExC_state,
SRCLOSE)))
{
REQUIRE_BRANCHJ(flagp, 0);
}
RExC_in_script_run = 0;
return ret;
}
break;
lookbehind_alpha_assertions:
RExC_seen |= REG_LOOKBEHIND_SEEN;
/*FALLTHROUGH*/
alpha_assertions:
RExC_in_lookaround++;
RExC_seen_zerolen++;
if (! start_arg) {
goto no_colon;
}
/* An empty negative lookahead assertion simply is failure */
if (paren == 'A' && RExC_parse == start_arg) {
ret=reganode(pRExC_state, OPFAIL, 0);
nextchar(pRExC_state);
return ret;
}
RExC_parse = start_arg;
goto parse_rest;
no_colon:
vFAIL2utf8f(
"'(*%" UTF8f "' requires a terminating ':'",
UTF8fARG(UTF, verb_len, start_verb));
NOT_REACHED; /*NOTREACHED*/
} /* End of switch */
if ( ! op ) {
RExC_parse += UTF
? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
: 1;
if (has_upper || verb_len == 0) {
vFAIL2utf8f(
"Unknown verb pattern '%" UTF8f "'",
UTF8fARG(UTF, verb_len, start_verb));
}
else {
vFAIL2utf8f(
"Unknown '(*...)' construct '%" UTF8f "'",
UTF8fARG(UTF, verb_len, start_verb));
}
}
if ( RExC_parse == start_arg ) {
start_arg = NULL;
}
if ( arg_required && !start_arg ) {
vFAIL3("Verb pattern '%.*s' has a mandatory argument",
(int) verb_len, start_verb);
}
if (internal_argval == -1) {
ret = reganode(pRExC_state, op, 0);
} else {
ret = reg2Lanode(pRExC_state, op, 0, internal_argval);
}
RExC_seen |= REG_VERBARG_SEEN;
if (start_arg) {
SV *sv = newSVpvn( start_arg,
RExC_parse - start_arg);
ARG(REGNODE_p(ret)) = add_data( pRExC_state,
STR_WITH_LEN("S"));
RExC_rxi->data->data[ARG(REGNODE_p(ret))]=(void*)sv;
FLAGS(REGNODE_p(ret)) = 1;
} else {
FLAGS(REGNODE_p(ret)) = 0;
}
if ( internal_argval != -1 )
ARG2L_SET(REGNODE_p(ret), internal_argval);
nextchar(pRExC_state);
return ret;
}
else if (*RExC_parse == '?') { /* (?...) */
bool is_logical = 0;
const char * const seqstart = RExC_parse;
const char * endptr;
const char non_existent_group_msg[]
= "Reference to nonexistent group";
const char impossible_group[] = "Invalid reference to group";
if (has_intervening_patws) {
RExC_parse++;
vFAIL("In '(?...)', the '(' and '?' must be adjacent");
}
RExC_parse++; /* past the '?' */
paren = *RExC_parse; /* might be a trailing NUL, if not
well-formed */
RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
if (RExC_parse > RExC_end) {
paren = '\0';
}
ret = 0; /* For look-ahead/behind. */
switch (paren) {
case 'P': /* (?P...) variants for those used to PCRE/Python */
paren = *RExC_parse;
if ( paren == '<') { /* (?P<...>) named capture */
RExC_parse++;
if (RExC_parse >= RExC_end) {
vFAIL("Sequence (?P<... not terminated");
}
goto named_capture;
}
else if (paren == '>') { /* (?P>name) named recursion */
RExC_parse++;
if (RExC_parse >= RExC_end) {
vFAIL("Sequence (?P>... not terminated");
}
goto named_recursion;
}
else if (paren == '=') { /* (?P=...) named backref */
RExC_parse++;
return handle_named_backref(pRExC_state, flagp,
parse_start, ')');
}
RExC_parse += SKIP_IF_CHAR(RExC_parse, RExC_end);
/* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
vFAIL3("Sequence (%.*s...) not recognized",
(int) (RExC_parse - seqstart), seqstart);
NOT_REACHED; /*NOTREACHED*/
case '<': /* (?<...) */
/* If you want to support (?<*...), first reconcile with GH #17363 */
if (*RExC_parse == '!')
paren = ',';
else if (*RExC_parse != '=')
named_capture:
{ /* (?<...>) */
char *name_start;
SV *svname;
paren= '>';
/* FALLTHROUGH */
case '\'': /* (?'...') */
name_start = RExC_parse;
svname = reg_scan_name(pRExC_state, REG_RSN_RETURN_NAME);
if ( RExC_parse == name_start
|| RExC_parse >= RExC_end
|| *RExC_parse != paren)
{
vFAIL2("Sequence (?%c... not terminated",
paren=='>' ? '<' : (char) paren);
}
{
HE *he_str;
SV *sv_dat = NULL;
if (!svname) /* shouldn't happen */
Perl_croak(aTHX_
"panic: reg_scan_name returned NULL");
if (!RExC_paren_names) {
RExC_paren_names= newHV();
sv_2mortal(MUTABLE_SV(RExC_paren_names));
#ifdef DEBUGGING
RExC_paren_name_list= newAV();
sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
#endif
}
he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
if ( he_str )
sv_dat = HeVAL(he_str);
if ( ! sv_dat ) {
/* croak baby croak */
Perl_croak(aTHX_
"panic: paren_name hash element allocation failed");
} else if ( SvPOK(sv_dat) ) {
/* (?|...) can mean we have dupes so scan to check
its already been stored. Maybe a flag indicating
we are inside such a construct would be useful,
but the arrays are likely to be quite small, so
for now we punt -- dmq */
IV count = SvIV(sv_dat);
I32 *pv = (I32*)SvPVX(sv_dat);
IV i;
for ( i = 0 ; i < count ; i++ ) {
if ( pv[i] == RExC_npar ) {
count = 0;
break;
}
}
if ( count ) {
pv = (I32*)SvGROW(sv_dat,
SvCUR(sv_dat) + sizeof(I32)+1);
SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
pv[count] = RExC_npar;
SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
}
} else {
(void)SvUPGRADE(sv_dat, SVt_PVNV);
sv_setpvn(sv_dat, (char *)&(RExC_npar),
sizeof(I32));
SvIOK_on(sv_dat);
SvIV_set(sv_dat, 1);
}
#ifdef DEBUGGING
/* Yes this does cause a memory leak in debugging Perls
* */
if (!av_store(RExC_paren_name_list,
RExC_npar, SvREFCNT_inc_NN(svname)))
SvREFCNT_dec_NN(svname);
#endif
/*sv_dump(sv_dat);*/
}
nextchar(pRExC_state);
paren = 1;
goto capturing_parens;
}
RExC_seen |= REG_LOOKBEHIND_SEEN;
RExC_in_lookaround++;
RExC_parse++;
if (RExC_parse >= RExC_end) {
vFAIL("Sequence (?... not terminated");
}
RExC_seen_zerolen++;
break;
case '=': /* (?=...) */
RExC_seen_zerolen++;
RExC_in_lookaround++;
break;
case '!': /* (?!...) */
RExC_seen_zerolen++;
/* check if we're really just a "FAIL" assertion */
skip_to_be_ignored_text(pRExC_state, &RExC_parse,
FALSE /* Don't force to /x */ );
if (*RExC_parse == ')') {
ret=reganode(pRExC_state, OPFAIL, 0);
nextchar(pRExC_state);
return ret;
}
RExC_in_lookaround++;
break;
case '|': /* (?|...) */
/* branch reset, behave like a (?:...) except that
buffers in alternations share the same numbers */
paren = ':';
after_freeze = freeze_paren = RExC_npar;
/* XXX This construct currently requires an extra pass.
* Investigation would be required to see if that could be
* changed */
REQUIRE_PARENS_PASS;
break;
case ':': /* (?:...) */
case '>': /* (?>...) */
break;
case '$': /* (?$...) */
case '@': /* (?@...) */
vFAIL2("Sequence (?%c...) not implemented", (int)paren);
break;
case '0' : /* (?0) */
case 'R' : /* (?R) */
if (RExC_parse == RExC_end || *RExC_parse != ')')
FAIL("Sequence (?R) not terminated");
num = 0;
RExC_seen |= REG_RECURSE_SEEN;
/* XXX These constructs currently require an extra pass.
* It probably could be changed */
REQUIRE_PARENS_PASS;
*flagp |= POSTPONED;
goto gen_recurse_regop;
/*notreached*/
/* named and numeric backreferences */
case '&': /* (?&NAME) */
parse_start = RExC_parse - 1;
named_recursion:
{
SV *sv_dat = reg_scan_name(pRExC_state,
REG_RSN_RETURN_DATA);
num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
}
if (RExC_parse >= RExC_end || *RExC_parse != ')')
vFAIL("Sequence (?&... not terminated");
goto gen_recurse_regop;
/* NOTREACHED */
case '+':
if (! inRANGE(RExC_parse[0], '1', '9')) {
RExC_parse++;
vFAIL("Illegal pattern");
}
goto parse_recursion;
/* NOTREACHED*/
case '-': /* (?-1) */
if (! inRANGE(RExC_parse[0], '1', '9')) {
RExC_parse--; /* rewind to let it be handled later */
goto parse_flags;
}
/* FALLTHROUGH */
case '1': case '2': case '3': case '4': /* (?1) */
case '5': case '6': case '7': case '8': case '9':
RExC_parse = (char *) seqstart + 1; /* Point to the digit */
parse_recursion:
{
bool is_neg = FALSE;
UV unum;
parse_start = RExC_parse - 1; /* MJD */
if (*RExC_parse == '-') {
RExC_parse++;
is_neg = TRUE;
}
endptr = RExC_end;
if (grok_atoUV(RExC_parse, &unum, &endptr)
&& unum <= I32_MAX
) {
num = (I32)unum;
RExC_parse = (char*)endptr;
}
else { /* Overflow, or something like that. Position
beyond all digits for the message */
while (RExC_parse < RExC_end && isDIGIT(*RExC_parse)) {
RExC_parse++;
}
vFAIL(impossible_group);
}
if (is_neg) {
/* -num is always representable on 1 and 2's complement
* machines */
num = -num;
}
}
if (*RExC_parse!=')')
vFAIL("Expecting close bracket");
gen_recurse_regop:
if (paren == '-' || paren == '+') {
/* Don't overflow */
if (UNLIKELY(I32_MAX - RExC_npar < num)) {
RExC_parse++;
vFAIL(impossible_group);
}
/*
Diagram of capture buffer numbering.
Top line is the normal capture buffer numbers
Bottom line is the negative indexing as from
the X (the (?-2))
1 2 3 4 5 X Y 6 7
/(a(x)y)(a(b(c(?+2)d)e)f)(g(h))/
/(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
- 5 4 3 2 1 X Y x x
Resolve to absolute group. Recall that RExC_npar is +1 of
the actual parenthesis group number. For lookahead, we
have to compensate for that. Using the above example, when
we get to Y in the parse, num is 2 and RExC_npar is 6. We
want 7 for +2, and 4 for -2.
*/
if ( paren == '+' ) {
num--;
}
num += RExC_npar;
if (paren == '-' && num < 1) {
RExC_parse++;
vFAIL(non_existent_group_msg);
}
}
if (num >= RExC_npar) {
/* It might be a forward reference; we can't fail until we
* know, by completing the parse to get all the groups, and
* then reparsing */
if (ALL_PARENS_COUNTED) {
if (num >= RExC_total_parens) {
RExC_parse++;
vFAIL(non_existent_group_msg);
}
}
else {
REQUIRE_PARENS_PASS;
}
}
/* We keep track how many GOSUB items we have produced.
To start off the ARG2L() of the GOSUB holds its "id",
which is used later in conjunction with RExC_recurse
to calculate the offset we need to jump for the GOSUB,
which it will store in the final representation.
We have to defer the actual calculation until much later
as the regop may move.
*/
ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
RExC_recurse_count++;
DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
"%*s%*s Recurse #%" UVuf " to %" IVdf "\n",
22, "| |", (int)(depth * 2 + 1), "",
(UV)ARG(REGNODE_p(ret)),
(IV)ARG2L(REGNODE_p(ret))));
RExC_seen |= REG_RECURSE_SEEN;
Set_Node_Length(REGNODE_p(ret),
1 + regarglen[OP(REGNODE_p(ret))]); /* MJD */
Set_Node_Offset(REGNODE_p(ret), parse_start); /* MJD */
*flagp |= POSTPONED;
assert(*RExC_parse == ')');
nextchar(pRExC_state);
return ret;
/* NOTREACHED */
case '?': /* (??...) */
is_logical = 1;
if (*RExC_parse != '{') {
RExC_parse += SKIP_IF_CHAR(RExC_parse, RExC_end);
/* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
vFAIL2utf8f(
"Sequence (%" UTF8f "...) not recognized",
UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
NOT_REACHED; /*NOTREACHED*/
}
*flagp |= POSTPONED;
paren = '{';
RExC_parse++;
/* FALLTHROUGH */
case '{': /* (?{...}) */
{
U32 n = 0;
struct reg_code_block *cb;
OP * o;
RExC_seen_zerolen++;
if ( !pRExC_state->code_blocks
|| pRExC_state->code_index
>= pRExC_state->code_blocks->count
|| pRExC_state->code_blocks->cb[pRExC_state->code_index].start
!= (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
- RExC_start)
) {
if (RExC_pm_flags & PMf_USE_RE_EVAL)
FAIL("panic: Sequence (?{...}): no code block found\n");
FAIL("Eval-group not allowed at runtime, use re 'eval'");
}
/* this is a pre-compiled code block (?{...}) */
cb = &pRExC_state->code_blocks->cb[pRExC_state->code_index];
RExC_parse = RExC_start + cb->end;
o = cb->block;
if (cb->src_regex) {
n = add_data(pRExC_state, STR_WITH_LEN("rl"));
RExC_rxi->data->data[n] =
(void*)SvREFCNT_inc((SV*)cb->src_regex);
RExC_rxi->data->data[n+1] = (void*)o;
}
else {
n = add_data(pRExC_state,
(RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
RExC_rxi->data->data[n] = (void*)o;
}
pRExC_state->code_index++;
nextchar(pRExC_state);
if (is_logical) {
regnode_offset eval;
ret = reg_node(pRExC_state, LOGICAL);
eval = reg2Lanode(pRExC_state, EVAL,
n,
/* for later propagation into (??{})
* return value */
RExC_flags & RXf_PMf_COMPILETIME
);
FLAGS(REGNODE_p(ret)) = 2;
if (! REGTAIL(pRExC_state, ret, eval)) {
REQUIRE_BRANCHJ(flagp, 0);
}
/* deal with the length of this later - MJD */
return ret;
}
ret = reg2Lanode(pRExC_state, EVAL, n, 0);
Set_Node_Length(REGNODE_p(ret), RExC_parse - parse_start + 1);
Set_Node_Offset(REGNODE_p(ret), parse_start);
return ret;
}
case '(': /* (?(?{...})...) and (?(?=...)...) */
{
int is_define= 0;
const int DEFINE_len = sizeof("DEFINE") - 1;
if ( RExC_parse < RExC_end - 1
&& ( ( RExC_parse[0] == '?' /* (?(?...)) */
&& ( RExC_parse[1] == '='
|| RExC_parse[1] == '!'
|| RExC_parse[1] == '<'
|| RExC_parse[1] == '{'))
|| ( RExC_parse[0] == '*' /* (?(*...)) */
&& ( memBEGINs(RExC_parse + 1,
(Size_t) (RExC_end - (RExC_parse + 1)),
"pla:")
|| memBEGINs(RExC_parse + 1,
(Size_t) (RExC_end - (RExC_parse + 1)),
"plb:")
|| memBEGINs(RExC_parse + 1,
(Size_t) (RExC_end - (RExC_parse + 1)),
"nla:")
|| memBEGINs(RExC_parse + 1,
(Size_t) (RExC_end - (RExC_parse + 1)),
"nlb:")
|| memBEGINs(RExC_parse + 1,
(Size_t) (RExC_end - (RExC_parse + 1)),
"positive_lookahead:")
|| memBEGINs(RExC_parse + 1,
(Size_t) (RExC_end - (RExC_parse + 1)),
"positive_lookbehind:")
|| memBEGINs(RExC_parse + 1,
(Size_t) (RExC_end - (RExC_parse + 1)),
"negative_lookahead:")
|| memBEGINs(RExC_parse + 1,
(Size_t) (RExC_end - (RExC_parse + 1)),
"negative_lookbehind:"))))
) { /* Lookahead or eval. */
I32 flag;
regnode_offset tail;
ret = reg_node(pRExC_state, LOGICAL);
FLAGS(REGNODE_p(ret)) = 1;
tail = reg(pRExC_state, 1, &flag, depth+1);
RETURN_FAIL_ON_RESTART(flag, flagp);
if (! REGTAIL(pRExC_state, ret, tail)) {
REQUIRE_BRANCHJ(flagp, 0);
}
goto insert_if;
}
else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
|| RExC_parse[0] == '\'' ) /* (?('NAME')...) */
{
char ch = RExC_parse[0] == '<' ? '>' : '\'';
char *name_start= RExC_parse++;
U32 num = 0;
SV *sv_dat=reg_scan_name(pRExC_state, REG_RSN_RETURN_DATA);
if ( RExC_parse == name_start
|| RExC_parse >= RExC_end
|| *RExC_parse != ch)
{
vFAIL2("Sequence (?(%c... not terminated",
(ch == '>' ? '<' : ch));
}
RExC_parse++;
if (sv_dat) {
num = add_data( pRExC_state, STR_WITH_LEN("S"));
RExC_rxi->data->data[num]=(void*)sv_dat;
SvREFCNT_inc_simple_void_NN(sv_dat);
}
ret = reganode(pRExC_state, GROUPPN, num);
goto insert_if_check_paren;
}
else if (memBEGINs(RExC_parse,
(STRLEN) (RExC_end - RExC_parse),
"DEFINE"))
{
ret = reganode(pRExC_state, DEFINEP, 0);
RExC_parse += DEFINE_len;
is_define = 1;
goto insert_if_check_paren;
}
else if (RExC_parse[0] == 'R') {
RExC_parse++;
/* parno == 0 => /(?(R)YES|NO)/ "in any form of recursion OR eval"
* parno == 1 => /(?(R0)YES|NO)/ "in GOSUB (?0) / (?R)"
* parno == 2 => /(?(R1)YES|NO)/ "in GOSUB (?1) (parno-1)"
*/
parno = 0;
if (RExC_parse[0] == '0') {
parno = 1;
RExC_parse++;
}
else if (inRANGE(RExC_parse[0], '1', '9')) {
UV uv;
endptr = RExC_end;
if (grok_atoUV(RExC_parse, &uv, &endptr)
&& uv <= I32_MAX
) {
parno = (I32)uv + 1;
RExC_parse = (char*)endptr;
}
/* else "Switch condition not recognized" below */
} else if (RExC_parse[0] == '&') {
SV *sv_dat;
RExC_parse++;
sv_dat = reg_scan_name(pRExC_state,
REG_RSN_RETURN_DATA);
if (sv_dat)
parno = 1 + *((I32 *)SvPVX(sv_dat));
}
ret = reganode(pRExC_state, INSUBP, parno);
goto insert_if_check_paren;
}
else if (inRANGE(RExC_parse[0], '1', '9')) {
/* (?(1)...) */
char c;
UV uv;
endptr = RExC_end;
if (grok_atoUV(RExC_parse, &uv, &endptr)
&& uv <= I32_MAX
) {
parno = (I32)uv;
RExC_parse = (char*)endptr;
}
else {
vFAIL("panic: grok_atoUV returned FALSE");
}
ret = reganode(pRExC_state, GROUPP, parno);
insert_if_check_paren:
if (UCHARAT(RExC_parse) != ')') {
RExC_parse += UTF
? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
: 1;
vFAIL("Switch condition not recognized");
}
nextchar(pRExC_state);
insert_if:
if (! REGTAIL(pRExC_state, ret, reganode(pRExC_state,
IFTHEN, 0)))
{
REQUIRE_BRANCHJ(flagp, 0);
}
br = regbranch(pRExC_state, &flags, 1, depth+1);
if (br == 0) {
RETURN_FAIL_ON_RESTART(flags,flagp);
FAIL2("panic: regbranch returned failure, flags=%#" UVxf,
(UV) flags);
} else
if (! REGTAIL(pRExC_state, br, reganode(pRExC_state,
LONGJMP, 0)))
{
REQUIRE_BRANCHJ(flagp, 0);
}
c = UCHARAT(RExC_parse);
nextchar(pRExC_state);
if (flags&HASWIDTH)
*flagp |= HASWIDTH;
if (c == '|') {
if (is_define)
vFAIL("(?(DEFINE)....) does not allow branches");
/* Fake one for optimizer. */
lastbr = reganode(pRExC_state, IFTHEN, 0);
if (!regbranch(pRExC_state, &flags, 1, depth+1)) {
RETURN_FAIL_ON_RESTART(flags, flagp);
FAIL2("panic: regbranch returned failure, flags=%#" UVxf,
(UV) flags);
}
if (! REGTAIL(pRExC_state, ret, lastbr)) {
REQUIRE_BRANCHJ(flagp, 0);
}
if (flags&HASWIDTH)
*flagp |= HASWIDTH;
c = UCHARAT(RExC_parse);
nextchar(pRExC_state);
}
else
lastbr = 0;
if (c != ')') {
if (RExC_parse >= RExC_end)
vFAIL("Switch (?(condition)... not terminated");
else
vFAIL("Switch (?(condition)... contains too many branches");
}
ender = reg_node(pRExC_state, TAIL);
if (! REGTAIL(pRExC_state, br, ender)) {
REQUIRE_BRANCHJ(flagp, 0);
}
if (lastbr) {
if (! REGTAIL(pRExC_state, lastbr, ender)) {
REQUIRE_BRANCHJ(flagp, 0);
}
if (! REGTAIL(pRExC_state,
REGNODE_OFFSET(
NEXTOPER(
NEXTOPER(REGNODE_p(lastbr)))),
ender))
{
REQUIRE_BRANCHJ(flagp, 0);
}
}
else
if (! REGTAIL(pRExC_state, ret, ender)) {
REQUIRE_BRANCHJ(flagp, 0);
}
#if 0 /* Removing this doesn't cause failures in the test suite -- khw */
RExC_size++; /* XXX WHY do we need this?!!
For large programs it seems to be required
but I can't figure out why. -- dmq*/
#endif
return ret;
}
RExC_parse += UTF
? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
: 1;
vFAIL("Unknown switch condition (?(...))");
}
case '[': /* (?[ ... ]) */
return handle_regex_sets(pRExC_state, NULL, flagp, depth+1,
oregcomp_parse);
case 0: /* A NUL */
RExC_parse--; /* for vFAIL to print correctly */
vFAIL("Sequence (? incomplete");
break;
case ')':
if (RExC_strict) { /* [perl #132851] */
ckWARNreg(RExC_parse, "Empty (?) without any modifiers");
}
/* FALLTHROUGH */
case '*': /* If you want to support (?*...), first reconcile with GH #17363 */
/* FALLTHROUGH */
default: /* e.g., (?i) */
RExC_parse = (char *) seqstart + 1;
parse_flags:
parse_lparen_question_flags(pRExC_state);
if (UCHARAT(RExC_parse) != ':') {
if (RExC_parse < RExC_end)
nextchar(pRExC_state);
*flagp = TRYAGAIN;
return 0;
}
paren = ':';
nextchar(pRExC_state);
ret = 0;
goto parse_rest;
} /* end switch */
}
else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) { /* (...) */
capturing_parens:
parno = RExC_npar;
RExC_npar++;
if (! ALL_PARENS_COUNTED) {
/* If we are in our first pass through (and maybe only pass),
* we need to allocate memory for the capturing parentheses
* data structures.
*/
if (!RExC_parens_buf_size) {
/* first guess at number of parens we might encounter */
RExC_parens_buf_size = 10;
/* setup RExC_open_parens, which holds the address of each
* OPEN tag, and to make things simpler for the 0 index the
* start of the program - this is used later for offsets */
Newxz(RExC_open_parens, RExC_parens_buf_size,
regnode_offset);
RExC_open_parens[0] = 1; /* +1 for REG_MAGIC */
/* setup RExC_close_parens, which holds the address of each
* CLOSE tag, and to make things simpler for the 0 index
* the end of the program - this is used later for offsets
* */
Newxz(RExC_close_parens, RExC_parens_buf_size,
regnode_offset);
/* we dont know where end op starts yet, so we dont need to
* set RExC_close_parens[0] like we do RExC_open_parens[0]
* above */
}
else if (RExC_npar > RExC_parens_buf_size) {
I32 old_size = RExC_parens_buf_size;
RExC_parens_buf_size *= 2;
Renew(RExC_open_parens, RExC_parens_buf_size,
regnode_offset);
Zero(RExC_open_parens + old_size,
RExC_parens_buf_size - old_size, regnode_offset);
Renew(RExC_close_parens, RExC_parens_buf_size,
regnode_offset);
Zero(RExC_close_parens + old_size,
RExC_parens_buf_size - old_size, regnode_offset);
}
}
ret = reganode(pRExC_state, OPEN, parno);
if (!RExC_nestroot)
RExC_nestroot = parno;
if (RExC_open_parens && !RExC_open_parens[parno])
{
DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
"%*s%*s Setting open paren #%" IVdf " to %zu\n",
22, "| |", (int)(depth * 2 + 1), "",
(IV)parno, ret));
RExC_open_parens[parno]= ret;
}
Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
Set_Node_Offset(REGNODE_p(ret), RExC_parse); /* MJD */
is_open = 1;
} else {
/* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
paren = ':';
ret = 0;
}
}
else /* ! paren */
ret = 0;
parse_rest:
/* Pick up the branches, linking them together. */
parse_start = RExC_parse; /* MJD */
br = regbranch(pRExC_state, &flags, 1, depth+1);
/* branch_len = (paren != 0); */
if (br == 0) {
RETURN_FAIL_ON_RESTART(flags, flagp);
FAIL2("panic: regbranch returned failure, flags=%#" UVxf, (UV) flags);
}
if (*RExC_parse == '|') {
if (RExC_use_BRANCHJ) {
reginsert(pRExC_state, BRANCHJ, br, depth+1);
}
else { /* MJD */
reginsert(pRExC_state, BRANCH, br, depth+1);
Set_Node_Length(REGNODE_p(br), paren != 0);
Set_Node_Offset_To_R(br, parse_start-RExC_start);
}
have_branch = 1;
}
else if (paren == ':') {
*flagp |= flags&SIMPLE;
}
if (is_open) { /* Starts with OPEN. */
if (! REGTAIL(pRExC_state, ret, br)) { /* OPEN -> first. */
REQUIRE_BRANCHJ(flagp, 0);
}
}
else if (paren != '?') /* Not Conditional */
ret = br;
*flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
lastbr = br;
while (*RExC_parse == '|') {
if (RExC_use_BRANCHJ) {
bool shut_gcc_up;
ender = reganode(pRExC_state, LONGJMP, 0);
/* Append to the previous. */
shut_gcc_up = REGTAIL(pRExC_state,
REGNODE_OFFSET(NEXTOPER(NEXTOPER(REGNODE_p(lastbr)))),
ender);
PERL_UNUSED_VAR(shut_gcc_up);
}
nextchar(pRExC_state);
if (freeze_paren) {
if (RExC_npar > after_freeze)
after_freeze = RExC_npar;
RExC_npar = freeze_paren;
}
br = regbranch(pRExC_state, &flags, 0, depth+1);
if (br == 0) {
RETURN_FAIL_ON_RESTART(flags, flagp);
FAIL2("panic: regbranch returned failure, flags=%#" UVxf, (UV) flags);
}
if (! REGTAIL(pRExC_state, lastbr, br)) { /* BRANCH -> BRANCH. */
REQUIRE_BRANCHJ(flagp, 0);
}
lastbr = br;
*flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
}
if (have_branch || paren != ':') {
regnode * br;
/* Make a closing node, and hook it on the end. */
switch (paren) {
case ':':
ender = reg_node(pRExC_state, TAIL);
break;
case 1: case 2:
ender = reganode(pRExC_state, CLOSE, parno);
if ( RExC_close_parens ) {
DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
"%*s%*s Setting close paren #%" IVdf " to %zu\n",
22, "| |", (int)(depth * 2 + 1), "",
(IV)parno, ender));
RExC_close_parens[parno]= ender;
if (RExC_nestroot == parno)
RExC_nestroot = 0;
}
Set_Node_Offset(REGNODE_p(ender), RExC_parse+1); /* MJD */
Set_Node_Length(REGNODE_p(ender), 1); /* MJD */
break;
case 's':
ender = reg_node(pRExC_state, SRCLOSE);
RExC_in_script_run = 0;
break;
case '<':
case 'a':
case 'A':
case 'b':
case 'B':
case ',':
case '=':
case '!':
*flagp &= ~HASWIDTH;
/* FALLTHROUGH */
case 't': /* aTomic */
case '>':
ender = reg_node(pRExC_state, SUCCEED);
break;
case 0:
ender = reg_node(pRExC_state, END);
assert(!RExC_end_op); /* there can only be one! */
RExC_end_op = REGNODE_p(ender);
if (RExC_close_parens) {
DEBUG_OPTIMISE_MORE_r(Perl_re_printf( aTHX_
"%*s%*s Setting close paren #0 (END) to %zu\n",
22, "| |", (int)(depth * 2 + 1), "",
ender));
RExC_close_parens[0]= ender;
}
break;
}
DEBUG_PARSE_r({
DEBUG_PARSE_MSG("lsbr");
regprop(RExC_rx, RExC_mysv1, REGNODE_p(lastbr), NULL, pRExC_state);
regprop(RExC_rx, RExC_mysv2, REGNODE_p(ender), NULL, pRExC_state);
Perl_re_printf( aTHX_ "~ tying lastbr %s (%" IVdf ") to ender %s (%" IVdf ") offset %" IVdf "\n",
SvPV_nolen_const(RExC_mysv1),
(IV)lastbr,
SvPV_nolen_const(RExC_mysv2),
(IV)ender,
(IV)(ender - lastbr)
);
});
if (! REGTAIL(pRExC_state, lastbr, ender)) {
REQUIRE_BRANCHJ(flagp, 0);
}
if (have_branch) {
char is_nothing= 1;
if (depth==1)
RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
/* Hook the tails of the branches to the closing node. */
for (br = REGNODE_p(ret); br; br = regnext(br)) {
const U8 op = PL_regkind[OP(br)];
if (op == BRANCH) {
if (! REGTAIL_STUDY(pRExC_state,
REGNODE_OFFSET(NEXTOPER(br)),
ender))
{
REQUIRE_BRANCHJ(flagp, 0);
}
if ( OP(NEXTOPER(br)) != NOTHING
|| regnext(NEXTOPER(br)) != REGNODE_p(ender))
is_nothing= 0;
}
else if (op == BRANCHJ) {
bool shut_gcc_up = REGTAIL_STUDY(pRExC_state,
REGNODE_OFFSET(NEXTOPER(NEXTOPER(br))),
ender);
PERL_UNUSED_VAR(shut_gcc_up);
/* for now we always disable this optimisation * /
if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
|| regnext(NEXTOPER(NEXTOPER(br))) != REGNODE_p(ender))
*/
is_nothing= 0;
}
}
if (is_nothing) {
regnode * ret_as_regnode = REGNODE_p(ret);
br= PL_regkind[OP(ret_as_regnode)] != BRANCH
? regnext(ret_as_regnode)
: ret_as_regnode;
DEBUG_PARSE_r({
DEBUG_PARSE_MSG("NADA");
regprop(RExC_rx, RExC_mysv1, ret_as_regnode,
NULL, pRExC_state);
regprop(RExC_rx, RExC_mysv2, REGNODE_p(ender),
NULL, pRExC_state);
Perl_re_printf( aTHX_ "~ converting ret %s (%" IVdf ") to ender %s (%" IVdf ") offset %" IVdf "\n",
SvPV_nolen_const(RExC_mysv1),
(IV)REG_NODE_NUM(ret_as_regnode),
SvPV_nolen_const(RExC_mysv2),
(IV)ender,
(IV)(ender - ret)
);
});
OP(br)= NOTHING;
if (OP(REGNODE_p(ender)) == TAIL) {
NEXT_OFF(br)= 0;
RExC_emit= REGNODE_OFFSET(br) + 1;
} else {
regnode *opt;
for ( opt= br + 1; opt < REGNODE_p(ender) ; opt++ )
OP(opt)= OPTIMIZED;
NEXT_OFF(br)= REGNODE_p(ender) - br;
}
}
}
}
{
const char *p;
/* Even/odd or x=don't care: 010101x10x */
static const char parens[] = "=!aA<,>Bbt";
/* flag below is set to 0 up through 'A'; 1 for larger */
if (paren && (p = strchr(parens, paren))) {
U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
int flag = (p - parens) > 3;
if (paren == '>' || paren == 't') {
node = SUSPEND, flag = 0;
}
reginsert(pRExC_state, node, ret, depth+1);
Set_Node_Cur_Length(REGNODE_p(ret), parse_start);
Set_Node_Offset(REGNODE_p(ret), parse_start + 1);
FLAGS(REGNODE_p(ret)) = flag;
if (! REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL)))
{
REQUIRE_BRANCHJ(flagp, 0);
}
}
}
/* Check for proper termination. */
if (paren) {
/* restore original flags, but keep (?p) and, if we've encountered
* something in the parse that changes /d rules into /u, keep the /u */
RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
if (DEPENDS_SEMANTICS && toUSE_UNI_CHARSET_NOT_DEPENDS) {
set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET);
}
if (RExC_parse >= RExC_end || UCHARAT(RExC_parse) != ')') {
RExC_parse = oregcomp_parse;
vFAIL("Unmatched (");
}
nextchar(pRExC_state);
}
else if (!paren && RExC_parse < RExC_end) {
if (*RExC_parse == ')') {
RExC_parse++;
vFAIL("Unmatched )");
}
else
FAIL("Junk on end of regexp"); /* "Can't happen". */
NOT_REACHED; /* NOTREACHED */
}
if (after_freeze > RExC_npar)
RExC_npar = after_freeze;
RExC_in_lookaround = was_in_lookaround;
return(ret);
}
/*
- regbranch - one alternative of an | operator
*
* Implements the concatenation operator.
*
* On success, returns the offset at which any next node should be placed into
* the regex engine program being compiled.
*
* Returns 0 otherwise, setting flagp to RESTART_PARSE if the parse needs
* to be restarted, or'd with NEED_UTF8 if the pattern needs to be upgraded to
* UTF-8
*/
STATIC regnode_offset
S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
{
regnode_offset ret;
regnode_offset chain = 0;
regnode_offset latest;
I32 flags = 0, c = 0;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGBRANCH;
DEBUG_PARSE("brnc");
if (first)
ret = 0;
else {
if (RExC_use_BRANCHJ)
ret = reganode(pRExC_state, BRANCHJ, 0);
else {
ret = reg_node(pRExC_state, BRANCH);
Set_Node_Length(REGNODE_p(ret), 1);
}
}
*flagp = WORST; /* Tentatively. */
skip_to_be_ignored_text(pRExC_state, &RExC_parse,
FALSE /* Don't force to /x */ );
while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
flags &= ~TRYAGAIN;
latest = regpiece(pRExC_state, &flags, depth+1);
if (latest == 0) {
if (flags & TRYAGAIN)
continue;
RETURN_FAIL_ON_RESTART(flags, flagp);
FAIL2("panic: regpiece returned failure, flags=%#" UVxf, (UV) flags);
}
else if (ret == 0)
ret = latest;
*flagp |= flags&(HASWIDTH|POSTPONED);
if (chain == 0) /* First piece. */
*flagp |= flags&SPSTART;
else {
/* FIXME adding one for every branch after the first is probably
* excessive now we have TRIE support. (hv) */
MARK_NAUGHTY(1);
if (! REGTAIL(pRExC_state, chain, latest)) {
/* XXX We could just redo this branch, but figuring out what
* bookkeeping needs to be reset is a pain, and it's likely
* that other branches that goto END will also be too large */
REQUIRE_BRANCHJ(flagp, 0);
}
}
chain = latest;
c++;
}
if (chain == 0) { /* Loop ran zero times. */
chain = reg_node(pRExC_state, NOTHING);
if (ret == 0)
ret = chain;
}
if (c == 1) {
*flagp |= flags&SIMPLE;
}
return ret;
}
/*
- regpiece - something followed by possible quantifier * + ? {n,m}
*
* Note that the branching code sequences used for ? and the general cases
* of * and + are somewhat optimized: they use the same NOTHING node as
* both the endmarker for their branch list and the body of the last branch.
* It might seem that this node could be dispensed with entirely, but the
* endmarker role is not redundant.
*
* On success, returns the offset at which any next node should be placed into
* the regex engine program being compiled.
*
* Returns 0 otherwise, with *flagp set to indicate why:
* TRYAGAIN if regatom() returns 0 with TRYAGAIN.
* RESTART_PARSE if the parse needs to be restarted, or'd with
* NEED_UTF8 if the pattern needs to be upgraded to UTF-8.
*/
STATIC regnode_offset
S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
{
regnode_offset ret;
char op;
char *next;
I32 flags;
const char * const origparse = RExC_parse;
I32 min;
I32 max = REG_INFTY;
#ifdef RE_TRACK_PATTERN_OFFSETS
char *parse_start;
#endif
const char *maxpos = NULL;
UV uv;
/* Save the original in case we change the emitted regop to a FAIL. */
const regnode_offset orig_emit = RExC_emit;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGPIECE;
DEBUG_PARSE("piec");
ret = regatom(pRExC_state, &flags, depth+1);
if (ret == 0) {
RETURN_FAIL_ON_RESTART_OR_FLAGS(flags, flagp, TRYAGAIN);
FAIL2("panic: regatom returned failure, flags=%#" UVxf, (UV) flags);
}
op = *RExC_parse;
if (op == '{' && regcurly(RExC_parse)) {
maxpos = NULL;
#ifdef RE_TRACK_PATTERN_OFFSETS
parse_start = RExC_parse; /* MJD */
#endif
next = RExC_parse + 1;
while (isDIGIT(*next) || *next == ',') {
if (*next == ',') {
if (maxpos)
break;
else
maxpos = next;
}
next++;
}
if (*next == '}') { /* got one */
const char* endptr;
if (!maxpos)
maxpos = next;
RExC_parse++;
if (isDIGIT(*RExC_parse)) {
endptr = RExC_end;
if (!grok_atoUV(RExC_parse, &uv, &endptr))
vFAIL("Invalid quantifier in {,}");
if (uv >= REG_INFTY)
vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
min = (I32)uv;
} else {
min = 0;
}
if (*maxpos == ',')
maxpos++;
else
maxpos = RExC_parse;
if (isDIGIT(*maxpos)) {
endptr = RExC_end;
if (!grok_atoUV(maxpos, &uv, &endptr))
vFAIL("Invalid quantifier in {,}");
if (uv >= REG_INFTY)
vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
max = (I32)uv;
} else {
max = REG_INFTY; /* meaning "infinity" */
}
RExC_parse = next;
nextchar(pRExC_state);
if (max < min) { /* If can't match, warn and optimize to fail
unconditionally */
reginsert(pRExC_state, OPFAIL, orig_emit, depth+1);
ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
NEXT_OFF(REGNODE_p(orig_emit)) =
regarglen[OPFAIL] + NODE_STEP_REGNODE;
return ret;
}
else if (min == max && *RExC_parse == '?')
{
ckWARN2reg(RExC_parse + 1,
"Useless use of greediness modifier '%c'",
*RExC_parse);
}
do_curly:
if ((flags&SIMPLE)) {
if (min == 0 && max == REG_INFTY) {
/* Going from 0..inf is currently forbidden in wildcard
* subpatterns. The only reason is to make it harder to
* write patterns that take a long long time to halt, and
* because the use of this construct isn't necessary in
* matching Unicode property values */
if (RExC_pm_flags & PMf_WILDCARD) {
RExC_parse++;
/* diag_listed_as: Use of %s is not allowed in Unicode
property wildcard subpatterns in regex; marked by
<-- HERE in m/%s/ */
vFAIL("Use of quantifier '*' is not allowed in"
" Unicode property wildcard subpatterns");
/* Note, don't need to worry about {0,}, as a '}' isn't
* legal at all in wildcards, so wouldn't get this far
* */
}
reginsert(pRExC_state, STAR, ret, depth+1);
MARK_NAUGHTY(4);
RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
goto nest_check;
}
if (min == 1 && max == REG_INFTY) {
reginsert(pRExC_state, PLUS, ret, depth+1);
MARK_NAUGHTY(3);
RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
goto nest_check;
}
MARK_NAUGHTY_EXP(2, 2);
reginsert(pRExC_state, CURLY, ret, depth+1);
Set_Node_Offset(REGNODE_p(ret), parse_start+1); /* MJD */
Set_Node_Cur_Length(REGNODE_p(ret), parse_start);
}
else {
const regnode_offset w = reg_node(pRExC_state, WHILEM);
FLAGS(REGNODE_p(w)) = 0;
if (! REGTAIL(pRExC_state, ret, w)) {
REQUIRE_BRANCHJ(flagp, 0);
}
if (RExC_use_BRANCHJ) {
reginsert(pRExC_state, LONGJMP, ret, depth+1);
reginsert(pRExC_state, NOTHING, ret, depth+1);
NEXT_OFF(REGNODE_p(ret)) = 3; /* Go over LONGJMP. */
}
reginsert(pRExC_state, CURLYX, ret, depth+1);
/* MJD hk */
Set_Node_Offset(REGNODE_p(ret), parse_start+1);
Set_Node_Length(REGNODE_p(ret),
op == '{' ? (RExC_parse - parse_start) : 1);
if (RExC_use_BRANCHJ)
NEXT_OFF(REGNODE_p(ret)) = 3; /* Go over NOTHING to
LONGJMP. */
if (! REGTAIL(pRExC_state, ret, reg_node(pRExC_state,
NOTHING)))
{
REQUIRE_BRANCHJ(flagp, 0);
}
RExC_whilem_seen++;
MARK_NAUGHTY_EXP(1, 4); /* compound interest */
}
FLAGS(REGNODE_p(ret)) = 0;
if (min > 0)
*flagp = WORST;
if (max > 0)
*flagp |= HASWIDTH;
ARG1_SET(REGNODE_p(ret), (U16)min);
ARG2_SET(REGNODE_p(ret), (U16)max);
if (max == REG_INFTY)
RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
goto nest_check;
}
}
if (!ISMULT1(op)) {
*flagp = flags;
return(ret);
}
#if 0 /* Now runtime fix should be reliable. */
/* if this is reinstated, don't forget to put this back into perldiag:
=item Regexp *+ operand could be empty at {#} in regex m/%s/
(F) The part of the regexp subject to either the * or + quantifier
could match an empty string. The {#} shows in the regular
expression about where the problem was discovered.
*/
if (!(flags&HASWIDTH) && op != '?')
vFAIL("Regexp *+ operand could be empty");
#endif
#ifdef RE_TRACK_PATTERN_OFFSETS
parse_start = RExC_parse;
#endif
nextchar(pRExC_state);
*flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
if (op == '*') {
min = 0;
goto do_curly;
}
else if (op == '+') {
min = 1;
goto do_curly;
}
else if (op == '?') {
min = 0; max = 1;
goto do_curly;
}
nest_check:
if (!(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
if (origparse[0] == '\\' && origparse[1] == 'K') {
vFAIL2utf8f(
"%" UTF8f " is forbidden - matches null string many times",
UTF8fARG(UTF, (RExC_parse >= origparse
? RExC_parse - origparse
: 0),
origparse));
/* NOT-REACHED */
} else {
ckWARN2reg(RExC_parse,
"%" UTF8f " matches null string many times",
UTF8fARG(UTF, (RExC_parse >= origparse
? RExC_parse - origparse
: 0),
origparse));
}
}
if (*RExC_parse == '?') {
nextchar(pRExC_state);
reginsert(pRExC_state, MINMOD, ret, depth+1);
if (! REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE)) {
REQUIRE_BRANCHJ(flagp, 0);
}
}
else if (*RExC_parse == '+') {
regnode_offset ender;
nextchar(pRExC_state);
ender = reg_node(pRExC_state, SUCCEED);
if (! REGTAIL(pRExC_state, ret, ender)) {
REQUIRE_BRANCHJ(flagp, 0);
}
reginsert(pRExC_state, SUSPEND, ret, depth+1);
ender = reg_node(pRExC_state, TAIL);
if (! REGTAIL(pRExC_state, ret, ender)) {
REQUIRE_BRANCHJ(flagp, 0);
}
}
if (ISMULT2(RExC_parse)) {
RExC_parse++;
vFAIL("Nested quantifiers");
}
return(ret);
}
STATIC bool
S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
regnode_offset * node_p,
UV * code_point_p,
int * cp_count,
I32 * flagp,
const bool strict,
const U32 depth
)
{
/* This routine teases apart the various meanings of \N and returns
* accordingly. The input parameters constrain which meaning(s) is/are valid
* in the current context.
*
* Exactly one of <node_p> and <code_point_p> must be non-NULL.
*
* If <code_point_p> is not NULL, the context is expecting the result to be a
* single code point. If this \N instance turns out to a single code point,
* the function returns TRUE and sets *code_point_p to that code point.
*
* If <node_p> is not NULL, the context is expecting the result to be one of
* the things representable by a regnode. If this \N instance turns out to be
* one such, the function generates the regnode, returns TRUE and sets *node_p
* to point to the offset of that regnode into the regex engine program being
* compiled.
*
* If this instance of \N isn't legal in any context, this function will
* generate a fatal error and not return.
*
* On input, RExC_parse should point to the first char following the \N at the
* time of the call. On successful return, RExC_parse will have been updated
* to point to just after the sequence identified by this routine. Also
* *flagp has been updated as needed.
*
* When there is some problem with the current context and this \N instance,
* the function returns FALSE, without advancing RExC_parse, nor setting
* *node_p, nor *code_point_p, nor *flagp.
*
* If <cp_count> is not NULL, the caller wants to know the length (in code
* points) that this \N sequence matches. This is set, and the input is
* parsed for errors, even if the function returns FALSE, as detailed below.
*
* There are 6 possibilities here, as detailed in the next 6 paragraphs.
*
* Probably the most common case is for the \N to specify a single code point.
* *cp_count will be set to 1, and *code_point_p will be set to that code
* point.
*
* Another possibility is for the input to be an empty \N{}. This is no
* longer accepted, and will generate a fatal error.
*
* Another possibility is for a custom charnames handler to be in effect which
* translates the input name to an empty string. *cp_count will be set to 0.
* *node_p will be set to a generated NOTHING node.
*
* Still another possibility is for the \N to mean [^\n]. *cp_count will be
* set to 0. *node_p will be set to a generated REG_ANY node.
*
* The fifth possibility is that \N resolves to a sequence of more than one
* code points. *cp_count will be set to the number of code points in the
* sequence. *node_p will be set to a generated node returned by this
* function calling S_reg().
*
* The final possibility is that it is premature to be calling this function;
* the parse needs to be restarted. This can happen when this changes from
* /d to /u rules, or when the pattern needs to be upgraded to UTF-8. The
* latter occurs only when the fifth possibility would otherwise be in
* effect, and is because one of those code points requires the pattern to be
* recompiled as UTF-8. The function returns FALSE, and sets the
* RESTART_PARSE and NEED_UTF8 flags in *flagp, as appropriate. When this
* happens, the caller needs to desist from continuing parsing, and return
* this information to its caller. This is not set for when there is only one
* code point, as this can be called as part of an ANYOF node, and they can
* store above-Latin1 code points without the pattern having to be in UTF-8.
*
* For non-single-quoted regexes, the tokenizer has resolved character and
* sequence names inside \N{...} into their Unicode values, normalizing the
* result into what we should see here: '\N{U+c1.c2...}', where c1... are the
* hex-represented code points in the sequence. This is done there because
* the names can vary based on what charnames pragma is in scope at the time,
* so we need a way to take a snapshot of what they resolve to at the time of
* the original parse. [perl #56444].
*
* That parsing is skipped for single-quoted regexes, so here we may get
* '\N{NAME}', which is parsed now. If the single-quoted regex is something
* like '\N{U+41}', that code point is Unicode, and has to be translated into
* the native character set for non-ASCII platforms. The other possibilities
* are already native, so no translation is done. */
char * endbrace; /* points to '}' following the name */
char* p = RExC_parse; /* Temporary */
SV * substitute_parse = NULL;
char *orig_end;
char *save_start;
I32 flags;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_GROK_BSLASH_N;
assert(cBOOL(node_p) ^ cBOOL(code_point_p)); /* Exactly one should be set */
assert(! (node_p && cp_count)); /* At most 1 should be set */
if (cp_count) { /* Initialize return for the most common case */
*cp_count = 1;
}
/* The [^\n] meaning of \N ignores spaces and comments under the /x
* modifier. The other meanings do not, so use a temporary until we find
* out which we are being called with */
skip_to_be_ignored_text(pRExC_state, &p,
FALSE /* Don't force to /x */ );
/* Disambiguate between \N meaning a named character versus \N meaning
* [^\n]. The latter is assumed when the {...} following the \N is a legal
* quantifier, or if there is no '{' at all */
if (*p != '{' || regcurly(p)) {
RExC_parse = p;
if (cp_count) {
*cp_count = -1;
}
if (! node_p) {
return FALSE;
}
*node_p = reg_node(pRExC_state, REG_ANY);
*flagp |= HASWIDTH|SIMPLE;
MARK_NAUGHTY(1);
Set_Node_Length(REGNODE_p(*(node_p)), 1); /* MJD */
return TRUE;
}
/* The test above made sure that the next real character is a '{', but
* under the /x modifier, it could be separated by space (or a comment and
* \n) and this is not allowed (for consistency with \x{...} and the
* tokenizer handling of \N{NAME}). */
if (*RExC_parse != '{') {
vFAIL("Missing braces on \\N{}");
}
RExC_parse++; /* Skip past the '{' */
endbrace = (char *) memchr(RExC_parse, '}', RExC_end - RExC_parse);
if (! endbrace) { /* no trailing brace */
vFAIL2("Missing right brace on \\%c{}", 'N');
}
/* Here, we have decided it should be a named character or sequence. These
* imply Unicode semantics */
REQUIRE_UNI_RULES(flagp, FALSE);
/* \N{_} is what toke.c returns to us to indicate a name that evaluates to
* nothing at all (not allowed under strict) */
if (endbrace - RExC_parse == 1 && *RExC_parse == '_') {
RExC_parse = endbrace;
if (strict) {
RExC_parse++; /* Position after the "}" */
vFAIL("Zero length \\N{}");
}
if (cp_count) {
*cp_count = 0;
}
nextchar(pRExC_state);
if (! node_p) {
return FALSE;
}
*node_p = reg_node(pRExC_state, NOTHING);
return TRUE;
}
if (endbrace - RExC_parse < 2 || ! strBEGINs(RExC_parse, "U+")) {
/* Here, the name isn't of the form U+.... This can happen if the
* pattern is single-quoted, so didn't get evaluated in toke.c. Now
* is the time to find out what the name means */
const STRLEN name_len = endbrace - RExC_parse;
SV * value_sv; /* What does this name evaluate to */
SV ** value_svp;
const U8 * value; /* string of name's value */
STRLEN value_len; /* and its length */
/* RExC_unlexed_names is a hash of names that weren't evaluated by
* toke.c, and their values. Make sure is initialized */
if (! RExC_unlexed_names) {
RExC_unlexed_names = newHV();
}
/* If we have already seen this name in this pattern, use that. This
* allows us to only call the charnames handler once per name per
* pattern. A broken or malicious handler could return something
* different each time, which could cause the results to vary depending
* on if something gets added or subtracted from the pattern that
* causes the number of passes to change, for example */
if ((value_svp = hv_fetch(RExC_unlexed_names, RExC_parse,
name_len, 0)))
{
value_sv = *value_svp;
}
else { /* Otherwise we have to go out and get the name */
const char * error_msg = NULL;
value_sv = get_and_check_backslash_N_name(RExC_parse, endbrace,
UTF,
&error_msg);
if (error_msg) {
RExC_parse = endbrace;
vFAIL(error_msg);
}
/* If no error message, should have gotten a valid return */
assert (value_sv);
/* Save the name's meaning for later use */
if (! hv_store(RExC_unlexed_names, RExC_parse, name_len,
value_sv, 0))
{
Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
}
}
/* Here, we have the value the name evaluates to in 'value_sv' */
value = (U8 *) SvPV(value_sv, value_len);
/* See if the result is one code point vs 0 or multiple */
if (inRANGE(value_len, 1, ((UV) SvUTF8(value_sv)
? UTF8SKIP(value)
: 1)))
{
/* Here, exactly one code point. If that isn't what is wanted,
* fail */
if (! code_point_p) {
RExC_parse = p;
return FALSE;
}
/* Convert from string to numeric code point */
*code_point_p = (SvUTF8(value_sv))
? valid_utf8_to_uvchr(value, NULL)
: *value;
/* Have parsed this entire single code point \N{...}. *cp_count
* has already been set to 1, so don't do it again. */
RExC_parse = endbrace;
nextchar(pRExC_state);
return TRUE;
} /* End of is a single code point */
/* Count the code points, if caller desires. The API says to do this
* even if we will later return FALSE */
if (cp_count) {
*cp_count = 0;
*cp_count = (SvUTF8(value_sv))
? utf8_length(value, value + value_len)
: value_len;
}
/* Fail if caller doesn't want to handle a multi-code-point sequence.
