1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
|
/* handy.h
*
* Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1999, 2000,
* 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2012 by Larry Wall and others
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
*/
/* IMPORTANT NOTE: Everything whose name begins with an underscore is for
* internal core Perl use only. */
#ifndef PERL_HANDY_H_ /* Guard against nested #inclusion */
#define PERL_HANDY_H_
#ifndef PERL_CORE
# define Null(type) ((type)NULL)
/*
=for apidoc_section $string
=for apidoc AmnU||Nullch
Null character pointer. (No longer available when C<PERL_CORE> is
defined.)
=for apidoc_section $SV
=for apidoc AmnU||Nullsv
Null SV pointer. (No longer available when C<PERL_CORE> is defined.)
=cut
Below are signatures of functions from config.h which can't easily be gleaned
from it, and are very unlikely to change
=for apidoc_defn Am|int|Sigsetjmp|jmp_buf env|int savesigs
=for apidoc_defn Am|void|Siglongjmp|jmp_buf env|int val
=for apidoc_defn Am|void *|FILE_ptr|FILE * f
=for apidoc_defn Am|Size_t|FILE_cnt|FILE * f
=for apidoc_defn Am|void *|FILE_base|FILE * f
=for apidoc_defn Am|Size_t|FILE_bufsiz|FILE *f
=for apidoc_defn Amu|token|CAT2|token x|token y
=for apidoc_defn Amu|string|STRINGIFY|token x
=for apidoc_defn Am|double|Drand01
=for apidoc_defn Am|void|seedDrand01|Rand_seed_t x
=for apidoc_defn Am|char *|Gconvert|double x|Size_t n|bool t|char * b
=cut
*/
# define Nullch Null(char*)
# define Nullfp Null(PerlIO*)
# define Nullsv Null(SV*)
#endif
#ifdef TRUE
#undef TRUE
#endif
#ifdef FALSE
#undef FALSE
#endif
#define TRUE (1)
#define FALSE (0)
/*
=for apidoc_section $SV
=for apidoc Am |AV * |MUTABLE_AV |AV * p
=for apidoc_item |CV * |MUTABLE_CV |CV * p
=for apidoc_item |GV * |MUTABLE_GV |GV * p
=for apidoc_item |HV * |MUTABLE_HV |HV * p
=for apidoc_item |IO * |MUTABLE_IO |IO * p
=for apidoc_item |void *|MUTABLE_PTR|void * p
=for apidoc_item |SV * |MUTABLE_SV |SV * p
The C<MUTABLE_I<*>>() macros cast pointers to the types shown, in such a way
(compiler permitting) that casting away const-ness will give a warning;
e.g.:
const SV *sv = ...;
AV *av1 = (AV*)sv; <== BAD: the const has been silently
cast away
AV *av2 = MUTABLE_AV(sv); <== GOOD: it may warn
C<MUTABLE_PTR> is the base macro used to derive new casts. The other
already-built-in ones return pointers to what their names indicate.
=cut
The brace group version will raise a diagnostic if 'p' is const; the other
blindly casts away const.
*/
#if defined(PERL_USE_GCC_BRACE_GROUPS)
# define MUTABLE_PTR(p) ({ void *p_ = (p); p_; })
#else
# define MUTABLE_PTR(p) ((void *) (p))
#endif
#define MUTABLE_AV(p) ((AV *)MUTABLE_PTR(p))
#define MUTABLE_CV(p) ((CV *)MUTABLE_PTR(p))
#define MUTABLE_GV(p) ((GV *)MUTABLE_PTR(p))
#define MUTABLE_HV(p) ((HV *)MUTABLE_PTR(p))
#define MUTABLE_IO(p) ((IO *)MUTABLE_PTR(p))
#define MUTABLE_SV(p) ((SV *)MUTABLE_PTR(p))
/*
=for apidoc_section $SV
=for apidoc Am |AV *|AV_FROM_REF|SV * ref
=for apidoc_item |CV *|CV_FROM_REF|SV * ref
=for apidoc_item |GV *|GV_FROM_REF|SV * ref
=for apidoc_item |HV *|HV_FROM_REF|SV * ref
The C<I<*>V_FROM_REF> macros extract the C<SvRV()> from a given reference SV
and return a suitably-cast to pointer to the referenced SV. When running
under C<-DDEBUGGING>, assertions are also applied that check that I<ref> is
definitely a reference SV that refers to an SV of the right type.
