1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
|
package bignum;
use strict;
use warnings;
use Carp qw< carp croak >;
our $VERSION = '0.67';
use Exporter;
our @ISA = qw( Exporter );
our @EXPORT_OK = qw( PI e bpi bexp hex oct );
our @EXPORT = qw( inf NaN );
use overload;
# Defaults: When a constant is an integer, Inf or NaN, it is converted to an
# object of class $int_class. When a constant is a finite non-integer, it is
# converted to an object of class $float_class.
my $int_class = 'Math::BigInt';
my $float_class = 'Math::BigFloat';
##############################################################################
sub accuracy {
shift;
$int_class -> accuracy(@_);
$float_class -> accuracy(@_);
}
sub precision {
shift;
$int_class -> precision(@_);
$float_class -> precision(@_);
}
sub round_mode {
shift;
$int_class -> round_mode(@_);
$float_class -> round_mode(@_);
}
sub div_scale {
shift;
$int_class -> div_scale(@_);
$float_class -> div_scale(@_);
}
sub upgrade {
shift;
$int_class -> upgrade(@_);
}
sub downgrade {
shift;
$float_class -> downgrade(@_);
}
sub in_effect {
my $level = shift || 0;
my $hinthash = (caller($level))[10];
$hinthash->{bignum};
}
sub _float_constant {
my $str = shift;
# See if we can convert the input string to a string using a normalized form
# consisting of the significand as a signed integer, the character "e", and
# the exponent as a signed integer, e.g., "+0e+0", "+314e-2", and "-1e+3".
my $nstr;
if (
# See if it is an octal number. An octal number like '0377' is also
# accepted by the functions parsing decimal and hexadecimal numbers, so
# handle octal numbers before decimal and hexadecimal numbers.
$str =~ /^0(?:[Oo]|_*[0-7])/ and
$nstr = Math::BigInt -> oct_str_to_dec_flt_str($str)
or
# See if it is decimal number.
$nstr = Math::BigInt -> dec_str_to_dec_flt_str($str)
or
# See if it is a hexadecimal number. Every hexadecimal number has a
# prefix, but the functions parsing numbers don't require it, so check
# to see if it actually is a hexadecimal number.
$str =~ /^0[Xx]/ and
$nstr = Math::BigInt -> hex_str_to_dec_flt_str($str)
or
# See if it is a binary numbers. Every binary number has a prefix, but
# the functions parsing numbers don't require it, so check to see if it
# actually is a binary number.
$str =~ /^0[Bb]/ and
$nstr = Math::BigInt -> bin_str_to_dec_flt_str($str))
{
my $pos = index($nstr, 'e');
my $expo_sgn = substr($nstr, $pos + 1, 1);
my $sign = substr($nstr, 0, 1);
my $mant = substr($nstr, 1, $pos - 1);
my $mant_len = CORE::length($mant);
my $expo = substr($nstr, $pos + 2);
# The number is a non-integer if and only if the exponent is negative.
if ($expo_sgn eq '-') {
return $float_class -> new($str);
my $upgrade = $int_class -> upgrade();
return $upgrade -> new($nstr) if defined $upgrade;
if ($mant_len <= $expo) {
return $int_class -> bzero(); # underflow
} else {
$mant = substr $mant, 0, $mant_len - $expo; # truncate
return $int_class -> new($sign . $mant);
}
} else {
$mant .= "0" x $expo; # pad with zeros
return $int_class -> new($sign . $mant);
}
}
# If we get here, there is a bug in the code above this point.
warn "Internal error: unable to handle literal constant '$str'.",
" This is a bug, so please report this to the module author.";
return $int_class -> bnan();
}
#############################################################################
# the following two routines are for "use bignum qw/hex oct/;":
use constant LEXICAL => $] > 5.009004;