* But don't back the pointer up if the caller wants to know how many
* code points there are (they need to handle it themselves in this
* case). */
if (! node_p) {
if (! cp_count) {
RExC_parse = p;
}
return FALSE;
}
/* Convert this to a sub-pattern of the form "(?: ... )", and then call
* reg recursively to parse it. That way, it retains its atomicness,
* while not having to worry about any special handling that some code
* points may have. */
substitute_parse = newSVpvs("?:");
sv_catsv(substitute_parse, value_sv);
sv_catpv(substitute_parse, ")");
/* The value should already be native, so no need to convert on EBCDIC
* platforms.*/
assert(! RExC_recode_x_to_native);
}
else { /* \N{U+...} */
Size_t count = 0; /* code point count kept internally */
/* We can get to here when the input is \N{U+...} or when toke.c has
* converted a name to the \N{U+...} form. This include changing a
* name that evaluates to multiple code points to \N{U+c1.c2.c3 ...} */
RExC_parse += 2; /* Skip past the 'U+' */
/* Code points are separated by dots. The '}' terminates the whole
* thing. */
do { /* Loop until the ending brace */
I32 flags = PERL_SCAN_SILENT_OVERFLOW
| PERL_SCAN_SILENT_ILLDIGIT
| PERL_SCAN_NOTIFY_ILLDIGIT
| PERL_SCAN_ALLOW_MEDIAL_UNDERSCORES
| PERL_SCAN_DISALLOW_PREFIX;
STRLEN len = endbrace - RExC_parse;
NV overflow_value;
char * start_digit = RExC_parse;
UV cp = grok_hex(RExC_parse, &len, &flags, &overflow_value);
if (len == 0) {
RExC_parse++;
bad_NU:
vFAIL("Invalid hexadecimal number in \\N{U+...}");
}
RExC_parse += len;
if (cp > MAX_LEGAL_CP) {
vFAIL(form_cp_too_large_msg(16, start_digit, len, 0));
}
if (RExC_parse >= endbrace) { /* Got to the closing '}' */
if (count) {
goto do_concat;
}
/* Here, is a single code point; fail if doesn't want that */
if (! code_point_p) {
RExC_parse = p;
return FALSE;
}
/* A single code point is easy to handle; just return it */
*code_point_p = UNI_TO_NATIVE(cp);
RExC_parse = endbrace;
nextchar(pRExC_state);
return TRUE;
}
/* Here, the parse stopped bfore the ending brace. This is legal
* only if that character is a dot separating code points, like a
* multiple character sequence (of the form "\N{U+c1.c2. ... }".
* So the next character must be a dot (and the one after that
* can't be the endbrace, or we'd have something like \N{U+100.} )
* */
if (*RExC_parse != '.' || RExC_parse + 1 >= endbrace) {
RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
? UTF8SKIP(RExC_parse)
: 1;
RExC_parse = MIN(endbrace, RExC_parse);/* Guard against
malformed utf8 */
goto bad_NU;
}
/* Here, looks like its really a multiple character sequence. Fail
* if that's not what the caller wants. But continue with counting
* and error checking if they still want a count */
if (! node_p && ! cp_count) {
return FALSE;
}
/* What is done here is to convert this to a sub-pattern of the
* form \x{char1}\x{char2}... and then call reg recursively to
* parse it (enclosing in "(?: ... )" ). That way, it retains its
* atomicness, while not having to worry about special handling
* that some code points may have. We don't create a subpattern,
* but go through the motions of code point counting and error
* checking, if the caller doesn't want a node returned. */
if (node_p && ! substitute_parse) {
substitute_parse = newSVpvs("?:");
}
do_concat:
if (node_p) {
/* Convert to notation the rest of the code understands */
sv_catpvs(substitute_parse, "\\x{");
sv_catpvn(substitute_parse, start_digit,
RExC_parse - start_digit);
sv_catpvs(substitute_parse, "}");
}
/* Move to after the dot (or ending brace the final time through.)
* */
RExC_parse++;
count++;
} while (RExC_parse < endbrace);
if (! node_p) { /* Doesn't want the node */
assert (cp_count);
*cp_count = count;
return FALSE;
}
sv_catpvs(substitute_parse, ")");
/* The values are Unicode, and therefore have to be converted to native
* on a non-Unicode (meaning non-ASCII) platform. */
SET_recode_x_to_native(1);
}
/* Here, we have the string the name evaluates to, ready to be parsed,
* stored in 'substitute_parse' as a series of valid "\x{...}\x{...}"
* constructs. This can be called from within a substitute parse already.
* The error reporting mechanism doesn't work for 2 levels of this, but the
* code above has validated this new construct, so there should be no
* errors generated by the below. And this isn' an exact copy, so the
* mechanism to seamlessly deal with this won't work, so turn off warnings
* during it */
save_start = RExC_start;
orig_end = RExC_end;
RExC_parse = RExC_start = SvPVX(substitute_parse);
RExC_end = RExC_parse + SvCUR(substitute_parse);
TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE;
*node_p = reg(pRExC_state, 1, &flags, depth+1);
/* Restore the saved values */
RESTORE_WARNINGS;
RExC_start = save_start;
RExC_parse = endbrace;
RExC_end = orig_end;
SET_recode_x_to_native(0);
SvREFCNT_dec_NN(substitute_parse);
if (! *node_p) {
RETURN_FAIL_ON_RESTART(flags, flagp);
FAIL2("panic: reg returned failure to grok_bslash_N, flags=%#" UVxf,
(UV) flags);
}
*flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
nextchar(pRExC_state);
return TRUE;
}
STATIC U8
S_compute_EXACTish(RExC_state_t *pRExC_state)
{
U8 op;
PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
if (! FOLD) {
return (LOC)
? EXACTL
: EXACT;
}
op = get_regex_charset(RExC_flags);
if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
op--; /* /a is same as /u, and map /aa's offset to what /a's would have
been, so there is no hole */
}
return op + EXACTF;
}
STATIC bool
S_new_regcurly(const char *s, const char *e)
{
/* This is a temporary function designed to match the most lenient form of
* a {m,n} quantifier we ever envision, with either number omitted, and
* spaces anywhere between/before/after them.
*
* If this function fails, then the string it matches is very unlikely to
* ever be considered a valid quantifier, so we can allow the '{' that
* begins it to be considered as a literal */
bool has_min = FALSE;
bool has_max = FALSE;
PERL_ARGS_ASSERT_NEW_REGCURLY;
if (s >= e || *s++ != '{')
return FALSE;
while (s < e && isSPACE(*s)) {
s++;
}
while (s < e && isDIGIT(*s)) {
has_min = TRUE;
s++;
}
while (s < e && isSPACE(*s)) {
s++;
}
if (*s == ',') {
s++;
while (s < e && isSPACE(*s)) {
s++;
}
while (s < e && isDIGIT(*s)) {
has_max = TRUE;
s++;
}
while (s < e && isSPACE(*s)) {
s++;
}
}
return s < e && *s == '}' && (has_min || has_max);
}
/* Parse backref decimal value, unless it's too big to sensibly be a backref,
* in which case return I32_MAX (rather than possibly 32-bit wrapping) */
static I32
S_backref_value(char *p, char *e)
{
const char* endptr = e;
UV val;
if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
return (I32)val;
return I32_MAX;
}
/*
- regatom - the lowest level
Try to identify anything special at the start of the current parse position.
If there is, then handle it as required. This may involve generating a
single regop, such as for an assertion; or it may involve recursing, such as
to handle a () structure.
If the string doesn't start with something special then we gobble up
as much literal text as we can. If we encounter a quantifier, we have to
back off the final literal character, as that quantifier applies to just it
and not to the whole string of literals.
Once we have been able to handle whatever type of thing started the
sequence, we return the offset into the regex engine program being compiled
at which any next regnode should be placed.
Returns 0, setting *flagp to TRYAGAIN if reg() returns 0 with TRYAGAIN.
Returns 0, setting *flagp to RESTART_PARSE if the parse needs to be
restarted, or'd with NEED_UTF8 if the pattern needs to be upgraded to UTF-8
Otherwise does not return 0.
Note: we have to be careful with escapes, as they can be both literal
and special, and in the case of \10 and friends, context determines which.
A summary of the code structure is:
switch (first_byte) {
cases for each special:
handle this special;
break;
case '\\':
switch (2nd byte) {
cases for each unambiguous special:
handle this special;
break;
cases for each ambigous special/literal:
disambiguate;
if (special) handle here
else goto defchar;
default: // unambiguously literal:
goto defchar;
}
default: // is a literal char
// FALL THROUGH
defchar:
create EXACTish node for literal;
while (more input and node isn't full) {
switch (input_byte) {
cases for each special;
make sure parse pointer is set so that the next call to
regatom will see this special first
goto loopdone; // EXACTish node terminated by prev. char
default:
append char to EXACTISH node;
}
get next input byte;
}
loopdone:
}
return the generated node;
Specifically there are two separate switches for handling
escape sequences, with the one for handling literal escapes requiring
a dummy entry for all of the special escapes that are actually handled
by the other.
*/
STATIC regnode_offset
S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
{
dVAR;
regnode_offset ret = 0;
I32 flags = 0;
char *parse_start;
U8 op;
int invert = 0;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
*flagp = WORST; /* Tentatively. */
DEBUG_PARSE("atom");
PERL_ARGS_ASSERT_REGATOM;
tryagain:
parse_start = RExC_parse;
assert(RExC_parse < RExC_end);
switch ((U8)*RExC_parse) {
case '^':
RExC_seen_zerolen++;
nextchar(pRExC_state);
if (RExC_flags & RXf_PMf_MULTILINE)
ret = reg_node(pRExC_state, MBOL);
else
ret = reg_node(pRExC_state, SBOL);
Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
break;
case '$':
nextchar(pRExC_state);
if (*RExC_parse)
RExC_seen_zerolen++;
if (RExC_flags & RXf_PMf_MULTILINE)
ret = reg_node(pRExC_state, MEOL);
else
ret = reg_node(pRExC_state, SEOL);
Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
break;
case '.':
nextchar(pRExC_state);
if (RExC_flags & RXf_PMf_SINGLELINE)
ret = reg_node(pRExC_state, SANY);
else
ret = reg_node(pRExC_state, REG_ANY);
*flagp |= HASWIDTH|SIMPLE;
MARK_NAUGHTY(1);
Set_Node_Length(REGNODE_p(ret), 1); /* MJD */
break;
case '[':
{
char * const oregcomp_parse = ++RExC_parse;
ret = regclass(pRExC_state, flagp, depth+1,
FALSE, /* means parse the whole char class */
TRUE, /* allow multi-char folds */
FALSE, /* don't silence non-portable warnings. */
(bool) RExC_strict,
TRUE, /* Allow an optimized regnode result */
NULL);
if (ret == 0) {
RETURN_FAIL_ON_RESTART_FLAGP(flagp);
FAIL2("panic: regclass returned failure to regatom, flags=%#" UVxf,
(UV) *flagp);
}
if (*RExC_parse != ']') {
RExC_parse = oregcomp_parse;
vFAIL("Unmatched [");
}
nextchar(pRExC_state);
Set_Node_Length(REGNODE_p(ret), RExC_parse - oregcomp_parse + 1); /* MJD */
break;
}
case '(':
nextchar(pRExC_state);
ret = reg(pRExC_state, 2, &flags, depth+1);
if (ret == 0) {
if (flags & TRYAGAIN) {
if (RExC_parse >= RExC_end) {
/* Make parent create an empty node if needed. */
*flagp |= TRYAGAIN;
return(0);
}
goto tryagain;
}
RETURN_FAIL_ON_RESTART(flags, flagp);
FAIL2("panic: reg returned failure to regatom, flags=%#" UVxf,
(UV) flags);
}
*flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
break;
case '|':
case ')':
if (flags & TRYAGAIN) {
*flagp |= TRYAGAIN;
return 0;
}
vFAIL("Internal urp");
/* Supposed to be caught earlier. */
break;
case '?':
case '+':
case '*':
RExC_parse++;
vFAIL("Quantifier follows nothing");
break;
case '\\':
/* Special Escapes
This switch handles escape sequences that resolve to some kind
of special regop and not to literal text. Escape sequences that
resolve to literal text are handled below in the switch marked
"Literal Escapes".
Every entry in this switch *must* have a corresponding entry
in the literal escape switch. However, the opposite is not
required, as the default for this switch is to jump to the
literal text handling code.
*/
RExC_parse++;
switch ((U8)*RExC_parse) {
/* Special Escapes */
case 'A':
RExC_seen_zerolen++;
/* Under wildcards, this is changed to match \n; should be
* invisible to the user, as they have to compile under /m */
if (RExC_pm_flags & PMf_WILDCARD) {
ret = reg_node(pRExC_state, MBOL);
}
else {
ret = reg_node(pRExC_state, SBOL);
/* SBOL is shared with /^/ so we set the flags so we can tell
* /\A/ from /^/ in split. */
FLAGS(REGNODE_p(ret)) = 1;
*flagp |= SIMPLE; /* Wrong, but too late to fix for 5.32 */
}
goto finish_meta_pat;
case 'G':
if (RExC_pm_flags & PMf_WILDCARD) {
RExC_parse++;
/* diag_listed_as: Use of %s is not allowed in Unicode property
wildcard subpatterns in regex; marked by <-- HERE in m/%s/
*/
vFAIL("Use of '\\G' is not allowed in Unicode property"
" wildcard subpatterns");
}
ret = reg_node(pRExC_state, GPOS);
RExC_seen |= REG_GPOS_SEEN;
*flagp |= SIMPLE;
goto finish_meta_pat;
case 'K':
if (!RExC_in_lookaround) {
RExC_seen_zerolen++;
ret = reg_node(pRExC_state, KEEPS);
*flagp |= SIMPLE;
/* XXX:dmq : disabling in-place substitution seems to
* be necessary here to avoid cases of memory corruption, as
* with: C<$_="x" x 80; s/x\K/y/> -- rgs
*/
RExC_seen |= REG_LOOKBEHIND_SEEN;
goto finish_meta_pat;
}
else {
++RExC_parse; /* advance past the 'K' */
vFAIL("\\K not permitted in lookahead/lookbehind");
}
case 'Z':
if (RExC_pm_flags & PMf_WILDCARD) {
/* See comment under \A above */
ret = reg_node(pRExC_state, MEOL);
}
else {
ret = reg_node(pRExC_state, SEOL);
*flagp |= SIMPLE; /* Wrong, but too late to fix for 5.32 */
}
RExC_seen_zerolen++; /* Do not optimize RE away */
goto finish_meta_pat;
case 'z':
if (RExC_pm_flags & PMf_WILDCARD) {
/* See comment under \A above */
ret = reg_node(pRExC_state, MEOL);
}
else {
ret = reg_node(pRExC_state, EOS);
*flagp |= SIMPLE; /* Wrong, but too late to fix for 5.32 */
}
RExC_seen_zerolen++; /* Do not optimize RE away */
goto finish_meta_pat;
case 'C':
vFAIL("\\C no longer supported");
case 'X':
ret = reg_node(pRExC_state, CLUMP);
*flagp |= HASWIDTH;
goto finish_meta_pat;
case 'B':
invert = 1;
/* FALLTHROUGH */
case 'b':
{
U8 flags = 0;
regex_charset charset = get_regex_charset(RExC_flags);
RExC_seen_zerolen++;
RExC_seen |= REG_LOOKBEHIND_SEEN;
op = BOUND + charset;
if (RExC_parse >= RExC_end || *(RExC_parse + 1) != '{') {
flags = TRADITIONAL_BOUND;
if (op > BOUNDA) { /* /aa is same as /a */
op = BOUNDA;
}
}
else {
STRLEN length;
char name = *RExC_parse;
char * endbrace = NULL;
RExC_parse += 2;
endbrace = (char *) memchr(RExC_parse, '}', RExC_end - RExC_parse);
if (! endbrace) {
vFAIL2("Missing right brace on \\%c{}", name);
}
/* XXX Need to decide whether to take spaces or not. Should be
* consistent with \p{}, but that currently is SPACE, which
* means vertical too, which seems wrong
* while (isBLANK(*RExC_parse)) {
RExC_parse++;
}*/
if (endbrace == RExC_parse) {
RExC_parse++; /* After the '}' */
vFAIL2("Empty \\%c{}", name);
}
length = endbrace - RExC_parse;
/*while (isBLANK(*(RExC_parse + length - 1))) {
length--;
}*/
switch (*RExC_parse) {
case 'g':
if ( length != 1
&& (memNEs(RExC_parse + 1, length - 1, "cb")))
{
goto bad_bound_type;
}
flags = GCB_BOUND;
break;
case 'l':
if (length != 2 || *(RExC_parse + 1) != 'b') {
goto bad_bound_type;
}
flags = LB_BOUND;
break;
case 's':
if (length != 2 || *(RExC_parse + 1) != 'b') {
goto bad_bound_type;
}
flags = SB_BOUND;
break;
case 'w':
if (length != 2 || *(RExC_parse + 1) != 'b') {
goto bad_bound_type;
}
flags = WB_BOUND;
break;
default:
bad_bound_type:
RExC_parse = endbrace;
vFAIL2utf8f(
"'%" UTF8f "' is an unknown bound type",
UTF8fARG(UTF, length, endbrace - length));
NOT_REACHED; /*NOTREACHED*/
}
RExC_parse = endbrace;
REQUIRE_UNI_RULES(flagp, 0);
if (op == BOUND) {
op = BOUNDU;
}
else if (op >= BOUNDA) { /* /aa is same as /a */
op = BOUNDU;
length += 4;
/* Don't have to worry about UTF-8, in this message because
* to get here the contents of the \b must be ASCII */
ckWARN4reg(RExC_parse + 1, /* Include the '}' in msg */
"Using /u for '%.*s' instead of /%s",
(unsigned) length,
endbrace - length + 1,
(charset == REGEX_ASCII_RESTRICTED_CHARSET)
? ASCII_RESTRICT_PAT_MODS
: ASCII_MORE_RESTRICT_PAT_MODS);
}
}
if (op == BOUND) {
RExC_seen_d_op = TRUE;
}
else if (op == BOUNDL) {
RExC_contains_locale = 1;
}
if (invert) {
op += NBOUND - BOUND;
}
ret = reg_node(pRExC_state, op);
FLAGS(REGNODE_p(ret)) = flags;
*flagp |= SIMPLE;
goto finish_meta_pat;
}
case 'R':
ret = reg_node(pRExC_state, LNBREAK);
*flagp |= HASWIDTH|SIMPLE;
goto finish_meta_pat;
case 'd':
case 'D':
case 'h':
case 'H':
case 'p':
case 'P':
case 's':
case 'S':
case 'v':
case 'V':
case 'w':
case 'W':
/* These all have the same meaning inside [brackets], and it knows
* how to do the best optimizations for them. So, pretend we found
* these within brackets, and let it do the work */
RExC_parse--;
ret = regclass(pRExC_state, flagp, depth+1,
TRUE, /* means just parse this element */
FALSE, /* don't allow multi-char folds */
FALSE, /* don't silence non-portable warnings. It
would be a bug if these returned
non-portables */
(bool) RExC_strict,
TRUE, /* Allow an optimized regnode result */
NULL);
RETURN_FAIL_ON_RESTART_FLAGP(flagp);
/* regclass() can only return RESTART_PARSE and NEED_UTF8 if
* multi-char folds are allowed. */
if (!ret)
FAIL2("panic: regclass returned failure to regatom, flags=%#" UVxf,
(UV) *flagp);
RExC_parse--; /* regclass() leaves this one too far ahead */
finish_meta_pat:
/* The escapes above that don't take a parameter can't be
* followed by a '{'. But 'pX', 'p{foo}' and
* correspondingly 'P' can be */
if ( RExC_parse - parse_start == 1
&& UCHARAT(RExC_parse + 1) == '{'
&& UNLIKELY(! new_regcurly(RExC_parse + 1, RExC_end)))
{
RExC_parse += 2;
vFAIL("Unescaped left brace in regex is illegal here");
}
Set_Node_Offset(REGNODE_p(ret), parse_start);
Set_Node_Length(REGNODE_p(ret), RExC_parse - parse_start + 1); /* MJD */
nextchar(pRExC_state);
break;
case 'N':
/* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
* \N{...} evaluates to a sequence of more than one code points).
* The function call below returns a regnode, which is our result.
* The parameters cause it to fail if the \N{} evaluates to a
* single code point; we handle those like any other literal. The
* reason that the multicharacter case is handled here and not as
* part of the EXACtish code is because of quantifiers. In
* /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
* this way makes that Just Happen. dmq.
* join_exact() will join this up with adjacent EXACTish nodes
* later on, if appropriate. */
++RExC_parse;
if (grok_bslash_N(pRExC_state,
&ret, /* Want a regnode returned */
NULL, /* Fail if evaluates to a single code
point */
NULL, /* Don't need a count of how many code
points */
flagp,
RExC_strict,
depth)
) {
break;
}
RETURN_FAIL_ON_RESTART_FLAGP(flagp);
/* Here, evaluates to a single code point. Go get that */
RExC_parse = parse_start;
goto defchar;
case 'k': /* Handle \k<NAME> and \k'NAME' */
parse_named_seq:
{
char ch;
if ( RExC_parse >= RExC_end - 1
|| (( ch = RExC_parse[1]) != '<'
&& ch != '\''
&& ch != '{'))
{
RExC_parse++;
/* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
vFAIL2("Sequence %.2s... not terminated", parse_start);
} else {
RExC_parse += 2;
ret = handle_named_backref(pRExC_state,
flagp,
parse_start,
(ch == '<')
? '>'
: (ch == '{')
? '}'
: '\'');
}
break;
}
case 'g':
case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
{
I32 num;
bool hasbrace = 0;
if (*RExC_parse == 'g') {
bool isrel = 0;
RExC_parse++;
if (*RExC_parse == '{') {
RExC_parse++;
hasbrace = 1;
}
if (*RExC_parse == '-') {
RExC_parse++;
isrel = 1;
}
if (hasbrace && !isDIGIT(*RExC_parse)) {
if (isrel) RExC_parse--;
RExC_parse -= 2;
goto parse_named_seq;
}
if (RExC_parse >= RExC_end) {
goto unterminated_g;
}
num = S_backref_value(RExC_parse, RExC_end);
if (num == 0)
vFAIL("Reference to invalid group 0");
else if (num == I32_MAX) {
if (isDIGIT(*RExC_parse))
vFAIL("Reference to nonexistent group");
else
unterminated_g:
vFAIL("Unterminated \\g... pattern");
}
if (isrel) {
num = RExC_npar - num;
if (num < 1)
vFAIL("Reference to nonexistent or unclosed group");
}
}
else {
num = S_backref_value(RExC_parse, RExC_end);
/* bare \NNN might be backref or octal - if it is larger
* than or equal RExC_npar then it is assumed to be an
* octal escape. Note RExC_npar is +1 from the actual
* number of parens. */
/* Note we do NOT check if num == I32_MAX here, as that is
* handled by the RExC_npar check */
if (
/* any numeric escape < 10 is always a backref */
num > 9
/* any numeric escape < RExC_npar is a backref */
&& num >= RExC_npar
/* cannot be an octal escape if it starts with 8 */
&& *RExC_parse != '8'
/* cannot be an octal escape if it starts with 9 */
&& *RExC_parse != '9'
) {
/* Probably not meant to be a backref, instead likely
* to be an octal character escape, e.g. \35 or \777.
* The above logic should make it obvious why using
* octal escapes in patterns is problematic. - Yves */
RExC_parse = parse_start;
goto defchar;
}
}
/* At this point RExC_parse points at a numeric escape like
* \12 or \88 or something similar, which we should NOT treat
* as an octal escape. It may or may not be a valid backref
* escape. For instance \88888888 is unlikely to be a valid
* backref. */
while (isDIGIT(*RExC_parse))
RExC_parse++;
if (hasbrace) {
if (*RExC_parse != '}')
vFAIL("Unterminated \\g{...} pattern");
RExC_parse++;
}
if (num >= (I32)RExC_npar) {
/* It might be a forward reference; we can't fail until we
* know, by completing the parse to get all the groups, and
* then reparsing */
if (ALL_PARENS_COUNTED) {
if (num >= RExC_total_parens) {
vFAIL("Reference to nonexistent group");
}
}
else {
REQUIRE_PARENS_PASS;
}
}
RExC_sawback = 1;
ret = reganode(pRExC_state,
((! FOLD)
? REF
: (ASCII_FOLD_RESTRICTED)
? REFFA
: (AT_LEAST_UNI_SEMANTICS)
? REFFU
: (LOC)
? REFFL
: REFF),
num);
if (OP(REGNODE_p(ret)) == REFF) {
RExC_seen_d_op = TRUE;
}
*flagp |= HASWIDTH;
/* override incorrect value set in reganode MJD */
Set_Node_Offset(REGNODE_p(ret), parse_start);
Set_Node_Cur_Length(REGNODE_p(ret), parse_start-1);
skip_to_be_ignored_text(pRExC_state, &RExC_parse,
FALSE /* Don't force to /x */ );
}
break;
case '\0':
if (RExC_parse >= RExC_end)
FAIL("Trailing \\");
/* FALLTHROUGH */
default:
/* Do not generate "unrecognized" warnings here, we fall
back into the quick-grab loop below */
RExC_parse = parse_start;
goto defchar;
} /* end of switch on a \foo sequence */
break;
case '#':
/* '#' comments should have been spaced over before this function was
* called */
assert((RExC_flags & RXf_PMf_EXTENDED) == 0);
/*
if (RExC_flags & RXf_PMf_EXTENDED) {
RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
if (RExC_parse < RExC_end)
goto tryagain;
}
*/
/* FALLTHROUGH */
default:
defchar: {
/* Here, we have determined that the next thing is probably a
* literal character. RExC_parse points to the first byte of its
* definition. (It still may be an escape sequence that evaluates
* to a single character) */
STRLEN len = 0;
UV ender = 0;
char *p;
char *s, *old_s = NULL, *old_old_s = NULL;
char *s0;
U32 max_string_len = 255;
/* We may have to reparse the node, artificially stopping filling
* it early, based on info gleaned in the first parse. This
* variable gives where we stop. Make it above the normal stopping
* place first time through; otherwise it would stop too early */
U32 upper_fill = max_string_len + 1;
/* We start out as an EXACT node, even if under /i, until we find a
* character which is in a fold. The algorithm now segregates into
* separate nodes, characters that fold from those that don't under
* /i. (This hopefully will create nodes that are fixed strings
* even under /i, giving the optimizer something to grab on to.)
* So, if a node has something in it and the next character is in
* the opposite category, that node is closed up, and the function
* returns. Then regatom is called again, and a new node is
* created for the new category. */
U8 node_type = EXACT;
/* Assume the node will be fully used; the excess is given back at
* the end. Under /i, we may need to temporarily add the fold of
* an extra character or two at the end to check for splitting
* multi-char folds, so allocate extra space for that. We can't
* make any other length assumptions, as a byte input sequence
* could shrink down. */
Ptrdiff_t current_string_nodes = STR_SZ(max_string_len
+ ((! FOLD)
? 0
: 2 * ((UTF)
? UTF8_MAXBYTES_CASE
/* Max non-UTF-8 expansion is 2 */ : 2)));
bool next_is_quantifier;
char * oldp = NULL;
/* We can convert EXACTF nodes to EXACTFU if they contain only
* characters that match identically regardless of the target
* string's UTF8ness. The reason to do this is that EXACTF is not
* trie-able, EXACTFU is, and EXACTFU requires fewer operations at
* runtime.
*
* Similarly, we can convert EXACTFL nodes to EXACTFLU8 if they
* contain only above-Latin1 characters (hence must be in UTF8),
* which don't participate in folds with Latin1-range characters,
* as the latter's folds aren't known until runtime. */
bool maybe_exactfu = FOLD && (DEPENDS_SEMANTICS || LOC);
/* Single-character EXACTish nodes are almost always SIMPLE. This
* allows us to override this as encountered */
U8 maybe_SIMPLE = SIMPLE;
/* Does this node contain something that can't match unless the
* target string is (also) in UTF-8 */
bool requires_utf8_target = FALSE;
/* The sequence 'ss' is problematic in non-UTF-8 patterns. */
bool has_ss = FALSE;
/* So is the MICRO SIGN */
bool has_micro_sign = FALSE;
/* Set when we fill up the current node and there is still more
* text to process */
bool overflowed;
/* Allocate an EXACT node. The node_type may change below to
* another EXACTish node, but since the size of the node doesn't
* change, it works */
ret = regnode_guts(pRExC_state, node_type, current_string_nodes,
"exact");
FILL_NODE(ret, node_type);
RExC_emit++;
s = STRING(REGNODE_p(ret));
s0 = s;
reparse:
p = RExC_parse;
len = 0;
s = s0;
node_type = EXACT;
oldp = NULL;
maybe_exactfu = FOLD && (DEPENDS_SEMANTICS || LOC);
maybe_SIMPLE = SIMPLE;
requires_utf8_target = FALSE;
has_ss = FALSE;
has_micro_sign = FALSE;
continue_parse:
/* This breaks under rare circumstances. If folding, we do not
* want to split a node at a character that is a non-final in a
* multi-char fold, as an input string could just happen to want to
* match across the node boundary. The code at the end of the loop
* looks for this, and backs off until it finds not such a
* character, but it is possible (though extremely, extremely
* unlikely) for all characters in the node to be non-final fold
* ones, in which case we just leave the node fully filled, and
* hope that it doesn't match the string in just the wrong place */
assert( ! UTF /* Is at the beginning of a character */
|| UTF8_IS_INVARIANT(UCHARAT(RExC_parse))
|| UTF8_IS_START(UCHARAT(RExC_parse)));
overflowed = FALSE;
/* Here, we have a literal character. Find the maximal string of
* them in the input that we can fit into a single EXACTish node.
* We quit at the first non-literal or when the node gets full, or
* under /i the categorization of folding/non-folding character
* changes */
while (p < RExC_end && len < upper_fill) {
/* In most cases each iteration adds one byte to the output.
* The exceptions override this */
Size_t added_len = 1;
oldp = p;
old_old_s = old_s;
old_s = s;
/* White space has already been ignored */
assert( (RExC_flags & RXf_PMf_EXTENDED) == 0
|| ! is_PATWS_safe((p), RExC_end, UTF));
switch ((U8)*p) {
const char* message;
U32 packed_warn;
U8 grok_c_char;
case '^':
case '$':
case '.':
case '[':
case '(':
case ')':
case '|':
goto loopdone;
case '\\':
/* Literal Escapes Switch
This switch is meant to handle escape sequences that
resolve to a literal character.
Every escape sequence that represents something
else, like an assertion or a char class, is handled
in the switch marked 'Special Escapes' above in this
routine, but also has an entry here as anything that
isn't explicitly mentioned here will be treated as
an unescaped equivalent literal.
*/
switch ((U8)*++p) {
/* These are all the special escapes. */
case 'A': /* Start assertion */
case 'b': case 'B': /* Word-boundary assertion*/
case 'C': /* Single char !DANGEROUS! */
case 'd': case 'D': /* digit class */
case 'g': case 'G': /* generic-backref, pos assertion */
case 'h': case 'H': /* HORIZWS */
case 'k': case 'K': /* named backref, keep marker */
case 'p': case 'P': /* Unicode property */
case 'R': /* LNBREAK */
case 's': case 'S': /* space class */
case 'v': case 'V': /* VERTWS */
case 'w': case 'W': /* word class */
case 'X': /* eXtended Unicode "combining
character sequence" */
case 'z': case 'Z': /* End of line/string assertion */
--p;
goto loopdone;
/* Anything after here is an escape that resolves to a
literal. (Except digits, which may or may not)
*/
case 'n':
ender = '\n';
p++;
break;
case 'N': /* Handle a single-code point named character. */
RExC_parse = p + 1;
if (! grok_bslash_N(pRExC_state,
NULL, /* Fail if evaluates to
anything other than a
single code point */
&ender, /* The returned single code
point */
NULL, /* Don't need a count of
how many code points */
flagp,
RExC_strict,
depth)
) {
if (*flagp & NEED_UTF8)
FAIL("panic: grok_bslash_N set NEED_UTF8");
RETURN_FAIL_ON_RESTART_FLAGP(flagp);
/* Here, it wasn't a single code point. Go close
* up this EXACTish node. The switch() prior to
* this switch handles the other cases */
RExC_parse = p = oldp;
goto loopdone;
}
p = RExC_parse;
RExC_parse = parse_start;
/* The \N{} means the pattern, if previously /d,
* becomes /u. That means it can't be an EXACTF node,
* but an EXACTFU */
if (node_type == EXACTF) {
node_type = EXACTFU;
/* If the node already contains something that
* differs between EXACTF and EXACTFU, reparse it
* as EXACTFU */
if (! maybe_exactfu) {
len = 0;
s = s0;
goto reparse;
}
}
break;
case 'r':
ender = '\r';
p++;
break;
case 't':
ender = '\t';
p++;
break;
case 'f':
ender = '\f';
p++;
break;
case 'e':
ender = ESC_NATIVE;
p++;
break;
case 'a':
ender = '\a';
p++;
break;
case 'o':
if (! grok_bslash_o(&p,
RExC_end,
&ender,
&message,
&packed_warn,
(bool) RExC_strict,
FALSE, /* No illegal cp's */
UTF))
{
RExC_parse = p; /* going to die anyway; point to
exact spot of failure */
vFAIL(message);
}
if (message && TO_OUTPUT_WARNINGS(p)) {
warn_non_literal_string(p, packed_warn, message);
}
break;
case 'x':
if (! grok_bslash_x(&p,
RExC_end,
&ender,
&message,
&packed_warn,
(bool) RExC_strict,
FALSE, /* No illegal cp's */
UTF))
{
RExC_parse = p; /* going to die anyway; point
to exact spot of failure */
vFAIL(message);
}
if (message && TO_OUTPUT_WARNINGS(p)) {
warn_non_literal_string(p, packed_warn, message);
}
#ifdef EBCDIC
if (ender < 0x100) {
if (RExC_recode_x_to_native) {
ender = LATIN1_TO_NATIVE(ender);
}
}
#endif
break;
case 'c':
p++;
if (! grok_bslash_c(*p, &grok_c_char,
&message, &packed_warn))
{
/* going to die anyway; point to exact spot of
* failure */
RExC_parse = p + ((UTF)
? UTF8_SAFE_SKIP(p, RExC_end)
: 1);
vFAIL(message);
}
ender = grok_c_char;
p++;
if (message && TO_OUTPUT_WARNINGS(p)) {
warn_non_literal_string(p, packed_warn, message);
}
break;
case '8': case '9': /* must be a backreference */
--p;
/* we have an escape like \8 which cannot be an octal escape
* so we exit the loop, and let the outer loop handle this
* escape which may or may not be a legitimate backref. */
goto loopdone;
case '1': case '2': case '3':case '4':
case '5': case '6': case '7':
/* When we parse backslash escapes there is ambiguity
* between backreferences and octal escapes. Any escape
* from \1 - \9 is a backreference, any multi-digit
* escape which does not start with 0 and which when
* evaluated as decimal could refer to an already
* parsed capture buffer is a back reference. Anything
* else is octal.
*
* Note this implies that \118 could be interpreted as
* 118 OR as "\11" . "8" depending on whether there
* were 118 capture buffers defined already in the
* pattern. */
/* NOTE, RExC_npar is 1 more than the actual number of
* parens we have seen so far, hence the "<" as opposed
* to "<=" */
if ( !isDIGIT(p[1]) || S_backref_value(p, RExC_end) < RExC_npar)
{ /* Not to be treated as an octal constant, go
find backref */
--p;
goto loopdone;
}
/* FALLTHROUGH */
case '0':
{
I32 flags = PERL_SCAN_SILENT_ILLDIGIT
| PERL_SCAN_NOTIFY_ILLDIGIT;
STRLEN numlen = 3;
ender = grok_oct(p, &numlen, &flags, NULL);
p += numlen;
if ( (flags & PERL_SCAN_NOTIFY_ILLDIGIT)
&& isDIGIT(*p) /* like \08, \178 */
&& ckWARN(WARN_REGEXP))
{
reg_warn_non_literal_string(
p + 1,
form_alien_digit_msg(8, numlen, p,
RExC_end, UTF, FALSE));
}
}
break;
case '\0':
if (p >= RExC_end)
FAIL("Trailing \\");
/* FALLTHROUGH */
default:
if (isALPHANUMERIC(*p)) {
/* An alpha followed by '{' is going to fail next
* iteration, so don't output this warning in that
* case */
if (! isALPHA(*p) || *(p + 1) != '{') {
ckWARN2reg(p + 1, "Unrecognized escape \\%.1s"
" passed through", p);
}
}
goto normal_default;
} /* End of switch on '\' */
break;
case '{':
/* Trying to gain new uses for '{' without breaking too
* much existing code is hard. The solution currently
* adopted is:
* 1) If there is no ambiguity that a '{' should always
* be taken literally, at the start of a construct, we
* just do so.
* 2) If the literal '{' conflicts with our desired use
* of it as a metacharacter, we die. The deprecation
* cycles for this have come and gone.
* 3) If there is ambiguity, we raise a simple warning.
* This could happen, for example, if the user
* intended it to introduce a quantifier, but slightly
* misspelled the quantifier. Without this warning,
* the quantifier would silently be taken as a literal
* string of characters instead of a meta construct */
if (len || (p > RExC_start && isALPHA_A(*(p - 1)))) {
if ( RExC_strict
|| ( p > parse_start + 1
&& isALPHA_A(*(p - 1))
&& *(p - 2) == '\\')
|| new_regcurly(p, RExC_end))
{
RExC_parse = p + 1;
vFAIL("Unescaped left brace in regex is "
"illegal here");
}
ckWARNreg(p + 1, "Unescaped left brace in regex is"
" passed through");
}
goto normal_default;
case '}':
case ']':
if (p > RExC_parse && RExC_strict) {
ckWARN2reg(p + 1, "Unescaped literal '%c'", *p);
}
/*FALLTHROUGH*/
default: /* A literal character */
normal_default:
if (! UTF8_IS_INVARIANT(*p) && UTF) {
STRLEN numlen;
ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
&numlen, UTF8_ALLOW_DEFAULT);
p += numlen;
}
else
ender = (U8) *p++;
break;
} /* End of switch on the literal */
/* Here, have looked at the literal character, and <ender>
* contains its ordinal; <p> points to the character after it.
* */
if (ender > 255) {
REQUIRE_UTF8(flagp);
if ( UNICODE_IS_PERL_EXTENDED(ender)
&& TO_OUTPUT_WARNINGS(p))
{
ckWARN2_non_literal_string(p,
packWARN(WARN_PORTABLE),
PL_extended_cp_format,
ender);
}
}
/* We need to check if the next non-ignored thing is a
* quantifier. Move <p> to after anything that should be
* ignored, which, as a side effect, positions <p> for the next
* loop iteration */
skip_to_be_ignored_text(pRExC_state, &p,
FALSE /* Don't force to /x */ );
/* If the next thing is a quantifier, it applies to this
* character only, which means that this character has to be in
* its own node and can't just be appended to the string in an
* existing node, so if there are already other characters in
* the node, close the node with just them, and set up to do
* this character again next time through, when it will be the
* only thing in its new node */
next_is_quantifier = LIKELY(p < RExC_end)
&& UNLIKELY(ISMULT2(p));
if (next_is_quantifier && LIKELY(len)) {
p = oldp;
goto loopdone;
}
/* Ready to add 'ender' to the node */
if (! FOLD) { /* The simple case, just append the literal */
not_fold_common:
/* Don't output if it would overflow */
if (UNLIKELY(len > max_string_len - ((UTF)
? UVCHR_SKIP(ender)
: 1)))
{
overflowed = TRUE;
break;
}
if (UVCHR_IS_INVARIANT(ender) || ! UTF) {
*(s++) = (char) ender;
}
else {
U8 * new_s = uvchr_to_utf8((U8*)s, ender);
added_len = (char *) new_s - s;
s = (char *) new_s;
if (ender > 255) {
requires_utf8_target = TRUE;
}
}
}
else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
/* Here are folding under /l, and the code point is
* problematic. If this is the first character in the
* node, change the node type to folding. Otherwise, if
* this is the first problematic character, close up the
* existing node, so can start a new node with this one */
if (! len) {
node_type = EXACTFL;
RExC_contains_locale = 1;
}
else if (node_type == EXACT) {
p = oldp;
goto loopdone;
}
/* This problematic code point means we can't simplify
* things */
maybe_exactfu = FALSE;
/* Here, we are adding a problematic fold character.
* "Problematic" in this context means that its fold isn't
* known until runtime. (The non-problematic code points
* are the above-Latin1 ones that fold to also all
* above-Latin1. Their folds don't vary no matter what the
* locale is.) But here we have characters whose fold
* depends on the locale. We just add in the unfolded
* character, and wait until runtime to fold it */
goto not_fold_common;
}
else /* regular fold; see if actually is in a fold */
if ( (ender < 256 && ! IS_IN_SOME_FOLD_L1(ender))
|| (ender > 255
&& ! _invlist_contains_cp(PL_in_some_fold, ender)))
{
/* Here, folding, but the character isn't in a fold.
*
* Start a new node if previous characters in the node were
* folded */
if (len && node_type != EXACT) {
p = oldp;
goto loopdone;
}
/* Here, continuing a node with non-folded characters. Add
* this one */
goto not_fold_common;
}
else { /* Here, does participate in some fold */
/* If this is the first character in the node, change its
* type to folding. Otherwise, if this is the first
* folding character in the node, close up the existing
* node, so can start a new node with this one. */
if (! len) {
node_type = compute_EXACTish(pRExC_state);
}
else if (node_type == EXACT) {
p = oldp;
goto loopdone;
}
if (UTF) { /* Alway use the folded value for UTF-8
patterns */
if (UVCHR_IS_INVARIANT(ender)) {
if (UNLIKELY(len + 1 > max_string_len)) {
overflowed = TRUE;
break;
}
*(s)++ = (U8) toFOLD(ender);
}
else {
UV folded = _to_uni_fold_flags(
ender,
(U8 *) s, /* We have allocated extra space
in 's' so can't run off the
end */
&added_len,
FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
? FOLD_FLAGS_NOMIX_ASCII
: 0));
if (UNLIKELY(len + added_len > max_string_len)) {
overflowed = TRUE;
break;
}
s += added_len;
if ( folded > 255
&& LIKELY(folded != GREEK_SMALL_LETTER_MU))
{
/* U+B5 folds to the MU, so its possible for a
* non-UTF-8 target to match it */
requires_utf8_target = TRUE;
}
}
}
else { /* Here is non-UTF8. */
/* The fold will be one or (rarely) two characters.
* Check that there's room for at least a single one
* before setting any flags, etc. Because otherwise an
* overflowing character could cause a flag to be set
* even though it doesn't end up in this node. (For
* the two character fold, we check again, before
* setting any flags) */
if (UNLIKELY(len + 1 > max_string_len)) {
overflowed = TRUE;
break;
}
#if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
|| (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
|| UNICODE_DOT_DOT_VERSION > 0)
/* On non-ancient Unicodes, check for the only possible
* multi-char fold */
if (UNLIKELY(ender == LATIN_SMALL_LETTER_SHARP_S)) {
/* This potential multi-char fold means the node
* can't be simple (because it could match more
* than a single char). And in some cases it will
* match 'ss', so set that flag */
maybe_SIMPLE = 0;
has_ss = TRUE;
/* It can't change to be an EXACTFU (unless already
* is one). We fold it iff under /u rules. */
if (node_type != EXACTFU) {
maybe_exactfu = FALSE;
}
else {
if (UNLIKELY(len + 2 > max_string_len)) {
overflowed = TRUE;
break;
}
*(s++) = 's';
*(s++) = 's';
added_len = 2;
goto done_with_this_char;
}
}
else if ( UNLIKELY(isALPHA_FOLD_EQ(ender, 's'))
&& LIKELY(len > 0)
&& UNLIKELY(isALPHA_FOLD_EQ(*(s-1), 's')))
{
/* Also, the sequence 'ss' is special when not
* under /u. If the target string is UTF-8, it
* should match SHARP S; otherwise it won't. So,
* here we have to exclude the possibility of this
* node moving to /u.*/
has_ss = TRUE;
maybe_exactfu = FALSE;
}
#endif
/* Here, the fold will be a single character */
if (UNLIKELY(ender == MICRO_SIGN)) {
has_micro_sign = TRUE;
}
else if (PL_fold[ender] != PL_fold_latin1[ender]) {
/* If the character's fold differs between /d and
* /u, this can't change to be an EXACTFU node */
maybe_exactfu = FALSE;
}
*(s++) = (DEPENDS_SEMANTICS)
? (char) toFOLD(ender)
/* Under /u, the fold of any character in
* the 0-255 range happens to be its
* lowercase equivalent, except for LATIN
* SMALL LETTER SHARP S, which was handled
* above, and the MICRO SIGN, whose fold
* requires UTF-8 to represent. */
: (char) toLOWER_L1(ender);
}
} /* End of adding current character to the node */
done_with_this_char:
len += added_len;
if (next_is_quantifier) {
/* Here, the next input is a quantifier, and to get here,
* the current character is the only one in the node. */
goto loopdone;
}
} /* End of loop through literal characters */
/* Here we have either exhausted the input or run out of room in
* the node. If the former, we are done. (If we encountered a
* character that can't be in the node, transfer is made directly
* to <loopdone>, and so we wouldn't have fallen off the end of the
* loop.) */
if (LIKELY(! overflowed)) {
goto loopdone;
}
/* Here we have run out of room. We can grow plain EXACT and
* LEXACT nodes. If the pattern is gigantic enough, though,
* eventually we'll have to artificially chunk the pattern into
* multiple nodes. */
if (! LOC && (node_type == EXACT || node_type == LEXACT)) {
Size_t overhead = 1 + regarglen[OP(REGNODE_p(ret))];
Size_t overhead_expansion = 0;
char temp[256];
Size_t max_nodes_for_string;
Size_t achievable;
SSize_t delta;
/* Here we couldn't fit the final character in the current
* node, so it will have to be reparsed, no matter what else we
* do */
p = oldp;
/* If would have overflowed a regular EXACT node, switch
* instead to an LEXACT. The code below is structured so that
* the actual growing code is common to changing from an EXACT
* or just increasing the LEXACT size. This means that we have
* to save the string in the EXACT case before growing, and
* then copy it afterwards to its new location */
if (node_type == EXACT) {
overhead_expansion = regarglen[LEXACT] - regarglen[EXACT];
RExC_emit += overhead_expansion;
Copy(s0, temp, len, char);
}
/* Ready to grow. If it was a plain EXACT, the string was
* saved, and the first few bytes of it overwritten by adding
* an argument field. We assume, as we do elsewhere in this
* file, that one byte of remaining input will translate into
* one byte of output, and if that's too small, we grow again,
* if too large the excess memory is freed at the end */
max_nodes_for_string = U16_MAX - overhead - overhead_expansion;
achievable = MIN(max_nodes_for_string,
current_string_nodes + STR_SZ(RExC_end - p));
delta = achievable - current_string_nodes;
/* If there is just no more room, go finish up this chunk of
* the pattern. */
if (delta <= 0) {
goto loopdone;
}
change_engine_size(pRExC_state, delta + overhead_expansion);
current_string_nodes += delta;
max_string_len
= sizeof(struct regnode) * current_string_nodes;
upper_fill = max_string_len + 1;
/* If the length was small, we know this was originally an
* EXACT node now converted to LEXACT, and the string has to be
* restored. Otherwise the string was untouched. 260 is just
* a number safely above 255 so don't have to worry about
* getting it precise */
if (len < 260) {
node_type = LEXACT;
FILL_NODE(ret, node_type);
s0 = STRING(REGNODE_p(ret));
Copy(temp, s0, len, char);
s = s0 + len;
}
goto continue_parse;
}
else if (FOLD) {
bool splittable = FALSE;
bool backed_up = FALSE;
char * e; /* should this be U8? */
char * s_start; /* should this be U8? */
/* Here is /i. Running out of room creates a problem if we are
* folding, and the split happens in the middle of a
* multi-character fold, as a match that should have occurred,
* won't, due to the way nodes are matched, and our artificial
* boundary. So back off until we aren't splitting such a
* fold. If there is no such place to back off to, we end up
* taking the entire node as-is. This can happen if the node
* consists entirely of 'f' or entirely of 's' characters (or
* things that fold to them) as 'ff' and 'ss' are
* multi-character folds.
*
* The Unicode standard says that multi character folds consist
* of either two or three characters. That means we would be
* splitting one if the final character in the node is at the
* beginning of either type, or is the second of a three
* character fold.
*
* At this point:
* ender is the code point of the character that won't fit
* in the node
* s points to just beyond the final byte in the node.
* It's where we would place ender if there were
* room, and where in fact we do place ender's fold
* in the code below, as we've over-allocated space
* for s0 (hence s) to allow for this
* e starts at 's' and advances as we append things.
* old_s is the same as 's'. (If ender had fit, 's' would
* have been advanced to beyond it).
* old_old_s points to the beginning byte of the final
* character in the node
* p points to the beginning byte in the input of the
* character beyond 'ender'.
* oldp points to the beginning byte in the input of
* 'ender'.
*
* In the case of /il, we haven't folded anything that could be
* affected by the locale. That means only above-Latin1
* characters that fold to other above-latin1 characters get
* folded at compile time. To check where a good place to
* split nodes is, everything in it will have to be folded.
* The boolean 'maybe_exactfu' keeps track in /il if there are
* any unfolded characters in the node. */
bool need_to_fold_loc = LOC && ! maybe_exactfu;
/* If we do need to fold the node, we need a place to store the
* folded copy, and a way to map back to the unfolded original
* */
char * locfold_buf = NULL;
Size_t * loc_correspondence = NULL;
if (! need_to_fold_loc) { /* The normal case. Just
initialize to the actual node */
e = s;
s_start = s0;
s = old_old_s; /* Point to the beginning of the final char
that fits in the node */
}
else {
/* Here, we have filled a /il node, and there are unfolded
* characters in it. If the runtime locale turns out to be
* UTF-8, there are possible multi-character folds, just
* like when not under /l. The node hence can't terminate
* in the middle of such a fold. To determine this, we
* have to create a folded copy of this node. That means
* reparsing the node, folding everything assuming a UTF-8
* locale. (If at runtime it isn't such a locale, the
* actions here wouldn't have been necessary, but we have
* to assume the worst case.) If we find we need to back
* off the folded string, we do so, and then map that
* position back to the original unfolded node, which then
* gets output, truncated at that spot */
char * redo_p = RExC_parse;
char * redo_e;
char * old_redo_e;
/* Allow enough space assuming a single byte input folds to
* a single byte output, plus assume that the two unparsed
* characters (that we may need) fold to the largest number
* of bytes possible, plus extra for one more worst case
* scenario. In the loop below, if we start eating into
* that final spare space, we enlarge this initial space */
Size_t size = max_string_len + (3 * UTF8_MAXBYTES_CASE) + 1;
Newxz(locfold_buf, size, char);
Newxz(loc_correspondence, size, Size_t);
/* Redo this node's parse, folding into 'locfold_buf' */
redo_p = RExC_parse;
old_redo_e = redo_e = locfold_buf;
while (redo_p <= oldp) {
old_redo_e = redo_e;
loc_correspondence[redo_e - locfold_buf]
= redo_p - RExC_parse;
if (UTF) {
Size_t added_len;
(void) _to_utf8_fold_flags((U8 *) redo_p,
(U8 *) RExC_end,
(U8 *) redo_e,
&added_len,
FOLD_FLAGS_FULL);
redo_e += added_len;
redo_p += UTF8SKIP(redo_p);
}
else {
/* Note that if this code is run on some ancient
* Unicode versions, SHARP S doesn't fold to 'ss',
* but rather than clutter the code with #ifdef's,
* as is done above, we ignore that possibility.
* This is ok because this code doesn't affect what
* gets matched, but merely where the node gets
* split */
if (UCHARAT(redo_p) != LATIN_SMALL_LETTER_SHARP_S) {
*redo_e++ = toLOWER_L1(UCHARAT(redo_p));
}
else {
*redo_e++ = 's';
*redo_e++ = 's';
}
redo_p++;
}
/* If we're getting so close to the end that a
* worst-case fold in the next character would cause us
* to overflow, increase, assuming one byte output byte
* per one byte input one, plus room for another worst
* case fold */
if ( redo_p <= oldp
&& redo_e > locfold_buf + size
- (UTF8_MAXBYTES_CASE + 1))
{
Size_t new_size = size
+ (oldp - redo_p)
+ UTF8_MAXBYTES_CASE + 1;
Ptrdiff_t e_offset = redo_e - locfold_buf;
Renew(locfold_buf, new_size, char);
Renew(loc_correspondence, new_size, Size_t);
size = new_size;
redo_e = locfold_buf + e_offset;
}
}
/* Set so that things are in terms of the folded, temporary
* string */
s = old_redo_e;
s_start = locfold_buf;
e = redo_e;
}
/* Here, we have 's', 's_start' and 'e' set up to point to the
* input that goes into the node, folded.