=cut
*/
#if defined(DEBUGGING) && defined(PERL_USE_GCC_BRACE_GROUPS)
# define xV_FROM_REF(XV, ref) \
({ SV *ref_ = ref; \
assert(SvROK(ref_)); \
assert(SvTYPE(SvRV(ref_)) == SVt_PV ## XV); \
(XV *)(SvRV(ref_)); })
#else
# define xV_FROM_REF(XV, ref) ((XV *)(SvRV(ref)))
#endif
#define AV_FROM_REF(ref) xV_FROM_REF(AV, ref)
#define CV_FROM_REF(ref) xV_FROM_REF(CV, ref)
#define GV_FROM_REF(ref) xV_FROM_REF(GV, ref)
#define HV_FROM_REF(ref) xV_FROM_REF(HV, ref)
#ifndef __cplusplus
# include <stdbool.h>
#endif
/*
=for apidoc_section $casting
=for apidoc Am|bool|cBOOL|bool expr
Cast-to-bool. When Perl was able to be compiled on pre-C99 compilers, a
C<(bool)> cast didn't necessarily do the right thing, so this macro was
created (and made somewhat complicated to work around bugs in old
compilers). Now, many years later, and C99 is used, this is no longer
required, but is kept for backwards compatibility.
=cut
*/
#define cBOOL(cbool) ((bool) (cbool))
/* Try to figure out __func__ or __FUNCTION__ equivalent, if any.
* XXX Should really be a Configure probe, with HAS__FUNCTION__
* and FUNCTION__ as results.
* XXX Similarly, a Configure probe for __FILE__ and __LINE__ is needed. */
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || (defined(__SUNPRO_C)) /* C99 or close enough. */
# define FUNCTION__ __func__
# define SAFE_FUNCTION__ __func__
#elif (defined(__DECC_VER)) /* Tru64 or VMS, and strict C89 being used, but not modern enough cc (in Tru64, -c99 not known, only -std1). */
# define FUNCTION__ ("")
# define SAFE_FUNCTION__ ("UNKNOWN")
#else
# define FUNCTION__ __FUNCTION__ /* Common extension. */
# define SAFE_FUNCTION__ __FUNCTION__ /* Common extension. */
#endif
/* XXX A note on the perl source internal type system. The
original intent was that I32 be *exactly* 32 bits.
Currently, we only guarantee that I32 is *at least* 32 bits.
Specifically, if int is 64 bits, then so is I32. (This is the case
for the Cray.) This has the advantage of meshing nicely with
standard library calls (where we pass an I32 and the library is
expecting an int), but the disadvantage that an I32 is not 32 bits.
Andy Dougherty August 1996
There is no guarantee that there is *any* integral type with
exactly 32 bits. It is perfectly legal for a system to have
sizeof(short) == sizeof(int) == sizeof(long) == 8.
Similarly, there is no guarantee that I16 and U16 have exactly 16
bits.
For dealing with issues that may arise from various 32/64-bit
systems, we will ask Configure to check out
SHORTSIZE == sizeof(short)
INTSIZE == sizeof(int)
LONGSIZE == sizeof(long)
LONGLONGSIZE == sizeof(long long) (if HAS_LONG_LONG)
PTRSIZE == sizeof(void *)
DOUBLESIZE == sizeof(double)
LONG_DOUBLESIZE == sizeof(long double) (if HAS_LONG_DOUBLE).
*/
#ifdef I_INTTYPES /* e.g. Linux has int64_t without <inttypes.h> */
# include <inttypes.h>
# ifdef INT32_MIN_BROKEN
# undef INT32_MIN
# define INT32_MIN (-2147483647-1)
# endif
# ifdef INT64_MIN_BROKEN
# undef INT64_MIN
# define INT64_MIN (-9223372036854775807LL-1)
# endif
#endif
typedef I8TYPE I8;
typedef U8TYPE U8;
typedef I16TYPE I16;
typedef U16TYPE U16;
typedef I32TYPE I32;
typedef U32TYPE U32;
#ifdef QUADKIND
typedef I64TYPE I64;
typedef U64TYPE U64;
#endif
/* I8_MAX and I8_MIN constants are not defined, as I8 is an ambiguous type.