# Internal function with the same semantics as CORE::hex(). This function is
# not used directly, but rather by other front-end functions.
sub _hex_core {
my $str = shift;
# Strip off, clean, and parse as much as we can from the beginning.
my $x;
if ($str =~ s/ ^ ( 0? [xX] )? ( [0-9a-fA-F]* ( _ [0-9a-fA-F]+ )* ) //x) {
my $chrs = $2;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
$x = $int_class -> from_hex($chrs);
} else {
$x = $int_class -> bzero();
}
# Warn about trailing garbage.
if (CORE::length($str)) {
require Carp;
Carp::carp(sprintf("Illegal hexadecimal digit '%s' ignored",
substr($str, 0, 1)));
}
return $x;
}
# Internal function with the same semantics as CORE::oct(). This function is
# not used directly, but rather by other front-end functions.
sub _oct_core {
my $str = shift;
$str =~ s/^\s*//;
# Hexadecimal input.
return _hex_core($str) if $str =~ /^0?[xX]/;
my $x;
# Binary input.
if ($str =~ /^0?[bB]/) {
# Strip off, clean, and parse as much as we can from the beginning.
if ($str =~ s/ ^ ( 0? [bB] )? ( [01]* ( _ [01]+ )* ) //x) {
my $chrs = $2;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
$x = $int_class -> from_bin($chrs);
}
# Warn about trailing garbage.
if (CORE::length($str)) {
require Carp;
Carp::carp(sprintf("Illegal binary digit '%s' ignored",
substr($str, 0, 1)));
}
return $x;
}
# Octal input. Strip off, clean, and parse as much as we can from the
# beginning.
if ($str =~ s/ ^ ( 0? [oO] )? ( [0-7]* ( _ [0-7]+ )* ) //x) {
my $chrs = $2;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
$x = $int_class -> from_oct($chrs);
}
# Warn about trailing garbage. CORE::oct() only warns about 8 and 9, but it
# is more helpful to warn about all invalid digits.
if (CORE::length($str)) {
require Carp;
Carp::carp(sprintf("Illegal octal digit '%s' ignored",
substr($str, 0, 1)));
}
return $x;
}
{
my $proto = LEXICAL ? '_' : ';$';
eval '
sub hex(' . $proto . ') {' . <<'.';
my $str = @_ ? $_[0] : $_;
_hex_core($str);
}
.
eval '
sub oct(' . $proto . ') {' . <<'.';
my $str = @_ ? $_[0] : $_;
_oct_core($str);
}
.
}
#############################################################################
# the following two routines are for Perl 5.9.4 or later and are lexical
my ($prev_oct, $prev_hex, $overridden);
if (LEXICAL) { eval <<'.' }
sub _hex(_) {
my $hh = (caller 0)[10];
return $$hh{bignum} ? bignum::_hex_core($_[0])
: $$hh{bigrat} ? bigrat::_hex_core($_[0])
: $$hh{bigint} ? bigint::_hex_core($_[0])
: $prev_hex ? &$prev_hex($_[0])
: CORE::hex($_[0]);
}
sub _oct(_) {
my $hh = (caller 0)[10];
return $$hh{bignum} ? bignum::_oct_core($_[0])
: $$hh{bigrat} ? bigrat::_oct_core($_[0])
: $$hh{bigint} ? bigint::_oct_core($_[0])
: $prev_oct ? &$prev_oct($_[0])
: CORE::oct($_[0]);
}
.
sub _override {
return if $overridden;
$prev_oct = *CORE::GLOBAL::oct{CODE};
$prev_hex = *CORE::GLOBAL::hex{CODE};
no warnings 'redefine';
*CORE::GLOBAL::oct = \&_oct;
*CORE::GLOBAL::hex = \&_hex;
$overridden = 1;
}
sub unimport {
delete $^H{bignum}; # no longer in effect
overload::remove_constant('binary', '', 'float', '', 'integer');
}
sub import {
my $class = shift;
$^H{bignum} = 1; # we are in effect
delete $^H{bigint};
delete $^H{bigrat};
# for newer Perls always override hex() and oct() with a lexical version:
if (LEXICAL) {
_override();
}
my @import = (); # common options
my @int_import = (upgrade => $float_class); # int class only options
my @flt_import = (downgrade => $int_class); # float class only options
my @a = (); # unrecognized arguments
my $ver; # display version info?