*
* If the final character of the node and the fold of ender
* form the first two characters of a three character fold, we
* need to peek ahead at the next (unparsed) character in the
* input to determine if the three actually do form such a
* fold. Just looking at that character is not generally
* sufficient, as it could be, for example, an escape sequence
* that evaluates to something else, and it needs to be folded.
*
* khw originally thought to just go through the parse loop one
* extra time, but that doesn't work easily as that iteration
* could cause things to think that the parse is over and to
* goto loopdone. The character could be a '$' for example, or
* the character beyond could be a quantifier, and other
* glitches as well.
*
* The solution used here for peeking ahead is to look at that
* next character. If it isn't ASCII punctuation, then it will
* be something that continues in an EXACTish node if there
* were space. We append the fold of it to s, having reserved
* enough room in s0 for the purpose. If we can't reasonably
* peek ahead, we instead assume the worst case: that it is
* something that would form the completion of a multi-char
* fold.
*
* If we can't split between s and ender, we work backwards
* character-by-character down to s0. At each current point
* see if we are at the beginning of a multi-char fold. If so,
* that means we would be splitting the fold across nodes, and
* so we back up one and try again.
*
* If we're not at the beginning, we still could be at the
* final two characters of a (rare) three character fold. We
* check if the sequence starting at the character before the
* current position (and including the current and next
* characters) is a three character fold. If not, the node can
* be split here. If it is, we have to backup two characters
* and try again.
*
* Otherwise, the node can be split at the current position.
*
* The same logic is used for UTF-8 patterns and not */
if (UTF) {
Size_t added_len;
/* Append the fold of ender */
(void) _to_uni_fold_flags(
ender,
(U8 *) e,
&added_len,
FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
? FOLD_FLAGS_NOMIX_ASCII
: 0));
e += added_len;
/* 's' and the character folded to by ender may be the
* first two of a three-character fold, in which case the
* node should not be split here. That may mean examining
* the so-far unparsed character starting at 'p'. But if
* ender folded to more than one character, we already have
* three characters to look at. Also, we first check if
* the sequence consisting of s and the next character form
* the first two of some three character fold. If not,
* there's no need to peek ahead. */
if ( added_len <= UTF8SKIP(e - added_len)
&& UNLIKELY(is_THREE_CHAR_FOLD_HEAD_utf8_safe(s, e)))
{
/* Here, the two do form the beginning of a potential
* three character fold. The unexamined character may
* or may not complete it. Peek at it. It might be
* something that ends the node or an escape sequence,
* in which case we don't know without a lot of work
* what it evaluates to, so we have to assume the worst
* case: that it does complete the fold, and so we
* can't split here. All such instances will have
* that character be an ASCII punctuation character,
* like a backslash. So, for that case, backup one and
* drop down to try at that position */
if (isPUNCT(*p)) {
s = (char *) utf8_hop_back((U8 *) s, -1,
(U8 *) s_start);
backed_up = TRUE;
}
else {
/* Here, since it's not punctuation, it must be a
* real character, and we can append its fold to
* 'e' (having deliberately reserved enough space
* for this eventuality) and drop down to check if
* the three actually do form a folded sequence */
(void) _to_utf8_fold_flags(
(U8 *) p, (U8 *) RExC_end,
(U8 *) e,
&added_len,
FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
? FOLD_FLAGS_NOMIX_ASCII
: 0));
e += added_len;
}
}
/* Here, we either have three characters available in
* sequence starting at 's', or we have two characters and
* know that the following one can't possibly be part of a
* three character fold. We go through the node backwards
* until we find a place where we can split it without
* breaking apart a multi-character fold. At any given
* point we have to worry about if such a fold begins at
* the current 's', and also if a three-character fold
* begins at s-1, (containing s and s+1). Splitting in
* either case would break apart a fold */
do {
char *prev_s = (char *) utf8_hop_back((U8 *) s, -1,
(U8 *) s_start);
/* If is a multi-char fold, can't split here. Backup
* one char and try again */
if (UNLIKELY(is_MULTI_CHAR_FOLD_utf8_safe(s, e))) {
s = prev_s;
backed_up = TRUE;
continue;
}
/* If the two characters beginning at 's' are part of a
* three character fold starting at the character
* before s, we can't split either before or after s.
* Backup two chars and try again */
if ( LIKELY(s > s_start)
&& UNLIKELY(is_THREE_CHAR_FOLD_utf8_safe(prev_s, e)))
{
s = prev_s;
s = (char *) utf8_hop_back((U8 *) s, -1, (U8 *) s_start);
backed_up = TRUE;
continue;
}
/* Here there's no multi-char fold between s and the
* next character following it. We can split */
splittable = TRUE;
break;
} while (s > s_start); /* End of loops backing up through the node */
/* Here we either couldn't find a place to split the node,
* or else we broke out of the loop setting 'splittable' to
* true. In the latter case, the place to split is between
* the first and second characters in the sequence starting
* at 's' */
if (splittable) {
s += UTF8SKIP(s);
}
}
else { /* Pattern not UTF-8 */
if ( ender != LATIN_SMALL_LETTER_SHARP_S
|| ASCII_FOLD_RESTRICTED)
{
assert( toLOWER_L1(ender) < 256 );
*e++ = (char)(toLOWER_L1(ender)); /* should e and the cast be U8? */
}
else {
*e++ = 's';
*e++ = 's';
}
if ( e - s <= 1
&& UNLIKELY(is_THREE_CHAR_FOLD_HEAD_latin1_safe(s, e)))
{
if (isPUNCT(*p)) {
s--;
backed_up = TRUE;
}
else {
if ( UCHARAT(p) != LATIN_SMALL_LETTER_SHARP_S
|| ASCII_FOLD_RESTRICTED)
{
assert( toLOWER_L1(ender) < 256 );
*e++ = (char)(toLOWER_L1(ender)); /* should e and the cast be U8? */
}
else {
*e++ = 's';
*e++ = 's';
}
}
}
do {
if (UNLIKELY(is_MULTI_CHAR_FOLD_latin1_safe(s, e))) {
s--;
backed_up = TRUE;
continue;
}
if ( LIKELY(s > s_start)
&& UNLIKELY(is_THREE_CHAR_FOLD_latin1_safe(s - 1, e)))
{
s -= 2;
backed_up = TRUE;
continue;
}
splittable = TRUE;
break;
} while (s > s_start);
if (splittable) {
s++;
}
}
/* Here, we are done backing up. If we didn't backup at all
* (the likely case), just proceed */
if (backed_up) {
/* If we did find a place to split, reparse the entire node
* stopping where we have calculated. */
if (splittable) {
/* If we created a temporary folded string under /l, we
* have to map that back to the original */
if (need_to_fold_loc) {
upper_fill = loc_correspondence[s - s_start];
if (upper_fill == 0) {
FAIL2("panic: loc_correspondence[%d] is 0",
(int) (s - s_start));
}
Safefree(locfold_buf);
Safefree(loc_correspondence);
}
else {
upper_fill = s - s0;
}
goto reparse;
}
/* Here the node consists entirely of non-final multi-char
* folds. (Likely it is all 'f's or all 's's.) There's no
* decent place to split it, so give up and just take the
* whole thing */
len = old_s - s0;
}
if (need_to_fold_loc) {
Safefree(locfold_buf);
Safefree(loc_correspondence);
}
} /* End of verifying node ends with an appropriate char */
/* We need to start the next node at the character that didn't fit
* in this one */
p = oldp;
loopdone: /* Jumped to when encounters something that shouldn't be
in the node */
/* Free up any over-allocated space; cast is to silence bogus
* warning in MS VC */
change_engine_size(pRExC_state,
- (Ptrdiff_t) (current_string_nodes - STR_SZ(len)));
/* I (khw) don't know if you can get here with zero length, but the
* old code handled this situation by creating a zero-length EXACT
* node. Might as well be NOTHING instead */
if (len == 0) {
OP(REGNODE_p(ret)) = NOTHING;
}
else {
/* If the node type is EXACT here, check to see if it
* should be EXACTL, or EXACT_REQ8. */
if (node_type == EXACT) {
if (LOC) {
node_type = EXACTL;
}
else if (requires_utf8_target) {
node_type = EXACT_REQ8;
}
}
else if (node_type == LEXACT) {
if (requires_utf8_target) {
node_type = LEXACT_REQ8;
}
}
else if (FOLD) {
if ( UNLIKELY(has_micro_sign || has_ss)
&& (node_type == EXACTFU || ( node_type == EXACTF
&& maybe_exactfu)))
{ /* These two conditions are problematic in non-UTF-8
EXACTFU nodes. */
assert(! UTF);
node_type = EXACTFUP;
}
else if (node_type == EXACTFL) {
/* 'maybe_exactfu' is deliberately set above to
* indicate this node type, where all code points in it
* are above 255 */
if (maybe_exactfu) {
node_type = EXACTFLU8;
}
else if (UNLIKELY(
_invlist_contains_cp(PL_HasMultiCharFold, ender)))
{
/* A character that folds to more than one will
* match multiple characters, so can't be SIMPLE.
* We don't have to worry about this with EXACTFLU8
* nodes just above, as they have already been
* folded (since the fold doesn't vary at run
* time). Here, if the final character in the node
* folds to multiple, it can't be simple. (This
* only has an effect if the node has only a single
* character, hence the final one, as elsewhere we
* turn off simple for nodes whose length > 1 */
maybe_SIMPLE = 0;
}
}
else if (node_type == EXACTF) { /* Means is /di */
/* This intermediate variable is needed solely because
* the asserts in the macro where used exceed Win32's
* literal string capacity */
char first_char = * STRING(REGNODE_p(ret));
/* If 'maybe_exactfu' is clear, then we need to stay
* /di. If it is set, it means there are no code
* points that match differently depending on UTF8ness
* of the target string, so it can become an EXACTFU
* node */
if (! maybe_exactfu) {
RExC_seen_d_op = TRUE;
}
else if ( isALPHA_FOLD_EQ(first_char, 's')
|| isALPHA_FOLD_EQ(ender, 's'))
{
/* But, if the node begins or ends in an 's' we
* have to defer changing it into an EXACTFU, as
* the node could later get joined with another one
* that ends or begins with 's' creating an 'ss'
* sequence which would then wrongly match the
* sharp s without the target being UTF-8. We
* create a special node that we resolve later when
* we join nodes together */
node_type = EXACTFU_S_EDGE;
}
else {
node_type = EXACTFU;
}
}
if (requires_utf8_target && node_type == EXACTFU) {
node_type = EXACTFU_REQ8;
}
}
OP(REGNODE_p(ret)) = node_type;
setSTR_LEN(REGNODE_p(ret), len);
RExC_emit += STR_SZ(len);
/* If the node isn't a single character, it can't be SIMPLE */
if (len > (Size_t) ((UTF) ? UTF8SKIP(STRING(REGNODE_p(ret))) : 1)) {
maybe_SIMPLE = 0;
}
*flagp |= HASWIDTH | maybe_SIMPLE;
}
Set_Node_Length(REGNODE_p(ret), p - parse_start - 1);
RExC_parse = p;
{
/* len is STRLEN which is unsigned, need to copy to signed */
IV iv = len;
if (iv < 0)
vFAIL("Internal disaster");
}
} /* End of label 'defchar:' */
break;
} /* End of giant switch on input character */
/* Position parse to next real character */
skip_to_be_ignored_text(pRExC_state, &RExC_parse,
FALSE /* Don't force to /x */ );
if ( *RExC_parse == '{'
&& OP(REGNODE_p(ret)) != SBOL && ! regcurly(RExC_parse))
{
if (RExC_strict || new_regcurly(RExC_parse, RExC_end)) {
RExC_parse++;
vFAIL("Unescaped left brace in regex is illegal here");
}
ckWARNreg(RExC_parse + 1, "Unescaped left brace in regex is"
" passed through");
}
return(ret);
}
STATIC void
S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
{
/* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'. It
* sets up the bitmap and any flags, removing those code points from the
* inversion list, setting it to NULL should it become completely empty */
dVAR;
PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
assert(PL_regkind[OP(node)] == ANYOF);
/* There is no bitmap for this node type */
if (inRANGE(OP(node), ANYOFH, ANYOFRb)) {
return;
}
ANYOF_BITMAP_ZERO(node);
if (*invlist_ptr) {
/* This gets set if we actually need to modify things */
bool change_invlist = FALSE;
UV start, end;
/* Start looking through *invlist_ptr */
invlist_iterinit(*invlist_ptr);
while (invlist_iternext(*invlist_ptr, &start, &end)) {
UV high;
int i;
if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
}
/* Quit if are above what we should change */
if (start >= NUM_ANYOF_CODE_POINTS) {
break;
}
change_invlist = TRUE;
/* Set all the bits in the range, up to the max that we are doing */
high = (end < NUM_ANYOF_CODE_POINTS - 1)
? end
: NUM_ANYOF_CODE_POINTS - 1;
for (i = start; i <= (int) high; i++) {
if (! ANYOF_BITMAP_TEST(node, i)) {
ANYOF_BITMAP_SET(node, i);
}
}
}
invlist_iterfinish(*invlist_ptr);
/* Done with loop; remove any code points that are in the bitmap from
* *invlist_ptr; similarly for code points above the bitmap if we have
* a flag to match all of them anyways */
if (change_invlist) {
_invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
}
if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
_invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
}
/* If have completely emptied it, remove it completely */
if (_invlist_len(*invlist_ptr) == 0) {
SvREFCNT_dec_NN(*invlist_ptr);
*invlist_ptr = NULL;
}
}
}
/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
Character classes ([:foo:]) can also be negated ([:^foo:]).
Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
but trigger failures because they are currently unimplemented. */
#define POSIXCC_DONE(c) ((c) == ':')
#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
#define MAYBE_POSIXCC(c) (POSIXCC(c) || (c) == '^' || (c) == ';')
#define WARNING_PREFIX "Assuming NOT a POSIX class since "
#define NO_BLANKS_POSIX_WARNING "no blanks are allowed in one"
#define SEMI_COLON_POSIX_WARNING "a semi-colon was found instead of a colon"
#define NOT_MEANT_TO_BE_A_POSIX_CLASS (OOB_NAMEDCLASS - 1)
/* 'posix_warnings' and 'warn_text' are names of variables in the following
* routine. q.v. */
#define ADD_POSIX_WARNING(p, text) STMT_START { \
if (posix_warnings) { \
if (! RExC_warn_text ) RExC_warn_text = \
(AV *) sv_2mortal((SV *) newAV()); \
av_push(RExC_warn_text, Perl_newSVpvf(aTHX_ \
WARNING_PREFIX \
text \
REPORT_LOCATION, \
REPORT_LOCATION_ARGS(p))); \
} \
} STMT_END
#define CLEAR_POSIX_WARNINGS() \
STMT_START { \
if (posix_warnings && RExC_warn_text) \
av_clear(RExC_warn_text); \
} STMT_END
#define CLEAR_POSIX_WARNINGS_AND_RETURN(ret) \
STMT_START { \
CLEAR_POSIX_WARNINGS(); \
return ret; \
} STMT_END
STATIC int
S_handle_possible_posix(pTHX_ RExC_state_t *pRExC_state,
const char * const s, /* Where the putative posix class begins.
Normally, this is one past the '['. This
parameter exists so it can be somewhere
besides RExC_parse. */
char ** updated_parse_ptr, /* Where to set the updated parse pointer, or
NULL */
AV ** posix_warnings, /* Where to place any generated warnings, or
NULL */
const bool check_only /* Don't die if error */
)
{
/* This parses what the caller thinks may be one of the three POSIX
* constructs:
* 1) a character class, like [:blank:]
* 2) a collating symbol, like [. .]
* 3) an equivalence class, like [= =]
* In the latter two cases, it croaks if it finds a syntactically legal
* one, as these are not handled by Perl.
*
* The main purpose is to look for a POSIX character class. It returns:
* a) the class number
* if it is a completely syntactically and semantically legal class.
* 'updated_parse_ptr', if not NULL, is set to point to just after the
* closing ']' of the class
* b) OOB_NAMEDCLASS
* if it appears that one of the three POSIX constructs was meant, but
* its specification was somehow defective. 'updated_parse_ptr', if
* not NULL, is set to point to the character just after the end
* character of the class. See below for handling of warnings.
* c) NOT_MEANT_TO_BE_A_POSIX_CLASS
* if it doesn't appear that a POSIX construct was intended.
* 'updated_parse_ptr' is not changed. No warnings nor errors are
* raised.
*
* In b) there may be errors or warnings generated. If 'check_only' is
* TRUE, then any errors are discarded. Warnings are returned to the
* caller via an AV* created into '*posix_warnings' if it is not NULL. If
* instead it is NULL, warnings are suppressed.
*
* The reason for this function, and its complexity is that a bracketed
* character class can contain just about anything. But it's easy to
* mistype the very specific posix class syntax but yielding a valid
* regular bracketed class, so it silently gets compiled into something
* quite unintended.
*
* The solution adopted here maintains backward compatibility except that
* it adds a warning if it looks like a posix class was intended but
* improperly specified. The warning is not raised unless what is input
* very closely resembles one of the 14 legal posix classes. To do this,
* it uses fuzzy parsing. It calculates how many single-character edits it
* would take to transform what was input into a legal posix class. Only
* if that number is quite small does it think that the intention was a
* posix class. Obviously these are heuristics, and there will be cases
* where it errs on one side or another, and they can be tweaked as
* experience informs.
*
* The syntax for a legal posix class is:
*
* qr/(?xa: \[ : \^? [[:lower:]]{4,6} : \] )/
*
* What this routine considers syntactically to be an intended posix class
* is this (the comments indicate some restrictions that the pattern
* doesn't show):
*
* qr/(?x: \[? # The left bracket, possibly
* # omitted
* \h* # possibly followed by blanks
* (?: \^ \h* )? # possibly a misplaced caret
* [:;]? # The opening class character,
* # possibly omitted. A typo
* # semi-colon can also be used.
* \h*
* \^? # possibly a correctly placed
* # caret, but not if there was also
* # a misplaced one
* \h*
* .{3,15} # The class name. If there are
* # deviations from the legal syntax,
* # its edit distance must be close
* # to a real class name in order
* # for it to be considered to be
* # an intended posix class.
* \h*
* [[:punct:]]? # The closing class character,
* # possibly omitted. If not a colon
* # nor semi colon, the class name
* # must be even closer to a valid
* # one
* \h*
* \]? # The right bracket, possibly
* # omitted.
* )/
*
* In the above, \h must be ASCII-only.
*
* These are heuristics, and can be tweaked as field experience dictates.
* There will be cases when someone didn't intend to specify a posix class
* that this warns as being so. The goal is to minimize these, while
* maximizing the catching of things intended to be a posix class that
* aren't parsed as such.
*/
const char* p = s;
const char * const e = RExC_end;
unsigned complement = 0; /* If to complement the class */
bool found_problem = FALSE; /* Assume OK until proven otherwise */
bool has_opening_bracket = FALSE;
bool has_opening_colon = FALSE;
int class_number = OOB_NAMEDCLASS; /* Out-of-bounds until find
valid class */
const char * possible_end = NULL; /* used for a 2nd parse pass */
const char* name_start; /* ptr to class name first char */
/* If the number of single-character typos the input name is away from a
* legal name is no more than this number, it is considered to have meant
* the legal name */
int max_distance = 2;
/* to store the name. The size determines the maximum length before we
* decide that no posix class was intended. Should be at least
* sizeof("alphanumeric") */
UV input_text[15];
STATIC_ASSERT_DECL(C_ARRAY_LENGTH(input_text) >= sizeof "alphanumeric");
PERL_ARGS_ASSERT_HANDLE_POSSIBLE_POSIX;
CLEAR_POSIX_WARNINGS();
if (p >= e) {
return NOT_MEANT_TO_BE_A_POSIX_CLASS;
}
if (*(p - 1) != '[') {
ADD_POSIX_WARNING(p, "it doesn't start with a '['");
found_problem = TRUE;
}
else {
has_opening_bracket = TRUE;
}
/* They could be confused and think you can put spaces between the
* components */
if (isBLANK(*p)) {
found_problem = TRUE;
do {
p++;
} while (p < e && isBLANK(*p));
ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
}
/* For [. .] and [= =]. These are quite different internally from [: :],
* so they are handled separately. */
if (POSIXCC_NOTYET(*p) && p < e - 3) /* 1 for the close, and 1 for the ']'
and 1 for at least one char in it
*/
{
const char open_char = *p;
const char * temp_ptr = p + 1;
/* These two constructs are not handled by perl, and if we find a
* syntactically valid one, we croak. khw, who wrote this code, finds
* this explanation of them very unclear:
* http://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html
* And searching the rest of the internet wasn't very helpful either.
* It looks like just about any byte can be in these constructs,
* depending on the locale. But unless the pattern is being compiled
* under /l, which is very rare, Perl runs under the C or POSIX locale.
* In that case, it looks like [= =] isn't allowed at all, and that
* [. .] could be any single code point, but for longer strings the
* constituent characters would have to be the ASCII alphabetics plus
* the minus-hyphen. Any sensible locale definition would limit itself
* to these. And any portable one definitely should. Trying to parse
* the general case is a nightmare (see [perl #127604]). So, this code
* looks only for interiors of these constructs that match:
* qr/.|[-\w]{2,}/
* Using \w relaxes the apparent rules a little, without adding much
* danger of mistaking something else for one of these constructs.
*
* [. .] in some implementations described on the internet is usable to
* escape a character that otherwise is special in bracketed character
* classes. For example [.].] means a literal right bracket instead of
* the ending of the class
*
* [= =] can legitimately contain a [. .] construct, but we don't
* handle this case, as that [. .] construct will later get parsed
* itself and croak then. And [= =] is checked for even when not under
* /l, as Perl has long done so.
*
* The code below relies on there being a trailing NUL, so it doesn't
* have to keep checking if the parse ptr < e.
*/
if (temp_ptr[1] == open_char) {
temp_ptr++;
}
else while ( temp_ptr < e
&& (isWORDCHAR(*temp_ptr) || *temp_ptr == '-'))
{
temp_ptr++;
}
if (*temp_ptr == open_char) {
temp_ptr++;
if (*temp_ptr == ']') {
temp_ptr++;
if (! found_problem && ! check_only) {
RExC_parse = (char *) temp_ptr;
vFAIL3("POSIX syntax [%c %c] is reserved for future "
"extensions", open_char, open_char);
}
/* Here, the syntax wasn't completely valid, or else the call
* is to check-only */
if (updated_parse_ptr) {
*updated_parse_ptr = (char *) temp_ptr;
}
CLEAR_POSIX_WARNINGS_AND_RETURN(OOB_NAMEDCLASS);
}
}
/* If we find something that started out to look like one of these
* constructs, but isn't, we continue below so that it can be checked
* for being a class name with a typo of '.' or '=' instead of a colon.
* */
}
/* Here, we think there is a possibility that a [: :] class was meant, and
* we have the first real character. It could be they think the '^' comes
* first */
if (*p == '^') {
found_problem = TRUE;
ADD_POSIX_WARNING(p + 1, "the '^' must come after the colon");
complement = 1;
p++;
if (isBLANK(*p)) {
found_problem = TRUE;
do {
p++;
} while (p < e && isBLANK(*p));
ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
}
}
/* But the first character should be a colon, which they could have easily
* mistyped on a qwerty keyboard as a semi-colon (and which may be hard to
* distinguish from a colon, so treat that as a colon). */
if (*p == ':') {
p++;
has_opening_colon = TRUE;
}
else if (*p == ';') {
found_problem = TRUE;
p++;
ADD_POSIX_WARNING(p, SEMI_COLON_POSIX_WARNING);
has_opening_colon = TRUE;
}
else {
found_problem = TRUE;
ADD_POSIX_WARNING(p, "there must be a starting ':'");
/* Consider an initial punctuation (not one of the recognized ones) to
* be a left terminator */
if (*p != '^' && *p != ']' && isPUNCT(*p)) {
p++;
}
}
/* They may think that you can put spaces between the components */
if (isBLANK(*p)) {
found_problem = TRUE;
do {
p++;
} while (p < e && isBLANK(*p));
ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
}
if (*p == '^') {
/* We consider something like [^:^alnum:]] to not have been intended to
* be a posix class, but XXX maybe we should */
if (complement) {
CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
}
complement = 1;
p++;
}
/* Again, they may think that you can put spaces between the components */
if (isBLANK(*p)) {
found_problem = TRUE;
do {
p++;
} while (p < e && isBLANK(*p));
ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
}
if (*p == ']') {
/* XXX This ']' may be a typo, and something else was meant. But
* treating it as such creates enough complications, that that
* possibility isn't currently considered here. So we assume that the
* ']' is what is intended, and if we've already found an initial '[',
* this leaves this construct looking like [:] or [:^], which almost
* certainly weren't intended to be posix classes */
if (has_opening_bracket) {
CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
}
/* But this function can be called when we parse the colon for
* something like qr/[alpha:]]/, so we back up to look for the
* beginning */
p--;
if (*p == ';') {
found_problem = TRUE;
ADD_POSIX_WARNING(p, SEMI_COLON_POSIX_WARNING);
}
else if (*p != ':') {
/* XXX We are currently very restrictive here, so this code doesn't
* consider the possibility that, say, /[alpha.]]/ was intended to
* be a posix class. */
CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
}
/* Here we have something like 'foo:]'. There was no initial colon,
* and we back up over 'foo. XXX Unlike the going forward case, we
* don't handle typos of non-word chars in the middle */
has_opening_colon = FALSE;
p--;
while (p > RExC_start && isWORDCHAR(*p)) {
p--;
}
p++;
/* Here, we have positioned ourselves to where we think the first
* character in the potential class is */
}
/* Now the interior really starts. There are certain key characters that
* can end the interior, or these could just be typos. To catch both
* cases, we may have to do two passes. In the first pass, we keep on
* going unless we come to a sequence that matches
* qr/ [[:punct:]] [[:blank:]]* \] /xa
* This means it takes a sequence to end the pass, so two typos in a row if
* that wasn't what was intended. If the class is perfectly formed, just
* this one pass is needed. We also stop if there are too many characters
* being accumulated, but this number is deliberately set higher than any
* real class. It is set high enough so that someone who thinks that
* 'alphanumeric' is a correct name would get warned that it wasn't.
* While doing the pass, we keep track of where the key characters were in
* it. If we don't find an end to the class, and one of the key characters
* was found, we redo the pass, but stop when we get to that character.
* Thus the key character was considered a typo in the first pass, but a
* terminator in the second. If two key characters are found, we stop at
* the second one in the first pass. Again this can miss two typos, but
* catches a single one
*
* In the first pass, 'possible_end' starts as NULL, and then gets set to
* point to the first key character. For the second pass, it starts as -1.
* */
name_start = p;
parse_name:
{
bool has_blank = FALSE;
bool has_upper = FALSE;
bool has_terminating_colon = FALSE;
bool has_terminating_bracket = FALSE;
bool has_semi_colon = FALSE;
unsigned int name_len = 0;
int punct_count = 0;
while (p < e) {
/* Squeeze out blanks when looking up the class name below */
if (isBLANK(*p) ) {
has_blank = TRUE;
found_problem = TRUE;
p++;
continue;
}
/* The name will end with a punctuation */
if (isPUNCT(*p)) {
const char * peek = p + 1;
/* Treat any non-']' punctuation followed by a ']' (possibly
* with intervening blanks) as trying to terminate the class.
* ']]' is very likely to mean a class was intended (but
* missing the colon), but the warning message that gets
* generated shows the error position better if we exit the
* loop at the bottom (eventually), so skip it here. */
if (*p != ']') {
if (peek < e && isBLANK(*peek)) {
has_blank = TRUE;
found_problem = TRUE;
do {
peek++;
} while (peek < e && isBLANK(*peek));
}
if (peek < e && *peek == ']') {
has_terminating_bracket = TRUE;
if (*p == ':') {
has_terminating_colon = TRUE;
}
else if (*p == ';') {
has_semi_colon = TRUE;
has_terminating_colon = TRUE;
}
else {
found_problem = TRUE;
}
p = peek + 1;
goto try_posix;
}
}
/* Here we have punctuation we thought didn't end the class.
* Keep track of the position of the key characters that are
* more likely to have been class-enders */
if (*p == ']' || *p == '[' || *p == ':' || *p == ';') {
/* Allow just one such possible class-ender not actually
* ending the class. */
if (possible_end) {
break;
}
possible_end = p;
}
/* If we have too many punctuation characters, no use in
* keeping going */
if (++punct_count > max_distance) {
break;
}
/* Treat the punctuation as a typo. */
input_text[name_len++] = *p;
p++;
}
else if (isUPPER(*p)) { /* Use lowercase for lookup */
input_text[name_len++] = toLOWER(*p);
has_upper = TRUE;
found_problem = TRUE;
p++;
} else if (! UTF || UTF8_IS_INVARIANT(*p)) {
input_text[name_len++] = *p;
p++;
}
else {
input_text[name_len++] = utf8_to_uvchr_buf((U8 *) p, e, NULL);
p+= UTF8SKIP(p);
}
/* The declaration of 'input_text' is how long we allow a potential
* class name to be, before saying they didn't mean a class name at
* all */
if (name_len >= C_ARRAY_LENGTH(input_text)) {
break;
}
}
/* We get to here when the possible class name hasn't been properly
* terminated before:
* 1) we ran off the end of the pattern; or
* 2) found two characters, each of which might have been intended to
* be the name's terminator
* 3) found so many punctuation characters in the purported name,
* that the edit distance to a valid one is exceeded
* 4) we decided it was more characters than anyone could have
* intended to be one. */
found_problem = TRUE;
/* In the final two cases, we know that looking up what we've
* accumulated won't lead to a match, even a fuzzy one. */
if ( name_len >= C_ARRAY_LENGTH(input_text)
|| punct_count > max_distance)
{
/* If there was an intermediate key character that could have been
* an intended end, redo the parse, but stop there */
if (possible_end && possible_end != (char *) -1) {
possible_end = (char *) -1; /* Special signal value to say
we've done a first pass */
p = name_start;
goto parse_name;
}
/* Otherwise, it can't have meant to have been a class */
CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
}
/* If we ran off the end, and the final character was a punctuation
* one, back up one, to look at that final one just below. Later, we
* will restore the parse pointer if appropriate */
if (name_len && p == e && isPUNCT(*(p-1))) {
p--;
name_len--;
}
if (p < e && isPUNCT(*p)) {
if (*p == ']') {
has_terminating_bracket = TRUE;
/* If this is a 2nd ']', and the first one is just below this
* one, consider that to be the real terminator. This gives a
* uniform and better positioning for the warning message */
if ( possible_end
&& possible_end != (char *) -1
&& *possible_end == ']'
&& name_len && input_text[name_len - 1] == ']')
{
name_len--;
p = possible_end;
/* And this is actually equivalent to having done the 2nd
* pass now, so set it to not try again */
possible_end = (char *) -1;
}
}
else {
if (*p == ':') {
has_terminating_colon = TRUE;
}
else if (*p == ';') {
has_semi_colon = TRUE;
has_terminating_colon = TRUE;
}
p++;
}
}
try_posix:
/* Here, we have a class name to look up. We can short circuit the
* stuff below for short names that can't possibly be meant to be a
* class name. (We can do this on the first pass, as any second pass
* will yield an even shorter name) */
if (name_len < 3) {
CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
}
/* Find which class it is. Initially switch on the length of the name.
* */
switch (name_len) {
case 4:
if (memEQs(name_start, 4, "word")) {
/* this is not POSIX, this is the Perl \w */
class_number = ANYOF_WORDCHAR;
}
break;
case 5:
/* Names all of length 5: alnum alpha ascii blank cntrl digit
* graph lower print punct space upper
* Offset 4 gives the best switch position. */
switch (name_start[4]) {
case 'a':
if (memBEGINs(name_start, 5, "alph")) /* alpha */
class_number = ANYOF_ALPHA;
break;
case 'e':
if (memBEGINs(name_start, 5, "spac")) /* space */
class_number = ANYOF_SPACE;
break;
case 'h':
if (memBEGINs(name_start, 5, "grap")) /* graph */
class_number = ANYOF_GRAPH;
break;
case 'i':
if (memBEGINs(name_start, 5, "asci")) /* ascii */
class_number = ANYOF_ASCII;
break;
case 'k':
if (memBEGINs(name_start, 5, "blan")) /* blank */
class_number = ANYOF_BLANK;
break;
case 'l':
if (memBEGINs(name_start, 5, "cntr")) /* cntrl */
class_number = ANYOF_CNTRL;
break;
case 'm':
if (memBEGINs(name_start, 5, "alnu")) /* alnum */
class_number = ANYOF_ALPHANUMERIC;
break;
case 'r':
if (memBEGINs(name_start, 5, "lowe")) /* lower */
class_number = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
else if (memBEGINs(name_start, 5, "uppe")) /* upper */
class_number = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
break;
case 't':
if (memBEGINs(name_start, 5, "digi")) /* digit */
class_number = ANYOF_DIGIT;
else if (memBEGINs(name_start, 5, "prin")) /* print */
class_number = ANYOF_PRINT;
else if (memBEGINs(name_start, 5, "punc")) /* punct */
class_number = ANYOF_PUNCT;
break;
}
break;
case 6:
if (memEQs(name_start, 6, "xdigit"))
class_number = ANYOF_XDIGIT;
break;
}
/* If the name exactly matches a posix class name the class number will
* here be set to it, and the input almost certainly was meant to be a
* posix class, so we can skip further checking. If instead the syntax
* is exactly correct, but the name isn't one of the legal ones, we
* will return that as an error below. But if neither of these apply,
* it could be that no posix class was intended at all, or that one
* was, but there was a typo. We tease these apart by doing fuzzy
* matching on the name */
if (class_number == OOB_NAMEDCLASS && found_problem) {
const UV posix_names[][6] = {
{ 'a', 'l', 'n', 'u', 'm' },
{ 'a', 'l', 'p', 'h', 'a' },
{ 'a', 's', 'c', 'i', 'i' },
{ 'b', 'l', 'a', 'n', 'k' },
{ 'c', 'n', 't', 'r', 'l' },
{ 'd', 'i', 'g', 'i', 't' },
{ 'g', 'r', 'a', 'p', 'h' },
{ 'l', 'o', 'w', 'e', 'r' },
{ 'p', 'r', 'i', 'n', 't' },
{ 'p', 'u', 'n', 'c', 't' },
{ 's', 'p', 'a', 'c', 'e' },
{ 'u', 'p', 'p', 'e', 'r' },
{ 'w', 'o', 'r', 'd' },
{ 'x', 'd', 'i', 'g', 'i', 't' }
};
/* The names of the above all have added NULs to make them the same
* size, so we need to also have the real lengths */
const UV posix_name_lengths[] = {
sizeof("alnum") - 1,
sizeof("alpha") - 1,
sizeof("ascii") - 1,
sizeof("blank") - 1,
sizeof("cntrl") - 1,
sizeof("digit") - 1,
sizeof("graph") - 1,
sizeof("lower") - 1,
sizeof("print") - 1,
sizeof("punct") - 1,
sizeof("space") - 1,
sizeof("upper") - 1,
sizeof("word") - 1,
sizeof("xdigit")- 1
};
unsigned int i;
int temp_max = max_distance; /* Use a temporary, so if we
reparse, we haven't changed the
outer one */
/* Use a smaller max edit distance if we are missing one of the
* delimiters */
if ( has_opening_bracket + has_opening_colon < 2
|| has_terminating_bracket + has_terminating_colon < 2)
{
temp_max--;
}
/* See if the input name is close to a legal one */
for (i = 0; i < C_ARRAY_LENGTH(posix_names); i++) {
/* Short circuit call if the lengths are too far apart to be
* able to match */
if (abs( (int) (name_len - posix_name_lengths[i]))
> temp_max)
{
continue;
}
if (edit_distance(input_text,
posix_names[i],
name_len,
posix_name_lengths[i],
temp_max
)
> -1)
{ /* If it is close, it probably was intended to be a class */
goto probably_meant_to_be;
}
}
/* Here the input name is not close enough to a valid class name
* for us to consider it to be intended to be a posix class. If
* we haven't already done so, and the parse found a character that
* could have been terminators for the name, but which we absorbed
* as typos during the first pass, repeat the parse, signalling it
* to stop at that character */
if (possible_end && possible_end != (char *) -1) {
possible_end = (char *) -1;
p = name_start;
goto parse_name;
}
/* Here neither pass found a close-enough class name */
CLEAR_POSIX_WARNINGS_AND_RETURN(NOT_MEANT_TO_BE_A_POSIX_CLASS);
}
probably_meant_to_be:
/* Here we think that a posix specification was intended. Update any
* parse pointer */
if (updated_parse_ptr) {
*updated_parse_ptr = (char *) p;
}
/* If a posix class name was intended but incorrectly specified, we
* output or return the warnings */
if (found_problem) {
/* We set flags for these issues in the parse loop above instead of
* adding them to the list of warnings, because we can parse it
* twice, and we only want one warning instance */
if (has_upper) {
ADD_POSIX_WARNING(p, "the name must be all lowercase letters");
}
if (has_blank) {
ADD_POSIX_WARNING(p, NO_BLANKS_POSIX_WARNING);
}
if (has_semi_colon) {
ADD_POSIX_WARNING(p, SEMI_COLON_POSIX_WARNING);
}
else if (! has_terminating_colon) {
ADD_POSIX_WARNING(p, "there is no terminating ':'");
}
if (! has_terminating_bracket) {
ADD_POSIX_WARNING(p, "there is no terminating ']'");
}
if ( posix_warnings
&& RExC_warn_text
&& av_top_index(RExC_warn_text) > -1)
{
*posix_warnings = RExC_warn_text;
}
}
else if (class_number != OOB_NAMEDCLASS) {
/* If it is a known class, return the class. The class number
* #defines are structured so each complement is +1 to the normal
* one */
CLEAR_POSIX_WARNINGS_AND_RETURN(class_number + complement);
}
else if (! check_only) {
/* Here, it is an unrecognized class. This is an error (unless the
* call is to check only, which we've already handled above) */
const char * const complement_string = (complement)
? "^"
: "";
RExC_parse = (char *) p;
vFAIL3utf8f("POSIX class [:%s%" UTF8f ":] unknown",
complement_string,
UTF8fARG(UTF, RExC_parse - name_start - 2, name_start));
}
}
return OOB_NAMEDCLASS;
}
#undef ADD_POSIX_WARNING
STATIC unsigned int
S_regex_set_precedence(const U8 my_operator) {
/* Returns the precedence in the (?[...]) construct of the input operator,
* specified by its character representation. The precedence follows
* general Perl rules, but it extends this so that ')' and ']' have (low)
* precedence even though they aren't really operators */
switch (my_operator) {
case '!':
return 5;
case '&':
return 4;
case '^':
case '|':
case '+':
case '-':
return 3;
case ')':
return 2;
case ']':
return 1;
}
NOT_REACHED; /* NOTREACHED */
return 0; /* Silence compiler warning */
}
STATIC regnode_offset
S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
I32 *flagp, U32 depth,
char * const oregcomp_parse)
{
/* Handle the (?[...]) construct to do set operations */
U8 curchar; /* Current character being parsed */
UV start, end; /* End points of code point ranges */
SV* final = NULL; /* The end result inversion list */
SV* result_string; /* 'final' stringified */
AV* stack; /* stack of operators and operands not yet
resolved */
AV* fence_stack = NULL; /* A stack containing the positions in
'stack' of where the undealt-with left
parens would be if they were actually
put there */
/* The 'volatile' is a workaround for an optimiser bug
* in Solaris Studio 12.3. See RT #127455 */
volatile IV fence = 0; /* Position of where most recent undealt-
with left paren in stack is; -1 if none.
*/
STRLEN len; /* Temporary */
regnode_offset node; /* Temporary, and final regnode returned by
this function */
const bool save_fold = FOLD; /* Temporary */
char *save_end, *save_parse; /* Temporaries */
const bool in_locale = LOC; /* we turn off /l during processing */
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
PERL_UNUSED_ARG(oregcomp_parse); /* Only for Set_Node_Length */
DEBUG_PARSE("xcls");
if (in_locale) {
set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET);
}
/* The use of this operator implies /u. This is required so that the
* compile time values are valid in all runtime cases */
REQUIRE_UNI_RULES(flagp, 0);
ckWARNexperimental(RExC_parse,
WARN_EXPERIMENTAL__REGEX_SETS,
"The regex_sets feature is experimental");
/* Everything in this construct is a metacharacter. Operands begin with
* either a '\' (for an escape sequence), or a '[' for a bracketed
* character class. Any other character should be an operator, or
* parenthesis for grouping. Both types of operands are handled by calling
* regclass() to parse them. It is called with a parameter to indicate to
* return the computed inversion list. The parsing here is implemented via
* a stack. Each entry on the stack is a single character representing one
* of the operators; or else a pointer to an operand inversion list. */
#define IS_OPERATOR(a) SvIOK(a)
#define IS_OPERAND(a) (! IS_OPERATOR(a))
/* The stack is kept in Łukasiewicz order. (That's pronounced similar
* to luke-a-shave-itch (or -itz), but people who didn't want to bother
* with pronouncing it called it Reverse Polish instead, but now that YOU
* know how to pronounce it you can use the correct term, thus giving due
* credit to the person who invented it, and impressing your geek friends.
* Wikipedia says that the pronounciation of "Ł" has been changing so that
* it is now more like an English initial W (as in wonk) than an L.)
*
* This means that, for example, 'a | b & c' is stored on the stack as
*
* c [4]
* b [3]
* & [2]
* a [1]
* | [0]
*
* where the numbers in brackets give the stack [array] element number.
* In this implementation, parentheses are not stored on the stack.
* Instead a '(' creates a "fence" so that the part of the stack below the
* fence is invisible except to the corresponding ')' (this allows us to
* replace testing for parens, by using instead subtraction of the fence
* position). As new operands are processed they are pushed onto the stack
* (except as noted in the next paragraph). New operators of higher
* precedence than the current final one are inserted on the stack before
* the lhs operand (so that when the rhs is pushed next, everything will be
* in the correct positions shown above. When an operator of equal or
* lower precedence is encountered in parsing, all the stacked operations
* of equal or higher precedence are evaluated, leaving the result as the
* top entry on the stack. This makes higher precedence operations
* evaluate before lower precedence ones, and causes operations of equal
* precedence to left associate.
*
* The only unary operator '!' is immediately pushed onto the stack when
* encountered. When an operand is encountered, if the top of the stack is
* a '!", the complement is immediately performed, and the '!' popped. The
* resulting value is treated as a new operand, and the logic in the
* previous paragraph is executed. Thus in the expression
* [a] + ! [b]
* the stack looks like
*
* !
* a
* +
*
* as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
* becomes
*
* !b
* a
* +
*
* A ')' is treated as an operator with lower precedence than all the
* aforementioned ones, which causes all operations on the stack above the
* corresponding '(' to be evaluated down to a single resultant operand.
* Then the fence for the '(' is removed, and the operand goes through the
* algorithm above, without the fence.
*
* A separate stack is kept of the fence positions, so that the position of
* the latest so-far unbalanced '(' is at the top of it.
*
* The ']' ending the construct is treated as the lowest operator of all,
* so that everything gets evaluated down to a single operand, which is the
* result */
sv_2mortal((SV *)(stack = newAV()));
sv_2mortal((SV *)(fence_stack = newAV()));
while (RExC_parse < RExC_end) {
I32 top_index; /* Index of top-most element in 'stack' */
SV** top_ptr; /* Pointer to top 'stack' element */
SV* current = NULL; /* To contain the current inversion list
operand */
SV* only_to_avoid_leaks;
skip_to_be_ignored_text(pRExC_state, &RExC_parse,
TRUE /* Force /x */ );
if (RExC_parse >= RExC_end) { /* Fail */
break;
}
curchar = UCHARAT(RExC_parse);
redo_curchar:
#ifdef ENABLE_REGEX_SETS_DEBUGGING
/* Enable with -Accflags=-DENABLE_REGEX_SETS_DEBUGGING */
DEBUG_U(dump_regex_sets_structures(pRExC_state,
stack, fence, fence_stack));
#endif
top_index = av_tindex_skip_len_mg(stack);
switch (curchar) {
SV** stacked_ptr; /* Ptr to something already on 'stack' */
char stacked_operator; /* The topmost operator on the 'stack'. */
SV* lhs; /* Operand to the left of the operator */
SV* rhs; /* Operand to the right of the operator */
SV* fence_ptr; /* Pointer to top element of the fence
stack */
case '(':
if ( RExC_parse < RExC_end - 2
&& UCHARAT(RExC_parse + 1) == '?'
&& UCHARAT(RExC_parse + 2) == '^')
{
const regnode_offset orig_emit = RExC_emit;
SV * resultant_invlist;
/* If is a '(?^', could be an embedded '(?^flags:(?[...])'.
* This happens when we have some thing like
*
* my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
* ...
* qr/(?[ \p{Digit} & $thai_or_lao ])/;
*
* Here we would be handling the interpolated
* '$thai_or_lao'. We handle this by a recursive call to
* reg which returns the inversion list the
* interpolated expression evaluates to. Actually, the
* return is a special regnode containing a pointer to that
* inversion list. If the return isn't that regnode alone,
* we know that this wasn't such an interpolation, which is
* an error: we need to get a single inversion list back
* from the recursion */
RExC_parse++;
RExC_sets_depth++;
node = reg(pRExC_state, 2, flagp, depth+1);
RETURN_FAIL_ON_RESTART(*flagp, flagp);
if ( OP(REGNODE_p(node)) != REGEX_SET
/* If more than a single node returned, the nested
* parens evaluated to more than just a (?[...]),
* which isn't legal */
|| RExC_emit != orig_emit
+ NODE_STEP_REGNODE
+ regarglen[REGEX_SET])
{
vFAIL("Expecting interpolated extended charclass");
}
resultant_invlist = (SV *) ARGp(REGNODE_p(node));
current = invlist_clone(resultant_invlist, NULL);
SvREFCNT_dec(resultant_invlist);
RExC_sets_depth--;
RExC_emit = orig_emit;
goto handle_operand;
}
/* A regular '('. Look behind for illegal syntax */
if (top_index - fence >= 0) {
/* If the top entry on the stack is an operator, it had
* better be a '!', otherwise the entry below the top
* operand should be an operator */
if ( ! (top_ptr = av_fetch(stack, top_index, FALSE))
|| (IS_OPERATOR(*top_ptr) && SvUV(*top_ptr) != '!')
|| ( IS_OPERAND(*top_ptr)
&& ( top_index - fence < 1
|| ! (stacked_ptr = av_fetch(stack,
top_index - 1,
FALSE))
|| ! IS_OPERATOR(*stacked_ptr))))
{
RExC_parse++;
vFAIL("Unexpected '(' with no preceding operator");
}
}
/* Stack the position of this undealt-with left paren */
av_push(fence_stack, newSViv(fence));
fence = top_index + 1;
break;
case '\\':
/* regclass() can only return RESTART_PARSE and NEED_UTF8 if
* multi-char folds are allowed. */
if (!regclass(pRExC_state, flagp, depth+1,
TRUE, /* means parse just the next thing */
FALSE, /* don't allow multi-char folds */
FALSE, /* don't silence non-portable warnings. */
TRUE, /* strict */
FALSE, /* Require return to be an ANYOF */
¤t))
{
RETURN_FAIL_ON_RESTART(*flagp, flagp);
goto regclass_failed;
}
assert(current);
/* regclass() will return with parsing just the \ sequence,
* leaving the parse pointer at the next thing to parse */
RExC_parse--;
goto handle_operand;
case '[': /* Is a bracketed character class */
{
/* See if this is a [:posix:] class. */
bool is_posix_class = (OOB_NAMEDCLASS
< handle_possible_posix(pRExC_state,
RExC_parse + 1,
NULL,
NULL,
TRUE /* checking only */));
/* If it is a posix class, leave the parse pointer at the '['
* to fool regclass() into thinking it is part of a
* '[[:posix:]]'. */
if (! is_posix_class) {
RExC_parse++;
}
/* regclass() can only return RESTART_PARSE and NEED_UTF8 if
* multi-char folds are allowed. */
if (!regclass(pRExC_state, flagp, depth+1,
is_posix_class, /* parse the whole char
class only if not a
posix class */
FALSE, /* don't allow multi-char folds */
TRUE, /* silence non-portable warnings. */
TRUE, /* strict */
FALSE, /* Require return to be an ANYOF */
¤t))
{
RETURN_FAIL_ON_RESTART(*flagp, flagp);
goto regclass_failed;
}
assert(current);
/* function call leaves parse pointing to the ']', except if we
* faked it */
if (is_posix_class) {
RExC_parse--;
}
goto handle_operand;
}
case ']':
if (top_index >= 1) {
goto join_operators;
}
/* Only a single operand on the stack: are done */
goto done;
case ')':
if (av_tindex_skip_len_mg(fence_stack) < 0) {
if (UCHARAT(RExC_parse - 1) == ']') {
break;
}
RExC_parse++;
vFAIL("Unexpected ')'");
}
/* If nothing after the fence, is missing an operand */
if (top_index - fence < 0) {
RExC_parse++;
goto bad_syntax;
}
/* If at least two things on the stack, treat this as an
* operator */
if (top_index - fence >= 1) {
goto join_operators;
}
/* Here only a single thing on the fenced stack, and there is a
* fence. Get rid of it */
fence_ptr = av_pop(fence_stack);
assert(fence_ptr);
fence = SvIV(fence_ptr);
SvREFCNT_dec_NN(fence_ptr);
fence_ptr = NULL;
if (fence < 0) {
fence = 0;
}
/* Having gotten rid of the fence, we pop the operand at the
* stack top and process it as a newly encountered operand */
current = av_pop(stack);
if (IS_OPERAND(current)) {
goto handle_operand;
}
RExC_parse++;
goto bad_syntax;
case '&':
case '|':
case '+':
case '-':
case '^':
/* These binary operators should have a left operand already
* parsed */
if ( top_index - fence < 0
|| top_index - fence == 1
|| ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
|| ! IS_OPERAND(*top_ptr))
{
goto unexpected_binary;
}
/* If only the one operand is on the part of the stack visible
* to us, we just place this operator in the proper position */
if (top_index - fence < 2) {
/* Place the operator before the operand */
SV* lhs = av_pop(stack);
av_push(stack, newSVuv(curchar));
av_push(stack, lhs);
break;
}
/* But if there is something else on the stack, we need to
* process it before this new operator if and only if the
* stacked operation has equal or higher precedence than the
* new one */
join_operators:
/* The operator on the stack is supposed to be below both its
* operands */
if ( ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
|| IS_OPERAND(*stacked_ptr))
{
/* But if not, it's legal and indicates we are completely
* done if and only if we're currently processing a ']',
* which should be the final thing in the expression */
if (curchar == ']') {
goto done;
}
unexpected_binary:
RExC_parse++;
vFAIL2("Unexpected binary operator '%c' with no "
"preceding operand", curchar);
}
stacked_operator = (char) SvUV(*stacked_ptr);
if (regex_set_precedence(curchar)
> regex_set_precedence(stacked_operator))
{
/* Here, the new operator has higher precedence than the
* stacked one. This means we need to add the new one to
* the stack to await its rhs operand (and maybe more
* stuff). We put it before the lhs operand, leaving
* untouched the stacked operator and everything below it
* */
lhs = av_pop(stack);
assert(IS_OPERAND(lhs));
av_push(stack, newSVuv(curchar));
av_push(stack, lhs);
break;
}
/* Here, the new operator has equal or lower precedence than
* what's already there. This means the operation already
* there should be performed now, before the new one. */
rhs = av_pop(stack);
if (! IS_OPERAND(rhs)) {
/* This can happen when a ! is not followed by an operand,
* like in /(?[\t &!])/ */
goto bad_syntax;
}
lhs = av_pop(stack);
if (! IS_OPERAND(lhs)) {
/* This can happen when there is an empty (), like in
* /(?[[0]+()+])/ */
goto bad_syntax;
}
switch (stacked_operator) {
case '&':
_invlist_intersection(lhs, rhs, &rhs);
break;
case '|':
case '+':
_invlist_union(lhs, rhs, &rhs);
break;
case '-':
_invlist_subtract(lhs, rhs, &rhs);
break;
case '^': /* The union minus the intersection */
{
SV* i = NULL;
SV* u = NULL;
_invlist_union(lhs, rhs, &u);
_invlist_intersection(lhs, rhs, &i);
_invlist_subtract(u, i, &rhs);
SvREFCNT_dec_NN(i);
SvREFCNT_dec_NN(u);
break;
}
}
SvREFCNT_dec(lhs);
/* Here, the higher precedence operation has been done, and the
* result is in 'rhs'. We overwrite the stacked operator with
* the result. Then we redo this code to either push the new
* operator onto the stack or perform any higher precedence
* stacked operation */
only_to_avoid_leaks = av_pop(stack);
SvREFCNT_dec(only_to_avoid_leaks);
av_push(stack, rhs);
goto redo_curchar;
case '!': /* Highest priority, right associative */
/* If what's already at the top of the stack is another '!",
* they just cancel each other out */
if ( (top_ptr = av_fetch(stack, top_index, FALSE))
&& (IS_OPERATOR(*top_ptr) && SvUV(*top_ptr) == '!'))