Please search CHAR_MAX in perl.h for further details. */
#ifdef UINT8_MAX
# define U8_MAX UINT8_MAX
#else
# define U8_MAX PERL_UCHAR_MAX
#endif
#ifdef UINT8_MIN
# define U8_MIN UINT8_MIN
#else
# define U8_MIN PERL_UCHAR_MIN
#endif
#ifdef INT16_MAX
# define I16_MAX INT16_MAX
#else
# define I16_MAX PERL_SHORT_MAX
#endif
#ifdef INT16_MIN
# define I16_MIN INT16_MIN
#else
# define I16_MIN PERL_SHORT_MIN
#endif
#ifdef UINT16_MAX
# define U16_MAX UINT16_MAX
#else
# define U16_MAX PERL_USHORT_MAX
#endif
#ifdef UINT16_MIN
# define U16_MIN UINT16_MIN
#else
# define U16_MIN PERL_USHORT_MIN
#endif
#ifdef INT32_MAX
# define I32_MAX INT32_MAX
#elif LONGSIZE > 4
# define I32_MAX PERL_INT_MAX
#else
# define I32_MAX PERL_LONG_MAX
#endif
#ifdef INT32_MIN
# define I32_MIN INT32_MIN
#elif LONGSIZE > 4
# define I32_MIN PERL_INT_MIN
#else
# define I32_MIN PERL_LONG_MIN
#endif
#ifdef UINT32_MAX
# ifndef UINT32_MAX_BROKEN /* e.g. HP-UX with gcc messes this up */
# define U32_MAX UINT_MAX
# else
# define U32_MAX 4294967295U
# endif
#elif LONGSIZE > 4
# define U32_MAX PERL_UINT_MAX
#else
# define U32_MAX PERL_ULONG_MAX
#endif
#ifdef UINT32_MIN
# define U32_MIN UINT32_MIN
#elif LONGSIZE > 4
# define U32_MIN PERL_UINT_MIN
#else
# define U32_MIN PERL_ULONG_MIN
#endif
/*
=for apidoc_section $integer
=for apidoc Ay|| PERL_INT_FAST8_T
=for apidoc_item PERL_INT_FAST16_T
=for apidoc_item PERL_UINT_FAST8_T
=for apidoc_item PERL_UINT_FAST16_T
These are equivalent to the correspondingly-named C99 typedefs on platforms
that have those; they evaluate to C<int> and C<unsigned int> on platforms that
don't, so that you can portably take advantage of this C99 feature.
=cut
*/
#ifdef I_STDINT
typedef int_fast8_t PERL_INT_FAST8_T;
typedef uint_fast8_t PERL_UINT_FAST8_T;
typedef int_fast16_t PERL_INT_FAST16_T;
typedef uint_fast16_t PERL_UINT_FAST16_T;
#else
typedef int PERL_INT_FAST8_T;
typedef unsigned int PERL_UINT_FAST8_T;
typedef int PERL_INT_FAST16_T;
typedef unsigned int PERL_UINT_FAST16_T;
#endif
/* log(2) (i.e., log base 10 of 2) is pretty close to 0.30103, just in case
* anyone is grepping for it. So BIT_DIGITS gives the number of decimal digits
* required to represent any possible unsigned number containing N bits.
* TYPE_DIGITS gives the number of decimal digits required to represent any
* possible unsigned number of type T. */
#define BIT_DIGITS(N) (((N)*146)/485 + 1) /* log10(2) =~ 146/485 */
#define TYPE_DIGITS(T) BIT_DIGITS(sizeof(T) * 8)
#define TYPE_CHARS(T) (TYPE_DIGITS(T) + 2) /* sign, NUL */
/* Unused by core; should be deprecated */
#define Ctl(ch) ((ch) & 037)
#if defined(PERL_CORE) || defined(PERL_EXT)
# ifndef MIN
# define MIN(a,b) ((a) < (b) ? (a) : (b))
# endif
# ifndef MAX
# define MAX(a,b) ((a) > (b) ? (a) : (b))
# endif
#endif
/* Returns a boolean as to whether the input unsigned number is a power of 2
* (2**0, 2**1, etc). In other words if it has just a single bit set.
* If not, subtracting 1 would leave the uppermost bit set, so the & would
* yield non-zero */
#if defined(PERL_CORE) || defined(PERL_EXT)
# define isPOWER_OF_2(n) ((n) && ((n) & ((n)-1)) == 0)
#endif
/* Returns a mask with the lowest n bits set */
#define nBIT_MASK(n) ((UINTMAX_C(1) << (n)) - 1)
/* The largest unsigned number that will fit into n bits */
#define nBIT_UMAX(n) nBIT_MASK(n)
/*
=for apidoc_section $directives
=for apidoc Am||__ASSERT_|bool expr
This is a helper macro to avoid preprocessor issues, replaced by nothing
unless under DEBUGGING, where it expands to an assert of its argument,
followed by a comma (hence the comma operator). If we just used a straight
assert(), we would get a comma with nothing before it when not DEBUGGING.