while (@_) {
my $param = shift;
# Upgrading.
if ($param eq 'upgrade') {
my $arg = shift;
$float_class = $arg if defined $arg;
push @int_import, 'upgrade', $arg;
next;
}
# Downgrading.
if ($param eq 'downgrade') {
my $arg = shift;
$int_class = $arg if defined $arg;
push @flt_import, 'downgrade', $arg;
next;
}
# Accuracy.
if ($param =~ /^a(ccuracy)?$/) {
push @import, 'accuracy', shift();
next;
}
# Precision.
if ($param =~ /^p(recision)?$/) {
push @import, 'precision', shift();
next;
}
# Rounding mode.
if ($param eq 'round_mode') {
push @import, 'round_mode', shift();
next;
}
# Backend library.
if ($param =~ /^(l|lib|try|only)$/) {
push @import, $param eq 'l' ? 'lib' : $param;
push @import, shift() if @_;
next;
}
if ($param =~ /^(v|version)$/) {
$ver = 1;
next;
}
if ($param =~ /^(PI|e|bexp|bpi|hex|oct)\z/) {
push @a, $param;
next;
}
croak("Unknown option '$param'");
}
eval "require $int_class";
die $@ if $@;
$int_class -> import(@int_import, @import);
eval "require $float_class";
die $@ if $@;
$float_class -> import(@flt_import, @import);
if ($ver) {
printf "%-31s v%s\n", $class, $class -> VERSION();
printf " lib => %-23s v%s\n",
$int_class -> config("lib"), $int_class -> config("lib_version");
printf "%-31s v%s\n", $int_class, $int_class -> VERSION();
exit;
}
$class -> export_to_level(1, $class, @a); # export inf, NaN, etc.
overload::constant
# This takes care each number written as decimal integer and within the
# range of what perl can represent as an integer, e.g., "314", but not
# "3141592653589793238462643383279502884197169399375105820974944592307".
integer => sub {
#printf "Value '%s' handled by the 'integer' sub.\n", $_[0];
my $str = shift;
return $int_class -> new($str);
},
# This takes care of each number written with a decimal point and/or
# using floating point notation, e.g., "3.", "3.0", "3.14e+2" (decimal),
# "0b1.101p+2" (binary), "03.14p+2" and "0o3.14p+2" (octal), and
# "0x3.14p+2" (hexadecimal).
float => sub {
#printf "# Value '%s' handled by the 'float' sub.\n", $_[0];
_float_constant(shift);
},
# Take care of each number written as an integer (no decimal point or
# exponent) using binary, octal, or hexadecimal notation, e.g., "0b101"
# (binary), "0314" and "0o314" (octal), and "0x314" (hexadecimal).
binary => sub {
#printf "# Value '%s' handled by the 'binary' sub.\n", $_[0];
my $str = shift;
return $int_class -> new($str) if $str =~ /^0[XxBb]/;
$int_class -> from_oct($str);
};
}
sub inf () { $int_class -> binf(); }
sub NaN () { $int_class -> bnan(); }
# This should depend on the current accuracy/precision. Fixme!
sub PI () { $float_class -> new('3.141592653589793238462643383279502884197'); }
sub e () { $float_class -> new('2.718281828459045235360287471352662497757'); }
sub bpi ($) {
my $up = Math::BigFloat -> upgrade(); # get current upgrading, if any ...
Math::BigFloat -> upgrade(undef); # ... and disable
my $x = Math::BigFloat -> bpi(@_);
Math::BigFloat -> upgrade($up); # reset the upgrading
return $x;
}
sub bexp ($$) {
my $up = Math::BigFloat -> upgrade(); # get current upgrading, if any ...