{
only_to_avoid_leaks = av_pop(stack);
SvREFCNT_dec(only_to_avoid_leaks);
}
else { /* Otherwise, since it's right associative, just push
onto the stack */
av_push(stack, newSVuv(curchar));
}
break;
default:
RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
if (RExC_parse >= RExC_end) {
break;
}
vFAIL("Unexpected character");
handle_operand:
/* Here 'current' is the operand. If something is already on the
* stack, we have to check if it is a !. But first, the code above
* may have altered the stack in the time since we earlier set
* 'top_index'. */
top_index = av_tindex_skip_len_mg(stack);
if (top_index - fence >= 0) {
/* If the top entry on the stack is an operator, it had better
* be a '!', otherwise the entry below the top operand should
* be an operator */
top_ptr = av_fetch(stack, top_index, FALSE);
assert(top_ptr);
if (IS_OPERATOR(*top_ptr)) {
/* The only permissible operator at the top of the stack is
* '!', which is applied immediately to this operand. */
curchar = (char) SvUV(*top_ptr);
if (curchar != '!') {
SvREFCNT_dec(current);
vFAIL2("Unexpected binary operator '%c' with no "
"preceding operand", curchar);
}
_invlist_invert(current);
only_to_avoid_leaks = av_pop(stack);
SvREFCNT_dec(only_to_avoid_leaks);
/* And we redo with the inverted operand. This allows
* handling multiple ! in a row */
goto handle_operand;
}
/* Single operand is ok only for the non-binary ')'
* operator */
else if ((top_index - fence == 0 && curchar != ')')
|| (top_index - fence > 0
&& (! (stacked_ptr = av_fetch(stack,
top_index - 1,
FALSE))
|| IS_OPERAND(*stacked_ptr))))
{
SvREFCNT_dec(current);
vFAIL("Operand with no preceding operator");
}
}
/* Here there was nothing on the stack or the top element was
* another operand. Just add this new one */
av_push(stack, current);
} /* End of switch on next parse token */
RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
} /* End of loop parsing through the construct */
vFAIL("Syntax error in (?[...])");
done:
if (RExC_parse >= RExC_end || RExC_parse[1] != ')') {
if (RExC_parse < RExC_end) {
RExC_parse++;
}
vFAIL("Unexpected ']' with no following ')' in (?[...");
}
if (av_tindex_skip_len_mg(fence_stack) >= 0) {
vFAIL("Unmatched (");
}
if (av_tindex_skip_len_mg(stack) < 0 /* Was empty */
|| ((final = av_pop(stack)) == NULL)
|| ! IS_OPERAND(final)
|| ! is_invlist(final)
|| av_tindex_skip_len_mg(stack) >= 0) /* More left on stack */
{
bad_syntax:
SvREFCNT_dec(final);
vFAIL("Incomplete expression within '(?[ ])'");
}
/* Here, 'final' is the resultant inversion list from evaluating the
* expression. Return it if so requested */
if (return_invlist) {
*return_invlist = final;
return END;
}
if (RExC_sets_depth) { /* If within a recursive call, return in a special
regnode */
RExC_parse++;
node = regpnode(pRExC_state, REGEX_SET, final);
}
else {
/* Otherwise generate a resultant node, based on 'final'. regclass()
* is expecting a string of ranges and individual code points */
invlist_iterinit(final);
result_string = newSVpvs("");
while (invlist_iternext(final, &start, &end)) {
if (start == end) {
Perl_sv_catpvf(aTHX_ result_string, "\\x{%" UVXf "}", start);
}
else {
Perl_sv_catpvf(aTHX_ result_string, "\\x{%" UVXf "}-\\x{%"
UVXf "}", start, end);
}
}
/* About to generate an ANYOF (or similar) node from the inversion list
* we have calculated */
save_parse = RExC_parse;
RExC_parse = SvPV(result_string, len);
save_end = RExC_end;
RExC_end = RExC_parse + len;
TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE;
/* We turn off folding around the call, as the class we have
* constructed already has all folding taken into consideration, and we
* don't want regclass() to add to that */
RExC_flags &= ~RXf_PMf_FOLD;
/* regclass() can only return RESTART_PARSE and NEED_UTF8 if multi-char
* folds are allowed. */
node = regclass(pRExC_state, flagp, depth+1,
FALSE, /* means parse the whole char class */
FALSE, /* don't allow multi-char folds */
TRUE, /* silence non-portable warnings. The above may
very well have generated non-portable code
points, but they're valid on this machine */
FALSE, /* similarly, no need for strict */
/* We can optimize into something besides an ANYOF,
* except under /l, which needs to be ANYOF because of
* runtime checks for locale sanity, etc */
! in_locale,
NULL
);
RESTORE_WARNINGS;
RExC_parse = save_parse + 1;
RExC_end = save_end;
SvREFCNT_dec_NN(final);
SvREFCNT_dec_NN(result_string);
if (save_fold) {
RExC_flags |= RXf_PMf_FOLD;
}
if (!node) {
RETURN_FAIL_ON_RESTART(*flagp, flagp);
goto regclass_failed;
}
/* Fix up the node type if we are in locale. (We have pretended we are
* under /u for the purposes of regclass(), as this construct will only
* work under UTF-8 locales. But now we change the opcode to be ANYOFL
* (so as to cause any warnings about bad locales to be output in
* regexec.c), and add the flag that indicates to check if not in a
* UTF-8 locale. The reason we above forbid optimization into
* something other than an ANYOF node is simply to minimize the number
* of code changes in regexec.c. Otherwise we would have to create new
* EXACTish node types and deal with them. This decision could be
* revisited should this construct become popular.
*
* (One might think we could look at the resulting ANYOF node and
* suppress the flag if everything is above 255, as those would be
* UTF-8 only, but this isn't true, as the components that led to that
* result could have been locale-affected, and just happen to cancel
* each other out under UTF-8 locales.) */
if (in_locale) {
set_regex_charset(&RExC_flags, REGEX_LOCALE_CHARSET);
assert(OP(REGNODE_p(node)) == ANYOF);
OP(REGNODE_p(node)) = ANYOFL;
ANYOF_FLAGS(REGNODE_p(node))
|= ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
}
}
nextchar(pRExC_state);
Set_Node_Length(REGNODE_p(node), RExC_parse - oregcomp_parse + 1); /* MJD */
return node;
regclass_failed:
FAIL2("panic: regclass returned failure to handle_sets, " "flags=%#" UVxf,
(UV) *flagp);
}
#ifdef ENABLE_REGEX_SETS_DEBUGGING
STATIC void
S_dump_regex_sets_structures(pTHX_ RExC_state_t *pRExC_state,
AV * stack, const IV fence, AV * fence_stack)
{ /* Dumps the stacks in handle_regex_sets() */
const SSize_t stack_top = av_tindex_skip_len_mg(stack);
const SSize_t fence_stack_top = av_tindex_skip_len_mg(fence_stack);
SSize_t i;
PERL_ARGS_ASSERT_DUMP_REGEX_SETS_STRUCTURES;
PerlIO_printf(Perl_debug_log, "\nParse position is:%s\n", RExC_parse);
if (stack_top < 0) {
PerlIO_printf(Perl_debug_log, "Nothing on stack\n");
}
else {
PerlIO_printf(Perl_debug_log, "Stack: (fence=%d)\n", (int) fence);
for (i = stack_top; i >= 0; i--) {
SV ** element_ptr = av_fetch(stack, i, FALSE);
if (! element_ptr) {
}
if (IS_OPERATOR(*element_ptr)) {
PerlIO_printf(Perl_debug_log, "[%d]: %c\n",
(int) i, (int) SvIV(*element_ptr));
}
else {
PerlIO_printf(Perl_debug_log, "[%d] ", (int) i);
sv_dump(*element_ptr);
}
}
}
if (fence_stack_top < 0) {
PerlIO_printf(Perl_debug_log, "Nothing on fence_stack\n");
}
else {
PerlIO_printf(Perl_debug_log, "Fence_stack: \n");
for (i = fence_stack_top; i >= 0; i--) {
SV ** element_ptr = av_fetch(fence_stack, i, FALSE);
if (! element_ptr) {
}
PerlIO_printf(Perl_debug_log, "[%d]: %d\n",
(int) i, (int) SvIV(*element_ptr));
}
}
}
#endif
#undef IS_OPERATOR
#undef IS_OPERAND
STATIC void
S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
{
/* This adds the Latin1/above-Latin1 folding rules.
*
* This should be called only for a Latin1-range code points, cp, which is
* known to be involved in a simple fold with other code points above
* Latin1. It would give false results if /aa has been specified.
* Multi-char folds are outside the scope of this, and must be handled
* specially. */
PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
/* The rules that are valid for all Unicode versions are hard-coded in */
switch (cp) {
case 'k':
case 'K':
*invlist =
add_cp_to_invlist(*invlist, KELVIN_SIGN);
break;
case 's':
case 'S':
*invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
break;
case MICRO_SIGN:
*invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
*invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
break;
case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
*invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
break;
case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
*invlist = add_cp_to_invlist(*invlist,
LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
break;
default: /* Other code points are checked against the data for the
current Unicode version */
{
Size_t folds_count;
U32 first_fold;
const U32 * remaining_folds;
UV folded_cp;
if (isASCII(cp)) {
folded_cp = toFOLD(cp);
}
else {
U8 dummy_fold[UTF8_MAXBYTES_CASE+1];
Size_t dummy_len;
folded_cp = _to_fold_latin1(cp, dummy_fold, &dummy_len, 0);
}
if (folded_cp > 255) {
*invlist = add_cp_to_invlist(*invlist, folded_cp);
}
folds_count = _inverse_folds(folded_cp, &first_fold,
&remaining_folds);
if (folds_count == 0) {
/* Use deprecated warning to increase the chances of this being
* output */
ckWARN2reg_d(RExC_parse,
"Perl folding rules are not up-to-date for 0x%02X;"
" please use the perlbug utility to report;", cp);
}
else {
unsigned int i;
if (first_fold > 255) {
*invlist = add_cp_to_invlist(*invlist, first_fold);
}
for (i = 0; i < folds_count - 1; i++) {
if (remaining_folds[i] > 255) {
*invlist = add_cp_to_invlist(*invlist,
remaining_folds[i]);
}
}
}
break;
}
}
}
STATIC void
S_output_posix_warnings(pTHX_ RExC_state_t *pRExC_state, AV* posix_warnings)
{
/* Output the elements of the array given by '*posix_warnings' as REGEXP
* warnings. */
SV * msg;
const bool first_is_fatal = ckDEAD(packWARN(WARN_REGEXP));
PERL_ARGS_ASSERT_OUTPUT_POSIX_WARNINGS;
if (! TO_OUTPUT_WARNINGS(RExC_parse)) {
CLEAR_POSIX_WARNINGS();
return;
}
while ((msg = av_shift(posix_warnings)) != &PL_sv_undef) {
if (first_is_fatal) { /* Avoid leaking this */
av_undef(posix_warnings); /* This isn't necessary if the
array is mortal, but is a
fail-safe */
(void) sv_2mortal(msg);
PREPARE_TO_DIE;
}
Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s", SvPVX(msg));
SvREFCNT_dec_NN(msg);
}
UPDATE_WARNINGS_LOC(RExC_parse);
}
PERL_STATIC_INLINE Size_t
S_find_first_differing_byte_pos(const U8 * s1, const U8 * s2, const Size_t max)
{
const U8 * const start = s1;
const U8 * const send = start + max;
PERL_ARGS_ASSERT_FIND_FIRST_DIFFERING_BYTE_POS;
while (s1 < send && *s1 == *s2) {
s1++; s2++;
}
return s1 - start;
}
STATIC AV *
S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
{
/* This adds the string scalar <multi_string> to the array
* <multi_char_matches>. <multi_string> is known to have exactly
* <cp_count> code points in it. This is used when constructing a
* bracketed character class and we find something that needs to match more
* than a single character.
*
* <multi_char_matches> is actually an array of arrays. Each top-level
* element is an array that contains all the strings known so far that are
* the same length. And that length (in number of code points) is the same
* as the index of the top-level array. Hence, the [2] element is an
* array, each element thereof is a string containing TWO code points;
* while element [3] is for strings of THREE characters, and so on. Since
* this is for multi-char strings there can never be a [0] nor [1] element.
*
* When we rewrite the character class below, we will do so such that the
* longest strings are written first, so that it prefers the longest
* matching strings first. This is done even if it turns out that any
* quantifier is non-greedy, out of this programmer's (khw) laziness. Tom
* Christiansen has agreed that this is ok. This makes the test for the
* ligature 'ffi' come before the test for 'ff', for example */
AV* this_array;
AV** this_array_ptr;
PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
if (! multi_char_matches) {
multi_char_matches = newAV();
}
if (av_exists(multi_char_matches, cp_count)) {
this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
this_array = *this_array_ptr;
}
else {
this_array = newAV();
av_store(multi_char_matches, cp_count,
(SV*) this_array);
}
av_push(this_array, multi_string);
return multi_char_matches;
}
/* The names of properties whose definitions are not known at compile time are
* stored in this SV, after a constant heading. So if the length has been
* changed since initialization, then there is a run-time definition. */
#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION \
(SvCUR(listsv) != initial_listsv_len)
/* There is a restricted set of white space characters that are legal when
* ignoring white space in a bracketed character class. This generates the
* code to skip them.
*
* There is a line below that uses the same white space criteria but is outside
* this macro. Both here and there must use the same definition */
#define SKIP_BRACKETED_WHITE_SPACE(do_skip, p, stop_p) \
STMT_START { \
if (do_skip) { \
while (p < stop_p && isBLANK_A(UCHARAT(p))) \
{ \
p++; \
} \
} \
} STMT_END
STATIC regnode_offset
S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
const bool stop_at_1, /* Just parse the next thing, don't
look for a full character class */
bool allow_mutiple_chars,
const bool silence_non_portable, /* Don't output warnings
about too large
characters */
const bool strict,
bool optimizable, /* ? Allow a non-ANYOF return
node */
SV** ret_invlist /* Return an inversion list, not a node */
)
{
/* parse a bracketed class specification. Most of these will produce an
* ANYOF node; but something like [a] will produce an EXACT node; [aA], an
* EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
* under /i with multi-character folds: it will be rewritten following the
* paradigm of this example, where the <multi-fold>s are characters which
* fold to multiple character sequences:
* /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
* gets effectively rewritten as:
* /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
* reg() gets called (recursively) on the rewritten version, and this
* function will return what it constructs. (Actually the <multi-fold>s
* aren't physically removed from the [abcdefghi], it's just that they are
* ignored in the recursion by means of a flag:
* <RExC_in_multi_char_class>.)
*
* ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
* characters, with the corresponding bit set if that character is in the
* list. For characters above this, an inversion list is used. There
* are extra bits for \w, etc. in locale ANYOFs, as what these match is not
* determinable at compile time
*
* On success, returns the offset at which any next node should be placed
* into the regex engine program being compiled.
*
* Returns 0 otherwise, setting flagp to RESTART_PARSE if the parse needs
* to be restarted, or'd with NEED_UTF8 if the pattern needs to be upgraded to
* UTF-8
*/
dVAR;
UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
IV range = 0;
UV value = OOB_UNICODE, save_value = OOB_UNICODE;
regnode_offset ret = -1; /* Initialized to an illegal value */
STRLEN numlen;
int namedclass = OOB_NAMEDCLASS;
char *rangebegin = NULL;
SV *listsv = NULL; /* List of \p{user-defined} whose definitions
aren't available at the time this was called */
STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
than just initialized. */
SV* properties = NULL; /* Code points that match \p{} \P{} */
SV* posixes = NULL; /* Code points that match classes like [:word:],
extended beyond the Latin1 range. These have to
be kept separate from other code points for much
of this function because their handling is
different under /i, and for most classes under
/d as well */
SV* nposixes = NULL; /* Similarly for [:^word:]. These are kept
separate for a while from the non-complemented
versions because of complications with /d
matching */
SV* simple_posixes = NULL; /* But under some conditions, the classes can be
treated more simply than the general case,
leading to less compilation and execution
work */
UV element_count = 0; /* Number of distinct elements in the class.
Optimizations may be possible if this is tiny */
AV * multi_char_matches = NULL; /* Code points that fold to more than one
character; used under /i */
UV n;
char * stop_ptr = RExC_end; /* where to stop parsing */
/* ignore unescaped whitespace? */
const bool skip_white = cBOOL( ret_invlist
|| (RExC_flags & RXf_PMf_EXTENDED_MORE));
/* inversion list of code points this node matches only when the target
* string is in UTF-8. These are all non-ASCII, < 256. (Because is under
* /d) */
SV* upper_latin1_only_utf8_matches = NULL;
/* Inversion list of code points this node matches regardless of things
* like locale, folding, utf8ness of the target string */
SV* cp_list = NULL;
/* Like cp_list, but code points on this list need to be checked for things
* that fold to/from them under /i */
SV* cp_foldable_list = NULL;
/* Like cp_list, but code points on this list are valid only when the
* runtime locale is UTF-8 */
SV* only_utf8_locale_list = NULL;
/* In a range, if one of the endpoints is non-character-set portable,
* meaning that it hard-codes a code point that may mean a different
* charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
* mnemonic '\t' which each mean the same character no matter which
* character set the platform is on. */
unsigned int non_portable_endpoint = 0;
/* Is the range unicode? which means on a platform that isn't 1-1 native
* to Unicode (i.e. non-ASCII), each code point in it should be considered
* to be a Unicode value. */
bool unicode_range = FALSE;
bool invert = FALSE; /* Is this class to be complemented */
bool warn_super = ALWAYS_WARN_SUPER;
const char * orig_parse = RExC_parse;
/* This variable is used to mark where the end in the input is of something
* that looks like a POSIX construct but isn't. During the parse, when
* something looks like it could be such a construct is encountered, it is
* checked for being one, but not if we've already checked this area of the
* input. Only after this position is reached do we check again */
char *not_posix_region_end = RExC_parse - 1;
AV* posix_warnings = NULL;
const bool do_posix_warnings = ckWARN(WARN_REGEXP);
U8 op = END; /* The returned node-type, initialized to an impossible
one. */
U8 anyof_flags = 0; /* flag bits if the node is an ANYOF-type */
U32 posixl = 0; /* bit field of posix classes matched under /l */
/* Flags as to what things aren't knowable until runtime. (Note that these are
* mutually exclusive.) */
#define HAS_USER_DEFINED_PROPERTY 0x01 /* /u any user-defined properties that
haven't been defined as of yet */
#define HAS_D_RUNTIME_DEPENDENCY 0x02 /* /d if the target being matched is
UTF-8 or not */
#define HAS_L_RUNTIME_DEPENDENCY 0x04 /* /l what the posix classes match and
what gets folded */
U32 has_runtime_dependency = 0; /* OR of the above flags */
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGCLASS;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
assert(! (ret_invlist && allow_mutiple_chars));
/* If wants an inversion list returned, we can't optimize to something
* else. */
if (ret_invlist) {
optimizable = FALSE;
}
DEBUG_PARSE("clas");
#if UNICODE_MAJOR_VERSION < 3 /* no multifolds in early Unicode */ \
|| (UNICODE_MAJOR_VERSION == 3 && UNICODE_DOT_VERSION == 0 \
&& UNICODE_DOT_DOT_VERSION == 0)
allow_mutiple_chars = FALSE;
#endif
/* We include the /i status at the beginning of this so that we can
* know it at runtime */
listsv = sv_2mortal(Perl_newSVpvf(aTHX_ "#%d\n", cBOOL(FOLD)));
initial_listsv_len = SvCUR(listsv);
SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);
assert(RExC_parse <= RExC_end);
if (UCHARAT(RExC_parse) == '^') { /* Complement the class */
RExC_parse++;
invert = TRUE;
allow_mutiple_chars = FALSE;
MARK_NAUGHTY(1);
SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);
}
/* Check that they didn't say [:posix:] instead of [[:posix:]] */
if (! ret_invlist && MAYBE_POSIXCC(UCHARAT(RExC_parse))) {
int maybe_class = handle_possible_posix(pRExC_state,
RExC_parse,
¬_posix_region_end,
NULL,
TRUE /* checking only */);
if (maybe_class >= OOB_NAMEDCLASS && do_posix_warnings) {
ckWARN4reg(not_posix_region_end,
"POSIX syntax [%c %c] belongs inside character classes%s",
*RExC_parse, *RExC_parse,
(maybe_class == OOB_NAMEDCLASS)
? ((POSIXCC_NOTYET(*RExC_parse))
? " (but this one isn't implemented)"
: " (but this one isn't fully valid)")
: ""
);
}
}
/* If the caller wants us to just parse a single element, accomplish this
* by faking the loop ending condition */
if (stop_at_1 && RExC_end > RExC_parse) {
stop_ptr = RExC_parse + 1;
}
/* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
if (UCHARAT(RExC_parse) == ']')
goto charclassloop;
while (1) {
if ( posix_warnings
&& av_tindex_skip_len_mg(posix_warnings) >= 0
&& RExC_parse > not_posix_region_end)
{
/* Warnings about posix class issues are considered tentative until
* we are far enough along in the parse that we can no longer
* change our mind, at which point we output them. This is done
* each time through the loop so that a later class won't zap them
* before they have been dealt with. */
output_posix_warnings(pRExC_state, posix_warnings);
}
SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);
if (RExC_parse >= stop_ptr) {
break;
}
if (UCHARAT(RExC_parse) == ']') {
break;
}
charclassloop:
namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
save_value = value;
save_prevvalue = prevvalue;
if (!range) {
rangebegin = RExC_parse;
element_count++;
non_portable_endpoint = 0;
}
if (UTF && ! UTF8_IS_INVARIANT(* RExC_parse)) {
value = utf8n_to_uvchr((U8*)RExC_parse,
RExC_end - RExC_parse,
&numlen, UTF8_ALLOW_DEFAULT);
RExC_parse += numlen;
}
else
value = UCHARAT(RExC_parse++);
if (value == '[') {
char * posix_class_end;
namedclass = handle_possible_posix(pRExC_state,
RExC_parse,
&posix_class_end,
do_posix_warnings ? &posix_warnings : NULL,
FALSE /* die if error */);
if (namedclass > OOB_NAMEDCLASS) {
/* If there was an earlier attempt to parse this particular
* posix class, and it failed, it was a false alarm, as this
* successful one proves */
if ( posix_warnings
&& av_tindex_skip_len_mg(posix_warnings) >= 0
&& not_posix_region_end >= RExC_parse
&& not_posix_region_end <= posix_class_end)
{
av_undef(posix_warnings);
}
RExC_parse = posix_class_end;
}
else if (namedclass == OOB_NAMEDCLASS) {
not_posix_region_end = posix_class_end;
}
else {
namedclass = OOB_NAMEDCLASS;
}
}
else if ( RExC_parse - 1 > not_posix_region_end
&& MAYBE_POSIXCC(value))
{
(void) handle_possible_posix(
pRExC_state,
RExC_parse - 1, /* -1 because parse has already been
advanced */
¬_posix_region_end,
do_posix_warnings ? &posix_warnings : NULL,
TRUE /* checking only */);
}
else if ( strict && ! skip_white
&& ( _generic_isCC(value, _CC_VERTSPACE)
|| is_VERTWS_cp_high(value)))
{
vFAIL("Literal vertical space in [] is illegal except under /x");
}
else if (value == '\\') {
/* Is a backslash; get the code point of the char after it */
if (RExC_parse >= RExC_end) {
vFAIL("Unmatched [");
}
if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
value = utf8n_to_uvchr((U8*)RExC_parse,
RExC_end - RExC_parse,
&numlen, UTF8_ALLOW_DEFAULT);
RExC_parse += numlen;
}
else
value = UCHARAT(RExC_parse++);
/* Some compilers cannot handle switching on 64-bit integer
* values, therefore value cannot be an UV. Yes, this will
* be a problem later if we want switch on Unicode.
* A similar issue a little bit later when switching on
* namedclass. --jhi */
/* If the \ is escaping white space when white space is being
* skipped, it means that that white space is wanted literally, and
* is already in 'value'. Otherwise, need to translate the escape
* into what it signifies. */
if (! skip_white || ! isBLANK_A(value)) switch ((I32)value) {
const char * message;
U32 packed_warn;
U8 grok_c_char;
case 'w': namedclass = ANYOF_WORDCHAR; break;
case 'W': namedclass = ANYOF_NWORDCHAR; break;
case 's': namedclass = ANYOF_SPACE; break;
case 'S': namedclass = ANYOF_NSPACE; break;
case 'd': namedclass = ANYOF_DIGIT; break;
case 'D': namedclass = ANYOF_NDIGIT; break;
case 'v': namedclass = ANYOF_VERTWS; break;
case 'V': namedclass = ANYOF_NVERTWS; break;
case 'h': namedclass = ANYOF_HORIZWS; break;
case 'H': namedclass = ANYOF_NHORIZWS; break;
case 'N': /* Handle \N{NAME} in class */
{
const char * const backslash_N_beg = RExC_parse - 2;
int cp_count;
if (! grok_bslash_N(pRExC_state,
NULL, /* No regnode */
&value, /* Yes single value */
&cp_count, /* Multiple code pt count */
flagp,
strict,
depth)
) {
if (*flagp & NEED_UTF8)
FAIL("panic: grok_bslash_N set NEED_UTF8");
RETURN_FAIL_ON_RESTART_FLAGP(flagp);
if (cp_count < 0) {
vFAIL("\\N in a character class must be a named character: \\N{...}");
}
else if (cp_count == 0) {
ckWARNreg(RExC_parse,
"Ignoring zero length \\N{} in character class");
}
else { /* cp_count > 1 */
assert(cp_count > 1);
if (! RExC_in_multi_char_class) {
if ( ! allow_mutiple_chars
|| invert
|| range
|| *RExC_parse == '-')
{
if (strict) {
RExC_parse--;
vFAIL("\\N{} here is restricted to one character");
}
ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
break; /* <value> contains the first code
point. Drop out of the switch to
process it */
}
else {
SV * multi_char_N = newSVpvn(backslash_N_beg,
RExC_parse - backslash_N_beg);
multi_char_matches
= add_multi_match(multi_char_matches,
multi_char_N,
cp_count);
}
}
} /* End of cp_count != 1 */
/* This element should not be processed further in this
* class */
element_count--;
value = save_value;
prevvalue = save_prevvalue;
continue; /* Back to top of loop to get next char */
}
/* Here, is a single code point, and <value> contains it */
unicode_range = TRUE; /* \N{} are Unicode */
}
break;
case 'p':
case 'P':
{
char *e;
if (RExC_pm_flags & PMf_WILDCARD) {
RExC_parse++;
/* diag_listed_as: Use of %s is not allowed in Unicode
property wildcard subpatterns in regex; marked by <--
HERE in m/%s/ */
vFAIL3("Use of '\\%c%c' is not allowed in Unicode property"
" wildcard subpatterns", (char) value, *(RExC_parse - 1));
}
/* \p means they want Unicode semantics */
REQUIRE_UNI_RULES(flagp, 0);
if (RExC_parse >= RExC_end)
vFAIL2("Empty \\%c", (U8)value);
if (*RExC_parse == '{') {
const U8 c = (U8)value;
e = (char *) memchr(RExC_parse, '}', RExC_end - RExC_parse);
if (!e) {
RExC_parse++;
vFAIL2("Missing right brace on \\%c{}", c);
}
RExC_parse++;
/* White space is allowed adjacent to the braces and after
* any '^', even when not under /x */
while (isSPACE(*RExC_parse)) {
RExC_parse++;
}
if (UCHARAT(RExC_parse) == '^') {
/* toggle. (The rhs xor gets the single bit that
* differs between P and p; the other xor inverts just
* that bit) */
value ^= 'P' ^ 'p';
RExC_parse++;
while (isSPACE(*RExC_parse)) {
RExC_parse++;
}
}
if (e == RExC_parse)
vFAIL2("Empty \\%c{}", c);
n = e - RExC_parse;
while (isSPACE(*(RExC_parse + n - 1)))
n--;
} /* The \p isn't immediately followed by a '{' */
else if (! isALPHA(*RExC_parse)) {
RExC_parse += (UTF)
? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
: 1;
vFAIL2("Character following \\%c must be '{' or a "
"single-character Unicode property name",
(U8) value);
}
else {
e = RExC_parse;
n = 1;
}
{
char* name = RExC_parse;
/* Any message returned about expanding the definition */
SV* msg = newSVpvs_flags("", SVs_TEMP);
/* If set TRUE, the property is user-defined as opposed to
* official Unicode */
bool user_defined = FALSE;
AV * strings = NULL;
SV * prop_definition = parse_uniprop_string(
name, n, UTF, FOLD,
FALSE, /* This is compile-time */
/* We can't defer this defn when
* the full result is required in
* this call */
! cBOOL(ret_invlist),
&strings,
&user_defined,
msg,
0 /* Base level */
);
if (SvCUR(msg)) { /* Assumes any error causes a msg */
assert(prop_definition == NULL);
RExC_parse = e + 1;
if (SvUTF8(msg)) { /* msg being UTF-8 makes the whole
thing so, or else the display is
mojibake */
RExC_utf8 = TRUE;
}
/* diag_listed_as: Can't find Unicode property definition "%s" in regex; marked by <-- HERE in m/%s/ */
vFAIL2utf8f("%" UTF8f, UTF8fARG(SvUTF8(msg),
SvCUR(msg), SvPVX(msg)));
}
assert(prop_definition || strings);
if (strings) {
if (ret_invlist) {
if (! prop_definition) {
RExC_parse = e + 1;
vFAIL("Unicode string properties are not implemented in (?[...])");
}
else {
ckWARNreg(e + 1,
"Using just the single character results"
" returned by \\p{} in (?[...])");
}
}
else if (! RExC_in_multi_char_class) {
if (invert ^ (value == 'P')) {
RExC_parse = e + 1;
vFAIL("Inverting a character class which contains"
" a multi-character sequence is illegal");
}
/* For each multi-character string ... */
while (av_tindex(strings) >= 0) {
/* ... Each entry is itself an array of code
* points. */
AV * this_string = (AV *) av_shift( strings);
STRLEN cp_count = av_tindex(this_string) + 1;
SV * final = newSV(cp_count * 4);
SvPVCLEAR(final);
/* Create another string of sequences of \x{...} */
while (av_tindex(this_string) >= 0) {
SV * character = av_shift(this_string);
UV cp = SvUV(character);
if (cp > 255) {
REQUIRE_UTF8(flagp);
}
Perl_sv_catpvf(aTHX_ final, "\\x{%" UVXf "}",
cp);
SvREFCNT_dec_NN(character);
}
SvREFCNT_dec_NN(this_string);
/* And add that to the list of such things */
multi_char_matches
= add_multi_match(multi_char_matches,
final,
cp_count);
}
}
SvREFCNT_dec_NN(strings);
}
if (! prop_definition) { /* If we got only a string,
this iteration didn't really
find a character */
element_count--;
}
else if (! is_invlist(prop_definition)) {
/* Here, the definition isn't known, so we have gotten
* returned a string that will be evaluated if and when
* encountered at runtime. We add it to the list of
* such properties, along with whether it should be
* complemented or not */
if (value == 'P') {
sv_catpvs(listsv, "!");
}
else {
sv_catpvs(listsv, "+");
}
sv_catsv(listsv, prop_definition);
has_runtime_dependency |= HAS_USER_DEFINED_PROPERTY;
/* We don't know yet what this matches, so have to flag
* it */
anyof_flags |= ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP;
}
else {
assert (prop_definition && is_invlist(prop_definition));
/* Here we do have the complete property definition
*
* Temporary workaround for [perl #133136]. For this
* precise input that is in the .t that is failing,
* load utf8.pm, which is what the test wants, so that
* that .t passes */
if ( memEQs(RExC_start, e + 1 - RExC_start,
"foo\\p{Alnum}")
&& ! hv_common(GvHVn(PL_incgv),
NULL,
"utf8.pm", sizeof("utf8.pm") - 1,
0, HV_FETCH_ISEXISTS, NULL, 0))
{
require_pv("utf8.pm");
}
if (! user_defined &&
/* We warn on matching an above-Unicode code point
* if the match would return true, except don't
* warn for \p{All}, which has exactly one element
* = 0 */
(_invlist_contains_cp(prop_definition, 0x110000)
&& (! (_invlist_len(prop_definition) == 1
&& *invlist_array(prop_definition) == 0))))
{
warn_super = TRUE;
}
/* Invert if asking for the complement */
if (value == 'P') {
_invlist_union_complement_2nd(properties,
prop_definition,
&properties);
}
else {
_invlist_union(properties, prop_definition, &properties);
}
}
}
RExC_parse = e + 1;
namedclass = ANYOF_UNIPROP; /* no official name, but it's
named */
}
break;
case 'n': value = '\n'; break;
case 'r': value = '\r'; break;
case 't': value = '\t'; break;
case 'f': value = '\f'; break;
case 'b': value = '\b'; break;
case 'e': value = ESC_NATIVE; break;
case 'a': value = '\a'; break;
case 'o':
RExC_parse--; /* function expects to be pointed at the 'o' */
if (! grok_bslash_o(&RExC_parse,
RExC_end,
&value,
&message,
&packed_warn,
strict,
cBOOL(range), /* MAX_UV allowed for range
upper limit */
UTF))
{
vFAIL(message);
}
else if (message && TO_OUTPUT_WARNINGS(RExC_parse)) {
warn_non_literal_string(RExC_parse, packed_warn, message);
}
if (value < 256) {
non_portable_endpoint++;
}
break;
case 'x':
RExC_parse--; /* function expects to be pointed at the 'x' */
if (! grok_bslash_x(&RExC_parse,
RExC_end,
&value,
&message,
&packed_warn,
strict,
cBOOL(range), /* MAX_UV allowed for range
upper limit */
UTF))
{
vFAIL(message);
}
else if (message && TO_OUTPUT_WARNINGS(RExC_parse)) {
warn_non_literal_string(RExC_parse, packed_warn, message);
}
if (value < 256) {
non_portable_endpoint++;
}
break;
case 'c':
if (! grok_bslash_c(*RExC_parse, &grok_c_char, &message,
&packed_warn))
{
/* going to die anyway; point to exact spot of
* failure */
RExC_parse += (UTF)
? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
: 1;
vFAIL(message);
}
value = grok_c_char;
RExC_parse++;
if (message && TO_OUTPUT_WARNINGS(RExC_parse)) {
warn_non_literal_string(RExC_parse, packed_warn, message);
}
non_portable_endpoint++;
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7':
{
/* Take 1-3 octal digits */
I32 flags = PERL_SCAN_SILENT_ILLDIGIT
| PERL_SCAN_NOTIFY_ILLDIGIT;
numlen = (strict) ? 4 : 3;
value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
RExC_parse += numlen;
if (numlen != 3) {
if (strict) {
RExC_parse += (UTF)
? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
: 1;
vFAIL("Need exactly 3 octal digits");
}
else if ( (flags & PERL_SCAN_NOTIFY_ILLDIGIT)
&& RExC_parse < RExC_end
&& isDIGIT(*RExC_parse)
&& ckWARN(WARN_REGEXP))
{
reg_warn_non_literal_string(
RExC_parse + 1,
form_alien_digit_msg(8, numlen, RExC_parse,
RExC_end, UTF, FALSE));
}
}
if (value < 256) {
non_portable_endpoint++;
}
break;
}
default:
/* Allow \_ to not give an error */
if (isWORDCHAR(value) && value != '_') {
if (strict) {
vFAIL2("Unrecognized escape \\%c in character class",
(int)value);
}
else {
ckWARN2reg(RExC_parse,
"Unrecognized escape \\%c in character class passed through",
(int)value);
}
}
break;
} /* End of switch on char following backslash */
} /* end of handling backslash escape sequences */
/* Here, we have the current token in 'value' */
if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
U8 classnum;
/* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
* literal, as is the character that began the false range, i.e.
* the 'a' in the examples */
if (range) {
const int w = (RExC_parse >= rangebegin)
? RExC_parse - rangebegin
: 0;
if (strict) {
vFAIL2utf8f(
"False [] range \"%" UTF8f "\"",
UTF8fARG(UTF, w, rangebegin));
}
else {
ckWARN2reg(RExC_parse,
"False [] range \"%" UTF8f "\"",
UTF8fARG(UTF, w, rangebegin));
cp_list = add_cp_to_invlist(cp_list, '-');
cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
prevvalue);
}
range = 0; /* this was not a true range */
element_count += 2; /* So counts for three values */
}
classnum = namedclass_to_classnum(namedclass);
if (LOC && namedclass < ANYOF_POSIXL_MAX
#ifndef HAS_ISASCII
&& classnum != _CC_ASCII
#endif
) {
SV* scratch_list = NULL;
/* What the Posix classes (like \w, [:space:]) match isn't
* generally knowable under locale until actual match time. A
* special node is used for these which has extra space for a
* bitmap, with a bit reserved for each named class that is to
* be matched against. (This isn't needed for \p{} and
* pseudo-classes, as they are not affected by locale, and
* hence are dealt with separately.) However, if a named class
* and its complement are both present, then it matches
* everything, and there is no runtime dependency. Odd numbers
* are the complements of the next lower number, so xor works.
* (Note that something like [\w\D] should match everything,
* because \d should be a proper subset of \w. But rather than
* trust that the locale is well behaved, we leave this to
* runtime to sort out) */
if (POSIXL_TEST(posixl, namedclass ^ 1)) {
cp_list = _add_range_to_invlist(cp_list, 0, UV_MAX);
POSIXL_ZERO(posixl);
has_runtime_dependency &= ~HAS_L_RUNTIME_DEPENDENCY;
anyof_flags &= ~ANYOF_MATCHES_POSIXL;
continue; /* We could ignore the rest of the class, but
best to parse it for any errors */
}
else { /* Here, isn't the complement of any already parsed
class */
POSIXL_SET(posixl, namedclass);
has_runtime_dependency |= HAS_L_RUNTIME_DEPENDENCY;
anyof_flags |= ANYOF_MATCHES_POSIXL;
/* The above-Latin1 characters are not subject to locale
* rules. Just add them to the unconditionally-matched
* list */
/* Get the list of the above-Latin1 code points this
* matches */
_invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
PL_XPosix_ptrs[classnum],
/* Odd numbers are complements,
* like NDIGIT, NASCII, ... */
namedclass % 2 != 0,
&scratch_list);
/* Checking if 'cp_list' is NULL first saves an extra
* clone. Its reference count will be decremented at the
* next union, etc, or if this is the only instance, at the
* end of the routine */
if (! cp_list) {
cp_list = scratch_list;
}
else {
_invlist_union(cp_list, scratch_list, &cp_list);
SvREFCNT_dec_NN(scratch_list);
}
continue; /* Go get next character */
}
}
else {
/* Here, is not /l, or is a POSIX class for which /l doesn't
* matter (or is a Unicode property, which is skipped here). */
if (namedclass >= ANYOF_POSIXL_MAX) { /* If a special class */
if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
/* Here, should be \h, \H, \v, or \V. None of /d, /i
* nor /l make a difference in what these match,
* therefore we just add what they match to cp_list. */
if (classnum != _CC_VERTSPACE) {
assert( namedclass == ANYOF_HORIZWS
|| namedclass == ANYOF_NHORIZWS);
/* It turns out that \h is just a synonym for
* XPosixBlank */
classnum = _CC_BLANK;
}
_invlist_union_maybe_complement_2nd(
cp_list,
PL_XPosix_ptrs[classnum],
namedclass % 2 != 0, /* Complement if odd
(NHORIZWS, NVERTWS)
*/
&cp_list);
}
}
else if ( AT_LEAST_UNI_SEMANTICS
|| classnum == _CC_ASCII
|| (DEPENDS_SEMANTICS && ( classnum == _CC_DIGIT
|| classnum == _CC_XDIGIT)))
{
/* We usually have to worry about /d affecting what POSIX
* classes match, with special code needed because we won't
* know until runtime what all matches. But there is no
* extra work needed under /u and /a; and [:ascii:] is
* unaffected by /d; and :digit: and :xdigit: don't have
* runtime differences under /d. So we can special case
* these, and avoid some extra work below, and at runtime.
* */
_invlist_union_maybe_complement_2nd(
simple_posixes,
((AT_LEAST_ASCII_RESTRICTED)
? PL_Posix_ptrs[classnum]
: PL_XPosix_ptrs[classnum]),
namedclass % 2 != 0,
&simple_posixes);
}
else { /* Garden variety class. If is NUPPER, NALPHA, ...
complement and use nposixes */
SV** posixes_ptr = namedclass % 2 == 0
? &posixes
: &nposixes;
_invlist_union_maybe_complement_2nd(
*posixes_ptr,
PL_XPosix_ptrs[classnum],
namedclass % 2 != 0,
posixes_ptr);
}
}
} /* end of namedclass \blah */
SKIP_BRACKETED_WHITE_SPACE(skip_white, RExC_parse, RExC_end);
/* If 'range' is set, 'value' is the ending of a range--check its
* validity. (If value isn't a single code point in the case of a
* range, we should have figured that out above in the code that
* catches false ranges). Later, we will handle each individual code
* point in the range. If 'range' isn't set, this could be the
* beginning of a range, so check for that by looking ahead to see if
* the next real character to be processed is the range indicator--the
* minus sign */
if (range) {
#ifdef EBCDIC
/* For unicode ranges, we have to test that the Unicode as opposed
* to the native values are not decreasing. (Above 255, there is
* no difference between native and Unicode) */
if (unicode_range && prevvalue < 255 && value < 255) {
if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
goto backwards_range;
}
}
else
#endif
if (prevvalue > value) /* b-a */ {
int w;
#ifdef EBCDIC
backwards_range:
#endif
w = RExC_parse - rangebegin;
vFAIL2utf8f(
"Invalid [] range \"%" UTF8f "\"",
UTF8fARG(UTF, w, rangebegin));
NOT_REACHED; /* NOTREACHED */
}
}
else {
prevvalue = value; /* save the beginning of the potential range */
if (! stop_at_1 /* Can't be a range if parsing just one thing */
&& *RExC_parse == '-')
{
char* next_char_ptr = RExC_parse + 1;
/* Get the next real char after the '-' */
SKIP_BRACKETED_WHITE_SPACE(skip_white, next_char_ptr, RExC_end);
/* If the '-' is at the end of the class (just before the ']',
* it is a literal minus; otherwise it is a range */
if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
RExC_parse = next_char_ptr;
/* a bad range like \w-, [:word:]- ? */
if (namedclass > OOB_NAMEDCLASS) {
if (strict || ckWARN(WARN_REGEXP)) {
const int w = RExC_parse >= rangebegin
? RExC_parse - rangebegin
: 0;
if (strict) {
vFAIL4("False [] range \"%*.*s\"",
w, w, rangebegin);
}
else {
vWARN4(RExC_parse,
"False [] range \"%*.*s\"",
w, w, rangebegin);
}
}
cp_list = add_cp_to_invlist(cp_list, '-');
element_count++;
} else
range = 1; /* yeah, it's a range! */
continue; /* but do it the next time */
}
}
}
if (namedclass > OOB_NAMEDCLASS) {
continue;
}
/* Here, we have a single value this time through the loop, and
* <prevvalue> is the beginning of the range, if any; or <value> if
* not. */
/* non-Latin1 code point implies unicode semantics. */
if (value > 255) {
if (value > MAX_LEGAL_CP && ( value != UV_MAX
|| prevvalue > MAX_LEGAL_CP))
{
vFAIL(form_cp_too_large_msg(16, NULL, 0, value));
}
REQUIRE_UNI_RULES(flagp, 0);
if ( ! silence_non_portable
&& UNICODE_IS_PERL_EXTENDED(value)
&& TO_OUTPUT_WARNINGS(RExC_parse))
{
ckWARN2_non_literal_string(RExC_parse,
packWARN(WARN_PORTABLE),
PL_extended_cp_format,
value);
}
}
/* Ready to process either the single value, or the completed range.
* For single-valued non-inverted ranges, we consider the possibility
* of multi-char folds. (We made a conscious decision to not do this
* for the other cases because it can often lead to non-intuitive
* results. For example, you have the peculiar case that:
* "s s" =~ /^[^\xDF]+$/i => Y
* "ss" =~ /^[^\xDF]+$/i => N
*
* See [perl #89750] */
if (FOLD && allow_mutiple_chars && value == prevvalue) {
if ( value == LATIN_SMALL_LETTER_SHARP_S
|| (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
value)))
{
/* Here <value> is indeed a multi-char fold. Get what it is */
U8 foldbuf[UTF8_MAXBYTES_CASE+1];
STRLEN foldlen;
UV folded = _to_uni_fold_flags(
value,
foldbuf,
&foldlen,
FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
? FOLD_FLAGS_NOMIX_ASCII
: 0)
);
/* Here, <folded> should be the first character of the
* multi-char fold of <value>, with <foldbuf> containing the
* whole thing. But, if this fold is not allowed (because of
* the flags), <fold> will be the same as <value>, and should
* be processed like any other character, so skip the special
* handling */
if (folded != value) {
/* Skip if we are recursed, currently parsing the class
* again. Otherwise add this character to the list of
* multi-char folds. */
if (! RExC_in_multi_char_class) {
STRLEN cp_count = utf8_length(foldbuf,
foldbuf + foldlen);
SV* multi_fold = sv_2mortal(newSVpvs(""));
Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%" UVXf "}", value);
multi_char_matches
= add_multi_match(multi_char_matches,
multi_fold,
cp_count);
}
/* This element should not be processed further in this
* class */
element_count--;
value = save_value;
prevvalue = save_prevvalue;
continue;
}
}
}
if (strict && ckWARN(WARN_REGEXP)) {
if (range) {
/* If the range starts above 255, everything is portable and
* likely to be so for any forseeable character set, so don't
* warn. */
if (unicode_range && non_portable_endpoint && prevvalue < 256) {
vWARN(RExC_parse, "Both or neither range ends should be Unicode");
}
else if (prevvalue != value) {
/* Under strict, ranges that stop and/or end in an ASCII
* printable should have each end point be a portable value
* for it (preferably like 'A', but we don't warn if it is
* a (portable) Unicode name or code point), and the range
* must be all digits or all letters of the same case.
* Otherwise, the range is non-portable and unclear as to
* what it contains */
if ( (isPRINT_A(prevvalue) || isPRINT_A(value))
&& ( non_portable_endpoint
|| ! ( (isDIGIT_A(prevvalue) && isDIGIT_A(value))
|| (isLOWER_A(prevvalue) && isLOWER_A(value))
|| (isUPPER_A(prevvalue) && isUPPER_A(value))
))) {
vWARN(RExC_parse, "Ranges of ASCII printables should"
" be some subset of \"0-9\","
" \"A-Z\", or \"a-z\"");
}
else if (prevvalue >= FIRST_NON_ASCII_DECIMAL_DIGIT) {
SSize_t index_start;
SSize_t index_final;
/* But the nature of Unicode and languages mean we
* can't do the same checks for above-ASCII ranges,
* except in the case of digit ones. These should
* contain only digits from the same group of 10. The
* ASCII case is handled just above. Hence here, the
* range could be a range of digits. First some
* unlikely special cases. Grandfather in that a range
* ending in 19DA (NEW TAI LUE THAM DIGIT ONE) is bad
* if its starting value is one of the 10 digits prior
* to it. This is because it is an alternate way of
* writing 19D1, and some people may expect it to be in
* that group. But it is bad, because it won't give
* the expected results. In Unicode 5.2 it was
* considered to be in that group (of 11, hence), but
* this was fixed in the next version */
if (UNLIKELY(value == 0x19DA && prevvalue >= 0x19D0)) {
goto warn_bad_digit_range;
}
else if (UNLIKELY( prevvalue >= 0x1D7CE
&& value <= 0x1D7FF))
{
/* This is the only other case currently in Unicode
* where the algorithm below fails. The code
* points just above are the end points of a single
* range containing only decimal digits. It is 5
* different series of 0-9. All other ranges of
* digits currently in Unicode are just a single
* series. (And mktables will notify us if a later
* Unicode version breaks this.)
*
* If the range being checked is at most 9 long,
* and the digit values represented are in
* numerical order, they are from the same series.
* */
if ( value - prevvalue > 9
|| ((( value - 0x1D7CE) % 10)
<= (prevvalue - 0x1D7CE) % 10))
{
goto warn_bad_digit_range;
}
}
else {
/* For all other ranges of digits in Unicode, the
* algorithm is just to check if both end points
* are in the same series, which is the same range.
* */
index_start = _invlist_search(
PL_XPosix_ptrs[_CC_DIGIT],
prevvalue);
/* Warn if the range starts and ends with a digit,
* and they are not in the same group of 10. */
if ( index_start >= 0
&& ELEMENT_RANGE_MATCHES_INVLIST(index_start)
&& (index_final =
_invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
value)) != index_start
&& index_final >= 0
&& ELEMENT_RANGE_MATCHES_INVLIST(index_final))
{
warn_bad_digit_range:
vWARN(RExC_parse, "Ranges of digits should be"
" from the same group of"
" 10");
}
}
}
}
}
if ((! range || prevvalue == value) && non_portable_endpoint) {
if (isPRINT_A(value)) {
char literal[3];
unsigned d = 0;
if (isBACKSLASHED_PUNCT(value)) {
literal[d++] = '\\';
}
literal[d++] = (char) value;
literal[d++] = '\0';
vWARN4(RExC_parse,
"\"%.*s\" is more clearly written simply as \"%s\"",
(int) (RExC_parse - rangebegin),
rangebegin,
literal
);
}
else if (isMNEMONIC_CNTRL(value)) {
vWARN4(RExC_parse,
"\"%.*s\" is more clearly written simply as \"%s\"",
(int) (RExC_parse - rangebegin),
rangebegin,
cntrl_to_mnemonic((U8) value)
);
}
}
}
/* Deal with this element of the class */
#ifndef EBCDIC
cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
prevvalue, value);
#else
/* On non-ASCII platforms, for ranges that span all of 0..255, and ones
* that don't require special handling, we can just add the range like
* we do for ASCII platforms */
if ((UNLIKELY(prevvalue == 0) && value >= 255)
|| ! (prevvalue < 256
&& (unicode_range
|| (! non_portable_endpoint
&& ((isLOWER_A(prevvalue) && isLOWER_A(value))
|| (isUPPER_A(prevvalue)
&& isUPPER_A(value)))))))
{
cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
prevvalue, value);
}
else {
/* Here, requires special handling. This can be because it is a
* range whose code points are considered to be Unicode, and so
* must be individually translated into native, or because its a
* subrange of 'A-Z' or 'a-z' which each aren't contiguous in
* EBCDIC, but we have defined them to include only the "expected"
* upper or lower case ASCII alphabetics. Subranges above 255 are
* the same in native and Unicode, so can be added as a range */
U8 start = NATIVE_TO_LATIN1(prevvalue);
unsigned j;
U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
for (j = start; j <= end; j++) {
cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
}
if (value > 255) {
cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
256, value);
}
}
#endif
range = 0; /* this range (if it was one) is done now */
} /* End of loop through all the text within the brackets */
if ( posix_warnings && av_tindex_skip_len_mg(posix_warnings) >= 0) {
output_posix_warnings(pRExC_state, posix_warnings);
}
/* If anything in the class expands to more than one character, we have to
* deal with them by building up a substitute parse string, and recursively
* calling reg() on it, instead of proceeding */
if (multi_char_matches) {
SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
I32 cp_count;
STRLEN len;
char *save_end = RExC_end;
char *save_parse = RExC_parse;
char *save_start = RExC_start;
Size_t constructed_prefix_len = 0; /* This gives the length of the
constructed portion of the
substitute parse. */
bool first_time = TRUE; /* First multi-char occurrence doesn't get
a "|" */
I32 reg_flags;
assert(! invert);
/* Only one level of recursion allowed */
assert(RExC_copy_start_in_constructed == RExC_precomp);
#if 0 /* Have decided not to deal with multi-char folds in inverted classes,
because too confusing */
if (invert) {
sv_catpvs(substitute_parse, "(?:");
}
#endif
/* Look at the longest strings first */
for (cp_count = av_tindex_skip_len_mg(multi_char_matches);
cp_count > 0;
cp_count--)
{
if (av_exists(multi_char_matches, cp_count)) {
AV** this_array_ptr;
SV* this_sequence;
this_array_ptr = (AV**) av_fetch(multi_char_matches,
cp_count, FALSE);
while ((this_sequence = av_pop(*this_array_ptr)) !=
&PL_sv_undef)
{
if (! first_time) {
sv_catpvs(substitute_parse, "|");
}
first_time = FALSE;
sv_catpv(substitute_parse, SvPVX(this_sequence));
}
}
}
/* If the character class contains anything else besides these
* multi-character strings, have to include it in recursive parsing */
if (element_count) {
bool has_l_bracket = orig_parse > RExC_start && *(orig_parse - 1) == '[';
sv_catpvs(substitute_parse, "|");
if (has_l_bracket) { /* Add an [ if the original had one */
sv_catpvs(substitute_parse, "[");
}
constructed_prefix_len = SvCUR(substitute_parse);
sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
/* Put in a closing ']' to match any opening one, but not if going
* off the end, as otherwise we are adding something that really
* isn't there */
if (has_l_bracket && RExC_parse < RExC_end) {
sv_catpvs(substitute_parse, "]");
}
}
sv_catpvs(substitute_parse, ")");
#if 0
if (invert) {
/* This is a way to get the parse to skip forward a whole named
* sequence instead of matching the 2nd character when it fails the
* first */
sv_catpvs(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
}
#endif
/* Set up the data structure so that any errors will be properly
* reported. See the comments at the definition of
* REPORT_LOCATION_ARGS for details */
RExC_copy_start_in_input = (char *) orig_parse;
RExC_start = RExC_parse = SvPV(substitute_parse, len);
RExC_copy_start_in_constructed = RExC_start + constructed_prefix_len;
RExC_end = RExC_parse + len;
RExC_in_multi_char_class = 1;
ret = reg(pRExC_state, 1, ®_flags, depth+1);
*flagp |= reg_flags & (HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_PARSE|NEED_UTF8);
/* And restore so can parse the rest of the pattern */
RExC_parse = save_parse;
RExC_start = RExC_copy_start_in_constructed = RExC_copy_start_in_input = save_start;
RExC_end = save_end;
RExC_in_multi_char_class = 0;
SvREFCNT_dec_NN(multi_char_matches);
SvREFCNT_dec(properties);
SvREFCNT_dec(cp_list);
SvREFCNT_dec(simple_posixes);
SvREFCNT_dec(posixes);
SvREFCNT_dec(nposixes);
SvREFCNT_dec(cp_foldable_list);
return ret;
}
/* If folding, we calculate all characters that could fold to or from the
* ones already on the list */
if (cp_foldable_list) {
if (FOLD) {
UV start, end; /* End points of code point ranges */
SV* fold_intersection = NULL;
SV** use_list;
/* Our calculated list will be for Unicode rules. For locale
* matching, we have to keep a separate list that is consulted at
* runtime only when the locale indicates Unicode rules (and we
* don't include potential matches in the ASCII/Latin1 range, as
* any code point could fold to any other, based on the run-time
* locale). For non-locale, we just use the general list */
if (LOC) {
use_list = &only_utf8_locale_list;
}
else {
use_list = &cp_list;
}
/* Only the characters in this class that participate in folds need
* be checked. Get the intersection of this class and all the
* possible characters that are foldable. This can quickly narrow
* down a large class */
_invlist_intersection(PL_in_some_fold, cp_foldable_list,
&fold_intersection);
/* Now look at the foldable characters in this class individually */
invlist_iterinit(fold_intersection);
while (invlist_iternext(fold_intersection, &start, &end)) {
UV j;
UV folded;
/* Look at every character in the range */
for (j = start; j <= end; j++) {
U8 foldbuf[UTF8_MAXBYTES_CASE+1];
STRLEN foldlen;
unsigned int k;
Size_t folds_count;
U32 first_fold;
const U32 * remaining_folds;
if (j < 256) {
/* Under /l, we don't know what code points below 256
* fold to, except we do know the MICRO SIGN folds to
* an above-255 character if the locale is UTF-8, so we
* add it to the special list (in *use_list) Otherwise
* we know now what things can match, though some folds
* are valid under /d only if the target is UTF-8.