=cut
We also use empty definition under Coverity since the __ASSERT_
checks often check for things that Really Cannot Happen, and Coverity
detects that and gets all excited. */
#if defined(DEBUGGING) && !defined(__COVERITY__) \
&& ! defined(PERL_SMALL_MACRO_BUFFER)
# define __ASSERT_(statement) assert(statement),
#else
# define __ASSERT_(statement)
#endif
/*
=for apidoc_section $SV
=for apidoc Ama|SV*|newSVpvs|"literal string"
Like C<newSVpvn>, but takes a literal string instead of a
string/length pair.
=for apidoc Ama|SV*|newSVpvs_flags|"literal string"|U32 flags
Like C<newSVpvn_flags>, but takes a literal string instead of
a string/length pair.
=for apidoc Ama|SV*|newSVpvs_share|"literal string"
Like C<newSVpvn_share>, but takes a literal string instead of
a string/length pair and omits the hash parameter.
=for apidoc Am|SV *|sv_setref_pvs|SV *const rv|const char *const classname|"literal string"
Like C<sv_setref_pvn>, but takes a literal string instead of
a string/length pair.
=cut
*/
#define ASSERT_IS_LITERAL(s) ("" s "")
/*
=for apidoc_section $string
=for apidoc Amu|pair|STR_WITH_LEN|"literal string"
Returns two comma separated tokens of the input literal string, and its length.
This is convenience macro which helps out in some API calls.
Note that it can't be used as an argument to macros or functions that under
some configurations might be macros, which means that it requires the full
Perl_xxx(aTHX_ ...) form for any API calls where it's used.
=cut
*/
#define STR_WITH_LEN(s) ASSERT_IS_LITERAL(s), (sizeof(s)-1)
/* STR_WITH_LEN() shortcuts */
#define newSVpvs(str) Perl_newSVpvn(aTHX_ STR_WITH_LEN(str))
#define newSVpvs_flags(str,flags) \
Perl_newSVpvn_flags(aTHX_ STR_WITH_LEN(str), flags)
#define newSVpvs_share(str) Perl_newSVpvn_share(aTHX_ STR_WITH_LEN(str), 0)
/*
=for apidoc_defn Am|void|sv_catpvs_flags|SV * const dsv|"literal string"|I32 flags
=for apidoc_defn Am|void|sv_catpvs_nomg|SV * const dsv|"literal string"
=for apidoc_defn Am|void|sv_catpvs|SV * const dsv|"literal string"
=for apidoc_defn Am|void|sv_catpvs_mg|SV * const dsv|"literal string"
=cut
*/
#define sv_catpvs_flags(dsv, str, flags) \
Perl_sv_catpvn_flags(aTHX_ dsv, STR_WITH_LEN(str), flags)
#define sv_catpvs_nomg(dsv, str) \
Perl_sv_catpvn_flags(aTHX_ dsv, STR_WITH_LEN(str), 0)
#define sv_catpvs(dsv, str) \
Perl_sv_catpvn_flags(aTHX_ dsv, STR_WITH_LEN(str), SV_GMAGIC)
#define sv_catpvs_mg(dsv, str) \
Perl_sv_catpvn_flags(aTHX_ dsv, STR_WITH_LEN(str), SV_GMAGIC|SV_SMAGIC)
/*
=for apidoc_defn Am|void|sv_setpvs |SV *const sv|"literal string"
=for apidoc_defn Am|void|sv_setpvs_mg|SV *const sv|"literal string"
=cut
*/
#define sv_setpvs(dsv, str) Perl_sv_setpvn(aTHX_ dsv, STR_WITH_LEN(str))
#define sv_setpvs_mg(dsv, str) Perl_sv_setpvn_mg(aTHX_ dsv, STR_WITH_LEN(str))
#define sv_setref_pvs(rv, classname, str) \
Perl_sv_setref_pvn(aTHX_ rv, classname, STR_WITH_LEN(str))
/*
=for apidoc_defn Ama|char*|savepvs|"literal string"
=for apidoc_defn Ama|char*|savesharedpvs|"literal string"
=cut
*/
#define savepvs(str) Perl_savepvn(aTHX_ STR_WITH_LEN(str))
#define savesharedpvs(str) Perl_savesharedpvn(aTHX_ STR_WITH_LEN(str))
/*
=for apidoc_defn Am|HV*|gv_stashpvs|"name"|I32 create
=cut
*/
#define gv_stashpvs(str, create) \
Perl_gv_stashpvn(aTHX_ STR_WITH_LEN(str), create)
/*