Math::BigFloat -> upgrade(undef); # ... and disable
my $x = Math::BigFloat -> new(shift) -> bexp(@_);
Math::BigFloat -> upgrade($up); # reset the upgrading
return $x;
}
1;
__END__
=pod
=head1 NAME
bignum - transparent big number support for Perl
=head1 SYNOPSIS
use bignum;
$x = 2 + 4.5; # Math::BigFloat 6.5
print 2 ** 512 * 0.1; # Math::BigFloat 134...09.6
print 2 ** 512; # Math::BigInt 134...096
print inf + 42; # Math::BigInt inf
print NaN * 7; # Math::BigInt NaN
print hex("0x1234567890123490"); # Perl v5.10.0 or later
{
no bignum;
print 2 ** 256; # a normal Perl scalar now
}
# for older Perls, import into current package:
use bignum qw/hex oct/;
print hex("0x1234567890123490");
print oct("01234567890123490");
=head1 DESCRIPTION
=head2 Literal numeric constants
By default, every literal integer becomes a Math::BigInt object, and literal
non-integer becomes a Math::BigFloat object. Whether a numeric literal is
considered an integer or non-integers depends only on the value of the constant,
not on how it is represented. For instance, the constants 3.14e2 and 0x1.3ap8
become Math::BigInt objects, because they both represent the integer value
decimal 314.
The default C<use bignum;> is equivalent to
use bignum downgrade => "Math::BigInt", upgrade => "Math::BigFloat";
The classes used for integers and non-integers can be set at compile time with
the C<downgrade> and C<upgrade> options, for example
# use Math::BigInt for integers and Math::BigRat for non-integers
use bignum upgrade => "Math::BigRat";
Note that disabling downgrading and upgrading does not affect how numeric
literals are converted to objects
# disable both downgrading and upgrading
use bignum downgrade => undef, upgrade => undef;
$x = 2.4; # becomes 2.4 as a Math::BigFloat
$y = 2; # becomes 2 as a Math::BigInt
=head2 Upgrading and downgrading
By default, when the result of a computation is an integer, an Inf, or a NaN,
the result is downgraded even when all the operands are instances of the upgrade
class.
use bignum;
$x = 2.4; # becomes 2.4 as a Math::BigFloat
$y = 1.2; # becomes 1.2 as a Math::BigFloat
$z = $x / $y; # becomes 2 as a Math::BigInt due to downgrading
Equivalently, by default, when the result of a computation is a finite
non-integer, the result is upgraded even when all the operands are instances of
the downgrade class.
use bignum;
$x = 7; # becomes 7 as a Math::BigInt
$y = 2; # becomes 2 as a Math::BigInt
$z = $x / $y; # becomes 3.5 as a Math::BigFloat due to upgrading
The classes used for downgrading and upgrading can be set at runtime with the
L</downgrade()> and L</upgrade()> methods, but see L</CAVEATS> below.
The upgrade and downgrade classes don't have to be Math::BigInt and
Math::BigFloat. For example, to use Math::BigRat as the upgrade class, use
use bignum upgrade => "Math::BigRat";
$x = 2; # becomes 2 as a Math::BigInt
$y = 3.6; # becomes 18/5 as a Math::BigRat
The upgrade and downgrade classes can be modified at runtime
use bignum;
$x = 3; # becomes 3 as a Math::BigInt
$y = 2; # becomes 2 as a Math::BigInt
$z = $x / $y; # becomes 1.5 as a Math::BigFlaot
bignum -> upgrade("Math::BigRat");
$w = $x / $y; # becomes 3/2 as a Math::BigRat
Disabling downgrading doesn't change the fact that literal constant integers are
converted to the downgrade class, it only prevents downgrading as a result of a
computation. E.g.,
use bignum downgrade => undef;
$x = 2; # becomes 2 as a Math::BigInt
$y = 2.4; # becomes 2.4 as a Math::BigFloat
$z = 1.2; # becomes 1.2 as a Math::BigFloat
$w = $x / $y; # becomes 2 as a Math::BigFloat due to no downgrading
If you want all numeric literals, both integers and non-integers, to become
Math::BigFloat objects, use the L<bigfloat> pragma.