* Those go in a separate list */
if ( IS_IN_SOME_FOLD_L1(j)
&& ! (LOC && j != MICRO_SIGN))
{
/* ASCII is always matched; non-ASCII is matched
* only under Unicode rules (which could happen
* under /l if the locale is a UTF-8 one */
if (isASCII(j) || ! DEPENDS_SEMANTICS) {
*use_list = add_cp_to_invlist(*use_list,
PL_fold_latin1[j]);
}
else if (j != PL_fold_latin1[j]) {
upper_latin1_only_utf8_matches
= add_cp_to_invlist(
upper_latin1_only_utf8_matches,
PL_fold_latin1[j]);
}
}
if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
&& (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
{
add_above_Latin1_folds(pRExC_state,
(U8) j,
use_list);
}
continue;
}
/* Here is an above Latin1 character. We don't have the
* rules hard-coded for it. First, get its fold. This is
* the simple fold, as the multi-character folds have been
* handled earlier and separated out */
folded = _to_uni_fold_flags(j, foldbuf, &foldlen,
(ASCII_FOLD_RESTRICTED)
? FOLD_FLAGS_NOMIX_ASCII
: 0);
/* Single character fold of above Latin1. Add everything
* in its fold closure to the list that this node should
* match. */
folds_count = _inverse_folds(folded, &first_fold,
&remaining_folds);
for (k = 0; k <= folds_count; k++) {
UV c = (k == 0) /* First time through use itself */
? folded
: (k == 1) /* 2nd time use, the first fold */
? first_fold
/* Then the remaining ones */
: remaining_folds[k-2];
/* /aa doesn't allow folds between ASCII and non- */
if (( ASCII_FOLD_RESTRICTED
&& (isASCII(c) != isASCII(j))))
{
continue;
}
/* Folds under /l which cross the 255/256 boundary are
* added to a separate list. (These are valid only
* when the locale is UTF-8.) */
if (c < 256 && LOC) {
*use_list = add_cp_to_invlist(*use_list, c);
continue;
}
if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
{
cp_list = add_cp_to_invlist(cp_list, c);
}
else {
/* Similarly folds involving non-ascii Latin1
* characters under /d are added to their list */
upper_latin1_only_utf8_matches
= add_cp_to_invlist(
upper_latin1_only_utf8_matches,
c);
}
}
}
}
SvREFCNT_dec_NN(fold_intersection);
}
/* Now that we have finished adding all the folds, there is no reason
* to keep the foldable list separate */
_invlist_union(cp_list, cp_foldable_list, &cp_list);
SvREFCNT_dec_NN(cp_foldable_list);
}
/* And combine the result (if any) with any inversion lists from posix
* classes. The lists are kept separate up to now because we don't want to
* fold the classes */
if (simple_posixes) { /* These are the classes known to be unaffected by
/a, /aa, and /d */
if (cp_list) {
_invlist_union(cp_list, simple_posixes, &cp_list);
SvREFCNT_dec_NN(simple_posixes);
}
else {
cp_list = simple_posixes;
}
}
if (posixes || nposixes) {
if (! DEPENDS_SEMANTICS) {
/* For everything but /d, we can just add the current 'posixes' and
* 'nposixes' to the main list */
if (posixes) {
if (cp_list) {
_invlist_union(cp_list, posixes, &cp_list);
SvREFCNT_dec_NN(posixes);
}
else {
cp_list = posixes;
}
}
if (nposixes) {
if (cp_list) {
_invlist_union(cp_list, nposixes, &cp_list);
SvREFCNT_dec_NN(nposixes);
}
else {
cp_list = nposixes;
}
}
}
else {
/* Under /d, things like \w match upper Latin1 characters only if
* the target string is in UTF-8. But things like \W match all the
* upper Latin1 characters if the target string is not in UTF-8.
*
* Handle the case with something like \W separately */
if (nposixes) {
SV* only_non_utf8_list = invlist_clone(PL_UpperLatin1, NULL);
/* A complemented posix class matches all upper Latin1
* characters if not in UTF-8. And it matches just certain
* ones when in UTF-8. That means those certain ones are
* matched regardless, so can just be added to the
* unconditional list */
if (cp_list) {
_invlist_union(cp_list, nposixes, &cp_list);
SvREFCNT_dec_NN(nposixes);
nposixes = NULL;
}
else {
cp_list = nposixes;
}
/* Likewise for 'posixes' */
_invlist_union(posixes, cp_list, &cp_list);
SvREFCNT_dec(posixes);
/* Likewise for anything else in the range that matched only
* under UTF-8 */
if (upper_latin1_only_utf8_matches) {
_invlist_union(cp_list,
upper_latin1_only_utf8_matches,
&cp_list);
SvREFCNT_dec_NN(upper_latin1_only_utf8_matches);
upper_latin1_only_utf8_matches = NULL;
}
/* If we don't match all the upper Latin1 characters regardless
* of UTF-8ness, we have to set a flag to match the rest when
* not in UTF-8 */
_invlist_subtract(only_non_utf8_list, cp_list,
&only_non_utf8_list);
if (_invlist_len(only_non_utf8_list) != 0) {
anyof_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
}
SvREFCNT_dec_NN(only_non_utf8_list);
}
else {
/* Here there were no complemented posix classes. That means
* the upper Latin1 characters in 'posixes' match only when the
* target string is in UTF-8. So we have to add them to the
* list of those types of code points, while adding the
* remainder to the unconditional list.
*
* First calculate what they are */
SV* nonascii_but_latin1_properties = NULL;
_invlist_intersection(posixes, PL_UpperLatin1,
&nonascii_but_latin1_properties);
/* And add them to the final list of such characters. */
_invlist_union(upper_latin1_only_utf8_matches,
nonascii_but_latin1_properties,
&upper_latin1_only_utf8_matches);
/* Remove them from what now becomes the unconditional list */
_invlist_subtract(posixes, nonascii_but_latin1_properties,
&posixes);
/* And add those unconditional ones to the final list */
if (cp_list) {
_invlist_union(cp_list, posixes, &cp_list);
SvREFCNT_dec_NN(posixes);
posixes = NULL;
}
else {
cp_list = posixes;
}
SvREFCNT_dec(nonascii_but_latin1_properties);
/* Get rid of any characters from the conditional list that we
* now know are matched unconditionally, which may make that
* list empty */
_invlist_subtract(upper_latin1_only_utf8_matches,
cp_list,
&upper_latin1_only_utf8_matches);
if (_invlist_len(upper_latin1_only_utf8_matches) == 0) {
SvREFCNT_dec_NN(upper_latin1_only_utf8_matches);
upper_latin1_only_utf8_matches = NULL;
}
}
}
}
/* And combine the result (if any) with any inversion list from properties.
* The lists are kept separate up to now so that we can distinguish the two
* in regards to matching above-Unicode. A run-time warning is generated
* if a Unicode property is matched against a non-Unicode code point. But,
* we allow user-defined properties to match anything, without any warning,
* and we also suppress the warning if there is a portion of the character
* class that isn't a Unicode property, and which matches above Unicode, \W
* or [\x{110000}] for example.
* (Note that in this case, unlike the Posix one above, there is no
* <upper_latin1_only_utf8_matches>, because having a Unicode property
* forces Unicode semantics */
if (properties) {
if (cp_list) {
/* If it matters to the final outcome, see if a non-property
* component of the class matches above Unicode. If so, the
* warning gets suppressed. This is true even if just a single
* such code point is specified, as, though not strictly correct if
* another such code point is matched against, the fact that they
* are using above-Unicode code points indicates they should know
* the issues involved */
if (warn_super) {
warn_super = ! (invert
^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
}
_invlist_union(properties, cp_list, &cp_list);
SvREFCNT_dec_NN(properties);
}
else {
cp_list = properties;
}
if (warn_super) {
anyof_flags
|= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
/* Because an ANYOF node is the only one that warns, this node
* can't be optimized into something else */
optimizable = FALSE;
}
}
/* Here, we have calculated what code points should be in the character
* class.
*
* Now we can see about various optimizations. Fold calculation (which we
* did above) needs to take place before inversion. Otherwise /[^k]/i
* would invert to include K, which under /i would match k, which it
* shouldn't. Therefore we can't invert folded locale now, as it won't be
* folded until runtime */
/* If we didn't do folding, it's because some information isn't available
* until runtime; set the run-time fold flag for these We know to set the
* flag if we have a non-NULL list for UTF-8 locales, or the class matches
* at least one 0-255 range code point */
if (LOC && FOLD) {
/* Some things on the list might be unconditionally included because of
* other components. Remove them, and clean up the list if it goes to
* 0 elements */
if (only_utf8_locale_list && cp_list) {
_invlist_subtract(only_utf8_locale_list, cp_list,
&only_utf8_locale_list);
if (_invlist_len(only_utf8_locale_list) == 0) {
SvREFCNT_dec_NN(only_utf8_locale_list);
only_utf8_locale_list = NULL;
}
}
if ( only_utf8_locale_list
|| (cp_list && ( _invlist_contains_cp(cp_list, LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE)
|| _invlist_contains_cp(cp_list, LATIN_SMALL_LETTER_DOTLESS_I))))
{
has_runtime_dependency |= HAS_L_RUNTIME_DEPENDENCY;
anyof_flags
|= ANYOFL_FOLD
| ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
}
else if (cp_list && invlist_lowest(cp_list) < 256) {
/* If nothing is below 256, has no locale dependency; otherwise it
* does */
anyof_flags |= ANYOFL_FOLD;
has_runtime_dependency |= HAS_L_RUNTIME_DEPENDENCY;
}
}
else if ( DEPENDS_SEMANTICS
&& ( upper_latin1_only_utf8_matches
|| (anyof_flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER)))
{
RExC_seen_d_op = TRUE;
has_runtime_dependency |= HAS_D_RUNTIME_DEPENDENCY;
}
/* Optimize inverted patterns (e.g. [^a-z]) when everything is known at
* compile time. */
if ( cp_list
&& invert
&& ! has_runtime_dependency)
{
_invlist_invert(cp_list);
/* Clear the invert flag since have just done it here */
invert = FALSE;
}
/* All possible optimizations below still have these characteristics.
* (Multi-char folds aren't SIMPLE, but they don't get this far in this
* routine) */
*flagp |= HASWIDTH|SIMPLE;
if (ret_invlist) {
*ret_invlist = cp_list;
return (cp_list) ? RExC_emit : 0;
}
if (anyof_flags & ANYOF_LOCALE_FLAGS) {
RExC_contains_locale = 1;
}
/* Some character classes are equivalent to other nodes. Such nodes take
* up less room, and some nodes require fewer operations to execute, than
* ANYOF nodes. EXACTish nodes may be joinable with adjacent nodes to
* improve efficiency. */
if (optimizable) {
PERL_UINT_FAST8_T i;
UV partial_cp_count = 0;
UV start[MAX_FOLD_FROMS+1] = { 0 }; /* +1 for the folded-to char */
UV end[MAX_FOLD_FROMS+1] = { 0 };
bool single_range = FALSE;
if (cp_list) { /* Count the code points in enough ranges that we would
see all the ones possible in any fold in this version
of Unicode */
invlist_iterinit(cp_list);
for (i = 0; i <= MAX_FOLD_FROMS; i++) {
if (! invlist_iternext(cp_list, &start[i], &end[i])) {
break;
}
partial_cp_count += end[i] - start[i] + 1;
}
if (i == 1) {
single_range = TRUE;
}
invlist_iterfinish(cp_list);
}
/* If we know at compile time that this matches every possible code
* point, any run-time dependencies don't matter */
if (start[0] == 0 && end[0] == UV_MAX) {
if (invert) {
ret = reganode(pRExC_state, OPFAIL, 0);
}
else {
ret = reg_node(pRExC_state, SANY);
MARK_NAUGHTY(1);
}
goto not_anyof;
}
/* Similarly, for /l posix classes, if both a class and its
* complement match, any run-time dependencies don't matter */
if (posixl) {
for (namedclass = 0; namedclass < ANYOF_POSIXL_MAX;
namedclass += 2)
{
if ( POSIXL_TEST(posixl, namedclass) /* class */
&& POSIXL_TEST(posixl, namedclass + 1)) /* its complement */
{
if (invert) {
ret = reganode(pRExC_state, OPFAIL, 0);
}
else {
ret = reg_node(pRExC_state, SANY);
MARK_NAUGHTY(1);
}
goto not_anyof;
}
}
/* For well-behaved locales, some classes are subsets of others,
* so complementing the subset and including the non-complemented
* superset should match everything, like [\D[:alnum:]], and
* [[:^alpha:][:alnum:]], but some implementations of locales are
* buggy, and khw thinks its a bad idea to have optimization change
* behavior, even if it avoids an OS bug in a given case */
#define isSINGLE_BIT_SET(n) isPOWER_OF_2(n)
/* If is a single posix /l class, can optimize to just that op.
* Such a node will not match anything in the Latin1 range, as that
* is not determinable until runtime, but will match whatever the
* class does outside that range. (Note that some classes won't
* match anything outside the range, like [:ascii:]) */
if ( isSINGLE_BIT_SET(posixl)
&& (partial_cp_count == 0 || start[0] > 255))
{
U8 classnum;
SV * class_above_latin1 = NULL;
bool already_inverted;
bool are_equivalent;
/* Compute which bit is set, which is the same thing as, e.g.,
* ANYOF_CNTRL. From
* https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogDeBruijn
* */
static const int MultiplyDeBruijnBitPosition2[32] =
{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
namedclass = MultiplyDeBruijnBitPosition2[(posixl
* 0x077CB531U) >> 27];
classnum = namedclass_to_classnum(namedclass);
/* The named classes are such that the inverted number is one
* larger than the non-inverted one */
already_inverted = namedclass
- classnum_to_namedclass(classnum);
/* Create an inversion list of the official property, inverted
* if the constructed node list is inverted, and restricted to
* only the above latin1 code points, which are the only ones
* known at compile time */
_invlist_intersection_maybe_complement_2nd(
PL_AboveLatin1,
PL_XPosix_ptrs[classnum],
already_inverted,
&class_above_latin1);
are_equivalent = _invlistEQ(class_above_latin1, cp_list,
FALSE);
SvREFCNT_dec_NN(class_above_latin1);
if (are_equivalent) {
/* Resolve the run-time inversion flag with this possibly
* inverted class */
invert = invert ^ already_inverted;
ret = reg_node(pRExC_state,
POSIXL + invert * (NPOSIXL - POSIXL));
FLAGS(REGNODE_p(ret)) = classnum;
goto not_anyof;
}
}
}
/* khw can't think of any other possible transformation involving
* these. */
if (has_runtime_dependency & HAS_USER_DEFINED_PROPERTY) {
goto is_anyof;
}
if (! has_runtime_dependency) {
/* If the list is empty, nothing matches. This happens, for
* example, when a Unicode property that doesn't match anything is
* the only element in the character class (perluniprops.pod notes
* such properties). */
if (partial_cp_count == 0) {
if (invert) {
ret = reg_node(pRExC_state, SANY);
}
else {
ret = reganode(pRExC_state, OPFAIL, 0);
}
goto not_anyof;
}
/* If matches everything but \n */
if ( start[0] == 0 && end[0] == '\n' - 1
&& start[1] == '\n' + 1 && end[1] == UV_MAX)
{
assert (! invert);
ret = reg_node(pRExC_state, REG_ANY);
MARK_NAUGHTY(1);
goto not_anyof;
}
}
/* Next see if can optimize classes that contain just a few code points
* into an EXACTish node. The reason to do this is to let the
* optimizer join this node with adjacent EXACTish ones, and ANYOF
* nodes require conversion to code point from UTF-8.
*
* An EXACTFish node can be generated even if not under /i, and vice
* versa. But care must be taken. An EXACTFish node has to be such
* that it only matches precisely the code points in the class, but we
* want to generate the least restrictive one that does that, to
* increase the odds of being able to join with an adjacent node. For
* example, if the class contains [kK], we have to make it an EXACTFAA
* node to prevent the KELVIN SIGN from matching. Whether we are under
* /i or not is irrelevant in this case. Less obvious is the pattern
* qr/[\x{02BC}]n/i. U+02BC is MODIFIER LETTER APOSTROPHE. That is
* supposed to match the single character U+0149 LATIN SMALL LETTER N
* PRECEDED BY APOSTROPHE. And so even though there is no simple fold
* that includes \X{02BC}, there is a multi-char fold that does, and so
* the node generated for it must be an EXACTFish one. On the other
* hand qr/:/i should generate a plain EXACT node since the colon
* participates in no fold whatsoever, and having it EXACT tells the
* optimizer the target string cannot match unless it has a colon in
* it.
*/
if ( ! posixl
&& ! invert
/* Only try if there are no more code points in the class than
* in the max possible fold */
&& inRANGE(partial_cp_count, 1, MAX_FOLD_FROMS + 1))
{
if (partial_cp_count == 1 && ! upper_latin1_only_utf8_matches)
{
/* We can always make a single code point class into an
* EXACTish node. */
if (LOC) {
/* Here is /l: Use EXACTL, except if there is a fold not
* known until runtime so shows as only a single code point
* here. For code points above 255, we know which can
* cause problems by having a potential fold to the Latin1
* range. */
if ( ! FOLD
|| ( start[0] > 255
&& ! is_PROBLEMATIC_LOCALE_FOLD_cp(start[0])))
{
op = EXACTL;
}
else {
op = EXACTFL;
}
}
else if (! FOLD) { /* Not /l and not /i */
op = (start[0] < 256) ? EXACT : EXACT_REQ8;
}
else if (start[0] < 256) { /* /i, not /l, and the code point is
small */
/* Under /i, it gets a little tricky. A code point that
* doesn't participate in a fold should be an EXACT node.
* We know this one isn't the result of a simple fold, or
* there'd be more than one code point in the list, but it
* could be part of a multi- character fold. In that case
* we better not create an EXACT node, as we would wrongly
* be telling the optimizer that this code point must be in
* the target string, and that is wrong. This is because
* if the sequence around this code point forms a
* multi-char fold, what needs to be in the string could be
* the code point that folds to the sequence.
*
* This handles the case of below-255 code points, as we
* have an easy look up for those. The next clause handles
* the above-256 one */
op = IS_IN_SOME_FOLD_L1(start[0])
? EXACTFU
: EXACT;
}
else { /* /i, larger code point. Since we are under /i, and
have just this code point, we know that it can't
fold to something else, so PL_InMultiCharFold
applies to it */
op = _invlist_contains_cp(PL_InMultiCharFold,
start[0])
? EXACTFU_REQ8
: EXACT_REQ8;
}
value = start[0];
}
else if ( ! (has_runtime_dependency & ~HAS_D_RUNTIME_DEPENDENCY)
&& _invlist_contains_cp(PL_in_some_fold, start[0]))
{
/* Here, the only runtime dependency, if any, is from /d, and
* the class matches more than one code point, and the lowest
* code point participates in some fold. It might be that the
* other code points are /i equivalent to this one, and hence
* they would representable by an EXACTFish node. Above, we
* eliminated classes that contain too many code points to be
* EXACTFish, with the test for MAX_FOLD_FROMS
*
* First, special case the ASCII fold pairs, like 'B' and 'b'.
* We do this because we have EXACTFAA at our disposal for the
* ASCII range */
if (partial_cp_count == 2 && isASCII(start[0])) {
/* The only ASCII characters that participate in folds are
* alphabetics */
assert(isALPHA(start[0]));
if ( end[0] == start[0] /* First range is a single
character, so 2nd exists */
&& isALPHA_FOLD_EQ(start[0], start[1]))
{
/* Here, is part of an ASCII fold pair */
if ( ASCII_FOLD_RESTRICTED
|| HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(start[0]))
{
/* If the second clause just above was true, it
* means we can't be under /i, or else the list
* would have included more than this fold pair.
* Therefore we have to exclude the possibility of
* whatever else it is that folds to these, by
* using EXACTFAA */
op = EXACTFAA;
}
else if (HAS_NONLATIN1_FOLD_CLOSURE(start[0])) {
/* Here, there's no simple fold that start[0] is part
* of, but there is a multi-character one. If we
* are not under /i, we want to exclude that
* possibility; if under /i, we want to include it
* */
op = (FOLD) ? EXACTFU : EXACTFAA;
}
else {
/* Here, the only possible fold start[0] particpates in
* is with start[1]. /i or not isn't relevant */
op = EXACTFU;
}
value = toFOLD(start[0]);
}
}
else if ( ! upper_latin1_only_utf8_matches
|| ( _invlist_len(upper_latin1_only_utf8_matches)
== 2
&& PL_fold_latin1[
invlist_highest(upper_latin1_only_utf8_matches)]
== start[0]))
{
/* Here, the smallest character is non-ascii or there are
* more than 2 code points matched by this node. Also, we
* either don't have /d UTF-8 dependent matches, or if we
* do, they look like they could be a single character that
* is the fold of the lowest one in the always-match list.
* This test quickly excludes most of the false positives
* when there are /d UTF-8 depdendent matches. These are
* like LATIN CAPITAL LETTER A WITH GRAVE matching LATIN
* SMALL LETTER A WITH GRAVE iff the target string is
* UTF-8. (We don't have to worry above about exceeding
* the array bounds of PL_fold_latin1[] because any code
* point in 'upper_latin1_only_utf8_matches' is below 256.)
*
* EXACTFAA would apply only to pairs (hence exactly 2 code
* points) in the ASCII range, so we can't use it here to
* artificially restrict the fold domain, so we check if
* the class does or does not match some EXACTFish node.
* Further, if we aren't under /i, and the folded-to
* character is part of a multi-character fold, we can't do
* this optimization, as the sequence around it could be
* that multi-character fold, and we don't here know the
* context, so we have to assume it is that multi-char
* fold, to prevent potential bugs.
*
* To do the general case, we first find the fold of the
* lowest code point (which may be higher than the lowest
* one), then find everything that folds to it. (The data
* structure we have only maps from the folded code points,
* so we have to do the earlier step.) */
Size_t foldlen;
U8 foldbuf[UTF8_MAXBYTES_CASE];
UV folded = _to_uni_fold_flags(start[0],
foldbuf, &foldlen, 0);
U32 first_fold;
const U32 * remaining_folds;
Size_t folds_to_this_cp_count = _inverse_folds(
folded,
&first_fold,
&remaining_folds);
Size_t folds_count = folds_to_this_cp_count + 1;
SV * fold_list = _new_invlist(folds_count);
unsigned int i;
/* If there are UTF-8 dependent matches, create a temporary
* list of what this node matches, including them. */
SV * all_cp_list = NULL;
SV ** use_this_list = &cp_list;
if (upper_latin1_only_utf8_matches) {
all_cp_list = _new_invlist(0);
use_this_list = &all_cp_list;
_invlist_union(cp_list,
upper_latin1_only_utf8_matches,
use_this_list);
}
/* Having gotten everything that participates in the fold
* containing the lowest code point, we turn that into an
* inversion list, making sure everything is included. */
fold_list = add_cp_to_invlist(fold_list, start[0]);
fold_list = add_cp_to_invlist(fold_list, folded);
if (folds_to_this_cp_count > 0) {
fold_list = add_cp_to_invlist(fold_list, first_fold);
for (i = 0; i + 1 < folds_to_this_cp_count; i++) {
fold_list = add_cp_to_invlist(fold_list,
remaining_folds[i]);
}
}
/* If the fold list is identical to what's in this ANYOF
* node, the node can be represented by an EXACTFish one
* instead */
if (_invlistEQ(*use_this_list, fold_list,
0 /* Don't complement */ )
) {
/* But, we have to be careful, as mentioned above.
* Just the right sequence of characters could match
* this if it is part of a multi-character fold. That
* IS what we want if we are under /i. But it ISN'T
* what we want if not under /i, as it could match when
* it shouldn't. So, when we aren't under /i and this
* character participates in a multi-char fold, we
* don't optimize into an EXACTFish node. So, for each
* case below we have to check if we are folding
* and if not, if it is not part of a multi-char fold.
* */
if (start[0] > 255) { /* Highish code point */
if (FOLD || ! _invlist_contains_cp(
PL_InMultiCharFold, folded))
{
op = (LOC)
? EXACTFLU8
: (ASCII_FOLD_RESTRICTED)
? EXACTFAA
: EXACTFU_REQ8;
value = folded;
}
} /* Below, the lowest code point < 256 */
else if ( FOLD
&& folded == 's'
&& DEPENDS_SEMANTICS)
{ /* An EXACTF node containing a single character
's', can be an EXACTFU if it doesn't get
joined with an adjacent 's' */
op = EXACTFU_S_EDGE;
value = folded;
}
else if ( FOLD
|| ! HAS_NONLATIN1_FOLD_CLOSURE(start[0]))
{
if (upper_latin1_only_utf8_matches) {
op = EXACTF;
/* We can't use the fold, as that only matches
* under UTF-8 */
value = start[0];
}
else if ( UNLIKELY(start[0] == MICRO_SIGN)
&& ! UTF)
{ /* EXACTFUP is a special node for this
character */
op = (ASCII_FOLD_RESTRICTED)
? EXACTFAA
: EXACTFUP;
value = MICRO_SIGN;
}
else if ( ASCII_FOLD_RESTRICTED
&& ! isASCII(start[0]))
{ /* For ASCII under /iaa, we can use EXACTFU
below */
op = EXACTFAA;
value = folded;
}
else {
op = EXACTFU;
value = folded;
}
}
}
SvREFCNT_dec_NN(fold_list);
SvREFCNT_dec(all_cp_list);
}
}
if (op != END) {
U8 len;
/* Here, we have calculated what EXACTish node to use. Have to
* convert to UTF-8 if not already there */
if (value > 255) {
if (! UTF) {
SvREFCNT_dec(cp_list);;
REQUIRE_UTF8(flagp);
}
/* This is a kludge to the special casing issues with this
* ligature under /aa. FB05 should fold to FB06, but the
* call above to _to_uni_fold_flags() didn't find this, as
* it didn't use the /aa restriction in order to not miss
* other folds that would be affected. This is the only
* instance likely to ever be a problem in all of Unicode.
* So special case it. */
if ( value == LATIN_SMALL_LIGATURE_LONG_S_T
&& ASCII_FOLD_RESTRICTED)
{
value = LATIN_SMALL_LIGATURE_ST;
}
}
len = (UTF) ? UVCHR_SKIP(value) : 1;
ret = regnode_guts(pRExC_state, op, len, "exact");
FILL_NODE(ret, op);
RExC_emit += 1 + STR_SZ(len);
setSTR_LEN(REGNODE_p(ret), len);
if (len == 1) {
*STRINGs(REGNODE_p(ret)) = (U8) value;
}
else {
uvchr_to_utf8((U8 *) STRINGs(REGNODE_p(ret)), value);
}
goto not_anyof;
}
}
if (! has_runtime_dependency) {
/* See if this can be turned into an ANYOFM node. Think about the
* bit patterns in two different bytes. In some positions, the
* bits in each will be 1; and in other positions both will be 0;
* and in some positions the bit will be 1 in one byte, and 0 in
* the other. Let 'n' be the number of positions where the bits
* differ. We create a mask which has exactly 'n' 0 bits, each in
* a position where the two bytes differ. Now take the set of all
* bytes that when ANDed with the mask yield the same result. That
* set has 2**n elements, and is representable by just two 8 bit
* numbers: the result and the mask. Importantly, matching the set
* can be vectorized by creating a word full of the result bytes,
* and a word full of the mask bytes, yielding a significant speed
* up. Here, see if this node matches such a set. As a concrete
* example consider [01], and the byte representing '0' which is
* 0x30 on ASCII machines. It has the bits 0011 0000. Take the
* mask 1111 1110. If we AND 0x31 and 0x30 with that mask we get
* 0x30. Any other bytes ANDed yield something else. So [01],
* which is a common usage, is optimizable into ANYOFM, and can
* benefit from the speed up. We can only do this on UTF-8
* invariant bytes, because they have the same bit patterns under
* UTF-8 as not. */
PERL_UINT_FAST8_T inverted = 0;
#ifdef EBCDIC
const PERL_UINT_FAST8_T max_permissible = 0xFF;
#else
const PERL_UINT_FAST8_T max_permissible = 0x7F;
#endif
/* If doesn't fit the criteria for ANYOFM, invert and try again.
* If that works we will instead later generate an NANYOFM, and
* invert back when through */
if (invlist_highest(cp_list) > max_permissible) {
_invlist_invert(cp_list);
inverted = 1;
}
if (invlist_highest(cp_list) <= max_permissible) {
UV this_start, this_end;
UV lowest_cp = UV_MAX; /* init'ed to suppress compiler warn */
U8 bits_differing = 0;
Size_t full_cp_count = 0;
bool first_time = TRUE;
/* Go through the bytes and find the bit positions that differ
* */
invlist_iterinit(cp_list);
while (invlist_iternext(cp_list, &this_start, &this_end)) {
unsigned int i = this_start;
if (first_time) {
if (! UVCHR_IS_INVARIANT(i)) {
goto done_anyofm;
}
first_time = FALSE;
lowest_cp = this_start;
/* We have set up the code point to compare with.
* Don't compare it with itself */
i++;
}
/* Find the bit positions that differ from the lowest code
* point in the node. Keep track of all such positions by
* OR'ing */
for (; i <= this_end; i++) {
if (! UVCHR_IS_INVARIANT(i)) {
goto done_anyofm;
}
bits_differing |= i ^ lowest_cp;
}
full_cp_count += this_end - this_start + 1;
}
/* At the end of the loop, we count how many bits differ from
* the bits in lowest code point, call the count 'd'. If the
* set we found contains 2**d elements, it is the closure of
* all code points that differ only in those bit positions. To
* convince yourself of that, first note that the number in the
* closure must be a power of 2, which we test for. The only
* way we could have that count and it be some differing set,
* is if we got some code points that don't differ from the
* lowest code point in any position, but do differ from each
* other in some other position. That means one code point has
* a 1 in that position, and another has a 0. But that would
* mean that one of them differs from the lowest code point in
* that position, which possibility we've already excluded. */
if ( (inverted || full_cp_count > 1)
&& full_cp_count == 1U << PL_bitcount[bits_differing])
{
U8 ANYOFM_mask;
op = ANYOFM + inverted;;
/* We need to make the bits that differ be 0's */
ANYOFM_mask = ~ bits_differing; /* This goes into FLAGS */
/* The argument is the lowest code point */
ret = reganode(pRExC_state, op, lowest_cp);
FLAGS(REGNODE_p(ret)) = ANYOFM_mask;
}
done_anyofm:
invlist_iterfinish(cp_list);
}
if (inverted) {
_invlist_invert(cp_list);
}
if (op != END) {
goto not_anyof;
}
/* XXX We could create an ANYOFR_LOW node here if we saved above if
* all were invariants, it wasn't inverted, and there is a single
* range. This would be faster than some of the posix nodes we
* create below like /\d/a, but would be twice the size. Without
* having actually measured the gain, khw doesn't think the
* tradeoff is really worth it */
}
if (! (anyof_flags & ANYOF_LOCALE_FLAGS)) {
PERL_UINT_FAST8_T type;
SV * intersection = NULL;
SV* d_invlist = NULL;
/* See if this matches any of the POSIX classes. The POSIXA and
* POSIXD ones are about the same speed as ANYOF ops, but take less
* room; the ones that have above-Latin1 code point matches are
* somewhat faster than ANYOF. */
for (type = POSIXA; type >= POSIXD; type--) {
int posix_class;
if (type == POSIXL) { /* But not /l posix classes */
continue;
}
for (posix_class = 0;
posix_class <= _HIGHEST_REGCOMP_DOT_H_SYNC;
posix_class++)
{
SV** our_code_points = &cp_list;
SV** official_code_points;
int try_inverted;
if (type == POSIXA) {
official_code_points = &PL_Posix_ptrs[posix_class];
}
else {
official_code_points = &PL_XPosix_ptrs[posix_class];
}
/* Skip non-existent classes of this type. e.g. \v only
* has an entry in PL_XPosix_ptrs */
if (! *official_code_points) {
continue;
}
/* Try both the regular class, and its inversion */
for (try_inverted = 0; try_inverted < 2; try_inverted++) {
bool this_inverted = invert ^ try_inverted;
if (type != POSIXD) {
/* This class that isn't /d can't match if we have
* /d dependencies */
if (has_runtime_dependency
& HAS_D_RUNTIME_DEPENDENCY)
{
continue;
}
}
else /* is /d */ if (! this_inverted) {
/* /d classes don't match anything non-ASCII below
* 256 unconditionally (which cp_list contains) */
_invlist_intersection(cp_list, PL_UpperLatin1,
&intersection);
if (_invlist_len(intersection) != 0) {
continue;
}
SvREFCNT_dec(d_invlist);
d_invlist = invlist_clone(cp_list, NULL);
/* But under UTF-8 it turns into using /u rules.
* Add the things it matches under these conditions
* so that we check below that these are identical
* to what the tested class should match */
if (upper_latin1_only_utf8_matches) {
_invlist_union(
d_invlist,
upper_latin1_only_utf8_matches,
&d_invlist);
}
our_code_points = &d_invlist;
}
else { /* POSIXD, inverted. If this doesn't have this
flag set, it isn't /d. */
if (! (anyof_flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
{
continue;
}
our_code_points = &cp_list;
}
/* Here, have weeded out some things. We want to see
* if the list of characters this node contains
* ('*our_code_points') precisely matches those of the
* class we are currently checking against
* ('*official_code_points'). */
if (_invlistEQ(*our_code_points,
*official_code_points,
try_inverted))
{
/* Here, they precisely match. Optimize this ANYOF
* node into its equivalent POSIX one of the
* correct type, possibly inverted */
ret = reg_node(pRExC_state, (try_inverted)
? type + NPOSIXA
- POSIXA
: type);
FLAGS(REGNODE_p(ret)) = posix_class;
SvREFCNT_dec(d_invlist);
SvREFCNT_dec(intersection);
goto not_anyof;
}
}
}
}
SvREFCNT_dec(d_invlist);
SvREFCNT_dec(intersection);
}
/* If it is a single contiguous range, ANYOFR is an efficient regnode,
* both in size and speed. Currently, a 20 bit range base (smallest
* code point in the range), and a 12 bit maximum delta are packed into
* a 32 bit word. This allows for using it on all of the Unicode code
* points except for the highest plane, which is only for private use
* code points. khw doubts that a bigger delta is likely in real world
* applications */
if ( single_range
&& ! has_runtime_dependency
&& anyof_flags == 0
&& start[0] < (1 << ANYOFR_BASE_BITS)
&& end[0] - start[0]
< ((1U << (sizeof(((struct regnode_1 *)NULL)->arg1)
* CHARBITS - ANYOFR_BASE_BITS))))
{
U8 low_utf8[UTF8_MAXBYTES+1];
U8 high_utf8[UTF8_MAXBYTES+1];
ret = reganode(pRExC_state, ANYOFR,
(start[0] | (end[0] - start[0]) << ANYOFR_BASE_BITS));
/* Place the lowest UTF-8 start byte in the flags field, so as to
* allow efficient ruling out at run time of many possible inputs.
* */
(void) uvchr_to_utf8(low_utf8, start[0]);
(void) uvchr_to_utf8(high_utf8, end[0]);
/* If all code points share the same first byte, this can be an
* ANYOFRb. Otherwise store the lowest UTF-8 start byte which can
* quickly rule out many inputs at run-time without having to
* compute the code point from UTF-8. For EBCDIC, we use I8, as
* not doing that transformation would not rule out nearly so many
* things */
if (low_utf8[0] == high_utf8[0]) {
OP(REGNODE_p(ret)) = ANYOFRb;
ANYOF_FLAGS(REGNODE_p(ret)) = low_utf8[0];
}
else {
ANYOF_FLAGS(REGNODE_p(ret))
= NATIVE_UTF8_TO_I8(low_utf8[0]);
}
goto not_anyof;
}
/* If didn't find an optimization and there is no need for a bitmap,
* optimize to indicate that */
if ( start[0] >= NUM_ANYOF_CODE_POINTS
&& ! LOC
&& ! upper_latin1_only_utf8_matches
&& anyof_flags == 0)
{
U8 low_utf8[UTF8_MAXBYTES+1];
UV highest_cp = invlist_highest(cp_list);
/* Currently the maximum allowed code point by the system is
* IV_MAX. Higher ones are reserved for future internal use. This
* particular regnode can be used for higher ones, but we can't
* calculate the code point of those. IV_MAX suffices though, as
* it will be a large first byte */
Size_t low_len = uvchr_to_utf8(low_utf8, MIN(start[0], IV_MAX))
- low_utf8;
/* We store the lowest possible first byte of the UTF-8
* representation, using the flags field. This allows for quick
* ruling out of some inputs without having to convert from UTF-8
* to code point. For EBCDIC, we use I8, as not doing that
* transformation would not rule out nearly so many things */
anyof_flags = NATIVE_UTF8_TO_I8(low_utf8[0]);
op = ANYOFH;
/* If the first UTF-8 start byte for the highest code point in the
* range is suitably small, we may be able to get an upper bound as
* well */
if (highest_cp <= IV_MAX) {
U8 high_utf8[UTF8_MAXBYTES+1];
Size_t high_len = uvchr_to_utf8(high_utf8, highest_cp)
- high_utf8;
/* If the lowest and highest are the same, we can get an exact
* first byte instead of a just minimum or even a sequence of
* exact leading bytes. We signal these with different
* regnodes */
if (low_utf8[0] == high_utf8[0]) {
Size_t len = find_first_differing_byte_pos(low_utf8,
high_utf8,
MIN(low_len, high_len));
if (len == 1) {
/* No need to convert to I8 for EBCDIC as this is an
* exact match */
anyof_flags = low_utf8[0];
op = ANYOFHb;
}
else {
op = ANYOFHs;
ret = regnode_guts(pRExC_state, op,
regarglen[op] + STR_SZ(len),
"anyofhs");
FILL_NODE(ret, op);
((struct regnode_anyofhs *) REGNODE_p(ret))->str_len
= len;
Copy(low_utf8, /* Add the common bytes */
((struct regnode_anyofhs *) REGNODE_p(ret))->string,
len, U8);
RExC_emit += NODE_SZ_STR(REGNODE_p(ret));
set_ANYOF_arg(pRExC_state, REGNODE_p(ret), cp_list,
NULL, only_utf8_locale_list);
goto not_anyof;
}
}
else if (NATIVE_UTF8_TO_I8(high_utf8[0]) <= MAX_ANYOF_HRx_BYTE)
{
/* Here, the high byte is not the same as the low, but is
* small enough that its reasonable to have a loose upper
* bound, which is packed in with the strict lower bound.
* See comments at the definition of MAX_ANYOF_HRx_BYTE.
* On EBCDIC platforms, I8 is used. On ASCII platforms I8
* is the same thing as UTF-8 */
U8 bits = 0;
U8 max_range_diff = MAX_ANYOF_HRx_BYTE - anyof_flags;
U8 range_diff = NATIVE_UTF8_TO_I8(high_utf8[0])
- anyof_flags;
if (range_diff <= max_range_diff / 8) {
bits = 3;
}
else if (range_diff <= max_range_diff / 4) {
bits = 2;
}
else if (range_diff <= max_range_diff / 2) {
bits = 1;
}
anyof_flags = (anyof_flags - 0xC0) << 2 | bits;
op = ANYOFHr;
}
}
goto done_finding_op;
}
} /* End of seeing if can optimize it into a different node */
is_anyof: /* It's going to be an ANYOF node. */
op = (has_runtime_dependency & HAS_D_RUNTIME_DEPENDENCY)
? ANYOFD
: ((posixl)
? ANYOFPOSIXL
: ((LOC)
? ANYOFL
: ANYOF));
done_finding_op:
ret = regnode_guts(pRExC_state, op, regarglen[op], "anyof");
FILL_NODE(ret, op); /* We set the argument later */
RExC_emit += 1 + regarglen[op];
ANYOF_FLAGS(REGNODE_p(ret)) = anyof_flags;
/* Here, <cp_list> contains all the code points we can determine at
* compile time that match under all conditions. Go through it, and
* for things that belong in the bitmap, put them there, and delete from
* <cp_list>. While we are at it, see if everything above 255 is in the
* list, and if so, set a flag to speed up execution */
populate_ANYOF_from_invlist(REGNODE_p(ret), &cp_list);
if (posixl) {
ANYOF_POSIXL_SET_TO_BITMAP(REGNODE_p(ret), posixl);
}
if (invert) {
ANYOF_FLAGS(REGNODE_p(ret)) |= ANYOF_INVERT;
}
/* Here, the bitmap has been populated with all the Latin1 code points that
* always match. Can now add to the overall list those that match only
* when the target string is UTF-8 (<upper_latin1_only_utf8_matches>).
* */
if (upper_latin1_only_utf8_matches) {
if (cp_list) {
_invlist_union(cp_list,
upper_latin1_only_utf8_matches,
&cp_list);
SvREFCNT_dec_NN(upper_latin1_only_utf8_matches);
}
else {
cp_list = upper_latin1_only_utf8_matches;
}
ANYOF_FLAGS(REGNODE_p(ret)) |= ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP;
}
set_ANYOF_arg(pRExC_state, REGNODE_p(ret), cp_list,
(HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
? listsv
: NULL,
only_utf8_locale_list);
SvREFCNT_dec(cp_list);;
SvREFCNT_dec(only_utf8_locale_list);
return ret;
not_anyof:
/* Here, the node is getting optimized into something that's not an ANYOF
* one. Finish up. */
Set_Node_Offset_Length(REGNODE_p(ret), orig_parse - RExC_start,
RExC_parse - orig_parse);;
SvREFCNT_dec(cp_list);;
SvREFCNT_dec(only_utf8_locale_list);
SvREFCNT_dec(upper_latin1_only_utf8_matches);
return ret;
}
#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
STATIC void
S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
regnode* const node,
SV* const cp_list,
SV* const runtime_defns,
SV* const only_utf8_locale_list)
{
/* Sets the arg field of an ANYOF-type node 'node', using information about
* the node passed-in. If there is nothing outside the node's bitmap, the
* arg is set to ANYOF_ONLY_HAS_BITMAP. Otherwise, it sets the argument to
* the count returned by add_data(), having allocated and stored an array,
* av, as follows:
*
* av[0] stores the inversion list defining this class as far as known at
* this time, or PL_sv_undef if nothing definite is now known.
* av[1] stores the inversion list of code points that match only if the
* current locale is UTF-8, or if none, PL_sv_undef if there is an
* av[2], or no entry otherwise.
* av[2] stores the list of user-defined properties whose subroutine
* definitions aren't known at this time, or no entry if none. */
UV n;
PERL_ARGS_ASSERT_SET_ANYOF_ARG;
if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
assert(! (ANYOF_FLAGS(node)
& ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP));
ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
}
else {
AV * const av = newAV();
SV *rv;
if (cp_list) {
av_store(av, INVLIST_INDEX, SvREFCNT_inc_NN(cp_list));
}
if (only_utf8_locale_list) {
av_store(av, ONLY_LOCALE_MATCHES_INDEX,
SvREFCNT_inc_NN(only_utf8_locale_list));
}
if (runtime_defns) {
av_store(av, DEFERRED_USER_DEFINED_INDEX,
SvREFCNT_inc_NN(runtime_defns));
}
rv = newRV_noinc(MUTABLE_SV(av));
n = add_data(pRExC_state, STR_WITH_LEN("s"));
RExC_rxi->data->data[n] = (void*)rv;
ARG_SET(node, n);
}
}
SV *
#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
Perl_get_regclass_nonbitmap_data(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV** only_utf8_locale_ptr, SV** output_invlist)
#else
Perl_get_re_gclass_nonbitmap_data(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV** only_utf8_locale_ptr, SV** output_invlist)
#endif
{
/* For internal core use only.
* Returns the inversion list for the input 'node' in the regex 'prog'.
* If <doinit> is 'true', will attempt to create the inversion list if not
* already done.
* If <listsvp> is non-null, will return the printable contents of the
* property definition. This can be used to get debugging information
* even before the inversion list exists, by calling this function with
* 'doinit' set to false, in which case the components that will be used
* to eventually create the inversion list are returned (in a printable
* form).
* If <only_utf8_locale_ptr> is not NULL, it is where this routine is to
* store an inversion list of code points that should match only if the
* execution-time locale is a UTF-8 one.
* If <output_invlist> is not NULL, it is where this routine is to store an
* inversion list of the code points that would be instead returned in
* <listsvp> if this were NULL. Thus, what gets output in <listsvp>
* when this parameter is used, is just the non-code point data that
* will go into creating the inversion list. This currently should be just
* user-defined properties whose definitions were not known at compile
* time. Using this parameter allows for easier manipulation of the
* inversion list's data by the caller. It is illegal to call this
* function with this parameter set, but not <listsvp>
*
* Tied intimately to how S_set_ANYOF_arg sets up the data structure. Note
* that, in spite of this function's name, the inversion list it returns
* may include the bitmap data as well */
SV *si = NULL; /* Input initialization string */
SV* invlist = NULL;
RXi_GET_DECL(prog, progi);
const struct reg_data * const data = prog ? progi->data : NULL;
#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
PERL_ARGS_ASSERT_GET_REGCLASS_NONBITMAP_DATA;
#else
PERL_ARGS_ASSERT_GET_RE_GCLASS_NONBITMAP_DATA;
#endif
assert(! output_invlist || listsvp);
if (data && data->count) {
const U32 n = ARG(node);
if (data->what[n] == 's') {
SV * const rv = MUTABLE_SV(data->data[n]);
AV * const av = MUTABLE_AV(SvRV(rv));
SV **const ary = AvARRAY(av);
invlist = ary[INVLIST_INDEX];
if (av_tindex_skip_len_mg(av) >= ONLY_LOCALE_MATCHES_INDEX) {
*only_utf8_locale_ptr = ary[ONLY_LOCALE_MATCHES_INDEX];
}
if (av_tindex_skip_len_mg(av) >= DEFERRED_USER_DEFINED_INDEX) {
si = ary[DEFERRED_USER_DEFINED_INDEX];
}
if (doinit && (si || invlist)) {
if (si) {
bool user_defined;
SV * msg = newSVpvs_flags("", SVs_TEMP);
SV * prop_definition = handle_user_defined_property(
"", 0, FALSE, /* There is no \p{}, \P{} */
SvPVX_const(si)[1] - '0', /* /i or not has been
stored here for just
this occasion */
TRUE, /* run time */
FALSE, /* This call must find the defn */
si, /* The property definition */
&user_defined,
msg,
0 /* base level call */
);
if (SvCUR(msg)) {
assert(prop_definition == NULL);
Perl_croak(aTHX_ "%" UTF8f,
UTF8fARG(SvUTF8(msg), SvCUR(msg), SvPVX(msg)));
}
if (invlist) {
_invlist_union(invlist, prop_definition, &invlist);
SvREFCNT_dec_NN(prop_definition);
}
else {
invlist = prop_definition;
}
STATIC_ASSERT_STMT(ONLY_LOCALE_MATCHES_INDEX == 1 + INVLIST_INDEX);
STATIC_ASSERT_STMT(DEFERRED_USER_DEFINED_INDEX == 1 + ONLY_LOCALE_MATCHES_INDEX);
ary[INVLIST_INDEX] = invlist;
av_fill(av, (ary[ONLY_LOCALE_MATCHES_INDEX])
? ONLY_LOCALE_MATCHES_INDEX
: INVLIST_INDEX);
si = NULL;
}
}
}
}
/* If requested, return a printable version of what this ANYOF node matches
* */
if (listsvp) {
SV* matches_string = NULL;
/* This function can be called at compile-time, before everything gets
* resolved, in which case we return the currently best available
* information, which is the string that will eventually be used to do
* that resolving, 'si' */
if (si) {
/* Here, we only have 'si' (and possibly some passed-in data in
* 'invlist', which is handled below) If the caller only wants
* 'si', use that. */
if (! output_invlist) {
matches_string = newSVsv(si);
}
else {
/* But if the caller wants an inversion list of the node, we
* need to parse 'si' and place as much as possible in the
* desired output inversion list, making 'matches_string' only
* contain the currently unresolvable things */
const char *si_string = SvPVX(si);
STRLEN remaining = SvCUR(si);
UV prev_cp = 0;
U8 count = 0;
/* Ignore everything before and including the first new-line */
si_string = (const char *) memchr(si_string, '\n', SvCUR(si));
assert (si_string != NULL);
si_string++;
remaining = SvPVX(si) + SvCUR(si) - si_string;
while (remaining > 0) {
/* The data consists of just strings defining user-defined
* property names, but in prior incarnations, and perhaps
* somehow from pluggable regex engines, it could still
* hold hex code point definitions, all of which should be
* legal (or it wouldn't have gotten this far). Each
* component of a range would be separated by a tab, and
* each range by a new-line. If these are found, instead
* add them to the inversion list */
I32 grok_flags = PERL_SCAN_SILENT_ILLDIGIT
|PERL_SCAN_SILENT_NON_PORTABLE;
STRLEN len = remaining;
UV cp = grok_hex(si_string, &len, &grok_flags, NULL);
/* If the hex decode routine found something, it should go
* up to the next \n */
if ( *(si_string + len) == '\n') {
if (count) { /* 2nd code point on line */
*output_invlist = _add_range_to_invlist(*output_invlist, prev_cp, cp);
}
else {
*output_invlist = add_cp_to_invlist(*output_invlist, cp);
}
count = 0;
goto prepare_for_next_iteration;
}
/* If the hex decode was instead for the lower range limit,
* save it, and go parse the upper range limit */
if (*(si_string + len) == '\t') {
assert(count == 0);
prev_cp = cp;
count = 1;
prepare_for_next_iteration:
si_string += len + 1;
remaining -= len + 1;
continue;
}
/* Here, didn't find a legal hex number. Just add the text
* from here up to the next \n, omitting any trailing
* markers. */
remaining -= len;
len = strcspn(si_string,
DEFERRED_COULD_BE_OFFICIAL_MARKERs "\n");
remaining -= len;
if (matches_string) {
sv_catpvn(matches_string, si_string, len);
}
else {
matches_string = newSVpvn(si_string, len);
}
sv_catpvs(matches_string, " ");
si_string += len;
if ( remaining
&& UCHARAT(si_string)
== DEFERRED_COULD_BE_OFFICIAL_MARKERc)
{
si_string++;
remaining--;
}
if (remaining && UCHARAT(si_string) == '\n') {
si_string++;
remaining--;
}
} /* end of loop through the text */
assert(matches_string);
if (SvCUR(matches_string)) { /* Get rid of trailing blank */
SvCUR_set(matches_string, SvCUR(matches_string) - 1);
}
} /* end of has an 'si' */
}
/* Add the stuff that's already known */
if (invlist) {
/* Again, if the caller doesn't want the output inversion list, put
* everything in 'matches-string' */
if (! output_invlist) {
if ( ! matches_string) {
matches_string = newSVpvs("\n");
}
sv_catsv(matches_string, invlist_contents(invlist,
TRUE /* traditional style */
));
}
else if (! *output_invlist) {
*output_invlist = invlist_clone(invlist, NULL);
}
else {
_invlist_union(*output_invlist, invlist, output_invlist);
}
}
*listsvp = matches_string;
}
return invlist;
}
/* reg_skipcomment()
Absorbs an /x style # comment from the input stream,
returning a pointer to the first character beyond the comment, or if the
comment terminates the pattern without anything following it, this returns
one past the final character of the pattern (in other words, RExC_end) and
sets the REG_RUN_ON_COMMENT_SEEN flag.