=for apidoc_defn Am|GV *|gv_fetchpvs|"name"|I32 flags|const svtype sv_type
=for apidoc_defn Am|GV *|gv_fetchpvn|const char * nambeg|STRLEN full_len|I32 flags|const svtype sv_type
=cut
*/
#define gv_fetchpvs(name, flags, sv_type) \
Perl_gv_fetchpvn_flags(aTHX_ STR_WITH_LEN(name), flags, sv_type)
#define gv_fetchpvn gv_fetchpvn_flags
/*
=for apidoc_defn mx|void|lex_stuff_pvs|"pv"|U32 flags
=cut
*/
#define lex_stuff_pvs(pv,flags) Perl_lex_stuff_pvn(aTHX_ STR_WITH_LEN(pv), flags)
/*
=for apidoc_defn Am|CV *|get_cvs|"name"|I32 flags
=cut
*/
#define get_cvs(str, flags) \
Perl_get_cvn_flags(aTHX_ STR_WITH_LEN(str), (flags))
/* internal helpers */
/* Transitional */
#ifndef PERL_VERSION_MAJOR
# define PERL_VERSION_MAJOR PERL_REVISION
#else
# undef PERL_REVISION /* We don't want code to be using these */
#endif
#ifndef PERL_VERSION_MINOR
# define PERL_VERSION_MINOR PERL_VERSION
#else
# undef PERL_VERSION
#endif
#ifndef PERL_VERSION_PATCH
# define PERL_VERSION_PATCH PERL_SUBVERSION
#else
# undef PERL_SUBVERSION
#endif
#define PERL_JNP_TO_DECIMAL_(maJor,miNor,Patch) \
/* '10*' leaves room for things like alpha, beta, releases */ \
(10 * (((maJor) * 1000000) + ((miNor) * 1000) + (Patch)))
#define PERL_DECIMAL_VERSION_ \
PERL_JNP_TO_DECIMAL_(PERL_VERSION_MAJOR, PERL_VERSION_MINOR, \
PERL_VERSION_PATCH)
/*
=for apidoc_section $versioning
=for apidoc AmR|bool|PERL_VERSION_EQ|const U8 major|const U8 minor|const U8 patch
=for apidoc_item PERL_VERSION_GE
=for apidoc_item PERL_VERSION_GT
=for apidoc_item PERL_VERSION_LE
=for apidoc_item PERL_VERSION_LT
=for apidoc_item PERL_VERSION_NE
Returns whether or not the perl currently being compiled has the specified
relationship to the perl given by the parameters. For example,
#if PERL_VERSION_GT(5,24,2)
code that will only be compiled on perls after v5.24.2
#else
fallback code
#endif
Note that this is usable in making compile-time decisions
You may use the special value '*' for the final number to mean ALL possible
values for it. Thus,
#if PERL_VERSION_EQ(5,31,'*')
means all perls in the 5.31 series. And
#if PERL_VERSION_NE(5,24,'*')
means all perls EXCEPT 5.24 ones. And
#if PERL_VERSION_LE(5,9,'*')
is effectively
#if PERL_VERSION_LT(5,10,0)
This means you don't have to think so much when converting from the existing
deprecated C<PERL_VERSION> to using this macro:
#if PERL_VERSION <= 9
becomes
#if PERL_VERSION_LE(5,9,'*')
=cut
*/
/* N.B. These don't work if the patch version is 42 or 92, as those are what
* '*' is in ASCII and EBCDIC respectively */
# define PERL_VERSION_EQ(j,n,p) \
(((p) == '*') \
? ( (j) == PERL_VERSION_MAJOR \
&& (n) == PERL_VERSION_MINOR) \
: (PERL_DECIMAL_VERSION_ == PERL_JNP_TO_DECIMAL_(j,n,p)))
# define PERL_VERSION_NE(j,n,p) (! PERL_VERSION_EQ(j,n,p))
# define PERL_VERSION_LT(j,n,p) /* < '*' effectively means < 0 */ \
(PERL_DECIMAL_VERSION_ < PERL_JNP_TO_DECIMAL_( (j), \
(n), \
(((p) == '*') ? 0 : (p))))
# define PERL_VERSION_GE(j,n,p) (! PERL_VERSION_LT(j,n,p))
# define PERL_VERSION_LE(j,n,p) /* <= '*' effectively means <= 999 */ \
(PERL_DECIMAL_VERSION_ <= PERL_JNP_TO_DECIMAL_( (j), \
(n), \
(((p) == '*') ? 999 : (p))))
# define PERL_VERSION_GT(j,n,p) (! PERL_VERSION_LE(j,n,p))
/*
=for apidoc_section $string
=for apidoc Am|bool|strNE|char* s1|char* s2
Test two C<NUL>-terminated strings to see if they are different. Returns true
or false.