Equivalently, disabling upgrading doesn't change the fact that literal constant
non-integers are converted to the upgrade class, it only prevents upgrading as a
result of a computation. E.g.,
use bignum upgrade => undef;
$x = 2.5; # becomes 2.5 as a Math::BigFloat
$y = 7; # becomes 7 as a Math::BigInt
$z = 2; # becomes 2 as a Math::BigInt
$w = $x / $y; # becomes 3 as a Math::BigInt due to no upgrading
If you want all numeric literals, both integers and non-integers, to become
Math::BigInt objects, use the L<bigint> pragma.
You can even do
use bignum upgrade => "Math::BigRat", upgrade => undef;
which converts all integer literals to Math::BigInt objects and all non-integer
literals to Math::BigRat objects. However, when the result of a computation
involving two Math::BigInt objects results in a non-integer (e.g., 7/2), the
result will be truncted to a Math::BigInt rather than being upgraded to a
Math::BigRat, since upgrading is disabled.
=head2 Overloading
Since all numeric literals become objects, you can call all the usual methods
from Math::BigInt and Math::BigFloat on them. This even works to some extent on
expressions:
perl -Mbignum -le '$x = 1234; print $x->bdec()'
perl -Mbignum -le 'print 1234->copy()->binc();'
perl -Mbignum -le 'print 1234->copy()->binc()->badd(6);'
=head2 Options
C<bignum> recognizes some options that can be passed while loading it via via
C<use>. The following options exist:
=over 4
=item a or accuracy
This sets the accuracy for all math operations. The argument must be greater
than or equal to zero. See Math::BigInt's bround() method for details.
perl -Mbignum=a,50 -le 'print sqrt(20)'
Note that setting precision and accuracy at the same time is not possible.
=item p or precision
This sets the precision for all math operations. The argument can be any
integer. Negative values mean a fixed number of digits after the dot, while a
positive value rounds to this digit left from the dot. 0 means round to integer.
See Math::BigInt's bfround() method for details.
perl -Mbignum=p,-50 -le 'print sqrt(20)'
Note that setting precision and accuracy at the same time is not possible.
=item l, lib, try, or only
Load a different math lib, see L<Math Library>.
perl -Mbignum=l,GMP -e 'print 2 ** 512'
perl -Mbignum=lib,GMP -e 'print 2 ** 512'
perl -Mbignum=try,GMP -e 'print 2 ** 512'
perl -Mbignum=only,GMP -e 'print 2 ** 512'
=item hex
Override the built-in hex() method with a version that can handle big numbers.
This overrides it by exporting it to the current package. Under Perl v5.10.0 and
higher, this is not so necessary, as hex() is lexically overridden in the
current scope whenever the C<bignum> pragma is active.
=item oct
Override the built-in oct() method with a version that can handle big numbers.
This overrides it by exporting it to the current package. Under Perl v5.10.0 and
higher, this is not so necessary, as oct() is lexically overridden in the
current scope whenever the C<bignum> pragma is active.
=item v or version
this prints out the name and version of the modules and then exits.
perl -Mbignum=v
=back
=head2 Math Library
Math with the numbers is done (by default) by a backend library module called
Math::BigInt::Calc. The default is equivalent to saying:
use bignum lib => 'Calc';
you can change this by using:
use bignum lib => 'GMP';
The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar,
and if this also fails, revert to Math::BigInt::Calc:
use bignum lib => 'Foo,Math::BigInt::Bar';
Using c<lib> warns if none of the specified libraries can be found and
L<Math::BigInt> and L<Math::BigFloat> fell back to one of the default
libraries. To suppress this warning, use C<try> instead:
use bignum try => 'GMP';
If you want the code to die instead of falling back, use C<only> instead:
use bignum only => 'GMP';
Please see respective module documentation for further details.