Note it's the callers responsibility to ensure that we are
actually in /x mode
*/
PERL_STATIC_INLINE char*
S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
{
PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
assert(*p == '#');
while (p < RExC_end) {
if (*(++p) == '\n') {
return p+1;
}
}
/* we ran off the end of the pattern without ending the comment, so we have
* to add an \n when wrapping */
RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
return p;
}
STATIC void
S_skip_to_be_ignored_text(pTHX_ RExC_state_t *pRExC_state,
char ** p,
const bool force_to_xmod
)
{
/* If the text at the current parse position '*p' is a '(?#...)' comment,
* or if we are under /x or 'force_to_xmod' is TRUE, and the text at '*p'
* is /x whitespace, advance '*p' so that on exit it points to the first
* byte past all such white space and comments */
const bool use_xmod = force_to_xmod || (RExC_flags & RXf_PMf_EXTENDED);
PERL_ARGS_ASSERT_SKIP_TO_BE_IGNORED_TEXT;
assert( ! UTF || UTF8_IS_INVARIANT(**p) || UTF8_IS_START(**p));
for (;;) {
if (RExC_end - (*p) >= 3
&& *(*p) == '('
&& *(*p + 1) == '?'
&& *(*p + 2) == '#')
{
while (*(*p) != ')') {
if ((*p) == RExC_end)
FAIL("Sequence (?#... not terminated");
(*p)++;
}
(*p)++;
continue;
}
if (use_xmod) {
const char * save_p = *p;
while ((*p) < RExC_end) {
STRLEN len;
if ((len = is_PATWS_safe((*p), RExC_end, UTF))) {
(*p) += len;
}
else if (*(*p) == '#') {
(*p) = reg_skipcomment(pRExC_state, (*p));
}
else {
break;
}
}
if (*p != save_p) {
continue;
}
}
break;
}
return;
}
/* nextchar()
Advances the parse position by one byte, unless that byte is the beginning
of a '(?#...)' style comment, or is /x whitespace and /x is in effect. In
those two cases, the parse position is advanced beyond all such comments and
white space.
This is the UTF, (?#...), and /x friendly way of saying RExC_parse++.
*/
STATIC void
S_nextchar(pTHX_ RExC_state_t *pRExC_state)
{
PERL_ARGS_ASSERT_NEXTCHAR;
if (RExC_parse < RExC_end) {
assert( ! UTF
|| UTF8_IS_INVARIANT(*RExC_parse)
|| UTF8_IS_START(*RExC_parse));
RExC_parse += (UTF)
? UTF8_SAFE_SKIP(RExC_parse, RExC_end)
: 1;
skip_to_be_ignored_text(pRExC_state, &RExC_parse,
FALSE /* Don't force /x */ );
}
}
STATIC void
S_change_engine_size(pTHX_ RExC_state_t *pRExC_state, const Ptrdiff_t size)
{
/* 'size' is the delta number of smallest regnode equivalents to add or
* subtract from the current memory allocated to the regex engine being
* constructed. */
PERL_ARGS_ASSERT_CHANGE_ENGINE_SIZE;
RExC_size += size;
Renewc(RExC_rxi,
sizeof(regexp_internal) + (RExC_size + 1) * sizeof(regnode),
/* +1 for REG_MAGIC */
char,
regexp_internal);
if ( RExC_rxi == NULL )
FAIL("Regexp out of space");
RXi_SET(RExC_rx, RExC_rxi);
RExC_emit_start = RExC_rxi->program;
if (size > 0) {
Zero(REGNODE_p(RExC_emit), size, regnode);
}
#ifdef RE_TRACK_PATTERN_OFFSETS
Renew(RExC_offsets, 2*RExC_size+1, U32);
if (size > 0) {
Zero(RExC_offsets + 2*(RExC_size - size) + 1, 2 * size, U32);
}
RExC_offsets[0] = RExC_size;
#endif
}
STATIC regnode_offset
S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
{
/* Allocate a regnode for 'op', with 'extra_size' extra (smallest) regnode
* equivalents space. It aligns and increments RExC_size
*
* It returns the regnode's offset into the regex engine program */
const regnode_offset ret = RExC_emit;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGNODE_GUTS;
SIZE_ALIGN(RExC_size);
change_engine_size(pRExC_state, (Ptrdiff_t) 1 + extra_size);
NODE_ALIGN_FILL(REGNODE_p(ret));
#ifndef RE_TRACK_PATTERN_OFFSETS
PERL_UNUSED_ARG(name);
PERL_UNUSED_ARG(op);
#else
assert(extra_size >= regarglen[op] || PL_regkind[op] == ANYOF);
if (RExC_offsets) { /* MJD */
MJD_OFFSET_DEBUG(
("%s:%d: (op %s) %s %" UVuf " (len %" UVuf ") (max %" UVuf ").\n",
name, __LINE__,
PL_reg_name[op],
(UV)(RExC_emit) > RExC_offsets[0]
? "Overwriting end of array!\n" : "OK",
(UV)(RExC_emit),
(UV)(RExC_parse - RExC_start),
(UV)RExC_offsets[0]));
Set_Node_Offset(REGNODE_p(RExC_emit), RExC_parse + (op == END));
}
#endif
return(ret);
}
/*
- reg_node - emit a node
*/
STATIC regnode_offset /* Location. */
S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
{
const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
regnode_offset ptr = ret;
PERL_ARGS_ASSERT_REG_NODE;
assert(regarglen[op] == 0);
FILL_ADVANCE_NODE(ptr, op);
RExC_emit = ptr;
return(ret);
}
/*
- reganode - emit a node with an argument
*/
STATIC regnode_offset /* Location. */
S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
{
const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
regnode_offset ptr = ret;
PERL_ARGS_ASSERT_REGANODE;
/* ANYOF are special cased to allow non-length 1 args */
assert(regarglen[op] == 1);
FILL_ADVANCE_NODE_ARG(ptr, op, arg);
RExC_emit = ptr;
return(ret);
}
/*
- regpnode - emit a temporary node with a SV* argument
*/
STATIC regnode_offset /* Location. */
S_regpnode(pTHX_ RExC_state_t *pRExC_state, U8 op, SV * arg)
{
const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "regpnode");
regnode_offset ptr = ret;
PERL_ARGS_ASSERT_REGPNODE;
FILL_ADVANCE_NODE_ARGp(ptr, op, arg);
RExC_emit = ptr;
return(ret);
}
STATIC regnode_offset
S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
{
/* emit a node with U32 and I32 arguments */
const regnode_offset ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
regnode_offset ptr = ret;
PERL_ARGS_ASSERT_REG2LANODE;
assert(regarglen[op] == 2);
FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
RExC_emit = ptr;
return(ret);
}
/*
- reginsert - insert an operator in front of already-emitted operand
*
* That means that on exit 'operand' is the offset of the newly inserted
* operator, and the original operand has been relocated.
*
* IMPORTANT NOTE - it is the *callers* responsibility to correctly
* set up NEXT_OFF() of the inserted node if needed. Something like this:
*
* reginsert(pRExC, OPFAIL, orig_emit, depth+1);
* NEXT_OFF(orig_emit) = regarglen[OPFAIL] + NODE_STEP_REGNODE;
*
* ALSO NOTE - FLAGS(newly-inserted-operator) will be set to 0 as well.
*/
STATIC void
S_reginsert(pTHX_ RExC_state_t *pRExC_state, const U8 op,
const regnode_offset operand, const U32 depth)
{
regnode *src;
regnode *dst;
regnode *place;
const int offset = regarglen[(U8)op];
const int size = NODE_STEP_REGNODE + offset;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGINSERT;
PERL_UNUSED_CONTEXT;
PERL_UNUSED_ARG(depth);
/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
DEBUG_PARSE_FMT("inst"," - %s", PL_reg_name[op]);
assert(!RExC_study_started); /* I believe we should never use reginsert once we have started
studying. If this is wrong then we need to adjust RExC_recurse
below like we do with RExC_open_parens/RExC_close_parens. */
change_engine_size(pRExC_state, (Ptrdiff_t) size);
src = REGNODE_p(RExC_emit);
RExC_emit += size;
dst = REGNODE_p(RExC_emit);
/* If we are in a "count the parentheses" pass, the numbers are unreliable,
* and [perl #133871] shows this can lead to problems, so skip this
* realignment of parens until a later pass when they are reliable */
if (! IN_PARENS_PASS && RExC_open_parens) {
int paren;
/*DEBUG_PARSE_FMT("inst"," - %" IVdf, (IV)RExC_npar);*/
/* remember that RExC_npar is rex->nparens + 1,
* iow it is 1 more than the number of parens seen in
* the pattern so far. */
for ( paren=0 ; paren < RExC_npar ; paren++ ) {
/* note, RExC_open_parens[0] is the start of the
* regex, it can't move. RExC_close_parens[0] is the end
* of the regex, it *can* move. */
if ( paren && RExC_open_parens[paren] >= operand ) {
/*DEBUG_PARSE_FMT("open"," - %d", size);*/
RExC_open_parens[paren] += size;
} else {
/*DEBUG_PARSE_FMT("open"," - %s","ok");*/
}
if ( RExC_close_parens[paren] >= operand ) {
/*DEBUG_PARSE_FMT("close"," - %d", size);*/
RExC_close_parens[paren] += size;
} else {
/*DEBUG_PARSE_FMT("close"," - %s","ok");*/
}
}
}
if (RExC_end_op)
RExC_end_op += size;
while (src > REGNODE_p(operand)) {
StructCopy(--src, --dst, regnode);
#ifdef RE_TRACK_PATTERN_OFFSETS
if (RExC_offsets) { /* MJD 20010112 */
MJD_OFFSET_DEBUG(
("%s(%d): (op %s) %s copy %" UVuf " -> %" UVuf " (max %" UVuf ").\n",
"reginsert",
__LINE__,
PL_reg_name[op],
(UV)(REGNODE_OFFSET(dst)) > RExC_offsets[0]
? "Overwriting end of array!\n" : "OK",
(UV)REGNODE_OFFSET(src),
(UV)REGNODE_OFFSET(dst),
(UV)RExC_offsets[0]));
Set_Node_Offset_To_R(REGNODE_OFFSET(dst), Node_Offset(src));
Set_Node_Length_To_R(REGNODE_OFFSET(dst), Node_Length(src));
}
#endif
}
place = REGNODE_p(operand); /* Op node, where operand used to be. */
#ifdef RE_TRACK_PATTERN_OFFSETS
if (RExC_offsets) { /* MJD */
MJD_OFFSET_DEBUG(
("%s(%d): (op %s) %s %" UVuf " <- %" UVuf " (max %" UVuf ").\n",
"reginsert",
__LINE__,
PL_reg_name[op],
(UV)REGNODE_OFFSET(place) > RExC_offsets[0]
? "Overwriting end of array!\n" : "OK",
(UV)REGNODE_OFFSET(place),
(UV)(RExC_parse - RExC_start),
(UV)RExC_offsets[0]));
Set_Node_Offset(place, RExC_parse);
Set_Node_Length(place, 1);
}
#endif
src = NEXTOPER(place);
FLAGS(place) = 0;
FILL_NODE(operand, op);
/* Zero out any arguments in the new node */
Zero(src, offset, regnode);
}
/*
- regtail - set the next-pointer at the end of a node chain of p to val. If
that value won't fit in the space available, instead returns FALSE.
(Except asserts if we can't fit in the largest space the regex
engine is designed for.)
- SEE ALSO: regtail_study
*/
STATIC bool
S_regtail(pTHX_ RExC_state_t * pRExC_state,
const regnode_offset p,
const regnode_offset val,
const U32 depth)
{
regnode_offset scan;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGTAIL;
#ifndef DEBUGGING
PERL_UNUSED_ARG(depth);
#endif
/* Find last node. */
scan = (regnode_offset) p;
for (;;) {
regnode * const temp = regnext(REGNODE_p(scan));
DEBUG_PARSE_r({
DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
regprop(RExC_rx, RExC_mysv, REGNODE_p(scan), NULL, pRExC_state);
Perl_re_printf( aTHX_ "~ %s (%zu) %s %s\n",
SvPV_nolen_const(RExC_mysv), scan,
(temp == NULL ? "->" : ""),
(temp == NULL ? PL_reg_name[OP(REGNODE_p(val))] : "")
);
});
if (temp == NULL)
break;
scan = REGNODE_OFFSET(temp);
}
assert(val >= scan);
if (reg_off_by_arg[OP(REGNODE_p(scan))]) {
assert((UV) (val - scan) <= U32_MAX);
ARG_SET(REGNODE_p(scan), val - scan);
}
else {
if (val - scan > U16_MAX) {
/* Populate this with something that won't loop and will likely
* lead to a crash if the caller ignores the failure return, and
* execution continues */
NEXT_OFF(REGNODE_p(scan)) = U16_MAX;
return FALSE;
}
NEXT_OFF(REGNODE_p(scan)) = val - scan;
}
return TRUE;
}
#ifdef DEBUGGING
/*
- regtail_study - set the next-pointer at the end of a node chain of p to val.
- Look for optimizable sequences at the same time.
- currently only looks for EXACT chains.
This is experimental code. The idea is to use this routine to perform
in place optimizations on branches and groups as they are constructed,
with the long term intention of removing optimization from study_chunk so
that it is purely analytical.
Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
to control which is which.
This used to return a value that was ignored. It was a problem that it is
#ifdef'd to be another function that didn't return a value. khw has changed it
so both currently return a pass/fail return.
*/
/* TODO: All four parms should be const */
STATIC bool
S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode_offset p,
const regnode_offset val, U32 depth)
{
regnode_offset scan;
U8 exact = PSEUDO;
#ifdef EXPERIMENTAL_INPLACESCAN
I32 min = 0;
#endif
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGTAIL_STUDY;
/* Find last node. */
scan = p;
for (;;) {
regnode * const temp = regnext(REGNODE_p(scan));
#ifdef EXPERIMENTAL_INPLACESCAN
if (PL_regkind[OP(REGNODE_p(scan))] == EXACT) {
bool unfolded_multi_char; /* Unexamined in this routine */
if (join_exact(pRExC_state, scan, &min,
&unfolded_multi_char, 1, REGNODE_p(val), depth+1))
return TRUE; /* Was return EXACT */
}
#endif
if ( exact ) {
switch (OP(REGNODE_p(scan))) {
case LEXACT:
case EXACT:
case LEXACT_REQ8:
case EXACT_REQ8:
case EXACTL:
case EXACTF:
case EXACTFU_S_EDGE:
case EXACTFAA_NO_TRIE:
case EXACTFAA:
case EXACTFU:
case EXACTFU_REQ8:
case EXACTFLU8:
case EXACTFUP:
case EXACTFL:
if( exact == PSEUDO )
exact= OP(REGNODE_p(scan));
else if ( exact != OP(REGNODE_p(scan)) )
exact= 0;
case NOTHING:
break;
default:
exact= 0;
}
}
DEBUG_PARSE_r({
DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
regprop(RExC_rx, RExC_mysv, REGNODE_p(scan), NULL, pRExC_state);
Perl_re_printf( aTHX_ "~ %s (%zu) -> %s\n",
SvPV_nolen_const(RExC_mysv),
scan,
PL_reg_name[exact]);
});
if (temp == NULL)
break;
scan = REGNODE_OFFSET(temp);
}
DEBUG_PARSE_r({
DEBUG_PARSE_MSG("");
regprop(RExC_rx, RExC_mysv, REGNODE_p(val), NULL, pRExC_state);
Perl_re_printf( aTHX_
"~ attach to %s (%" IVdf ") offset to %" IVdf "\n",
SvPV_nolen_const(RExC_mysv),
(IV)val,
(IV)(val - scan)
);
});
if (reg_off_by_arg[OP(REGNODE_p(scan))]) {
assert((UV) (val - scan) <= U32_MAX);
ARG_SET(REGNODE_p(scan), val - scan);
}
else {
if (val - scan > U16_MAX) {
/* Populate this with something that won't loop and will likely
* lead to a crash if the caller ignores the failure return, and
* execution continues */
NEXT_OFF(REGNODE_p(scan)) = U16_MAX;
return FALSE;
}
NEXT_OFF(REGNODE_p(scan)) = val - scan;
}
return TRUE; /* Was 'return exact' */
}
#endif
STATIC SV*
S_get_ANYOFM_contents(pTHX_ const regnode * n) {
/* Returns an inversion list of all the code points matched by the
* ANYOFM/NANYOFM node 'n' */
SV * cp_list = _new_invlist(-1);
const U8 lowest = (U8) ARG(n);
unsigned int i;
U8 count = 0;
U8 needed = 1U << PL_bitcount[ (U8) ~ FLAGS(n)];
PERL_ARGS_ASSERT_GET_ANYOFM_CONTENTS;
/* Starting with the lowest code point, any code point that ANDed with the
* mask yields the lowest code point is in the set */
for (i = lowest; i <= 0xFF; i++) {
if ((i & FLAGS(n)) == ARG(n)) {
cp_list = add_cp_to_invlist(cp_list, i);
count++;
/* We know how many code points (a power of two) that are in the
* set. No use looking once we've got that number */
if (count >= needed) break;
}
}
if (OP(n) == NANYOFM) {
_invlist_invert(cp_list);
}
return cp_list;
}
/*
- regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
*/
#ifdef DEBUGGING
static void
S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
{
int bit;
int set=0;
ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
if (flags & (1<<bit)) {
if (!set++ && lead)
Perl_re_printf( aTHX_ "%s", lead);
Perl_re_printf( aTHX_ "%s ", PL_reg_intflags_name[bit]);
}
}
if (lead) {
if (set)
Perl_re_printf( aTHX_ "\n");
else
Perl_re_printf( aTHX_ "%s[none-set]\n", lead);
}
}
static void
S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
{
int bit;
int set=0;
regex_charset cs;
ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
if (flags & (1<<bit)) {
if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
continue;
}
if (!set++ && lead)
Perl_re_printf( aTHX_ "%s", lead);
Perl_re_printf( aTHX_ "%s ", PL_reg_extflags_name[bit]);
}
}
if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
if (!set++ && lead) {
Perl_re_printf( aTHX_ "%s", lead);
}
switch (cs) {
case REGEX_UNICODE_CHARSET:
Perl_re_printf( aTHX_ "UNICODE");
break;
case REGEX_LOCALE_CHARSET:
Perl_re_printf( aTHX_ "LOCALE");
break;
case REGEX_ASCII_RESTRICTED_CHARSET:
Perl_re_printf( aTHX_ "ASCII-RESTRICTED");
break;
case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
Perl_re_printf( aTHX_ "ASCII-MORE_RESTRICTED");
break;
default:
Perl_re_printf( aTHX_ "UNKNOWN CHARACTER SET");
break;
}
}
if (lead) {
if (set)
Perl_re_printf( aTHX_ "\n");
else
Perl_re_printf( aTHX_ "%s[none-set]\n", lead);
}
}
#endif
void
Perl_regdump(pTHX_ const regexp *r)
{
#ifdef DEBUGGING
int i;
SV * const sv = sv_newmortal();
SV *dsv= sv_newmortal();
RXi_GET_DECL(r, ri);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGDUMP;
(void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
/* Header fields of interest. */
for (i = 0; i < 2; i++) {
if (r->substrs->data[i].substr) {
RE_PV_QUOTED_DECL(s, 0, dsv,
SvPVX_const(r->substrs->data[i].substr),
RE_SV_DUMPLEN(r->substrs->data[i].substr),
PL_dump_re_max_len);
Perl_re_printf( aTHX_
"%s %s%s at %" IVdf "..%" UVuf " ",
i ? "floating" : "anchored",
s,
RE_SV_TAIL(r->substrs->data[i].substr),
(IV)r->substrs->data[i].min_offset,
(UV)r->substrs->data[i].max_offset);
}
else if (r->substrs->data[i].utf8_substr) {
RE_PV_QUOTED_DECL(s, 1, dsv,
SvPVX_const(r->substrs->data[i].utf8_substr),
RE_SV_DUMPLEN(r->substrs->data[i].utf8_substr),
30);
Perl_re_printf( aTHX_
"%s utf8 %s%s at %" IVdf "..%" UVuf " ",
i ? "floating" : "anchored",
s,
RE_SV_TAIL(r->substrs->data[i].utf8_substr),
(IV)r->substrs->data[i].min_offset,
(UV)r->substrs->data[i].max_offset);
}
}
if (r->check_substr || r->check_utf8)
Perl_re_printf( aTHX_
(const char *)
( r->check_substr == r->substrs->data[1].substr
&& r->check_utf8 == r->substrs->data[1].utf8_substr
? "(checking floating" : "(checking anchored"));
if (r->intflags & PREGf_NOSCAN)
Perl_re_printf( aTHX_ " noscan");
if (r->extflags & RXf_CHECK_ALL)
Perl_re_printf( aTHX_ " isall");
if (r->check_substr || r->check_utf8)
Perl_re_printf( aTHX_ ") ");
if (ri->regstclass) {
regprop(r, sv, ri->regstclass, NULL, NULL);
Perl_re_printf( aTHX_ "stclass %s ", SvPVX_const(sv));
}
if (r->intflags & PREGf_ANCH) {
Perl_re_printf( aTHX_ "anchored");
if (r->intflags & PREGf_ANCH_MBOL)
Perl_re_printf( aTHX_ "(MBOL)");
if (r->intflags & PREGf_ANCH_SBOL)
Perl_re_printf( aTHX_ "(SBOL)");
if (r->intflags & PREGf_ANCH_GPOS)
Perl_re_printf( aTHX_ "(GPOS)");
Perl_re_printf( aTHX_ " ");
}
if (r->intflags & PREGf_GPOS_SEEN)
Perl_re_printf( aTHX_ "GPOS:%" UVuf " ", (UV)r->gofs);
if (r->intflags & PREGf_SKIP)
Perl_re_printf( aTHX_ "plus ");
if (r->intflags & PREGf_IMPLICIT)
Perl_re_printf( aTHX_ "implicit ");
Perl_re_printf( aTHX_ "minlen %" IVdf " ", (IV)r->minlen);
if (r->extflags & RXf_EVAL_SEEN)
Perl_re_printf( aTHX_ "with eval ");
Perl_re_printf( aTHX_ "\n");
DEBUG_FLAGS_r({
regdump_extflags("r->extflags: ", r->extflags);
regdump_intflags("r->intflags: ", r->intflags);
});
#else
PERL_ARGS_ASSERT_REGDUMP;
PERL_UNUSED_CONTEXT;
PERL_UNUSED_ARG(r);
#endif /* DEBUGGING */
}
/* Should be synchronized with ANYOF_ #defines in regcomp.h */
#ifdef DEBUGGING
# if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 \
|| _CC_LOWER != 3 || _CC_UPPER != 4 || _CC_PUNCT != 5 \
|| _CC_PRINT != 6 || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 \
|| _CC_CASED != 9 || _CC_SPACE != 10 || _CC_BLANK != 11 \
|| _CC_XDIGIT != 12 || _CC_CNTRL != 13 || _CC_ASCII != 14 \
|| _CC_VERTSPACE != 15
# error Need to adjust order of anyofs[]
# endif
static const char * const anyofs[] = {
"\\w",
"\\W",
"\\d",
"\\D",
"[:alpha:]",
"[:^alpha:]",
"[:lower:]",
"[:^lower:]",
"[:upper:]",
"[:^upper:]",
"[:punct:]",
"[:^punct:]",
"[:print:]",
"[:^print:]",
"[:alnum:]",
"[:^alnum:]",
"[:graph:]",
"[:^graph:]",
"[:cased:]",
"[:^cased:]",
"\\s",
"\\S",
"[:blank:]",
"[:^blank:]",
"[:xdigit:]",
"[:^xdigit:]",
"[:cntrl:]",
"[:^cntrl:]",
"[:ascii:]",
"[:^ascii:]",
"\\v",
"\\V"
};
#endif
/*
- regprop - printable representation of opcode, with run time support
*/
void
Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
{
#ifdef DEBUGGING
dVAR;
int k;
RXi_GET_DECL(prog, progi);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGPROP;
SvPVCLEAR(sv);
if (OP(o) > REGNODE_MAX) { /* regnode.type is unsigned */
if (pRExC_state) { /* This gives more info, if we have it */
FAIL3("panic: corrupted regexp opcode %d > %d",
(int)OP(o), (int)REGNODE_MAX);
}
else {
Perl_croak(aTHX_ "panic: corrupted regexp opcode %d > %d",
(int)OP(o), (int)REGNODE_MAX);
}
}
sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
k = PL_regkind[OP(o)];
if (k == EXACT) {
sv_catpvs(sv, " ");
/* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
* is a crude hack but it may be the best for now since
* we have no flag "this EXACTish node was UTF-8"
* --jhi */
pv_pretty(sv, STRING(o), STR_LEN(o), PL_dump_re_max_len,
PL_colors[0], PL_colors[1],
PERL_PV_ESCAPE_UNI_DETECT |
PERL_PV_ESCAPE_NONASCII |
PERL_PV_PRETTY_ELLIPSES |
PERL_PV_PRETTY_LTGT |
PERL_PV_PRETTY_NOCLEAR
);
} else if (k == TRIE) {
/* print the details of the trie in dumpuntil instead, as
* progi->data isn't available here */
const char op = OP(o);
const U32 n = ARG(o);
const reg_ac_data * const ac = IS_TRIE_AC(op) ?
(reg_ac_data *)progi->data->data[n] :
NULL;
const reg_trie_data * const trie
= (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
Perl_sv_catpvf(aTHX_ sv, "-%s", PL_reg_name[o->flags]);
DEBUG_TRIE_COMPILE_r({
if (trie->jump)
sv_catpvs(sv, "(JUMP)");
Perl_sv_catpvf(aTHX_ sv,
"<S:%" UVuf "/%" IVdf " W:%" UVuf " L:%" UVuf "/%" UVuf " C:%" UVuf "/%" UVuf ">",
(UV)trie->startstate,
(IV)trie->statecount-1, /* -1 because of the unused 0 element */
(UV)trie->wordcount,
(UV)trie->minlen,
(UV)trie->maxlen,
(UV)TRIE_CHARCOUNT(trie),
(UV)trie->uniquecharcount
);
});
if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
sv_catpvs(sv, "[");
(void) put_charclass_bitmap_innards(sv,
((IS_ANYOF_TRIE(op))
? ANYOF_BITMAP(o)
: TRIE_BITMAP(trie)),
NULL,
NULL,
NULL,
0,
FALSE
);
sv_catpvs(sv, "]");
}
} else if (k == CURLY) {
U32 lo = ARG1(o), hi = ARG2(o);
if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
Perl_sv_catpvf(aTHX_ sv, "{%u,", (unsigned) lo);
if (hi == REG_INFTY)
sv_catpvs(sv, "INFTY");
else
Perl_sv_catpvf(aTHX_ sv, "%u", (unsigned) hi);
sv_catpvs(sv, "}");
}
else if (k == WHILEM && o->flags) /* Ordinal/of */
Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
else if (k == REF || k == OPEN || k == CLOSE
|| k == GROUPP || OP(o)==ACCEPT)
{
AV *name_list= NULL;
U32 parno= OP(o) == ACCEPT ? (U32)ARG2L(o) : ARG(o);
Perl_sv_catpvf(aTHX_ sv, "%" UVuf, (UV)parno); /* Parenth number */
if ( RXp_PAREN_NAMES(prog) ) {
name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
} else if ( pRExC_state ) {
name_list= RExC_paren_name_list;
}
if (name_list) {
if ( k != REF || (OP(o) < REFN)) {
SV **name= av_fetch(name_list, parno, 0 );
if (name)
Perl_sv_catpvf(aTHX_ sv, " '%" SVf "'", SVfARG(*name));
}
else {
SV *sv_dat= MUTABLE_SV(progi->data->data[ parno ]);
I32 *nums=(I32*)SvPVX(sv_dat);
SV **name= av_fetch(name_list, nums[0], 0 );
I32 n;
if (name) {
for ( n=0; n<SvIVX(sv_dat); n++ ) {
Perl_sv_catpvf(aTHX_ sv, "%s%" IVdf,
(n ? "," : ""), (IV)nums[n]);
}
Perl_sv_catpvf(aTHX_ sv, " '%" SVf "'", SVfARG(*name));
}
}
}
if ( k == REF && reginfo) {
U32 n = ARG(o); /* which paren pair */
I32 ln = prog->offs[n].start;
if (prog->lastparen < n || ln == -1 || prog->offs[n].end == -1)
Perl_sv_catpvf(aTHX_ sv, ": FAIL");
else if (ln == prog->offs[n].end)
Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
else {
const char *s = reginfo->strbeg + ln;
Perl_sv_catpvf(aTHX_ sv, ": ");
Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
}
}
} else if (k == GOSUB) {
AV *name_list= NULL;
if ( RXp_PAREN_NAMES(prog) ) {
name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
} else if ( pRExC_state ) {
name_list= RExC_paren_name_list;
}
/* Paren and offset */
Perl_sv_catpvf(aTHX_ sv, "%d[%+d:%d]", (int)ARG(o),(int)ARG2L(o),
(int)((o + (int)ARG2L(o)) - progi->program) );
if (name_list) {
SV **name= av_fetch(name_list, ARG(o), 0 );
if (name)
Perl_sv_catpvf(aTHX_ sv, " '%" SVf "'", SVfARG(*name));
}
}
else if (k == LOGICAL)
/* 2: embedded, otherwise 1 */
Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
else if (k == ANYOF || k == ANYOFR) {
U8 flags;
char * bitmap;
U32 arg;
bool do_sep = FALSE; /* Do we need to separate various components of
the output? */
/* Set if there is still an unresolved user-defined property */
SV *unresolved = NULL;
/* Things that are ignored except when the runtime locale is UTF-8 */
SV *only_utf8_locale_invlist = NULL;
/* Code points that don't fit in the bitmap */
SV *nonbitmap_invlist = NULL;
/* And things that aren't in the bitmap, but are small enough to be */
SV* bitmap_range_not_in_bitmap = NULL;
bool inverted;
if (inRANGE(OP(o), ANYOFH, ANYOFRb)) {
flags = 0;
bitmap = NULL;
arg = 0;
}
else {
flags = ANYOF_FLAGS(o);
bitmap = ANYOF_BITMAP(o);
arg = ARG(o);
}
if (OP(o) == ANYOFL || OP(o) == ANYOFPOSIXL) {
if (ANYOFL_UTF8_LOCALE_REQD(flags)) {
sv_catpvs(sv, "{utf8-locale-reqd}");
}
if (flags & ANYOFL_FOLD) {
sv_catpvs(sv, "{i}");
}
}
inverted = flags & ANYOF_INVERT;
/* If there is stuff outside the bitmap, get it */
if (arg != ANYOF_ONLY_HAS_BITMAP) {
if (inRANGE(OP(o), ANYOFR, ANYOFRb)) {
nonbitmap_invlist = _add_range_to_invlist(nonbitmap_invlist,
ANYOFRbase(o),
ANYOFRbase(o) + ANYOFRdelta(o));
}
else {
#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
(void) get_regclass_nonbitmap_data(prog, o, FALSE,
&unresolved,
&only_utf8_locale_invlist,
&nonbitmap_invlist);
#else
(void) get_re_gclass_nonbitmap_data(prog, o, FALSE,
&unresolved,
&only_utf8_locale_invlist,
&nonbitmap_invlist);
#endif
}
/* The non-bitmap data may contain stuff that could fit in the
* bitmap. This could come from a user-defined property being
* finally resolved when this call was done; or much more likely
* because there are matches that require UTF-8 to be valid, and so
* aren't in the bitmap (or ANYOFR). This is teased apart later */
_invlist_intersection(nonbitmap_invlist,
PL_InBitmap,
&bitmap_range_not_in_bitmap);
/* Leave just the things that don't fit into the bitmap */
_invlist_subtract(nonbitmap_invlist,
PL_InBitmap,
&nonbitmap_invlist);
}
/* Obey this flag to add all above-the-bitmap code points */
if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
nonbitmap_invlist = _add_range_to_invlist(nonbitmap_invlist,
NUM_ANYOF_CODE_POINTS,
UV_MAX);
}
/* Ready to start outputting. First, the initial left bracket */
Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
/* ANYOFH by definition doesn't have anything that will fit inside the
* bitmap; ANYOFR may or may not. */
if ( ! inRANGE(OP(o), ANYOFH, ANYOFHr)
&& ( ! inRANGE(OP(o), ANYOFR, ANYOFRb)
|| ANYOFRbase(o) < NUM_ANYOF_CODE_POINTS))
{
/* Then all the things that could fit in the bitmap */
do_sep = put_charclass_bitmap_innards(sv,
bitmap,
bitmap_range_not_in_bitmap,
only_utf8_locale_invlist,
o,
flags,
/* Can't try inverting for a
* better display if there
* are things that haven't
* been resolved */
unresolved != NULL
|| inRANGE(OP(o), ANYOFR, ANYOFRb));
SvREFCNT_dec(bitmap_range_not_in_bitmap);
/* If there are user-defined properties which haven't been defined
* yet, output them. If the result is not to be inverted, it is
* clearest to output them in a separate [] from the bitmap range
* stuff. If the result is to be complemented, we have to show
* everything in one [], as the inversion applies to the whole
* thing. Use {braces} to separate them from anything in the
* bitmap and anything above the bitmap. */
if (unresolved) {
if (inverted) {
if (! do_sep) { /* If didn't output anything in the bitmap
*/
sv_catpvs(sv, "^");
}
sv_catpvs(sv, "{");
}
else if (do_sep) {
Perl_sv_catpvf(aTHX_ sv,"%s][%s", PL_colors[1],
PL_colors[0]);
}
sv_catsv(sv, unresolved);
if (inverted) {
sv_catpvs(sv, "}");
}
do_sep = ! inverted;
}
}
/* And, finally, add the above-the-bitmap stuff */
if (nonbitmap_invlist && _invlist_len(nonbitmap_invlist)) {
SV* contents;
/* See if truncation size is overridden */
const STRLEN dump_len = (PL_dump_re_max_len > 256)
? PL_dump_re_max_len
: 256;
/* This is output in a separate [] */
if (do_sep) {
Perl_sv_catpvf(aTHX_ sv,"%s][%s", PL_colors[1], PL_colors[0]);
}
/* And, for easy of understanding, it is shown in the
* uncomplemented form if possible. The one exception being if
* there are unresolved items, where the inversion has to be
* delayed until runtime */
if (inverted && ! unresolved) {
_invlist_invert(nonbitmap_invlist);
_invlist_subtract(nonbitmap_invlist, PL_InBitmap, &nonbitmap_invlist);
}
contents = invlist_contents(nonbitmap_invlist,
FALSE /* output suitable for catsv */
);
/* If the output is shorter than the permissible maximum, just do it. */
if (SvCUR(contents) <= dump_len) {
sv_catsv(sv, contents);
}
else {
const char * contents_string = SvPVX(contents);
STRLEN i = dump_len;
/* Otherwise, start at the permissible max and work back to the
* first break possibility */
while (i > 0 && contents_string[i] != ' ') {
i--;
}
if (i == 0) { /* Fail-safe. Use the max if we couldn't
find a legal break */
i = dump_len;
}
sv_catpvn(sv, contents_string, i);
sv_catpvs(sv, "...");
}
SvREFCNT_dec_NN(contents);
SvREFCNT_dec_NN(nonbitmap_invlist);
}
/* And finally the matching, closing ']' */
Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
if (OP(o) == ANYOFHs) {
Perl_sv_catpvf(aTHX_ sv, " (Leading UTF-8 bytes=%s", _byte_dump_string((U8 *) ((struct regnode_anyofhs *) o)->string, FLAGS(o), 1));
}
else if (inRANGE(OP(o), ANYOFH, ANYOFRb)) {
U8 lowest = (OP(o) != ANYOFHr)
? FLAGS(o)
: LOWEST_ANYOF_HRx_BYTE(FLAGS(o));
U8 highest = (OP(o) == ANYOFHr)
? HIGHEST_ANYOF_HRx_BYTE(FLAGS(o))
: (OP(o) == ANYOFH || OP(o) == ANYOFR)
? 0xFF
: lowest;
#ifndef EBCDIC
if (OP(o) != ANYOFR || ! isASCII(ANYOFRbase(o) + ANYOFRdelta(o)))
#endif
{
Perl_sv_catpvf(aTHX_ sv, " (First UTF-8 byte=%02X", lowest);
if (lowest != highest) {
Perl_sv_catpvf(aTHX_ sv, "-%02X", highest);
}
Perl_sv_catpvf(aTHX_ sv, ")");
}
}
SvREFCNT_dec(unresolved);
}
else if (k == ANYOFM) {
SV * cp_list = get_ANYOFM_contents(o);
Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
if (OP(o) == NANYOFM) {
_invlist_invert(cp_list);
}
put_charclass_bitmap_innards(sv, NULL, cp_list, NULL, NULL, 0, TRUE);
Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
SvREFCNT_dec(cp_list);
}
else if (k == POSIXD || k == NPOSIXD) {
U8 index = FLAGS(o) * 2;
if (index < C_ARRAY_LENGTH(anyofs)) {
if (*anyofs[index] != '[') {
sv_catpvs(sv, "[");
}
sv_catpv(sv, anyofs[index]);
if (*anyofs[index] != '[') {
sv_catpvs(sv, "]");
}
}
else {
Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
}
}
else if (k == BOUND || k == NBOUND) {
/* Must be synced with order of 'bound_type' in regcomp.h */
const char * const bounds[] = {
"", /* Traditional */
"{gcb}",
"{lb}",
"{sb}",
"{wb}"
};
assert(FLAGS(o) < C_ARRAY_LENGTH(bounds));
sv_catpv(sv, bounds[FLAGS(o)]);
}
else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH)) {
Perl_sv_catpvf(aTHX_ sv, "[%d", -(o->flags));
if (o->next_off) {
Perl_sv_catpvf(aTHX_ sv, "..-%d", o->flags - o->next_off);
}
Perl_sv_catpvf(aTHX_ sv, "]");
}
else if (OP(o) == SBOL)
Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
/* add on the verb argument if there is one */
if ( ( k == VERB || OP(o) == ACCEPT || OP(o) == OPFAIL ) && o->flags) {
if ( ARG(o) )
Perl_sv_catpvf(aTHX_ sv, ":%" SVf,
SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
else
sv_catpvs(sv, ":NULL");
}
#else
PERL_UNUSED_CONTEXT;
PERL_UNUSED_ARG(sv);
PERL_UNUSED_ARG(o);
PERL_UNUSED_ARG(prog);
PERL_UNUSED_ARG(reginfo);
PERL_UNUSED_ARG(pRExC_state);
#endif /* DEBUGGING */
}
SV *
Perl_re_intuit_string(pTHX_ REGEXP * const r)
{ /* Assume that RE_INTUIT is set */
/* Returns an SV containing a string that must appear in the target for it
* to match, or NULL if nothing is known that must match.
*
* CAUTION: the SV can be freed during execution of the regex engine */
struct regexp *const prog = ReANY(r);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_RE_INTUIT_STRING;
PERL_UNUSED_CONTEXT;
DEBUG_COMPILE_r(
{
if (prog->maxlen > 0) {
const char * const s = SvPV_nolen_const(RX_UTF8(r)
? prog->check_utf8 : prog->check_substr);
if (!PL_colorset) reginitcolors();
Perl_re_printf( aTHX_
"%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
PL_colors[4],
RX_UTF8(r) ? "utf8 " : "",
PL_colors[5], PL_colors[0],
s,
PL_colors[1],
(strlen(s) > PL_dump_re_max_len ? "..." : ""));
}
} );
/* use UTF8 check substring if regexp pattern itself is in UTF8 */
return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
}
/*
pregfree()
handles refcounting and freeing the perl core regexp structure. When
it is necessary to actually free the structure the first thing it
does is call the 'free' method of the regexp_engine associated to
the regexp, allowing the handling of the void *pprivate; member
first. (This routine is not overridable by extensions, which is why
the extensions free is called first.)
See regdupe and regdupe_internal if you change anything here.
*/
#ifndef PERL_IN_XSUB_RE
void
Perl_pregfree(pTHX_ REGEXP *r)
{
SvREFCNT_dec(r);
}
void
Perl_pregfree2(pTHX_ REGEXP *rx)
{
struct regexp *const r = ReANY(rx);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_PREGFREE2;
if (! r)
return;
if (r->mother_re) {
ReREFCNT_dec(r->mother_re);
} else {
CALLREGFREE_PVT(rx); /* free the private data */
SvREFCNT_dec(RXp_PAREN_NAMES(r));
}
if (r->substrs) {
int i;
for (i = 0; i < 2; i++) {
SvREFCNT_dec(r->substrs->data[i].substr);
SvREFCNT_dec(r->substrs->data[i].utf8_substr);
}
Safefree(r->substrs);
}
RX_MATCH_COPY_FREE(rx);
#ifdef PERL_ANY_COW
SvREFCNT_dec(r->saved_copy);
#endif
Safefree(r->offs);
SvREFCNT_dec(r->qr_anoncv);
if (r->recurse_locinput)
Safefree(r->recurse_locinput);
}
/* reg_temp_copy()
Copy ssv to dsv, both of which should of type SVt_REGEXP or SVt_PVLV,
except that dsv will be created if NULL.
This function is used in two main ways. First to implement
$r = qr/....; $s = $$r;
Secondly, it is used as a hacky workaround to the structural issue of
match results
being stored in the regexp structure which is in turn stored in
PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
could be PL_curpm in multiple contexts, and could require multiple
result sets being associated with the pattern simultaneously, such
as when doing a recursive match with (??{$qr})
The solution is to make a lightweight copy of the regexp structure
when a qr// is returned from the code executed by (??{$qr}) this
lightweight copy doesn't actually own any of its data except for
the starp/end and the actual regexp structure itself.
*/
REGEXP *
Perl_reg_temp_copy(pTHX_ REGEXP *dsv, REGEXP *ssv)
{
struct regexp *drx;
struct regexp *const srx = ReANY(ssv);
const bool islv = dsv && SvTYPE(dsv) == SVt_PVLV;
PERL_ARGS_ASSERT_REG_TEMP_COPY;
if (!dsv)
dsv = (REGEXP*) newSV_type(SVt_REGEXP);
else {
assert(SvTYPE(dsv) == SVt_REGEXP || (SvTYPE(dsv) == SVt_PVLV));
/* our only valid caller, sv_setsv_flags(), should have done
* a SV_CHECK_THINKFIRST_COW_DROP() by now */
assert(!SvOOK(dsv));
assert(!SvIsCOW(dsv));
assert(!SvROK(dsv));
if (SvPVX_const(dsv)) {
if (SvLEN(dsv))
Safefree(SvPVX(dsv));
SvPVX(dsv) = NULL;
}
SvLEN_set(dsv, 0);
SvCUR_set(dsv, 0);
SvOK_off((SV *)dsv);
if (islv) {
/* For PVLVs, the head (sv_any) points to an XPVLV, while
* the LV's xpvlenu_rx will point to a regexp body, which
* we allocate here */
REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
assert(!SvPVX(dsv));
((XPV*)SvANY(dsv))->xpv_len_u.xpvlenu_rx = temp->sv_any;
temp->sv_any = NULL;
SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
SvREFCNT_dec_NN(temp);
/* SvCUR still resides in the xpvlv struct, so the regexp copy-
ing below will not set it. */
SvCUR_set(dsv, SvCUR(ssv));
}
}
/* This ensures that SvTHINKFIRST(sv) is true, and hence that
sv_force_normal(sv) is called. */
SvFAKE_on(dsv);
drx = ReANY(dsv);
SvFLAGS(dsv) |= SvFLAGS(ssv) & (SVf_POK|SVp_POK|SVf_UTF8);
SvPV_set(dsv, RX_WRAPPED(ssv));
/* We share the same string buffer as the original regexp, on which we
hold a reference count, incremented when mother_re is set below.
The string pointer is copied here, being part of the regexp struct.
*/
memcpy(&(drx->xpv_cur), &(srx->xpv_cur),
sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
if (!islv)
SvLEN_set(dsv, 0);
if (srx->offs) {
const I32 npar = srx->nparens+1;
Newx(drx->offs, npar, regexp_paren_pair);
Copy(srx->offs, drx->offs, npar, regexp_paren_pair);
}
if (srx->substrs) {
int i;
Newx(drx->substrs, 1, struct reg_substr_data);
StructCopy(srx->substrs, drx->substrs, struct reg_substr_data);
for (i = 0; i < 2; i++) {
SvREFCNT_inc_void(drx->substrs->data[i].substr);
SvREFCNT_inc_void(drx->substrs->data[i].utf8_substr);
}
/* check_substr and check_utf8, if non-NULL, point to either their
anchored or float namesakes, and don't hold a second reference. */
}
RX_MATCH_COPIED_off(dsv);
#ifdef PERL_ANY_COW
drx->saved_copy = NULL;
#endif
drx->mother_re = ReREFCNT_inc(srx->mother_re ? srx->mother_re : ssv);
SvREFCNT_inc_void(drx->qr_anoncv);
if (srx->recurse_locinput)
Newx(drx->recurse_locinput, srx->nparens + 1, char *);
return dsv;
}
#endif
/* regfree_internal()
Free the private data in a regexp. This is overloadable by
extensions. Perl takes care of the regexp structure in pregfree(),
this covers the *pprivate pointer which technically perl doesn't
know about, however of course we have to handle the
regexp_internal structure when no extension is in use.
Note this is called before freeing anything in the regexp
structure.
*/
void
Perl_regfree_internal(pTHX_ REGEXP * const rx)
{
struct regexp *const r = ReANY(rx);
RXi_GET_DECL(r, ri);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGFREE_INTERNAL;
if (! ri) {
return;
}
DEBUG_COMPILE_r({
if (!PL_colorset)
reginitcolors();
{
SV *dsv= sv_newmortal();
RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
dsv, RX_PRECOMP(rx), RX_PRELEN(rx), PL_dump_re_max_len);
Perl_re_printf( aTHX_ "%sFreeing REx:%s %s\n",
PL_colors[4], PL_colors[5], s);
}
});
#ifdef RE_TRACK_PATTERN_OFFSETS
if (ri->u.offsets)
Safefree(ri->u.offsets); /* 20010421 MJD */
#endif
if (ri->code_blocks)
S_free_codeblocks(aTHX_ ri->code_blocks);
if (ri->data) {
int n = ri->data->count;
while (--n >= 0) {
/* If you add a ->what type here, update the comment in regcomp.h */
switch (ri->data->what[n]) {
case 'a':
case 'r':
case 's':
case 'S':
case 'u':
SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
break;
case 'f':
Safefree(ri->data->data[n]);
break;
case 'l':
case 'L':
break;
case 'T':
{ /* Aho Corasick add-on structure for a trie node.
Used in stclass optimization only */
U32 refcount;
reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
#ifdef USE_ITHREADS
dVAR;
#endif
OP_REFCNT_LOCK;
refcount = --aho->refcount;
OP_REFCNT_UNLOCK;
if ( !refcount ) {
PerlMemShared_free(aho->states);
PerlMemShared_free(aho->fail);
/* do this last!!!! */
PerlMemShared_free(ri->data->data[n]);
/* we should only ever get called once, so
* assert as much, and also guard the free
* which /might/ happen twice. At the least
* it will make code anlyzers happy and it
* doesn't cost much. - Yves */
assert(ri->regstclass);
if (ri->regstclass) {
PerlMemShared_free(ri->regstclass);
ri->regstclass = 0;
}
}
}
break;
case 't':
{
/* trie structure. */
U32 refcount;
reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
#ifdef USE_ITHREADS
dVAR;
#endif
OP_REFCNT_LOCK;
refcount = --trie->refcount;
OP_REFCNT_UNLOCK;
if ( !refcount ) {
PerlMemShared_free(trie->charmap);
PerlMemShared_free(trie->states);
PerlMemShared_free(trie->trans);
if (trie->bitmap)
PerlMemShared_free(trie->bitmap);
if (trie->jump)
PerlMemShared_free(trie->jump);
PerlMemShared_free(trie->wordinfo);
/* do this last!!!! */
PerlMemShared_free(ri->data->data[n]);
}
}
break;
default:
Perl_croak(aTHX_ "panic: regfree data code '%c'",
ri->data->what[n]);
}
}
Safefree(ri->data->what);
Safefree(ri->data);
}
Safefree(ri);
}
#define av_dup_inc(s, t) MUTABLE_AV(sv_dup_inc((const SV *)s, t))
#define hv_dup_inc(s, t) MUTABLE_HV(sv_dup_inc((const SV *)s, t))
#define SAVEPVN(p, n) ((p) ? savepvn(p, n) : NULL)
/*
re_dup_guts - duplicate a regexp.
This routine is expected to clone a given regexp structure. It is only
compiled under USE_ITHREADS.
After all of the core data stored in struct regexp is duplicated
the regexp_engine.dupe method is used to copy any private data
stored in the *pprivate pointer. This allows extensions to handle
any duplication it needs to do.
See pregfree() and regfree_internal() if you change anything here.
*/
#if defined(USE_ITHREADS)
#ifndef PERL_IN_XSUB_RE
void
Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
{
dVAR;
I32 npar;
const struct regexp *r = ReANY(sstr);
struct regexp *ret = ReANY(dstr);
PERL_ARGS_ASSERT_RE_DUP_GUTS;
npar = r->nparens+1;
Newx(ret->offs, npar, regexp_paren_pair);
Copy(r->offs, ret->offs, npar, regexp_paren_pair);
if (ret->substrs) {
/* Do it this way to avoid reading from *r after the StructCopy().
That way, if any of the sv_dup_inc()s dislodge *r from the L1
cache, it doesn't matter. */
int i;
const bool anchored = r->check_substr
? r->check_substr == r->substrs->data[0].substr
: r->check_utf8 == r->substrs->data[0].utf8_substr;
Newx(ret->substrs, 1, struct reg_substr_data);
StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
for (i = 0; i < 2; i++) {
ret->substrs->data[i].substr =
sv_dup_inc(ret->substrs->data[i].substr, param);
ret->substrs->data[i].utf8_substr =
sv_dup_inc(ret->substrs->data[i].utf8_substr, param);
}
/* check_substr and check_utf8, if non-NULL, point to either their
anchored or float namesakes, and don't hold a second reference. */
if (ret->check_substr) {
if (anchored) {
assert(r->check_utf8 == r->substrs->data[0].utf8_substr);
ret->check_substr = ret->substrs->data[0].substr;
ret->check_utf8 = ret->substrs->data[0].utf8_substr;
} else {
assert(r->check_substr == r->substrs->data[1].substr);
assert(r->check_utf8 == r->substrs->data[1].utf8_substr);
ret->check_substr = ret->substrs->data[1].substr;
ret->check_utf8 = ret->substrs->data[1].utf8_substr;
}
} else if (ret->check_utf8) {
if (anchored) {
ret->check_utf8 = ret->substrs->data[0].utf8_substr;
} else {
ret->check_utf8 = ret->substrs->data[1].utf8_substr;
}
}
}
RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
if (r->recurse_locinput)
Newx(ret->recurse_locinput, r->nparens + 1, char *);
if (ret->pprivate)
RXi_SET(ret, CALLREGDUPE_PVT(dstr, param));
if (RX_MATCH_COPIED(dstr))
ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
else
ret->subbeg = NULL;
#ifdef PERL_ANY_COW
ret->saved_copy = NULL;
#endif
/* Whether mother_re be set or no, we need to copy the string. We
cannot refrain from copying it when the storage points directly to
our mother regexp, because that's
1: a buffer in a different thread
2: something we no longer hold a reference on
so we need to copy it locally. */
RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED_const(sstr), SvCUR(sstr)+1);
/* set malloced length to a non-zero value so it will be freed
* (otherwise in combination with SVf_FAKE it looks like an alien
* buffer). It doesn't have to be the actual malloced size, since it
* should never be grown */
SvLEN_set(dstr, SvCUR(sstr)+1);
ret->mother_re = NULL;
}
#endif /* PERL_IN_XSUB_RE */
/*
regdupe_internal()
This is the internal complement to regdupe() which is used to copy
the structure pointed to by the *pprivate pointer in the regexp.
This is the core version of the extension overridable cloning hook.
The regexp structure being duplicated will be copied by perl prior
to this and will be provided as the regexp *r argument, however
with the /old/ structures pprivate pointer value. Thus this routine
may override any copying normally done by perl.
It returns a pointer to the new regexp_internal structure.
*/
void *
Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
{
dVAR;
struct regexp *const r = ReANY(rx);
regexp_internal *reti;
int len;
RXi_GET_DECL(r, ri);
PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
len = ProgLen(ri);
Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
char, regexp_internal);
Copy(ri->program, reti->program, len+1, regnode);
if (ri->code_blocks) {
int n;
Newx(reti->code_blocks, 1, struct reg_code_blocks);
Newx(reti->code_blocks->cb, ri->code_blocks->count,
struct reg_code_block);
Copy(ri->code_blocks->cb, reti->code_blocks->cb,
ri->code_blocks->count, struct reg_code_block);
for (n = 0; n < ri->code_blocks->count; n++)
reti->code_blocks->cb[n].src_regex = (REGEXP*)
sv_dup_inc((SV*)(ri->code_blocks->cb[n].src_regex), param);
reti->code_blocks->count = ri->code_blocks->count;
reti->code_blocks->refcnt = 1;
}
else
reti->code_blocks = NULL;
reti->regstclass = NULL;
if (ri->data) {
struct reg_data *d;
const int count = ri->data->count;
int i;
Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
char, struct reg_data);
Newx(d->what, count, U8);
d->count = count;
for (i = 0; i < count; i++) {
d->what[i] = ri->data->what[i];
switch (d->what[i]) {
/* see also regcomp.h and regfree_internal() */
case 'a': /* actually an AV, but the dup function is identical.
values seem to be "plain sv's" generally. */
case 'r': /* a compiled regex (but still just another SV) */
case 's': /* an RV (currently only used for an RV to an AV by the ANYOF code)
this use case should go away, the code could have used
'a' instead - see S_set_ANYOF_arg() for array contents. */
case 'S': /* actually an SV, but the dup function is identical. */
case 'u': /* actually an HV, but the dup function is identical.
values are "plain sv's" */
d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
break;
case 'f':
/* Synthetic Start Class - "Fake" charclass we generate to optimize
* patterns which could start with several different things. Pre-TRIE
* this was more important than it is now, however this still helps
* in some places, for instance /x?a+/ might produce a SSC equivalent
* to [xa]. This is used by Perl_re_intuit_start() and S_find_byclass()
* in regexec.c
*/
/* This is cheating. */
Newx(d->data[i], 1, regnode_ssc);
StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
reti->regstclass = (regnode*)d->data[i];
break;
case 'T':
/* AHO-CORASICK fail table */
/* Trie stclasses are readonly and can thus be shared
* without duplication. We free the stclass in pregfree
* when the corresponding reg_ac_data struct is freed.
*/
reti->regstclass= ri->regstclass;
/* FALLTHROUGH */
case 't':
/* TRIE transition table */
OP_REFCNT_LOCK;
((reg_trie_data*)ri->data->data[i])->refcount++;
OP_REFCNT_UNLOCK;
/* FALLTHROUGH */
case 'l': /* (?{...}) or (??{ ... }) code (cb->block) */
case 'L': /* same when RExC_pm_flags & PMf_HAS_CV and code
is not from another regexp */
d->data[i] = ri->data->data[i];
break;
default:
Perl_croak(aTHX_ "panic: re_dup_guts unknown data code '%c'",
ri->data->what[i]);
}
}
reti->data = d;
}
else
reti->data = NULL;
reti->name_list_idx = ri->name_list_idx;
#ifdef RE_TRACK_PATTERN_OFFSETS
if (ri->u.offsets) {
Newx(reti->u.offsets, 2*len+1, U32);
Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
}
#else
SetProgLen(reti, len);
#endif
return (void*)reti;
}
#endif /* USE_ITHREADS */
#ifndef PERL_IN_XSUB_RE
/*
- regnext - dig the "next" pointer out of a node
*/
regnode *
Perl_regnext(pTHX_ regnode *p)
{
I32 offset;
if (!p)
return(NULL);
if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
(int)OP(p), (int)REGNODE_MAX);
}
offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
if (offset == 0)
return(NULL);
return(p+offset);
}
#endif
STATIC void
S_re_croak(pTHX_ bool utf8, const char* pat,...)
{
va_list args;
STRLEN len = strlen(pat);
char buf[512];
SV *msv;
const char *message;
PERL_ARGS_ASSERT_RE_CROAK;
if (len > 510)
len = 510;
Copy(pat, buf, len , char);
buf[len] = '\n';
buf[len + 1] = '\0';
va_start(args, pat);
msv = vmess(buf, &args);
va_end(args);
message = SvPV_const(msv, len);
if (len > 512)
len = 512;
Copy(message, buf, len , char);
/* len-1 to avoid \n */
Perl_croak(aTHX_ "%" UTF8f, UTF8fARG(utf8, len-1, buf));
}
/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
#ifndef PERL_IN_XSUB_RE
void
Perl_save_re_context(pTHX)
{
I32 nparens = -1;
I32 i;
/* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
if (PL_curpm) {
const REGEXP * const rx = PM_GETRE(PL_curpm);
if (rx)
nparens = RX_NPARENS(rx);
}
/* RT #124109. This is a complete hack; in the SWASHNEW case we know
* that PL_curpm will be null, but that utf8.pm and the modules it
* loads will only use $1..$3.
* The t/porting/re_context.t test file checks this assumption.
*/
if (nparens == -1)
nparens = 3;
for (i = 1; i <= nparens; i++) {
char digits[TYPE_CHARS(long)];
const STRLEN len = my_snprintf(digits, sizeof(digits),
"%lu", (long)i);
GV *const *const gvp
= (GV**)hv_fetch(PL_defstash, digits, len, 0);
if (gvp) {
GV * const gv = *gvp;
if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
save_scalar(gv);
}
}
}
#endif
#ifdef DEBUGGING
STATIC void
S_put_code_point(pTHX_ SV *sv, UV c)
{
PERL_ARGS_ASSERT_PUT_CODE_POINT;
if (c > 255) {
Perl_sv_catpvf(aTHX_ sv, "\\x{%04" UVXf "}", c);
}
else if (isPRINT(c)) {
const char string = (char) c;
/* We use {phrase} as metanotation in the class, so also escape literal
* braces */
if (isBACKSLASHED_PUNCT(c) || c == '{' || c == '}')
sv_catpvs(sv, "\\");
sv_catpvn(sv, &string, 1);
}
else if (isMNEMONIC_CNTRL(c)) {
Perl_sv_catpvf(aTHX_ sv, "%s", cntrl_to_mnemonic((U8) c));
}
else {
Perl_sv_catpvf(aTHX_ sv, "\\x%02X", (U8) c);
}
}
#define MAX_PRINT_A MAX_PRINT_A_FOR_USE_ONLY_BY_REGCOMP_DOT_C
STATIC void
S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
{
/* Appends to 'sv' a displayable version of the range of code points from
* 'start' to 'end'. Mnemonics (like '\r') are used for the few controls
* that have them, when they occur at the beginning or end of the range.
* It uses hex to output the remaining code points, unless 'allow_literals'
* is true, in which case the printable ASCII ones are output as-is (though
* some of these will be escaped by put_code_point()).
*
* NOTE: This is designed only for printing ranges of code points that fit
* inside an ANYOF bitmap. Higher code points are simply suppressed
*/
const unsigned int min_range_count = 3;
assert(start <= end);
PERL_ARGS_ASSERT_PUT_RANGE;
while (start <= end) {
UV this_end;
const char * format;
if (end - start < min_range_count) {
/* Output chars individually when they occur in short ranges */
for (; start <= end; start++) {
put_code_point(sv, start);
}
break;
}
/* If permitted by the input options, and there is a possibility that
* this range contains a printable literal, look to see if there is
* one. */
if (allow_literals && start <= MAX_PRINT_A) {
/* If the character at the beginning of the range isn't an ASCII
* printable, effectively split the range into two parts:
* 1) the portion before the first such printable,
* 2) the rest
* and output them separately. */
if (! isPRINT_A(start)) {
UV temp_end = start + 1;
/* There is no point looking beyond the final possible
* printable, in MAX_PRINT_A */
UV max = MIN(end, MAX_PRINT_A);
while (temp_end <= max && ! isPRINT_A(temp_end)) {
temp_end++;
}
/* Here, temp_end points to one beyond the first printable if
* found, or to one beyond 'max' if not. If none found, make
* sure that we use the entire range */
if (temp_end > MAX_PRINT_A) {
temp_end = end + 1;
}
/* Output the first part of the split range: the part that
* doesn't have printables, with the parameter set to not look
* for literals (otherwise we would infinitely recurse) */
put_range(sv, start, temp_end - 1, FALSE);
/* The 2nd part of the range (if any) starts here. */
start = temp_end;
/* We do a continue, instead of dropping down, because even if
* the 2nd part is non-empty, it could be so short that we want
* to output it as individual characters, as tested for at the
* top of this loop. */
continue;
}
/* Here, 'start' is a printable ASCII. If it is an alphanumeric,
* output a sub-range of just the digits or letters, then process
* the remaining portion as usual. */
if (isALPHANUMERIC_A(start)) {
UV mask = (isDIGIT_A(start))
? _CC_DIGIT
: isUPPER_A(start)
? _CC_UPPER
: _CC_LOWER;
UV temp_end = start + 1;
/* Find the end of the sub-range that includes just the
* characters in the same class as the first character in it */
while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
temp_end++;
}
temp_end--;
/* For short ranges, don't duplicate the code above to output
* them; just call recursively */
if (temp_end - start < min_range_count) {
put_range(sv, start, temp_end, FALSE);
}
else { /* Output as a range */
put_code_point(sv, start);
sv_catpvs(sv, "-");
put_code_point(sv, temp_end);
}
start = temp_end + 1;
continue;
}
/* We output any other printables as individual characters */
if (isPUNCT_A(start) || isSPACE_A(start)) {
while (start <= end && (isPUNCT_A(start)
|| isSPACE_A(start)))
{
put_code_point(sv, start);
start++;
}
continue;
}
} /* End of looking for literals */
/* Here is not to output as a literal. Some control characters have
* mnemonic names. Split off any of those at the beginning and end of
* the range to print mnemonically. It isn't possible for many of
* these to be in a row, so this won't overwhelm with output */
if ( start <= end
&& (isMNEMONIC_CNTRL(start) || isMNEMONIC_CNTRL(end)))
{
while (isMNEMONIC_CNTRL(start) && start <= end) {
put_code_point(sv, start);
start++;
}
/* If this didn't take care of the whole range ... */
if (start <= end) {
/* Look backwards from the end to find the final non-mnemonic
* */
UV temp_end = end;
while (isMNEMONIC_CNTRL(temp_end)) {
temp_end--;
}
/* And separately output the interior range that doesn't start
* or end with mnemonics */
put_range(sv, start, temp_end, FALSE);
/* Then output the mnemonic trailing controls */
start = temp_end + 1;
while (start <= end) {
put_code_point(sv, start);
start++;
}
break;
}
}
/* As a final resort, output the range or subrange as hex. */
if (start >= NUM_ANYOF_CODE_POINTS) {
this_end = end;
}
else { /* Have to split range at the bitmap boundary */
this_end = (end < NUM_ANYOF_CODE_POINTS)
? end
: NUM_ANYOF_CODE_POINTS - 1;
}
#if NUM_ANYOF_CODE_POINTS > 256
format = (this_end < 256)
? "\\x%02" UVXf "-\\x%02" UVXf
: "\\x{%04" UVXf "}-\\x{%04" UVXf "}";
#else
format = "\\x%02" UVXf "-\\x%02" UVXf;
#endif
GCC_DIAG_IGNORE_STMT(-Wformat-nonliteral);
Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
GCC_DIAG_RESTORE_STMT;
break;
}
}
STATIC void
S_put_charclass_bitmap_innards_invlist(pTHX_ SV *sv, SV* invlist)
{
/* Concatenate onto the PV in 'sv' a displayable form of the inversion list
* 'invlist' */
UV start, end;
bool allow_literals = TRUE;
PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS_INVLIST;
/* Generally, it is more readable if printable characters are output as
* literals, but if a range (nearly) spans all of them, it's best to output
* it as a single range. This code will use a single range if all but 2
* ASCII printables are in it */
invlist_iterinit(invlist);
while (invlist_iternext(invlist, &start, &end)) {
/* If the range starts beyond the final printable, it doesn't have any
* in it */
if (start > MAX_PRINT_A) {
break;
}
/* In both ASCII and EBCDIC, a SPACE is the lowest printable. To span
* all but two, the range must start and end no later than 2 from
* either end */
if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
if (end > MAX_PRINT_A) {
end = MAX_PRINT_A;
}
if (start < ' ') {
start = ' ';
}
if (end - start >= MAX_PRINT_A - ' ' - 2) {
allow_literals = FALSE;
}
break;
}
}
invlist_iterfinish(invlist);
/* Here we have figured things out. Output each range */
invlist_iterinit(invlist);
while (invlist_iternext(invlist, &start, &end)) {
if (start >= NUM_ANYOF_CODE_POINTS) {
break;
}
put_range(sv, start, end, allow_literals);
}
invlist_iterfinish(invlist);
return;
}
STATIC SV*
S_put_charclass_bitmap_innards_common(pTHX_
SV* invlist, /* The bitmap */
SV* posixes, /* Under /l, things like [:word:], \S */
SV* only_utf8, /* Under /d, matches iff the target is UTF-8 */
SV* not_utf8, /* /d, matches iff the target isn't UTF-8 */
SV* only_utf8_locale, /* Under /l, matches if the locale is UTF-8 */
const bool invert /* Is the result to be inverted? */
)
{
/* Create and return an SV containing a displayable version of the bitmap
* and associated information determined by the input parameters. If the
* output would have been only the inversion indicator '^', NULL is instead
* returned. */
dVAR;
SV * output;
PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS_COMMON;
if (invert) {
output = newSVpvs("^");
}
else {
output = newSVpvs("");
}
/* First, the code points in the bitmap that are unconditionally there */
put_charclass_bitmap_innards_invlist(output, invlist);
/* Traditionally, these have been placed after the main code points */
if (posixes) {
sv_catsv(output, posixes);
}
if (only_utf8 && _invlist_len(only_utf8)) {
Perl_sv_catpvf(aTHX_ output, "%s{utf8}%s", PL_colors[1], PL_colors[0]);
put_charclass_bitmap_innards_invlist(output, only_utf8);
}
if (not_utf8 && _invlist_len(not_utf8)) {
Perl_sv_catpvf(aTHX_ output, "%s{not utf8}%s", PL_colors[1], PL_colors[0]);
put_charclass_bitmap_innards_invlist(output, not_utf8);
}
if (only_utf8_locale && _invlist_len(only_utf8_locale)) {
Perl_sv_catpvf(aTHX_ output, "%s{utf8 locale}%s", PL_colors[1], PL_colors[0]);
put_charclass_bitmap_innards_invlist(output, only_utf8_locale);
/* This is the only list in this routine that can legally contain code
* points outside the bitmap range. The call just above to
* 'put_charclass_bitmap_innards_invlist' will simply suppress them, so
* output them here. There's about a half-dozen possible, and none in
* contiguous ranges longer than 2 */
if (invlist_highest(only_utf8_locale) >= NUM_ANYOF_CODE_POINTS) {
UV start, end;
SV* above_bitmap = NULL;
_invlist_subtract(only_utf8_locale, PL_InBitmap, &above_bitmap);
invlist_iterinit(above_bitmap);
while (invlist_iternext(above_bitmap, &start, &end)) {
UV i;
for (i = start; i <= end; i++) {
put_code_point(output, i);
}
}
invlist_iterfinish(above_bitmap);
SvREFCNT_dec_NN(above_bitmap);
}
}
if (invert && SvCUR(output) == 1) {
return NULL;
}
return output;
}
STATIC bool
S_put_charclass_bitmap_innards(pTHX_ SV *sv,
char *bitmap,
SV *nonbitmap_invlist,
SV *only_utf8_locale_invlist,
const regnode * const node,
const U8 flags,
const bool force_as_is_display)
{
/* Appends to 'sv' a displayable version of the innards of the bracketed
* character class defined by the other arguments:
* 'bitmap' points to the bitmap, or NULL if to ignore that.
* 'nonbitmap_invlist' is an inversion list of the code points that are in
* the bitmap range, but for some reason aren't in the bitmap; NULL if
* none. The reasons for this could be that they require some
* condition such as the target string being or not being in UTF-8
* (under /d), or because they came from a user-defined property that
* was not resolved at the time of the regex compilation (under /u)
* 'only_utf8_locale_invlist' is an inversion list of the code points that
* are valid only if the runtime locale is a UTF-8 one; NULL if none
* 'node' is the regex pattern ANYOF node. It is needed only when the
* above two parameters are not null, and is passed so that this
* routine can tease apart the various reasons for them.
* 'flags' is the flags field of 'node'
* 'force_as_is_display' is TRUE if this routine should definitely NOT try
* to invert things to see if that leads to a cleaner display. If
* FALSE, this routine is free to use its judgment about doing this.
*
* It returns TRUE if there was actually something output. (It may be that
* the bitmap, etc is empty.)
*
* When called for outputting the bitmap of a non-ANYOF node, just pass the
* bitmap, with the succeeding parameters set to NULL, and the final one to
* FALSE.
*/
/* In general, it tries to display the 'cleanest' representation of the
* innards, choosing whether to display them inverted or not, regardless of
* whether the class itself is to be inverted. However, there are some
* cases where it can't try inverting, as what actually matches isn't known
* until runtime, and hence the inversion isn't either. */
dVAR;
bool inverting_allowed = ! force_as_is_display;
int i;
STRLEN orig_sv_cur = SvCUR(sv);
SV* invlist; /* Inversion list we accumulate of code points that
are unconditionally matched */
SV* only_utf8 = NULL; /* Under /d, list of matches iff the target is
UTF-8 */
SV* not_utf8 = NULL; /* /d, list of matches iff the target isn't UTF-8
*/
SV* posixes = NULL; /* Under /l, string of things like [:word:], \D */
SV* only_utf8_locale = NULL; /* Under /l, list of matches if the locale
is UTF-8 */
SV* as_is_display; /* The output string when we take the inputs
literally */
SV* inverted_display; /* The output string when we invert the inputs */
bool invert = cBOOL(flags & ANYOF_INVERT); /* Is the input to be inverted
to match? */
/* We are biased in favor of displaying things without them being inverted,
* as that is generally easier to understand */
const int bias = 5;
PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
/* Start off with whatever code points are passed in. (We clone, so we
* don't change the caller's list) */
if (nonbitmap_invlist) {
assert(invlist_highest(nonbitmap_invlist) < NUM_ANYOF_CODE_POINTS);
invlist = invlist_clone(nonbitmap_invlist, NULL);
}
else { /* Worst case size is every other code point is matched */
invlist = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
}
if (flags) {
if (OP(node) == ANYOFD) {
/* This flag indicates that the code points below 0x100 in the
* nonbitmap list are precisely the ones that match only when the
* target is UTF-8 (they should all be non-ASCII). */
if (flags & ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)
{
_invlist_intersection(invlist, PL_UpperLatin1, &only_utf8);
_invlist_subtract(invlist, only_utf8, &invlist);
}
/* And this flag for matching all non-ASCII 0xFF and below */
if (flags & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER)
{
not_utf8 = invlist_clone(PL_UpperLatin1, NULL);
}
}
else if (OP(node) == ANYOFL || OP(node) == ANYOFPOSIXL) {
/* If either of these flags are set, what matches isn't
* determinable except during execution, so don't know enough here
* to invert */
if (flags & (ANYOFL_FOLD|ANYOF_MATCHES_POSIXL)) {
inverting_allowed = FALSE;
}
/* What the posix classes match also varies at runtime, so these
* will be output symbolically. */
if (ANYOF_POSIXL_TEST_ANY_SET(node)) {
int i;
posixes = newSVpvs("");
for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
if (ANYOF_POSIXL_TEST(node, i)) {
sv_catpv(posixes, anyofs[i]);
}
}
}
}
}
/* Accumulate the bit map into the unconditional match list */
if (bitmap) {
for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
if (BITMAP_TEST(bitmap, i)) {
int start = i++;
for (;
i < NUM_ANYOF_CODE_POINTS && BITMAP_TEST(bitmap, i);
i++)
{ /* empty */ }
invlist = _add_range_to_invlist(invlist, start, i-1);
}
}
}
/* Make sure that the conditional match lists don't have anything in them
* that match unconditionally; otherwise the output is quite confusing.
* This could happen if the code that populates these misses some
* duplication. */
if (only_utf8) {
_invlist_subtract(only_utf8, invlist, &only_utf8);
}
if (not_utf8) {
_invlist_subtract(not_utf8, invlist, ¬_utf8);
}
if (only_utf8_locale_invlist) {
/* Since this list is passed in, we have to make a copy before
* modifying it */
only_utf8_locale = invlist_clone(only_utf8_locale_invlist, NULL);
_invlist_subtract(only_utf8_locale, invlist, &only_utf8_locale);
/* And, it can get really weird for us to try outputting an inverted
* form of this list when it has things above the bitmap, so don't even
* try */
if (invlist_highest(only_utf8_locale) >= NUM_ANYOF_CODE_POINTS) {
inverting_allowed = FALSE;
}
}
/* Calculate what the output would be if we take the input as-is */
as_is_display = put_charclass_bitmap_innards_common(invlist,
posixes,
only_utf8,
not_utf8,
only_utf8_locale,
invert);
/* If have to take the output as-is, just do that */
if (! inverting_allowed) {
if (as_is_display) {
sv_catsv(sv, as_is_display);
SvREFCNT_dec_NN(as_is_display);
}
}
else { /* But otherwise, create the output again on the inverted input, and
use whichever version is shorter */
int inverted_bias, as_is_bias;
/* We will apply our bias to whichever of the results doesn't have
* the '^' */
if (invert) {
invert = FALSE;
as_is_bias = bias;
inverted_bias = 0;
}
else {
invert = TRUE;
as_is_bias = 0;
inverted_bias = bias;
}
/* Now invert each of the lists that contribute to the output,
* excluding from the result things outside the possible range */
/* For the unconditional inversion list, we have to add in all the
* conditional code points, so that when inverted, they will be gone
* from it */
_invlist_union(only_utf8, invlist, &invlist);
_invlist_union(not_utf8, invlist, &invlist);
_invlist_union(only_utf8_locale, invlist, &invlist);
_invlist_invert(invlist);
_invlist_intersection(invlist, PL_InBitmap, &invlist);
if (only_utf8) {
_invlist_invert(only_utf8);
_invlist_intersection(only_utf8, PL_UpperLatin1, &only_utf8);
}
else if (not_utf8) {
/* If a code point matches iff the target string is not in UTF-8,
* then complementing the result has it not match iff not in UTF-8,
* which is the same thing as matching iff it is UTF-8. */
only_utf8 = not_utf8;
not_utf8 = NULL;
}
if (only_utf8_locale) {
_invlist_invert(only_utf8_locale);
_invlist_intersection(only_utf8_locale,
PL_InBitmap,
&only_utf8_locale);
}
inverted_display = put_charclass_bitmap_innards_common(
invlist,
posixes,
only_utf8,
not_utf8,
only_utf8_locale, invert);
/* Use the shortest representation, taking into account our bias
* against showing it inverted */
if ( inverted_display
&& ( ! as_is_display
|| ( SvCUR(inverted_display) + inverted_bias
< SvCUR(as_is_display) + as_is_bias)))
{
sv_catsv(sv, inverted_display);
}
else if (as_is_display) {
sv_catsv(sv, as_is_display);
}
SvREFCNT_dec(as_is_display);
SvREFCNT_dec(inverted_display);
}
SvREFCNT_dec_NN(invlist);
SvREFCNT_dec(only_utf8);
SvREFCNT_dec(not_utf8);
SvREFCNT_dec(posixes);
SvREFCNT_dec(only_utf8_locale);
return SvCUR(sv) > orig_sv_cur;
}
#define CLEAR_OPTSTART \
if (optstart) STMT_START { \
DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ \
" (%" IVdf " nodes)\n", (IV)(node - optstart))); \
optstart=NULL; \
} STMT_END
#define DUMPUNTIL(b,e) \
CLEAR_OPTSTART; \
node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
STATIC const regnode *
S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
const regnode *last, const regnode *plast,
SV* sv, I32 indent, U32 depth)
{
U8 op = PSEUDO; /* Arbitrary non-END op. */
const regnode *next;
const regnode *optstart= NULL;
RXi_GET_DECL(r, ri);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_DUMPUNTIL;
#ifdef DEBUG_DUMPUNTIL
Perl_re_printf( aTHX_ "--- %d : %d - %d - %d\n", indent, node-start,
last ? last-start : 0, plast ? plast-start : 0);
#endif
if (plast && plast < last)
last= plast;
while (PL_regkind[op] != END && (!last || node < last)) {
assert(node);
/* While that wasn't END last time... */
NODE_ALIGN(node);
op = OP(node);
if (op == CLOSE || op == SRCLOSE || op == WHILEM)
indent--;
next = regnext((regnode *)node);
/* Where, what. */
if (OP(node) == OPTIMIZED) {
if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
optstart = node;
else
goto after_print;
} else
CLEAR_OPTSTART;
regprop(r, sv, node, NULL, NULL);
Perl_re_printf( aTHX_ "%4" IVdf ":%*s%s", (IV)(node - start),
(int)(2*indent + 1), "", SvPVX_const(sv));
if (OP(node) != OPTIMIZED) {
if (next == NULL) /* Next ptr. */
Perl_re_printf( aTHX_ " (0)");
else if (PL_regkind[(U8)op] == BRANCH
&& PL_regkind[OP(next)] != BRANCH )
Perl_re_printf( aTHX_ " (FAIL)");
else
Perl_re_printf( aTHX_ " (%" IVdf ")", (IV)(next - start));
Perl_re_printf( aTHX_ "\n");
}
after_print:
if (PL_regkind[(U8)op] == BRANCHJ) {
assert(next);
{
const regnode *nnode = (OP(next) == LONGJMP
? regnext((regnode *)next)
: next);
if (last && nnode > last)
nnode = last;
DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
}
}
else if (PL_regkind[(U8)op] == BRANCH) {
assert(next);
DUMPUNTIL(NEXTOPER(node), next);
}
else if ( PL_regkind[(U8)op] == TRIE ) {
const regnode *this_trie = node;
const char op = OP(node);
const U32 n = ARG(node);
const reg_ac_data * const ac = op>=AHOCORASICK ?
(reg_ac_data *)ri->data->data[n] :
NULL;
const reg_trie_data * const trie =
(reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
#ifdef DEBUGGING
AV *const trie_words
= MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
#endif
const regnode *nextbranch= NULL;
I32 word_idx;
SvPVCLEAR(sv);
for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
SV ** const elem_ptr = av_fetch(trie_words, word_idx, 0);
Perl_re_indentf( aTHX_ "%s ",
indent+3,
elem_ptr
? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
SvCUR(*elem_ptr), PL_dump_re_max_len,
PL_colors[0], PL_colors[1],
(SvUTF8(*elem_ptr)
? PERL_PV_ESCAPE_UNI
: 0)
| PERL_PV_PRETTY_ELLIPSES
| PERL_PV_PRETTY_LTGT
)
: "???"
);
if (trie->jump) {
U16 dist= trie->jump[word_idx+1];
Perl_re_printf( aTHX_ "(%" UVuf ")\n",
(UV)((dist ? this_trie + dist : next) - start));
if (dist) {
if (!nextbranch)
nextbranch= this_trie + trie->jump[0];
DUMPUNTIL(this_trie + dist, nextbranch);
}
if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
nextbranch= regnext((regnode *)nextbranch);
} else {
Perl_re_printf( aTHX_ "\n");
}
}
if (last && next > last)
node= last;
else
node= next;
}
else if ( op == CURLY ) { /* "next" might be very big: optimizer */
DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
}
else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
assert(next);
DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
}
else if ( op == PLUS || op == STAR) {
DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
}
else if (PL_regkind[(U8)op] == EXACT || op == ANYOFHs) {
/* Literal string, where present. */
node += NODE_SZ_STR(node) - 1;
node = NEXTOPER(node);
}
else {
node = NEXTOPER(node);
node += regarglen[(U8)op];
}
if (op == CURLYX || op == OPEN || op == SROPEN)
indent++;
}
CLEAR_OPTSTART;
#ifdef DEBUG_DUMPUNTIL
Perl_re_printf( aTHX_ "--- %d\n", (int)indent);
#endif
return node;
}
#endif /* DEBUGGING */
#ifndef PERL_IN_XSUB_RE
# include "uni_keywords.h"
void
Perl_init_uniprops(pTHX)
{
dVAR;
# ifdef DEBUGGING
char * dump_len_string;
dump_len_string = PerlEnv_getenv("PERL_DUMP_RE_MAX_LEN");
if ( ! dump_len_string
|| ! grok_atoUV(dump_len_string, (UV *)&PL_dump_re_max_len, NULL))
{
PL_dump_re_max_len = 60; /* A reasonable default */
}
# endif
PL_user_def_props = newHV();
# ifdef USE_ITHREADS
HvSHAREKEYS_off(PL_user_def_props);
PL_user_def_props_aTHX = aTHX;
# endif
/* Set up the inversion list interpreter-level variables */
PL_XPosix_ptrs[_CC_ASCII] = _new_invlist_C_array(uni_prop_ptrs[UNI_ASCII]);
PL_XPosix_ptrs[_CC_ALPHANUMERIC] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXALNUM]);
PL_XPosix_ptrs[_CC_ALPHA] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXALPHA]);
PL_XPosix_ptrs[_CC_BLANK] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXBLANK]);
PL_XPosix_ptrs[_CC_CASED] = _new_invlist_C_array(uni_prop_ptrs[UNI_CASED]);
PL_XPosix_ptrs[_CC_CNTRL] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXCNTRL]);
PL_XPosix_ptrs[_CC_DIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXDIGIT]);
PL_XPosix_ptrs[_CC_GRAPH] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXGRAPH]);
PL_XPosix_ptrs[_CC_LOWER] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXLOWER]);
PL_XPosix_ptrs[_CC_PRINT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXPRINT]);
PL_XPosix_ptrs[_CC_PUNCT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXPUNCT]);
PL_XPosix_ptrs[_CC_SPACE] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXSPACE]);
PL_XPosix_ptrs[_CC_UPPER] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXUPPER]);
PL_XPosix_ptrs[_CC_VERTSPACE] = _new_invlist_C_array(uni_prop_ptrs[UNI_VERTSPACE]);
PL_XPosix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXWORD]);
PL_XPosix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_XPOSIXXDIGIT]);
PL_Posix_ptrs[_CC_ASCII] = _new_invlist_C_array(uni_prop_ptrs[UNI_ASCII]);
PL_Posix_ptrs[_CC_ALPHANUMERIC] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXALNUM]);
PL_Posix_ptrs[_CC_ALPHA] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXALPHA]);
PL_Posix_ptrs[_CC_BLANK] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXBLANK]);
PL_Posix_ptrs[_CC_CASED] = PL_Posix_ptrs[_CC_ALPHA];
PL_Posix_ptrs[_CC_CNTRL] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXCNTRL]);
PL_Posix_ptrs[_CC_DIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXDIGIT]);
PL_Posix_ptrs[_CC_GRAPH] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXGRAPH]);
PL_Posix_ptrs[_CC_LOWER] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXLOWER]);
PL_Posix_ptrs[_CC_PRINT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXPRINT]);
PL_Posix_ptrs[_CC_PUNCT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXPUNCT]);
PL_Posix_ptrs[_CC_SPACE] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXSPACE]);
PL_Posix_ptrs[_CC_UPPER] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXUPPER]);
PL_Posix_ptrs[_CC_VERTSPACE] = NULL;
PL_Posix_ptrs[_CC_WORDCHAR] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXWORD]);
PL_Posix_ptrs[_CC_XDIGIT] = _new_invlist_C_array(uni_prop_ptrs[UNI_POSIXXDIGIT]);
PL_GCB_invlist = _new_invlist_C_array(_Perl_GCB_invlist);
PL_SB_invlist = _new_invlist_C_array(_Perl_SB_invlist);
PL_WB_invlist = _new_invlist_C_array(_Perl_WB_invlist);
PL_LB_invlist = _new_invlist_C_array(_Perl_LB_invlist);
PL_SCX_invlist = _new_invlist_C_array(_Perl_SCX_invlist);
PL_InBitmap = _new_invlist_C_array(InBitmap_invlist);
PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
PL_Assigned_invlist = _new_invlist_C_array(uni_prop_ptrs[UNI_ASSIGNED]);
PL_utf8_perl_idstart = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_IDSTART]);
PL_utf8_perl_idcont = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_IDCONT]);
PL_utf8_charname_begin = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_CHARNAME_BEGIN]);
PL_utf8_charname_continue = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_CHARNAME_CONTINUE]);
PL_in_some_fold = _new_invlist_C_array(uni_prop_ptrs[UNI__PERL_ANY_FOLDS]);
PL_HasMultiCharFold = _new_invlist_C_array(uni_prop_ptrs[
UNI__PERL_FOLDS_TO_MULTI_CHAR]);
PL_InMultiCharFold = _new_invlist_C_array(uni_prop_ptrs[
UNI__PERL_IS_IN_MULTI_CHAR_FOLD]);
PL_utf8_toupper = _new_invlist_C_array(Uppercase_Mapping_invlist);
PL_utf8_tolower = _new_invlist_C_array(Lowercase_Mapping_invlist);
PL_utf8_totitle = _new_invlist_C_array(Titlecase_Mapping_invlist);
PL_utf8_tofold = _new_invlist_C_array(Case_Folding_invlist);
PL_utf8_tosimplefold = _new_invlist_C_array(Simple_Case_Folding_invlist);
PL_utf8_foldclosures = _new_invlist_C_array(_Perl_IVCF_invlist);
PL_utf8_mark = _new_invlist_C_array(uni_prop_ptrs[UNI_M]);
PL_CCC_non0_non230 = _new_invlist_C_array(_Perl_CCC_non0_non230_invlist);
PL_Private_Use = _new_invlist_C_array(uni_prop_ptrs[UNI_CO]);
# ifdef UNI_XIDC
/* The below are used only by deprecated functions. They could be removed */
PL_utf8_xidcont = _new_invlist_C_array(uni_prop_ptrs[UNI_XIDC]);
PL_utf8_idcont = _new_invlist_C_array(uni_prop_ptrs[UNI_IDC]);
PL_utf8_xidstart = _new_invlist_C_array(uni_prop_ptrs[UNI_XIDS]);
# endif
}
/* These four functions are compiled only in regcomp.c, where they have access
* to the data they return. They are a way for re_comp.c to get access to that
* data without having to compile the whole data structures. */
I16
Perl_do_uniprop_match(const char * const key, const U16 key_len)
{
PERL_ARGS_ASSERT_DO_UNIPROP_MATCH;
return match_uniprop((U8 *) key, key_len);
}
SV *
Perl_get_prop_definition(pTHX_ const int table_index)
{
PERL_ARGS_ASSERT_GET_PROP_DEFINITION;
/* Create and return the inversion list */
return _new_invlist_C_array(uni_prop_ptrs[table_index]);
}
const char * const *
Perl_get_prop_values(const int table_index)
{
PERL_ARGS_ASSERT_GET_PROP_VALUES;
return UNI_prop_value_ptrs[table_index];
}
const char *
Perl_get_deprecated_property_msg(const Size_t warning_offset)
{
PERL_ARGS_ASSERT_GET_DEPRECATED_PROPERTY_MSG;
return deprecated_property_msgs[warning_offset];
}
# if 0
This code was mainly added for backcompat to give a warning for non-portable
code points in user-defined properties. But experiments showed that the
warning in earlier perls were only omitted on overflow, which should be an
error, so there really isnt a backcompat issue, and actually adding the
warning when none was present before might cause breakage, for little gain. So
khw left this code in, but not enabled. Tests were never added.
embed.fnc entry:
Ei |const char *|get_extended_utf8_msg|const UV cp
PERL_STATIC_INLINE const char *
S_get_extended_utf8_msg(pTHX_ const UV cp)
{
U8 dummy[UTF8_MAXBYTES + 1];
HV *msgs;
SV **msg;
uvchr_to_utf8_flags_msgs(dummy, cp, UNICODE_WARN_PERL_EXTENDED,
&msgs);
msg = hv_fetchs(msgs, "text", 0);
assert(msg);
(void) sv_2mortal((SV *) msgs);
return SvPVX(*msg);
}
# endif
#endif /* end of ! PERL_IN_XSUB_RE */
STATIC REGEXP *
S_compile_wildcard(pTHX_ const char * subpattern, const STRLEN len,
const bool ignore_case)
{
/* Pretends that the input subpattern is qr/subpattern/aam, compiling it
* possibly with /i if the 'ignore_case' parameter is true. Use /aa
* because nothing outside of ASCII will match. Use /m because the input
* string may be a bunch of lines strung together.
*
* Also sets up the debugging info */
U32 flags = PMf_MULTILINE|PMf_WILDCARD;
U32 rx_flags;
SV * subpattern_sv = sv_2mortal(newSVpvn(subpattern, len));
REGEXP * subpattern_re;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_COMPILE_WILDCARD;
if (ignore_case) {
flags |= PMf_FOLD;
}
set_regex_charset(&flags, REGEX_ASCII_MORE_RESTRICTED_CHARSET);
/* Like in op.c, we copy the compile time pm flags to the rx ones */
rx_flags = flags & RXf_PMf_COMPILETIME;
#ifndef PERL_IN_XSUB_RE
/* Use the core engine if this file is regcomp.c. That means no
* 'use re "Debug ..." is in effect, so the core engine is sufficient */
subpattern_re = Perl_re_op_compile(aTHX_ &subpattern_sv, 1, NULL,
&PL_core_reg_engine,
NULL, NULL,
rx_flags, flags);
#else
if (isDEBUG_WILDCARD) {
/* Use the special debugging engine if this file is re_comp.c and wants
* to output the wildcard matching. This uses whatever
* 'use re "Debug ..." is in effect */
subpattern_re = Perl_re_op_compile(aTHX_ &subpattern_sv, 1, NULL,
&my_reg_engine,
NULL, NULL,
rx_flags, flags);
}
else {
/* Use the special wildcard engine if this file is re_comp.c and
* doesn't want to output the wildcard matching. This uses whatever
* 'use re "Debug ..." is in effect for compilation, but this engine
* structure has been set up so that it uses the core engine for
* execution, so no execution debugging as a result of re.pm will be
* displayed. */
subpattern_re = Perl_re_op_compile(aTHX_ &subpattern_sv, 1, NULL,
&wild_reg_engine,
NULL, NULL,
rx_flags, flags);
/* XXX The above has the effect that any user-supplied regex engine
* won't be called for matching wildcards. That might be good, or bad.
* It could be changed in several ways. The reason it is done the
* current way is to avoid having to save and restore
* ^{^RE_DEBUG_FLAGS} around the execution. save_scalar() perhaps
* could be used. Another suggestion is to keep the authoritative
* value of the debug flags in a thread-local variable and add set/get
* magic to ${^RE_DEBUG_FLAGS} to keep the C level variable up to date.
* Still another is to pass a flag, say in the engine's intflags that
* would be checked each time before doing the debug output */
}
#endif
assert(subpattern_re); /* Should have died if didn't compile successfully */
return subpattern_re;
}
STATIC I32
S_execute_wildcard(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
{
I32 result;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_EXECUTE_WILDCARD;
ENTER;
/* The compilation has set things up so that if the program doesn't want to
* see the wildcard matching procedure, it will get the core execution
* engine, which is subject only to -Dr. So we have to turn that off
* around this procedure */
if (! isDEBUG_WILDCARD) {
/* Note! Casts away 'volatile' */
SAVEI32(PL_debug);
PL_debug &= ~ DEBUG_r_FLAG;
}
result = CALLREGEXEC(prog, stringarg, strend, strbeg, minend, screamer,
NULL, nosave);
LEAVE;
return result;
}
SV *
S_handle_user_defined_property(pTHX_
/* Parses the contents of a user-defined property definition; returning the
* expanded definition if possible. If so, the return is an inversion
* list.
*
* If there are subroutines that are part of the expansion and which aren't
* known at the time of the call to this function, this returns what
* parse_uniprop_string() returned for the first one encountered.
*
* If an error was found, NULL is returned, and 'msg' gets a suitable
* message appended to it. (Appending allows the back trace of how we got
* to the faulty definition to be displayed through nested calls of
* user-defined subs.)
*
* The caller IS responsible for freeing any returned SV.
*
* The syntax of the contents is pretty much described in perlunicode.pod,
* but we also allow comments on each line */
const char * name, /* Name of property */
const STRLEN name_len, /* The name's length in bytes */
const bool is_utf8, /* ? Is 'name' encoded in UTF-8 */
const bool to_fold, /* ? Is this under /i */
const bool runtime, /* ? Are we in compile- or run-time */
const bool deferrable, /* Is it ok for this property's full definition
to be deferred until later? */
SV* contents, /* The property's definition */
bool *user_defined_ptr, /* This will be set TRUE as we wouldn't be
getting called unless this is thought to be
a user-defined property */
SV * msg, /* Any error or warning msg(s) are appended to
this */
const STRLEN level) /* Recursion level of this call */
{
STRLEN len;
const char * string = SvPV_const(contents, len);
const char * const e = string + len;
const bool is_contents_utf8 = cBOOL(SvUTF8(contents));
const STRLEN msgs_length_on_entry = SvCUR(msg);
const char * s0 = string; /* Points to first byte in the current line
being parsed in 'string' */
const char overflow_msg[] = "Code point too large in \"";
SV* running_definition = NULL;
PERL_ARGS_ASSERT_HANDLE_USER_DEFINED_PROPERTY;
*user_defined_ptr = TRUE;
/* Look at each line */
while (s0 < e) {
const char * s; /* Current byte */
char op = '+'; /* Default operation is 'union' */
IV min = 0; /* range begin code point */
IV max = -1; /* and range end */
SV* this_definition;
/* Skip comment lines */
if (*s0 == '#') {
s0 = strchr(s0, '\n');
if (s0 == NULL) {
break;
}
s0++;
continue;
}
/* For backcompat, allow an empty first line */
if (*s0 == '\n') {
s0++;
continue;
}
/* First character in the line may optionally be the operation */
if ( *s0 == '+'
|| *s0 == '!'
|| *s0 == '-'
|| *s0 == '&')
{
op = *s0++;
}
/* If the line is one or two hex digits separated by blank space, its
* a range; otherwise it is either another user-defined property or an
* error */
s = s0;
if (! isXDIGIT(*s)) {
goto check_if_property;
}
do { /* Each new hex digit will add 4 bits. */
if (min > ( (IV) MAX_LEGAL_CP >> 4)) {
s = strchr(s, '\n');
if (s == NULL) {
s = e;
}
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catpv(msg, overflow_msg);
Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
UTF8fARG(is_contents_utf8, s - s0, s0));
sv_catpvs(msg, "\"");
goto return_failure;
}
/* Accumulate this digit into the value */
min = (min << 4) + READ_XDIGIT(s);
} while (isXDIGIT(*s));
while (isBLANK(*s)) { s++; }
/* We allow comments at the end of the line */
if (*s == '#') {
s = strchr(s, '\n');
if (s == NULL) {
s = e;
}
s++;
}
else if (s < e && *s != '\n') {
if (! isXDIGIT(*s)) {
goto check_if_property;
}
/* Look for the high point of the range */
max = 0;
do {
if (max > ( (IV) MAX_LEGAL_CP >> 4)) {
s = strchr(s, '\n');
if (s == NULL) {
s = e;
}
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catpv(msg, overflow_msg);
Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
UTF8fARG(is_contents_utf8, s - s0, s0));
sv_catpvs(msg, "\"");
goto return_failure;
}
max = (max << 4) + READ_XDIGIT(s);
} while (isXDIGIT(*s));
while (isBLANK(*s)) { s++; }
if (*s == '#') {
s = strchr(s, '\n');
if (s == NULL) {
s = e;
}
}
else if (s < e && *s != '\n') {
goto check_if_property;
}
}
if (max == -1) { /* The line only had one entry */
max = min;
}
else if (max < min) {
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catpvs(msg, "Illegal range in \"");
Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
UTF8fARG(is_contents_utf8, s - s0, s0));
sv_catpvs(msg, "\"");
goto return_failure;
}
# if 0 /* See explanation at definition above of get_extended_utf8_msg() */
if ( UNICODE_IS_PERL_EXTENDED(min)
|| UNICODE_IS_PERL_EXTENDED(max))
{
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
/* If both code points are non-portable, warn only on the lower
* one. */
sv_catpv(msg, get_extended_utf8_msg(
(UNICODE_IS_PERL_EXTENDED(min))
? min : max));
sv_catpvs(msg, " in \"");
Perl_sv_catpvf(aTHX_ msg, "%" UTF8f,
UTF8fARG(is_contents_utf8, s - s0, s0));
sv_catpvs(msg, "\"");
}
# endif
/* Here, this line contains a legal range */
this_definition = sv_2mortal(_new_invlist(2));
this_definition = _add_range_to_invlist(this_definition, min, max);
goto calculate;
check_if_property:
/* Here it isn't a legal range line. See if it is a legal property
* line. First find the end of the meat of the line */
s = strpbrk(s, "#\n");
if (s == NULL) {
s = e;
}
/* Ignore trailing blanks in keeping with the requirements of
* parse_uniprop_string() */
s--;
while (s > s0 && isBLANK_A(*s)) {
s--;
}
s++;
this_definition = parse_uniprop_string(s0, s - s0,
is_utf8, to_fold, runtime,
deferrable,
NULL,
user_defined_ptr, msg,
(name_len == 0)
? level /* Don't increase level
if input is empty */
: level + 1
);
if (this_definition == NULL) {
goto return_failure; /* 'msg' should have had the reason
appended to it by the above call */
}
if (! is_invlist(this_definition)) { /* Unknown at this time */
return newSVsv(this_definition);
}
if (*s != '\n') {
s = strchr(s, '\n');
if (s == NULL) {
s = e;
}
}
calculate:
switch (op) {
case '+':
_invlist_union(running_definition, this_definition,
&running_definition);
break;
case '-':
_invlist_subtract(running_definition, this_definition,
&running_definition);
break;
case '&':
_invlist_intersection(running_definition, this_definition,
&running_definition);
break;
case '!':
_invlist_union_complement_2nd(running_definition,
this_definition, &running_definition);
break;
default:
Perl_croak(aTHX_ "panic: %s: %d: Unexpected operation %d",
__FILE__, __LINE__, op);
break;
}
/* Position past the '\n' */
s0 = s + 1;
} /* End of loop through the lines of 'contents' */
/* Here, we processed all the lines in 'contents' without error. If we
* didn't add any warnings, simply return success */
if (msgs_length_on_entry == SvCUR(msg)) {
/* If the expansion was empty, the answer isn't nothing: its an empty
* inversion list */
if (running_definition == NULL) {
running_definition = _new_invlist(1);
}
return running_definition;
}
/* Otherwise, add some explanatory text, but we will return success */
goto return_msg;
return_failure:
running_definition = NULL;
return_msg:
if (name_len > 0) {
sv_catpvs(msg, " in expansion of ");
Perl_sv_catpvf(aTHX_ msg, "%" UTF8f, UTF8fARG(is_utf8, name_len, name));
}
return running_definition;
}
/* As explained below, certain operations need to take place in the first
* thread created. These macros switch contexts */
# ifdef USE_ITHREADS
# define DECLARATION_FOR_GLOBAL_CONTEXT \
PerlInterpreter * save_aTHX = aTHX;
# define SWITCH_TO_GLOBAL_CONTEXT \
PERL_SET_CONTEXT((aTHX = PL_user_def_props_aTHX))
# define RESTORE_CONTEXT PERL_SET_CONTEXT((aTHX = save_aTHX));
# define CUR_CONTEXT aTHX
# define ORIGINAL_CONTEXT save_aTHX
# else
# define DECLARATION_FOR_GLOBAL_CONTEXT dNOOP
# define SWITCH_TO_GLOBAL_CONTEXT NOOP
# define RESTORE_CONTEXT NOOP
# define CUR_CONTEXT NULL
# define ORIGINAL_CONTEXT NULL
# endif
STATIC void
S_delete_recursion_entry(pTHX_ void *key)
{
/* Deletes the entry used to detect recursion when expanding user-defined
* properties. This is a function so it can be set up to be called even if
* the program unexpectedly quits */
dVAR;
SV ** current_entry;
const STRLEN key_len = strlen((const char *) key);
DECLARATION_FOR_GLOBAL_CONTEXT;
SWITCH_TO_GLOBAL_CONTEXT;
/* If the entry is one of these types, it is a permanent entry, and not the
* one used to detect recursions. This function should delete only the
* recursion entry */
current_entry = hv_fetch(PL_user_def_props, (const char *) key, key_len, 0);
if ( current_entry
&& ! is_invlist(*current_entry)
&& ! SvPOK(*current_entry))
{
(void) hv_delete(PL_user_def_props, (const char *) key, key_len,
G_DISCARD);
}
RESTORE_CONTEXT;
}
STATIC SV *
S_get_fq_name(pTHX_
const char * const name, /* The first non-blank in the \p{}, \P{} */
const Size_t name_len, /* Its length in bytes, not including any trailing space */
const bool is_utf8, /* ? Is 'name' encoded in UTF-8 */
const bool has_colon_colon
)
{
/* Returns a mortal SV containing the fully qualified version of the input
* name */
SV * fq_name;
fq_name = newSVpvs_flags("", SVs_TEMP);
/* Use the current package if it wasn't included in our input */
if (! has_colon_colon) {
const HV * pkg = (IN_PERL_COMPILETIME)
? PL_curstash
: CopSTASH(PL_curcop);
const char* pkgname = HvNAME(pkg);
Perl_sv_catpvf(aTHX_ fq_name, "%" UTF8f,
UTF8fARG(is_utf8, strlen(pkgname), pkgname));
sv_catpvs(fq_name, "::");
}
Perl_sv_catpvf(aTHX_ fq_name, "%" UTF8f,
UTF8fARG(is_utf8, name_len, name));
return fq_name;
}
STATIC SV *
S_parse_uniprop_string(pTHX_
/* Parse the interior of a \p{}, \P{}. Returns its definition if knowable
* now. If so, the return is an inversion list.
*
* If the property is user-defined, it is a subroutine, which in turn
* may call other subroutines. This function will call the whole nest of
* them to get the definition they return; if some aren't known at the time
* of the call to this function, the fully qualified name of the highest
* level sub is returned. It is an error to call this function at runtime
* without every sub defined.
*
* If an error was found, NULL is returned, and 'msg' gets a suitable
* message appended to it. (Appending allows the back trace of how we got
* to the faulty definition to be displayed through nested calls of
* user-defined subs.)
*
* The caller should NOT try to free any returned inversion list.
*
* Other parameters will be set on return as described below */
const char * const name, /* The first non-blank in the \p{}, \P{} */
Size_t name_len, /* Its length in bytes, not including any
trailing space */
const bool is_utf8, /* ? Is 'name' encoded in UTF-8 */
const bool to_fold, /* ? Is this under /i */
const bool runtime, /* TRUE if this is being called at run time */
const bool deferrable, /* TRUE if it's ok for the definition to not be
known at this call */
AV ** strings, /* To return string property values, like named
sequences */
bool *user_defined_ptr, /* Upon return from this function it will be
set to TRUE if any component is a
user-defined property */
SV * msg, /* Any error or warning msg(s) are appended to
this */
const STRLEN level) /* Recursion level of this call */
{
dVAR;
char* lookup_name; /* normalized name for lookup in our tables */
unsigned lookup_len; /* Its length */
enum { Not_Strict = 0, /* Some properties have stricter name */
Strict, /* normalization rules, which we decide */
As_Is /* upon based on parsing */
} stricter = Not_Strict;
/* nv= or numeric_value=, or possibly one of the cjk numeric properties
* (though it requires extra effort to download them from Unicode and
* compile perl to know about them) */
bool is_nv_type = FALSE;
unsigned int i = 0, i_zero = 0, j = 0;
int equals_pos = -1; /* Where the '=' is found, or negative if none */
int slash_pos = -1; /* Where the '/' is found, or negative if none */
int table_index = 0; /* The entry number for this property in the table
of all Unicode property names */
bool starts_with_Is = FALSE; /* ? Does the name start with 'Is' */
Size_t lookup_offset = 0; /* Used to ignore the first few characters of
the normalized name in certain situations */
Size_t non_pkg_begin = 0; /* Offset of first byte in 'name' that isn't
part of a package name */
Size_t lun_non_pkg_begin = 0; /* Similarly for 'lookup_name' */
bool could_be_user_defined = TRUE; /* ? Could this be a user-defined
property rather than a Unicode
one. */
SV * prop_definition = NULL; /* The returned definition of 'name' or NULL
if an error. If it is an inversion list,
it is the definition. Otherwise it is a
string containing the fully qualified sub
name of 'name' */
SV * fq_name = NULL; /* For user-defined properties, the fully
qualified name */
bool invert_return = FALSE; /* ? Do we need to complement the result before
returning it */
bool stripped_utf8_pkg = FALSE; /* Set TRUE if the input includes an
explicit utf8:: package that we strip
off */
/* The expansion of properties that could be either user-defined or
* official unicode ones is deferred until runtime, including a marker for
* those that might be in the latter category. This boolean indicates if
* we've seen that marker. If not, what we're parsing can't be such an
* official Unicode property whose expansion was deferred */
bool could_be_deferred_official = FALSE;
PERL_ARGS_ASSERT_PARSE_UNIPROP_STRING;
/* The input will be normalized into 'lookup_name' */
Newx(lookup_name, name_len, char);
SAVEFREEPV(lookup_name);
/* Parse the input. */
for (i = 0; i < name_len; i++) {
char cur = name[i];
/* Most of the characters in the input will be of this ilk, being parts
* of a name */
if (isIDCONT_A(cur)) {
/* Case differences are ignored. Our lookup routine assumes
* everything is lowercase, so normalize to that */
if (isUPPER_A(cur)) {
lookup_name[j++] = toLOWER_A(cur);
continue;
}
if (cur == '_') { /* Don't include these in the normalized name */
continue;
}
lookup_name[j++] = cur;
/* The first character in a user-defined name must be of this type.