=head2 Method calls
Since all numbers are now objects, you can use the methods that are part of the
Math::BigInt and Math::BigFloat API.
But a warning is in order. When using the following to make a copy of a number,
only a shallow copy will be made.
$x = 9; $y = $x;
$x = $y = 7;
Using the copy or the original with overloaded math is okay, e.g., the following
work:
$x = 9; $y = $x;
print $x + 1, " ", $y,"\n"; # prints 10 9
but calling any method that modifies the number directly will result in B<both>
the original and the copy being destroyed:
$x = 9; $y = $x;
print $x->badd(1), " ", $y,"\n"; # prints 10 10
$x = 9; $y = $x;
print $x->binc(1), " ", $y,"\n"; # prints 10 10
$x = 9; $y = $x;
print $x->bmul(2), " ", $y,"\n"; # prints 18 18
Using methods that do not modify, but test that the contents works:
$x = 9; $y = $x;
$z = 9 if $x->is_zero(); # works fine
See the documentation about the copy constructor and C<=> in overload, as well
as the documentation in Math::BigFloat for further details.
=head2 Methods
=over 4
=item inf()
A shortcut to return C<inf> as an object. Useful because Perl does not always
handle bareword C<inf> properly.
=item NaN()
A shortcut to return C<NaN> as an object. Useful because Perl does not always
handle bareword C<NaN> properly.
=item e
# perl -Mbignum=e -wle 'print e'
Returns Euler's number C<e>, aka exp(1) (= 2.7182818284...).
=item PI
# perl -Mbignum=PI -wle 'print PI'
Returns PI (= 3.1415926532..).
=item bexp()
bexp($power, $accuracy);
Returns Euler's number C<e> raised to the appropriate power, to the wanted
accuracy.
Example:
# perl -Mbignum=bexp -wle 'print bexp(1,80)'
=item bpi()
bpi($accuracy);
Returns PI to the wanted accuracy.
Example:
# perl -Mbignum=bpi -wle 'print bpi(80)'
=item accuracy()
Set or get the accuracy.
=item precision()
Set or get the precision.
=item round_mode()
Set or get the rounding mode.
=item div_scale()
Set or get the division scale.
=item upgrade()
Set or get the class that the downgrade class upgrades to, if any. Set the
upgrade class to C<undef> to disable upgrading. See C</CAVEATS> below.
=item downgrade()
Set or get the class that the upgrade class downgrades to, if any. Set the
downgrade class to C<undef> to disable upgrading. See L</CAVEATS> below.
=item in_effect()
use bignum;
print "in effect\n" if bignum::in_effect; # true
{
no bignum;
print "in effect\n" if bignum::in_effect; # false
}
Returns true or false if C<bignum> is in effect in the current scope.
This method only works on Perl v5.9.4 or later.
=back
=head1 CAVEATS
=over 4
=item The upgrade() and downgrade() methods
Note that setting both the upgrade and downgrade classes at runtime with the
L</upgrade()> and L</downgrade()> methods, might not do what you expect:
# Assuming that downgrading and upgrading hasn't been modified so far, so
# the downgrade and upgrade classes are Math::BigInt and Math::BigFloat,
# respectively, the following sets the upgrade class to Math::BigRat, i.e.,
# makes Math::BigInt upgrade to Math::BigRat:
bignum -> upgrade("Math::BigRat");
# The following sets the downgrade class to Math::BigInt::Lite, i.e., makes
# the new upgrade class Math::BigRat downgrade to Math::BigInt::Lite
bignum -> downgrade("Math::BigInt::Lite");
# Note that at this point, it is still Math::BigInt, not Math::BigInt::Lite,
# that upgrades to Math::BigRat, so to get Math::BigInt::Lite to upgrade to
# Math::BigRat, we need to do the following (again):
bignum -> upgrade("Math::BigRat");
A simpler way to do this at runtime is to use import(),
bignum -> import(upgrade => "Math::BigRat",
downgrade => "Math::BigInt::Lite");
=item Hexadecimal, octal, and binary floating point literals
Perl (and this module) accepts hexadecimal, octal, and binary floating point
literals, but use them with care with Perl versions before v5.32.0, because some
versions of Perl silently give the wrong result.