* */
if (i - non_pkg_begin == 0 && ! isIDFIRST_A(cur)) {
could_be_user_defined = FALSE;
}
continue;
}
/* Here, the character is not something typically in a name, But these
* two types of characters (and the '_' above) can be freely ignored in
* most situations. Later it may turn out we shouldn't have ignored
* them, and we have to reparse, but we don't have enough information
* yet to make that decision */
if (cur == '-' || isSPACE_A(cur)) {
could_be_user_defined = FALSE;
continue;
}
/* An equals sign or single colon mark the end of the first part of
* the property name */
if ( cur == '='
|| (cur == ':' && (i >= name_len - 1 || name[i+1] != ':')))
{
lookup_name[j++] = '='; /* Treat the colon as an '=' */
equals_pos = j; /* Note where it occurred in the input */
could_be_user_defined = FALSE;
break;
}
/* If this looks like it is a marker we inserted at compile time,
* set a flag and otherwise ignore it. If it isn't in the final
* position, keep it as it would have been user input. */
if ( UNLIKELY(cur == DEFERRED_COULD_BE_OFFICIAL_MARKERc)
&& ! deferrable
&& could_be_user_defined
&& i == name_len - 1)
{
name_len--;
could_be_deferred_official = TRUE;
continue;
}
/* Otherwise, this character is part of the name. */
lookup_name[j++] = cur;
/* Here it isn't a single colon, so if it is a colon, it must be a
* double colon */
if (cur == ':') {
/* A double colon should be a package qualifier. We note its
* position and continue. Note that one could have
* pkg1::pkg2::...::foo
* so that the position at the end of the loop will be just after
* the final qualifier */
i++;
non_pkg_begin = i + 1;
lookup_name[j++] = ':';
lun_non_pkg_begin = j;
}
else { /* Only word chars (and '::') can be in a user-defined name */
could_be_user_defined = FALSE;
}
} /* End of parsing through the lhs of the property name (or all of it if
no rhs) */
# define STRLENs(s) (sizeof("" s "") - 1)
/* If there is a single package name 'utf8::', it is ambiguous. It could
* be for a user-defined property, or it could be a Unicode property, as
* all of them are considered to be for that package. For the purposes of
* parsing the rest of the property, strip it off */
if (non_pkg_begin == STRLENs("utf8::") && memBEGINPs(name, name_len, "utf8::")) {
lookup_name += STRLENs("utf8::");
j -= STRLENs("utf8::");
equals_pos -= STRLENs("utf8::");
i_zero = STRLENs("utf8::"); /* When resetting 'i' to reparse
from the beginning, it has to be
set past what we're stripping
off */
stripped_utf8_pkg = TRUE;
}
/* Here, we are either done with the whole property name, if it was simple;
* or are positioned just after the '=' if it is compound. */
if (equals_pos >= 0) {
assert(stricter == Not_Strict); /* We shouldn't have set this yet */
/* Space immediately after the '=' is ignored */
i++;
for (; i < name_len; i++) {
if (! isSPACE_A(name[i])) {
break;
}
}
/* Most punctuation after the equals indicates a subpattern, like
* \p{foo=/bar/} */
if ( isPUNCT_A(name[i])
&& name[i] != '-'
&& name[i] != '+'
&& name[i] != '_'
&& name[i] != '{'
/* A backslash means the real delimitter is the next character,
* but it must be punctuation */
&& (name[i] != '\\' || (i < name_len && isPUNCT_A(name[i+1]))))
{
bool special_property = memEQs(lookup_name, j - 1, "name")
|| memEQs(lookup_name, j - 1, "na");
if (! special_property) {
/* Find the property. The table includes the equals sign, so
* we use 'j' as-is */
table_index = do_uniprop_match(lookup_name, j);
}
if (special_property || table_index) {
REGEXP * subpattern_re;
char open = name[i++];
char close;
const char * pos_in_brackets;
const char * const * prop_values;
bool escaped = 0;
/* Backslash => delimitter is the character following. We
* already checked that it is punctuation */
if (open == '\\') {
open = name[i++];
escaped = 1;
}
/* This data structure is constructed so that the matching
* closing bracket is 3 past its matching opening. The second
* set of closing is so that if the opening is something like
* ']', the closing will be that as well. Something similar is
* done in toke.c */
pos_in_brackets = memCHRs("([<)]>)]>", open);
close = (pos_in_brackets) ? pos_in_brackets[3] : open;
if ( i >= name_len
|| name[name_len-1] != close
|| (escaped && name[name_len-2] != '\\')
/* Also make sure that there are enough characters.
* e.g., '\\\' would show up incorrectly as legal even
* though it is too short */
|| (SSize_t) (name_len - i - 1 - escaped) < 0)
{
sv_catpvs(msg, "Unicode property wildcard not terminated");
goto append_name_to_msg;
}
Perl_ck_warner_d(aTHX_
packWARN(WARN_EXPERIMENTAL__UNIPROP_WILDCARDS),
"The Unicode property wildcards feature is experimental");
if (special_property) {
const char * error_msg;
const char * revised_name = name + i;
Size_t revised_name_len = name_len - (i + 1 + escaped);
/* Currently, the only 'special_property' is name, which we
* lookup in _charnames.pm */
if (! load_charnames(newSVpvs("placeholder"),
revised_name, revised_name_len,
&error_msg))
{
sv_catpv(msg, error_msg);
goto append_name_to_msg;
}
/* Farm this out to a function just to make the current
* function less unwieldy */
if (handle_names_wildcard(revised_name, revised_name_len,
&prop_definition,
strings))
{
return prop_definition;
}
goto failed;
}
prop_values = get_prop_values(table_index);
/* Now create and compile the wildcard subpattern. Use /i
* because the property values are supposed to match with case
* ignored. */
subpattern_re = compile_wildcard(name + i,
name_len - i - 1 - escaped,
TRUE /* /i */
);
/* For each legal property value, see if the supplied pattern
* matches it. */
while (*prop_values) {
const char * const entry = *prop_values;
const Size_t len = strlen(entry);
SV* entry_sv = newSVpvn_flags(entry, len, SVs_TEMP);
if (execute_wildcard(subpattern_re,
(char *) entry,
(char *) entry + len,
(char *) entry, 0,
entry_sv,
0))
{ /* Here, matched. Add to the returned list */
Size_t total_len = j + len;
SV * sub_invlist = NULL;
char * this_string;
/* We know this is a legal \p{property=value}. Call
* the function to return the list of code points that
* match it */
Newxz(this_string, total_len + 1, char);
Copy(lookup_name, this_string, j, char);
my_strlcat(this_string, entry, total_len + 1);
SAVEFREEPV(this_string);
sub_invlist = parse_uniprop_string(this_string,
total_len,
is_utf8,
to_fold,
runtime,
deferrable,
NULL,
user_defined_ptr,
msg,
level + 1);
_invlist_union(prop_definition, sub_invlist,
&prop_definition);
}
prop_values++; /* Next iteration, look at next propvalue */
} /* End of looking through property values; (the data
structure is terminated by a NULL ptr) */
SvREFCNT_dec_NN(subpattern_re);
if (prop_definition) {
return prop_definition;
}
sv_catpvs(msg, "No Unicode property value wildcard matches:");
goto append_name_to_msg;
}
/* Here's how khw thinks we should proceed to handle the properties
* not yet done: Bidi Mirroring Glyph can map to ""
Bidi Paired Bracket can map to ""
Case Folding (both full and simple)
Shouldn't /i be good enough for Full
Decomposition Mapping
Equivalent Unified Ideograph can map to ""
Lowercase Mapping (both full and simple)
NFKC Case Fold can map to ""
Titlecase Mapping (both full and simple)
Uppercase Mapping (both full and simple)
* Handle these the same way Name is done, using say, _wild.pm, but
* having both loose and full, like in charclass_invlists.h.
* Perhaps move block and script to that as they are somewhat large
* in charclass_invlists.h.
* For properties where the default is the code point itself, such
* as any of the case changing mappings, the string would otherwise
* consist of all Unicode code points in UTF-8 strung together.
* This would be impractical. So instead, examine their compiled
* pattern, looking at the ssc. If none, reject the pattern as an
* error. Otherwise run the pattern against every code point in
* the ssc. The ssc is kind of like tr18's 3.9 Possible Match Sets
* And it might be good to create an API to return the ssc.
* Or handle them like the algorithmic names are done
*/
} /* End of is a wildcard subppattern */
/* \p{name=...} is handled specially. Instead of using the normal
* mechanism involving charclass_invlists.h, it uses _charnames.pm
* which has the necessary (huge) data accessible to it, and which
* doesn't get loaded unless necessary. The legal syntax for names is
* somewhat different than other properties due both to the vagaries of
* a few outlier official names, and the fact that only a few ASCII
* characters are permitted in them */
if ( memEQs(lookup_name, j - 1, "name")
|| memEQs(lookup_name, j - 1, "na"))
{
dSP;
HV * table;
SV * character;
const char * error_msg;
CV* lookup_loose;
SV * character_name;
STRLEN character_len;
UV cp;
stricter = As_Is;
/* Since the RHS (after skipping initial space) is passed unchanged
* to charnames, and there are different criteria for what are
* legal characters in the name, just parse it here. A character
* name must begin with an ASCII alphabetic */
if (! isALPHA(name[i])) {
goto failed;
}
lookup_name[j++] = name[i];
for (++i; i < name_len; i++) {
/* Official names can only be in the ASCII range, and only
* certain characters */
if (! isASCII(name[i]) || ! isCHARNAME_CONT(name[i])) {
goto failed;
}
lookup_name[j++] = name[i];
}
/* Finished parsing, save the name into an SV */
character_name = newSVpvn(lookup_name + equals_pos, j - equals_pos);
/* Make sure _charnames is loaded. (The parameters give context
* for any errors generated */
table = load_charnames(character_name, name, name_len, &error_msg);
if (table == NULL) {
sv_catpv(msg, error_msg);
goto append_name_to_msg;
}
lookup_loose = get_cv("_charnames::_loose_regcomp_lookup", 0);
if (! lookup_loose) {
Perl_croak(aTHX_
"panic: Can't find '_charnames::_loose_regcomp_lookup");
}
PUSHSTACKi(PERLSI_REGCOMP);
ENTER ;
SAVETMPS;
save_re_context();
PUSHMARK(SP) ;
XPUSHs(character_name);
PUTBACK;
call_sv(MUTABLE_SV(lookup_loose), G_SCALAR);
SPAGAIN ;
character = POPs;
SvREFCNT_inc_simple_void_NN(character);
PUTBACK ;
FREETMPS ;
LEAVE ;
POPSTACK;
if (! SvOK(character)) {
goto failed;
}
cp = valid_utf8_to_uvchr((U8 *) SvPVX(character), &character_len);
if (character_len == SvCUR(character)) {
prop_definition = add_cp_to_invlist(NULL, cp);
}
else {
AV * this_string;
/* First of the remaining characters in the string. */
char * remaining = SvPVX(character) + character_len;
if (strings == NULL) {
goto failed; /* XXX Perhaps a specific msg instead, like
'not available here' */
}
if (*strings == NULL) {
*strings = newAV();
}
this_string = newAV();
av_push(this_string, newSVuv(cp));
do {
cp = valid_utf8_to_uvchr((U8 *) remaining, &character_len);
av_push(this_string, newSVuv(cp));
remaining += character_len;
} while (remaining < SvEND(character));
av_push(*strings, (SV *) this_string);
}
return prop_definition;
}
/* Certain properties whose values are numeric need special handling.
* They may optionally be prefixed by 'is'. Ignore that prefix for the
* purposes of checking if this is one of those properties */
if (memBEGINPs(lookup_name, j, "is")) {
lookup_offset = 2;
}
/* Then check if it is one of these specially-handled properties. The
* possibilities are hard-coded because easier this way, and the list
* is unlikely to change.
*
* All numeric value type properties are of this ilk, and are also
* special in a different way later on. So find those first. There
* are several numeric value type properties in the Unihan DB (which is
* unlikely to be compiled with perl, but we handle it here in case it
* does get compiled). They all end with 'numeric'. The interiors
* aren't checked for the precise property. This would stop working if
* a cjk property were to be created that ended with 'numeric' and
* wasn't a numeric type */
is_nv_type = memEQs(lookup_name + lookup_offset,
j - 1 - lookup_offset, "numericvalue")
|| memEQs(lookup_name + lookup_offset,
j - 1 - lookup_offset, "nv")
|| ( memENDPs(lookup_name + lookup_offset,
j - 1 - lookup_offset, "numeric")
&& ( memBEGINPs(lookup_name + lookup_offset,
j - 1 - lookup_offset, "cjk")
|| memBEGINPs(lookup_name + lookup_offset,
j - 1 - lookup_offset, "k")));
if ( is_nv_type
|| memEQs(lookup_name + lookup_offset,
j - 1 - lookup_offset, "canonicalcombiningclass")
|| memEQs(lookup_name + lookup_offset,
j - 1 - lookup_offset, "ccc")
|| memEQs(lookup_name + lookup_offset,
j - 1 - lookup_offset, "age")
|| memEQs(lookup_name + lookup_offset,
j - 1 - lookup_offset, "in")
|| memEQs(lookup_name + lookup_offset,
j - 1 - lookup_offset, "presentin"))
{
unsigned int k;
/* Since the stuff after the '=' is a number, we can't throw away
* '-' willy-nilly, as those could be a minus sign. Other stricter
* rules also apply. However, these properties all can have the
* rhs not be a number, in which case they contain at least one
* alphabetic. In those cases, the stricter rules don't apply.
* But the numeric type properties can have the alphas [Ee] to
* signify an exponent, and it is still a number with stricter
* rules. So look for an alpha that signifies not-strict */
stricter = Strict;
for (k = i; k < name_len; k++) {
if ( isALPHA_A(name[k])
&& (! is_nv_type || ! isALPHA_FOLD_EQ(name[k], 'E')))
{
stricter = Not_Strict;
break;
}
}
}
if (stricter) {
/* A number may have a leading '+' or '-'. The latter is retained
* */
if (name[i] == '+') {
i++;
}
else if (name[i] == '-') {
lookup_name[j++] = '-';
i++;
}
/* Skip leading zeros including single underscores separating the
* zeros, or between the final leading zero and the first other
* digit */
for (; i < name_len - 1; i++) {
if ( name[i] != '0'
&& (name[i] != '_' || ! isDIGIT_A(name[i+1])))
{
break;
}
}
}
}
else { /* No '=' */
/* Only a few properties without an '=' should be parsed with stricter
* rules. The list is unlikely to change. */
if ( memBEGINPs(lookup_name, j, "perl")
&& memNEs(lookup_name + 4, j - 4, "space")
&& memNEs(lookup_name + 4, j - 4, "word"))
{
stricter = Strict;
/* We set the inputs back to 0 and the code below will reparse,
* using strict */
i = i_zero;
j = 0;
}
}
/* Here, we have either finished the property, or are positioned to parse
* the remainder, and we know if stricter rules apply. Finish out, if not
* already done */
for (; i < name_len; i++) {
char cur = name[i];
/* In all instances, case differences are ignored, and we normalize to
* lowercase */
if (isUPPER_A(cur)) {
lookup_name[j++] = toLOWER(cur);
continue;
}
/* An underscore is skipped, but not under strict rules unless it
* separates two digits */
if (cur == '_') {
if ( stricter
&& ( i == i_zero || (int) i == equals_pos || i == name_len- 1
|| ! isDIGIT_A(name[i-1]) || ! isDIGIT_A(name[i+1])))
{
lookup_name[j++] = '_';
}
continue;
}
/* Hyphens are skipped except under strict */
if (cur == '-' && ! stricter) {
continue;
}
/* XXX Bug in documentation. It says white space skipped adjacent to
* non-word char. Maybe we should, but shouldn't skip it next to a dot
* in a number */
if (isSPACE_A(cur) && ! stricter) {
continue;
}
lookup_name[j++] = cur;
/* Unless this is a non-trailing slash, we are done with it */
if (i >= name_len - 1 || cur != '/') {
continue;
}
slash_pos = j;
/* A slash in the 'numeric value' property indicates that what follows
* is a denominator. It can have a leading '+' and '0's that should be
* skipped. But we have never allowed a negative denominator, so treat
* a minus like every other character. (No need to rule out a second
* '/', as that won't match anything anyway */
if (is_nv_type) {
i++;
if (i < name_len && name[i] == '+') {
i++;
}
/* Skip leading zeros including underscores separating digits */
for (; i < name_len - 1; i++) {
if ( name[i] != '0'
&& (name[i] != '_' || ! isDIGIT_A(name[i+1])))
{
break;
}
}
/* Store the first real character in the denominator */
if (i < name_len) {
lookup_name[j++] = name[i];
}
}
}
/* Here are completely done parsing the input 'name', and 'lookup_name'
* contains a copy, normalized.
*
* This special case is grandfathered in: 'L_' and 'GC=L_' are accepted and
* different from without the underscores. */
if ( ( UNLIKELY(memEQs(lookup_name, j, "l"))
|| UNLIKELY(memEQs(lookup_name, j, "gc=l")))
&& UNLIKELY(name[name_len-1] == '_'))
{
lookup_name[j++] = '&';
}
/* If the original input began with 'In' or 'Is', it could be a subroutine
* call to a user-defined property instead of a Unicode property name. */
if ( name_len - non_pkg_begin > 2
&& name[non_pkg_begin+0] == 'I'
&& (name[non_pkg_begin+1] == 'n' || name[non_pkg_begin+1] == 's'))
{
/* Names that start with In have different characterstics than those
* that start with Is */
if (name[non_pkg_begin+1] == 's') {
starts_with_Is = TRUE;
}
}
else {
could_be_user_defined = FALSE;
}
if (could_be_user_defined) {
CV* user_sub;
/* If the user defined property returns the empty string, it could
* easily be because the pattern is being compiled before the data it
* actually needs to compile is available. This could be argued to be
* a bug in the perl code, but this is a change of behavior for Perl,
* so we handle it. This means that intentionally returning nothing
* will not be resolved until runtime */
bool empty_return = FALSE;
/* Here, the name could be for a user defined property, which are
* implemented as subs. */
user_sub = get_cvn_flags(name, name_len, 0);
if (! user_sub) {
/* Here, the property name could be a user-defined one, but there
* is no subroutine to handle it (as of now). Defer handling it
* until runtime. Otherwise, a block defined by Unicode in a later
* release would get the synonym InFoo added for it, and existing
* code that used that name would suddenly break if it referred to
* the property before the sub was declared. See [perl #134146] */
if (deferrable) {
goto definition_deferred;
}
/* Here, we are at runtime, and didn't find the user property. It
* could be an official property, but only if no package was
* specified, or just the utf8:: package. */
if (could_be_deferred_official) {
lookup_name += lun_non_pkg_begin;
j -= lun_non_pkg_begin;
}
else if (! stripped_utf8_pkg) {
goto unknown_user_defined;
}
/* Drop down to look up in the official properties */
}
else {
const char insecure[] = "Insecure user-defined property";
/* Here, there is a sub by the correct name. Normally we call it
* to get the property definition */
dSP;
SV * user_sub_sv = MUTABLE_SV(user_sub);
SV * error; /* Any error returned by calling 'user_sub' */
SV * key; /* The key into the hash of user defined sub names
*/
SV * placeholder;
SV ** saved_user_prop_ptr; /* Hash entry for this property */
/* How many times to retry when another thread is in the middle of
* expanding the same definition we want */
PERL_INT_FAST8_T retry_countdown = 10;
DECLARATION_FOR_GLOBAL_CONTEXT;
/* If we get here, we know this property is user-defined */
*user_defined_ptr = TRUE;
/* We refuse to call a potentially tainted subroutine; returning an
* error instead */
if (TAINT_get) {
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catpvn(msg, insecure, sizeof(insecure) - 1);
goto append_name_to_msg;
}
/* In principal, we only call each subroutine property definition
* once during the life of the program. This guarantees that the
* property definition never changes. The results of the single
* sub call are stored in a hash, which is used instead for future
* references to this property. The property definition is thus
* immutable. But, to allow the user to have a /i-dependent
* definition, we call the sub once for non-/i, and once for /i,
* should the need arise, passing the /i status as a parameter.
*
* We start by constructing the hash key name, consisting of the
* fully qualified subroutine name, preceded by the /i status, so
* that there is a key for /i and a different key for non-/i */
key = newSVpvn(((to_fold) ? "1" : "0"), 1);
fq_name = S_get_fq_name(aTHX_ name, name_len, is_utf8,
non_pkg_begin != 0);
sv_catsv(key, fq_name);
sv_2mortal(key);
/* We only call the sub once throughout the life of the program
* (with the /i, non-/i exception noted above). That means the
* hash must be global and accessible to all threads. It is
* created at program start-up, before any threads are created, so
* is accessible to all children. But this creates some
* complications.
*
* 1) The keys can't be shared, or else problems arise; sharing is
* turned off at hash creation time
* 2) All SVs in it are there for the remainder of the life of the
* program, and must be created in the same interpreter context
* as the hash, or else they will be freed from the wrong pool
* at global destruction time. This is handled by switching to
* the hash's context to create each SV going into it, and then
* immediately switching back
* 3) All accesses to the hash must be controlled by a mutex, to
* prevent two threads from getting an unstable state should
* they simultaneously be accessing it. The code below is
* crafted so that the mutex is locked whenever there is an
* access and unlocked only when the next stable state is
* achieved.
*
* The hash stores either the definition of the property if it was
* valid, or, if invalid, the error message that was raised. We
* use the type of SV to distinguish.
*
* There's also the need to guard against the definition expansion
* from infinitely recursing. This is handled by storing the aTHX
* of the expanding thread during the expansion. Again the SV type
* is used to distinguish this from the other two cases. If we
* come to here and the hash entry for this property is our aTHX,
* it means we have recursed, and the code assumes that we would
* infinitely recurse, so instead stops and raises an error.
* (Any recursion has always been treated as infinite recursion in
* this feature.)
*
* If instead, the entry is for a different aTHX, it means that
* that thread has gotten here first, and hasn't finished expanding
* the definition yet. We just have to wait until it is done. We
* sleep and retry a few times, returning an error if the other
* thread doesn't complete. */
re_fetch:
USER_PROP_MUTEX_LOCK;
/* If we have an entry for this key, the subroutine has already
* been called once with this /i status. */
saved_user_prop_ptr = hv_fetch(PL_user_def_props,
SvPVX(key), SvCUR(key), 0);
if (saved_user_prop_ptr) {
/* If the saved result is an inversion list, it is the valid
* definition of this property */
if (is_invlist(*saved_user_prop_ptr)) {
prop_definition = *saved_user_prop_ptr;
/* The SV in the hash won't be removed until global
* destruction, so it is stable and we can unlock */
USER_PROP_MUTEX_UNLOCK;
/* The caller shouldn't try to free this SV */
return prop_definition;
}
/* Otherwise, if it is a string, it is the error message
* that was returned when we first tried to evaluate this
* property. Fail, and append the message */
if (SvPOK(*saved_user_prop_ptr)) {
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catsv(msg, *saved_user_prop_ptr);
/* The SV in the hash won't be removed until global
* destruction, so it is stable and we can unlock */
USER_PROP_MUTEX_UNLOCK;
return NULL;
}
assert(SvIOK(*saved_user_prop_ptr));
/* Here, we have an unstable entry in the hash. Either another
* thread is in the middle of expanding the property's
* definition, or we are ourselves recursing. We use the aTHX
* in it to distinguish */
if (SvIV(*saved_user_prop_ptr) != PTR2IV(CUR_CONTEXT)) {
/* Here, it's another thread doing the expanding. We've
* looked as much as we are going to at the contents of the
* hash entry. It's safe to unlock. */
USER_PROP_MUTEX_UNLOCK;
/* Retry a few times */
if (retry_countdown-- > 0) {
PerlProc_sleep(1);
goto re_fetch;
}
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catpvs(msg, "Timeout waiting for another thread to "
"define");
goto append_name_to_msg;
}
/* Here, we are recursing; don't dig any deeper */
USER_PROP_MUTEX_UNLOCK;
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catpvs(msg,
"Infinite recursion in user-defined property");
goto append_name_to_msg;
}
/* Here, this thread has exclusive control, and there is no entry
* for this property in the hash. So we have the go ahead to
* expand the definition ourselves. */
PUSHSTACKi(PERLSI_REGCOMP);
ENTER;
/* Create a temporary placeholder in the hash to detect recursion
* */
SWITCH_TO_GLOBAL_CONTEXT;
placeholder= newSVuv(PTR2IV(ORIGINAL_CONTEXT));
(void) hv_store_ent(PL_user_def_props, key, placeholder, 0);
RESTORE_CONTEXT;
/* Now that we have a placeholder, we can let other threads
* continue */
USER_PROP_MUTEX_UNLOCK;
/* Make sure the placeholder always gets destroyed */
SAVEDESTRUCTOR_X(S_delete_recursion_entry, SvPVX(key));
PUSHMARK(SP);
SAVETMPS;
/* Call the user's function, with the /i status as a parameter.
* Note that we have gone to a lot of trouble to keep this call
* from being within the locked mutex region. */
XPUSHs(boolSV(to_fold));
PUTBACK;
/* The following block was taken from swash_init(). Presumably
* they apply to here as well, though we no longer use a swash --
* khw */
SAVEHINTS();
save_re_context();
/* We might get here via a subroutine signature which uses a utf8
* parameter name, at which point PL_subname will have been set
* but not yet used. */
save_item(PL_subname);
/* G_SCALAR guarantees a single return value */
(void) call_sv(user_sub_sv, G_EVAL|G_SCALAR);
SPAGAIN;
error = ERRSV;
if (TAINT_get || SvTRUE(error)) {
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
if (SvTRUE(error)) {
sv_catpvs(msg, "Error \"");
sv_catsv(msg, error);
sv_catpvs(msg, "\"");
}
if (TAINT_get) {
if (SvTRUE(error)) sv_catpvs(msg, "; ");
sv_catpvn(msg, insecure, sizeof(insecure) - 1);
}
if (name_len > 0) {
sv_catpvs(msg, " in expansion of ");
Perl_sv_catpvf(aTHX_ msg, "%" UTF8f, UTF8fARG(is_utf8,
name_len,
name));
}
(void) POPs;
prop_definition = NULL;
}
else {
SV * contents = POPs;
/* The contents is supposed to be the expansion of the property
* definition. If the definition is deferrable, and we got an
* empty string back, set a flag to later defer it (after clean
* up below). */
if ( deferrable
&& (! SvPOK(contents) || SvCUR(contents) == 0))
{
empty_return = TRUE;
}
else { /* Otherwise, call a function to check for valid syntax,
and handle it */
prop_definition = handle_user_defined_property(
name, name_len,
is_utf8, to_fold, runtime,
deferrable,
contents, user_defined_ptr,
msg,
level);
}
}
/* Here, we have the results of the expansion. Delete the
* placeholder, and if the definition is now known, replace it with
* that definition. We need exclusive access to the hash, and we
* can't let anyone else in, between when we delete the placeholder
* and add the permanent entry */
USER_PROP_MUTEX_LOCK;
S_delete_recursion_entry(aTHX_ SvPVX(key));
if ( ! empty_return
&& (! prop_definition || is_invlist(prop_definition)))
{
/* If we got success we use the inversion list defining the
* property; otherwise use the error message */
SWITCH_TO_GLOBAL_CONTEXT;
(void) hv_store_ent(PL_user_def_props,
key,
((prop_definition)
? newSVsv(prop_definition)
: newSVsv(msg)),
0);
RESTORE_CONTEXT;
}
/* All done, and the hash now has a permanent entry for this
* property. Give up exclusive control */
USER_PROP_MUTEX_UNLOCK;
FREETMPS;
LEAVE;
POPSTACK;
if (empty_return) {
goto definition_deferred;
}
if (prop_definition) {
/* If the definition is for something not known at this time,
* we toss it, and go return the main property name, as that's
* the one the user will be aware of */
if (! is_invlist(prop_definition)) {
SvREFCNT_dec_NN(prop_definition);
goto definition_deferred;
}
sv_2mortal(prop_definition);
}
/* And return */
return prop_definition;
} /* End of calling the subroutine for the user-defined property */
} /* End of it could be a user-defined property */
/* Here it wasn't a user-defined property that is known at this time. See
* if it is a Unicode property */
lookup_len = j; /* This is a more mnemonic name than 'j' */
/* Get the index into our pointer table of the inversion list corresponding
* to the property */
table_index = do_uniprop_match(lookup_name, lookup_len);
/* If it didn't find the property ... */
if (table_index == 0) {
/* Try again stripping off any initial 'Is'. This is because we
* promise that an initial Is is optional. The same isn't true of
* names that start with 'In'. Those can match only blocks, and the
* lookup table already has those accounted for. */
if (starts_with_Is) {
lookup_name += 2;
lookup_len -= 2;
equals_pos -= 2;
slash_pos -= 2;
table_index = do_uniprop_match(lookup_name, lookup_len);
}
if (table_index == 0) {
char * canonical;
/* Here, we didn't find it. If not a numeric type property, and
* can't be a user-defined one, it isn't a legal property */
if (! is_nv_type) {
if (! could_be_user_defined) {
goto failed;
}
/* Here, the property name is legal as a user-defined one. At
* compile time, it might just be that the subroutine for that
* property hasn't been encountered yet, but at runtime, it's
* an error to try to use an undefined one */
if (! deferrable) {
goto unknown_user_defined;;
}
goto definition_deferred;
} /* End of isn't a numeric type property */
/* The numeric type properties need more work to decide. What we
* do is make sure we have the number in canonical form and look
* that up. */
if (slash_pos < 0) { /* No slash */
/* When it isn't a rational, take the input, convert it to a
* NV, then create a canonical string representation of that
* NV. */
NV value;
SSize_t value_len = lookup_len - equals_pos;
/* Get the value */
if ( value_len <= 0
|| my_atof3(lookup_name + equals_pos, &value,
value_len)
!= lookup_name + lookup_len)
{
goto failed;
}
/* If the value is an integer, the canonical value is integral
* */
if (Perl_ceil(value) == value) {
canonical = Perl_form(aTHX_ "%.*s%.0" NVff,
equals_pos, lookup_name, value);
}
else { /* Otherwise, it is %e with a known precision */
char * exp_ptr;
canonical = Perl_form(aTHX_ "%.*s%.*" NVef,
equals_pos, lookup_name,
PL_E_FORMAT_PRECISION, value);
/* The exponent generated is expecting two digits, whereas
* %e on some systems will generate three. Remove leading
* zeros in excess of 2 from the exponent. We start
* looking for them after the '=' */
exp_ptr = strchr(canonical + equals_pos, 'e');
if (exp_ptr) {
char * cur_ptr = exp_ptr + 2; /* past the 'e[+-]' */
SSize_t excess_exponent_len = strlen(cur_ptr) - 2;
assert(*(cur_ptr - 1) == '-' || *(cur_ptr - 1) == '+');
if (excess_exponent_len > 0) {
SSize_t leading_zeros = strspn(cur_ptr, "0");
SSize_t excess_leading_zeros
= MIN(leading_zeros, excess_exponent_len);
if (excess_leading_zeros > 0) {
Move(cur_ptr + excess_leading_zeros,
cur_ptr,
strlen(cur_ptr) - excess_leading_zeros
+ 1, /* Copy the NUL as well */
char);
}
}
}
}
}
else { /* Has a slash. Create a rational in canonical form */
UV numerator, denominator, gcd, trial;
const char * end_ptr;
const char * sign = "";
/* We can't just find the numerator, denominator, and do the
* division, then use the method above, because that is
* inexact. And the input could be a rational that is within
* epsilon (given our precision) of a valid rational, and would
* then incorrectly compare valid.
*
* We're only interested in the part after the '=' */
const char * this_lookup_name = lookup_name + equals_pos;
lookup_len -= equals_pos;
slash_pos -= equals_pos;
/* Handle any leading minus */
if (this_lookup_name[0] == '-') {
sign = "-";
this_lookup_name++;
lookup_len--;
slash_pos--;
}
/* Convert the numerator to numeric */
end_ptr = this_lookup_name + slash_pos;
if (! grok_atoUV(this_lookup_name, &numerator, &end_ptr)) {
goto failed;
}
/* It better have included all characters before the slash */
if (*end_ptr != '/') {
goto failed;
}
/* Set to look at just the denominator */
this_lookup_name += slash_pos;
lookup_len -= slash_pos;
end_ptr = this_lookup_name + lookup_len;
/* Convert the denominator to numeric */
if (! grok_atoUV(this_lookup_name, &denominator, &end_ptr)) {
goto failed;
}
/* It better be the rest of the characters, and don't divide by
* 0 */
if ( end_ptr != this_lookup_name + lookup_len
|| denominator == 0)
{
goto failed;
}
/* Get the greatest common denominator using
http://en.wikipedia.org/wiki/Euclidean_algorithm */
gcd = numerator;
trial = denominator;
while (trial != 0) {
UV temp = trial;
trial = gcd % trial;
gcd = temp;
}
/* If already in lowest possible terms, we have already tried
* looking this up */
if (gcd == 1) {
goto failed;
}
/* Reduce the rational, which should put it in canonical form
* */
numerator /= gcd;
denominator /= gcd;
canonical = Perl_form(aTHX_ "%.*s%s%" UVuf "/%" UVuf,
equals_pos, lookup_name, sign, numerator, denominator);
}
/* Here, we have the number in canonical form. Try that */
table_index = do_uniprop_match(canonical, strlen(canonical));
if (table_index == 0) {
goto failed;
}
} /* End of still didn't find the property in our table */
} /* End of didn't find the property in our table */
/* Here, we have a non-zero return, which is an index into a table of ptrs.
* A negative return signifies that the real index is the absolute value,
* but the result needs to be inverted */
if (table_index < 0) {
invert_return = TRUE;
table_index = -table_index;
}
/* Out-of band indices indicate a deprecated property. The proper index is
* modulo it with the table size. And dividing by the table size yields
* an offset into a table constructed by regen/mk_invlists.pl to contain
* the corresponding warning message */
if (table_index > MAX_UNI_KEYWORD_INDEX) {
Size_t warning_offset = table_index / MAX_UNI_KEYWORD_INDEX;
table_index %= MAX_UNI_KEYWORD_INDEX;
Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED),
"Use of '%.*s' in \\p{} or \\P{} is deprecated because: %s",
(int) name_len, name,
get_deprecated_property_msg(warning_offset));
}
/* In a few properties, a different property is used under /i. These are
* unlikely to change, so are hard-coded here. */
if (to_fold) {
if ( table_index == UNI_XPOSIXUPPER
|| table_index == UNI_XPOSIXLOWER
|| table_index == UNI_TITLE)
{
table_index = UNI_CASED;
}
else if ( table_index == UNI_UPPERCASELETTER
|| table_index == UNI_LOWERCASELETTER
# ifdef UNI_TITLECASELETTER /* Missing from early Unicodes */
|| table_index == UNI_TITLECASELETTER
# endif
) {
table_index = UNI_CASEDLETTER;
}
else if ( table_index == UNI_POSIXUPPER
|| table_index == UNI_POSIXLOWER)
{
table_index = UNI_POSIXALPHA;
}
}
/* Create and return the inversion list */
prop_definition = get_prop_definition(table_index);
sv_2mortal(prop_definition);
/* See if there is a private use override to add to this definition */
{
COPHH * hinthash = (IN_PERL_COMPILETIME)
? CopHINTHASH_get(&PL_compiling)
: CopHINTHASH_get(PL_curcop);
SV * pu_overrides = cophh_fetch_pv(hinthash, "private_use", 0, 0);
if (UNLIKELY(pu_overrides && SvPOK(pu_overrides))) {
/* See if there is an element in the hints hash for this table */
SV * pu_lookup = Perl_newSVpvf(aTHX_ "%d=", table_index);
const char * pos = strstr(SvPVX(pu_overrides), SvPVX(pu_lookup));
if (pos) {
bool dummy;
SV * pu_definition;
SV * pu_invlist;
SV * expanded_prop_definition =
sv_2mortal(invlist_clone(prop_definition, NULL));
/* If so, it's definition is the string from here to the next
* \a character. And its format is the same as a user-defined
* property */
pos += SvCUR(pu_lookup);
pu_definition = newSVpvn(pos, strchr(pos, '\a') - pos);
pu_invlist = handle_user_defined_property(lookup_name,
lookup_len,
0, /* Not UTF-8 */
0, /* Not folded */
runtime,
deferrable,
pu_definition,
&dummy,
msg,
level);
if (TAINT_get) {
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catpvs(msg, "Insecure private-use override");
goto append_name_to_msg;
}
/* For now, as a safety measure, make sure that it doesn't
* override non-private use code points */
_invlist_intersection(pu_invlist, PL_Private_Use, &pu_invlist);
/* Add it to the list to be returned */
_invlist_union(prop_definition, pu_invlist,
&expanded_prop_definition);
prop_definition = expanded_prop_definition;
Perl_ck_warner_d(aTHX_ packWARN(WARN_EXPERIMENTAL__PRIVATE_USE), "The private_use feature is experimental");
}
}
}
if (invert_return) {
_invlist_invert(prop_definition);
}
return prop_definition;
unknown_user_defined:
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catpvs(msg, "Unknown user-defined property name");
goto append_name_to_msg;
failed:
if (non_pkg_begin != 0) {
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catpvs(msg, "Illegal user-defined property name");
}
else {
if (SvCUR(msg) > 0) sv_catpvs(msg, "; ");
sv_catpvs(msg, "Can't find Unicode property definition");
}
/* FALLTHROUGH */
append_name_to_msg:
{
const char * prefix = (runtime && level == 0) ? " \\p{" : " \"";
const char * suffix = (runtime && level == 0) ? "}" : "\"";
sv_catpv(msg, prefix);
Perl_sv_catpvf(aTHX_ msg, "%" UTF8f, UTF8fARG(is_utf8, name_len, name));
sv_catpv(msg, suffix);
}
return NULL;
definition_deferred:
{
bool is_qualified = non_pkg_begin != 0; /* If has "::" */
/* Here it could yet to be defined, so defer evaluation of this until
* its needed at runtime. We need the fully qualified property name to
* avoid ambiguity */
if (! fq_name) {
fq_name = S_get_fq_name(aTHX_ name, name_len, is_utf8,
is_qualified);
}
/* If it didn't come with a package, or the package is utf8::, this
* actually could be an official Unicode property whose inclusion we
* are deferring until runtime to make sure that it isn't overridden by
* a user-defined property of the same name (which we haven't
* encountered yet). Add a marker to indicate this possibility, for
* use at such time when we first need the definition during pattern
* matching execution */
if (! is_qualified || memBEGINPs(name, non_pkg_begin, "utf8::")) {
sv_catpvs(fq_name, DEFERRED_COULD_BE_OFFICIAL_MARKERs);
}
/* We also need a trailing newline */
sv_catpvs(fq_name, "\n");
*user_defined_ptr = TRUE;
return fq_name;
}
}
STATIC bool
S_handle_names_wildcard(pTHX_ const char * wname, /* wildcard name to match */
const STRLEN wname_len, /* Its length */
SV ** prop_definition,
AV ** strings)
{
/* Deal with Name property wildcard subpatterns; returns TRUE if there were
* any matches, adding them to prop_definition */
dSP;
CV * get_names_info; /* entry to charnames.pm to get info we need */
SV * names_string; /* Contains all character names, except algo */
SV * algorithmic_names; /* Contains info about algorithmically
generated character names */
REGEXP * subpattern_re; /* The user's pattern to match with */
struct regexp * prog; /* The compiled pattern */
char * all_names_start; /* lib/unicore/Name.pl string of every
(non-algorithmic) character name */
char * cur_pos; /* We match, effectively using /gc; this is
where we are now */
bool found_matches = FALSE; /* Did any name match so far? */
SV * empty; /* For matching zero length names */
SV * must_sv; /* Contains the substring, if any, that must be
in a name for the subpattern to match */
const char * must; /* The PV of 'must' */
STRLEN must_len; /* And its length */
SV * syllable_name = NULL; /* For Hangul syllables */
const char hangul_prefix[] = "HANGUL SYLLABLE ";
const STRLEN hangul_prefix_len = sizeof(hangul_prefix) - 1;
/* By inspection, there are a maximum of 7 bytes in the suffix of a hangul
* syllable name, and these are immutable and guaranteed by the Unicode
* standard to never be extended */
const STRLEN syl_max_len = hangul_prefix_len + 7;
IV i;
PERL_ARGS_ASSERT_HANDLE_NAMES_WILDCARD;
/* Make sure _charnames is loaded. (The parameters give context
* for any errors generated */
get_names_info = get_cv("_charnames::_get_names_info", 0);
if (! get_names_info) {
Perl_croak(aTHX_ "panic: Can't find '_charnames::_get_names_info");
}
/* Get the charnames data */
PUSHSTACKi(PERLSI_REGCOMP);
ENTER ;
SAVETMPS;
save_re_context();
PUSHMARK(SP) ;
PUTBACK;
/* Special _charnames entry point that returns the info this routine
* requires */
call_sv(MUTABLE_SV(get_names_info), G_ARRAY);
SPAGAIN ;
/* Data structure for names which end in their very own code points */
algorithmic_names = POPs;
SvREFCNT_inc_simple_void_NN(algorithmic_names);
/* The lib/unicore/Name.pl string */
names_string = POPs;
SvREFCNT_inc_simple_void_NN(names_string);
PUTBACK ;
FREETMPS ;
LEAVE ;
POPSTACK;
if ( ! SvROK(names_string)
|| ! SvROK(algorithmic_names))
{ /* Perhaps should panic instead XXX */
SvREFCNT_dec(names_string);
SvREFCNT_dec(algorithmic_names);
return FALSE;
}
names_string = sv_2mortal(SvRV(names_string));
all_names_start = SvPVX(names_string);
cur_pos = all_names_start;
algorithmic_names= sv_2mortal(SvRV(algorithmic_names));
/* Compile the subpattern consisting of the name being looked for */
subpattern_re = compile_wildcard(wname, wname_len, FALSE /* /-i */ );
must_sv = re_intuit_string(subpattern_re);
if (must_sv) {
/* regexec.c can free the re_intuit_string() return. GH #17734 */
must_sv = sv_2mortal(newSVsv(must_sv));
must = SvPV(must_sv, must_len);
}
else {
must = "";
must_len = 0;
}
/* (Note: 'must' could contain a NUL. And yet we use strspn() below on it.
* This works because the NUL causes the function to return early, thus
* showing that there are characters in it other than the acceptable ones,
* which is our desired result.) */
prog = ReANY(subpattern_re);
/* If only nothing is matched, skip to where empty names are looked for */
if (prog->maxlen == 0) {
goto check_empty;
}
/* And match against the string of all names /gc. Don't even try if it
* must match a character not found in any name. */
if (strspn(must, "\n -0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ()") == must_len)
{
while (execute_wildcard(subpattern_re,
cur_pos,
SvEND(names_string),
all_names_start, 0,
names_string,
0))
{ /* Here, matched. */
/* Note the string entries look like
* 00001\nSTART OF HEADING\n\n
* so we could match anywhere in that string. We have to rule out
* matching a code point line */
char * this_name_start = all_names_start
+ RX_OFFS(subpattern_re)->start;
char * this_name_end = all_names_start
+ RX_OFFS(subpattern_re)->end;
char * cp_start;
char * cp_end;
UV cp = 0; /* Silences some compilers */
AV * this_string = NULL;
bool is_multi = FALSE;
/* If matched nothing, advance to next possible match */
if (this_name_start == this_name_end) {
cur_pos = (char *) memchr(this_name_end + 1, '\n',
SvEND(names_string) - this_name_end);
if (cur_pos == NULL) {
break;
}
}
else {
/* Position the next match to start beyond the current returned
* entry */
cur_pos = (char *) memchr(this_name_end, '\n',
SvEND(names_string) - this_name_end);
}
/* Back up to the \n just before the beginning of the character. */
cp_end = (char *) my_memrchr(all_names_start,
'\n',
this_name_start - all_names_start);
/* If we didn't find a \n, it means it matched somewhere in the
* initial '00000' in the string, so isn't a real match */
if (cp_end == NULL) {
continue;
}
this_name_start = cp_end + 1; /* The name starts just after */
cp_end--; /* the \n, and the code point */
/* ends just before it */
/* All code points are 5 digits long */
cp_start = cp_end - 4;
/* This shouldn't happen, as we found a \n, and the first \n is
* further along than what we subtracted */
assert(cp_start >= all_names_start);
if (cp_start == all_names_start) {
*prop_definition = add_cp_to_invlist(*prop_definition, 0);
continue;
}
/* If the character is a blank, we either have a named sequence, or
* something is wrong */
if (*(cp_start - 1) == ' ') {
cp_start = (char *) my_memrchr(all_names_start,
'\n',
cp_start - all_names_start);
cp_start++;
}
assert(cp_start != NULL && cp_start >= all_names_start + 2);
/* Except for the first line in the string, the sequence before the
* code point is \n\n. If that isn't the case here, we didn't
* match the name of a character. (We could have matched a named
* sequence, not currently handled */
if (*(cp_start - 1) != '\n' || *(cp_start - 2) != '\n') {
continue;
}
/* We matched! Add this to the list */
found_matches = TRUE;
/* Loop through all the code points in the sequence */
while (cp_start < cp_end) {
/* Calculate this code point from its 5 digits */
cp = (XDIGIT_VALUE(cp_start[0]) << 16)
+ (XDIGIT_VALUE(cp_start[1]) << 12)
+ (XDIGIT_VALUE(cp_start[2]) << 8)
+ (XDIGIT_VALUE(cp_start[3]) << 4)
+ XDIGIT_VALUE(cp_start[4]);
cp_start += 6; /* Go past any blank */
if (cp_start < cp_end || is_multi) {
if (this_string == NULL) {
this_string = newAV();
}
is_multi = TRUE;
av_push(this_string, newSVuv(cp));
}
}
if (is_multi) { /* Was more than one code point */
if (*strings == NULL) {
*strings = newAV();
}
av_push(*strings, (SV *) this_string);
}
else { /* Only a single code point */
*prop_definition = add_cp_to_invlist(*prop_definition, cp);
}
} /* End of loop through the non-algorithmic names string */
}
/* There are also character names not in 'names_string'. These are
* algorithmically generatable. Try this pattern on each possible one.
* (khw originally planned to leave this out given the large number of
* matches attempted; but the speed turned out to be quite acceptable
*
* There are plenty of opportunities to optimize to skip many of the tests.
* beyond the rudimentary ones already here */
/* First see if the subpattern matches any of the algorithmic generatable
* Hangul syllable names.
*
* We know none of these syllable names will match if the input pattern
* requires more bytes than any syllable has, or if the input pattern only
* matches an empty name, or if the pattern has something it must match and
* one of the characters in that isn't in any Hangul syllable. */
if ( prog->minlen <= (SSize_t) syl_max_len
&& prog->maxlen > 0
&& (strspn(must, "\n ABCDEGHIJKLMNOPRSTUWY") == must_len))
{
/* These constants, names, values, and algorithm are adapted from the
* Unicode standard, version 5.1, section 3.12, and should never
* change. */
const char * JamoL[] = {
"G", "GG", "N", "D", "DD", "R", "M", "B", "BB",
"S", "SS", "", "J", "JJ", "C", "K", "T", "P", "H"
};
const int LCount = C_ARRAY_LENGTH(JamoL);
const char * JamoV[] = {
"A", "AE", "YA", "YAE", "EO", "E", "YEO", "YE", "O", "WA",
"WAE", "OE", "YO", "U", "WEO", "WE", "WI", "YU", "EU", "YI",
"I"
};
const int VCount = C_ARRAY_LENGTH(JamoV);
const char * JamoT[] = {
"", "G", "GG", "GS", "N", "NJ", "NH", "D", "L",
"LG", "LM", "LB", "LS", "LT", "LP", "LH", "M", "B",
"BS", "S", "SS", "NG", "J", "C", "K", "T", "P", "H"
};
const int TCount = C_ARRAY_LENGTH(JamoT);
int L, V, T;
/* This is the initial Hangul syllable code point; each time through the
* inner loop, it maps to the next higher code point. For more info,
* see the Hangul syllable section of the Unicode standard. */
int cp = 0xAC00;
syllable_name = sv_2mortal(newSV(syl_max_len));
sv_setpvn(syllable_name, hangul_prefix, hangul_prefix_len);
for (L = 0; L < LCount; L++) {
for (V = 0; V < VCount; V++) {
for (T = 0; T < TCount; T++) {
/* Truncate back to the prefix, which is unvarying */
SvCUR_set(syllable_name, hangul_prefix_len);
sv_catpv(syllable_name, JamoL[L]);
sv_catpv(syllable_name, JamoV[V]);
sv_catpv(syllable_name, JamoT[T]);
if (execute_wildcard(subpattern_re,
SvPVX(syllable_name),
SvEND(syllable_name),
SvPVX(syllable_name), 0,
syllable_name,
0))
{
*prop_definition = add_cp_to_invlist(*prop_definition,
cp);
found_matches = TRUE;
}
cp++;
}
}
}
}
/* The rest of the algorithmically generatable names are of the form
* "PREFIX-code_point". The prefixes and the code point limits of each
* were returned to us in the array 'algorithmic_names' from data in
* lib/unicore/Name.pm. 'code_point' in the name is expressed in hex. */
for (i = 0; i <= av_top_index((AV *) algorithmic_names); i++) {
IV j;
/* Each element of the array is a hash, giving the details for the
* series of names it covers. There is the base name of the characters
* in the series, and the low and high code points in the series. And,
* for optimization purposes a string containing all the legal
* characters that could possibly be in a name in this series. */
HV * this_series = (HV *) SvRV(* av_fetch((AV *) algorithmic_names, i, 0));
SV * prefix = * hv_fetchs(this_series, "name", 0);
IV low = SvIV(* hv_fetchs(this_series, "low", 0));
IV high = SvIV(* hv_fetchs(this_series, "high", 0));
char * legal = SvPVX(* hv_fetchs(this_series, "legal", 0));
/* Pre-allocate an SV with enough space */
SV * algo_name = sv_2mortal(Perl_newSVpvf(aTHX_ "%s-0000",
SvPVX(prefix)));
if (high >= 0x10000) {
sv_catpvs(algo_name, "0");
}
/* This series can be skipped entirely if the pattern requires
* something longer than any name in the series, or can only match an
* empty name, or contains a character not found in any name in the
* series */
if ( prog->minlen <= (SSize_t) SvCUR(algo_name)
&& prog->maxlen > 0
&& (strspn(must, legal) == must_len))
{
for (j = low; j <= high; j++) { /* For each code point in the series */
/* Get its name, and see if it matches the subpattern */
Perl_sv_setpvf(aTHX_ algo_name, "%s-%X", SvPVX(prefix),
(unsigned) j);
if (execute_wildcard(subpattern_re,
SvPVX(algo_name),
SvEND(algo_name),
SvPVX(algo_name), 0,
algo_name,
0))
{
*prop_definition = add_cp_to_invlist(*prop_definition, j);
found_matches = TRUE;
}
}
}
}
check_empty:
/* Finally, see if the subpattern matches an empty string */
empty = newSVpvs("");
if (execute_wildcard(subpattern_re,
SvPVX(empty),
SvEND(empty),
SvPVX(empty), 0,
empty,
0))
{
/* Many code points have empty names. Currently these are the \p{GC=C}
* ones, minus CC and CF */
SV * empty_names_ref = get_prop_definition(UNI_C);
SV * empty_names = invlist_clone(empty_names_ref, NULL);
SV * subtract = get_prop_definition(UNI_CC);
_invlist_subtract(empty_names, subtract, &empty_names);
SvREFCNT_dec_NN(empty_names_ref);
SvREFCNT_dec_NN(subtract);
subtract = get_prop_definition(UNI_CF);
_invlist_subtract(empty_names, subtract, &empty_names);
SvREFCNT_dec_NN(subtract);
_invlist_union(*prop_definition, empty_names, prop_definition);
found_matches = TRUE;
SvREFCNT_dec_NN(empty_names);
}
SvREFCNT_dec_NN(empty);
#if 0
/* If we ever were to accept aliases for, say private use names, we would
* need to do something fancier to find empty names. The code below works
* (at the time it was written), and is slower than the above */
const char empties_pat[] = "^.";
if (strNE(name, empties_pat)) {
SV * empty = newSVpvs("");
if (execute_wildcard(subpattern_re,
SvPVX(empty),
SvEND(empty),
SvPVX(empty), 0,
empty,
0))
{
SV * empties = NULL;
(void) handle_names_wildcard(empties_pat, strlen(empties_pat), &empties);
_invlist_union_complement_2nd(*prop_definition, empties, prop_definition);
SvREFCNT_dec_NN(empties);
found_matches = TRUE;
}
SvREFCNT_dec_NN(empty);
}
#endif
SvREFCNT_dec_NN(subpattern_re);
return found_matches;
}
/*
* ex: set ts=8 sts=4 sw=4 et:
*/
|