=item Operator vs literal overloading
C<bigrat> works by overloading handling of integer and floating point literals,
converting them to L<Math::BigRat> objects.
This means that arithmetic involving only string values or string literals are
performed using Perl's built-in operators.
For example:
use bigrat;
my $x = "900000000000000009";
my $y = "900000000000000007";
print $x - $y;
outputs C<0> on default 32-bit builds, since C<bignum> never sees the string
literals. To ensure the expression is all treated as C<Math::BigFloat> objects,
use a literal number in the expression:
print +(0+$x) - $y;
=item Ranges
Perl does not allow overloading of ranges, so you can neither safely use ranges
with C<bignum> endpoints, nor is the iterator variable a C<Math::BigFloat>.
use 5.010;
for my $i (12..13) {
for my $j (20..21) {
say $i ** $j; # produces a floating-point number,
# not an object
}
}
=item in_effect()
This method only works on Perl v5.9.4 or later.
=item hex()/oct()
C<bignum> overrides these routines with versions that can also handle big
integer values. Under Perl prior to version v5.9.4, however, this will not
happen unless you specifically ask for it with the two import tags "hex" and
"oct" - and then it will be global and cannot be disabled inside a scope with
C<no bignum>:
use bignum qw/hex oct/;
print hex("0x1234567890123456");
{
no bignum;
print hex("0x1234567890123456");
}
The second call to hex() will warn about a non-portable constant.
Compare this to:
use bignum;
# will warn only under Perl older than v5.9.4
print hex("0x1234567890123456");
=back
=head1 EXAMPLES
Some cool command line examples to impress the Python crowd ;)
perl -Mbignum -le 'print sqrt(33)'
perl -Mbignum -le 'print 2**255'
perl -Mbignum -le 'print 4.5+2**255'
perl -Mbignum -le 'print 3/7 + 5/7 + 8/3'
perl -Mbignum -le 'print 123->is_odd()'
perl -Mbignum -le 'print log(2)'
perl -Mbignum -le 'print exp(1)'
perl -Mbignum -le 'print 2 ** 0.5'
perl -Mbignum=a,65 -le 'print 2 ** 0.2'
perl -Mbignum=l,GMP -le 'print 7 ** 7777'
=head1 BUGS
Please report any bugs or feature requests to
C<bug-bignum at rt.cpan.org>, or through the web interface at
L<https://rt.cpan.org/Ticket/Create.html?Queue=bignum> (requires login).
We will be notified, and then you'll automatically be notified of
progress on your bug as I make changes.
=head1 SUPPORT
You can find documentation for this module with the perldoc command.
perldoc bignum
You can also look for information at:
=over 4
=item * GitHub
L<https://github.com/pjacklam/p5-bignum>
=item * RT: CPAN's request tracker
L<https://rt.cpan.org/Dist/Display.html?Name=bignum>
=item * MetaCPAN
L<https://metacpan.org/release/bignum>
=item * CPAN Testers Matrix
L<http://matrix.cpantesters.org/?dist=bignum>
=back
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 SEE ALSO
L<bigint> and L<bigrat>.
L<Math::BigInt>, L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as
L<Math::BigInt::FastCalc>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
=head1 AUTHORS
=over 4
=item *
(C) by Tels L<http://bloodgate.com/> in early 2002 - 2007.
=item *
Maintained by Peter John Acklam E<lt>pjacklam@gmail.comE<gt>, 2014-.
=back
=cut
|