=for apidoc Am|bool|strEQ|char* s1|char* s2
Test two C<NUL>-terminated strings to see if they are equal. Returns true or
false.
=for apidoc Am|bool|strLT|char* s1|char* s2
Test two C<NUL>-terminated strings to see if the first, C<s1>, is less than the
second, C<s2>. Returns true or false.
=for apidoc Am|bool|strLE|char* s1|char* s2
Test two C<NUL>-terminated strings to see if the first, C<s1>, is less than or
equal to the second, C<s2>. Returns true or false.
=for apidoc Am|bool|strGT|char* s1|char* s2
Test two C<NUL>-terminated strings to see if the first, C<s1>, is greater than
the second, C<s2>. Returns true or false.
=for apidoc Am|bool|strGE|char* s1|char* s2
Test two C<NUL>-terminated strings to see if the first, C<s1>, is greater than
or equal to the second, C<s2>. Returns true or false.
=for apidoc Am|bool|strnNE|char* s1|char* s2|STRLEN len
Test two C<NUL>-terminated strings to see if they are different. The C<len>
parameter indicates the number of bytes to compare. Returns true or false. (A
wrapper for C<strncmp>).
=for apidoc Am|bool|strnEQ|char* s1|char* s2|STRLEN len
Test two C<NUL>-terminated strings to see if they are equal. The C<len>
parameter indicates the number of bytes to compare. Returns true or false. (A
wrapper for C<strncmp>).
=for apidoc Am|bool|memEQ|char* s1|char* s2|STRLEN len
Test two buffers (which may contain embedded C<NUL> characters, to see if they
are equal. The C<len> parameter indicates the number of bytes to compare.
Returns true or false. It is undefined behavior if either of the buffers
doesn't contain at least C<len> bytes.
=for apidoc Am|bool|memEQs|char* s1|STRLEN l1|"s2"
Like L</memEQ>, but the second string is a literal enclosed in double quotes,
C<l1> gives the number of bytes in C<s1>.
Returns true or false.
=for apidoc Am|bool|memNE|char* s1|char* s2|STRLEN len
Test two buffers (which may contain embedded C<NUL> characters, to see if they
are not equal. The C<len> parameter indicates the number of bytes to compare.
Returns true or false. It is undefined behavior if either of the buffers
doesn't contain at least C<len> bytes.
=for apidoc Am|bool|memNEs|char* s1|STRLEN l1|"s2"
Like L</memNE>, but the second string is a literal enclosed in double quotes,
C<l1> gives the number of bytes in C<s1>.
Returns true or false.
=for apidoc Am|bool|memCHRs|"list"|char c
Returns the position of the first occurrence of the byte C<c> in the literal
string C<"list">, or NULL if C<c> doesn't appear in C<"list">. All bytes are
treated as unsigned char. Thus this macro can be used to determine if C<c> is
in a set of particular characters. Unlike L<strchr(3)>, it works even if C<c>
is C<NUL> (and the set doesn't include C<NUL>).
=cut
New macros should use the following conventions for their names (which are
based on the underlying C library functions):
(mem | str n? ) (EQ | NE | LT | GT | GE | (( BEGIN | END ) P? )) l? s?
Each has two main parameters, string-like operands that are compared
against each other, as specified by the macro name. Some macros may
additionally have one or potentially even two length parameters. If a length
parameter applies to both string parameters, it will be positioned third;
otherwise any length parameter immediately follows the string parameter it
applies to.
If the prefix to the name is 'str', the string parameter is a pointer to a C
language string. Such a string does not contain embedded NUL bytes; its
length may be unknown, but can be calculated by C<strlen()>, since it is
terminated by a NUL, which isn't included in its length.
The optional 'n' following 'str' means that there is a third parameter,
giving the maximum number of bytes to look at in each string. Even if both
strings are longer than the length parameter, those extra bytes will be
unexamined.
The 's' suffix means that the 2nd byte string parameter is a literal C
double-quoted string. Its length will automatically be calculated by the
macro, so no length parameter will ever be needed for it.
If the prefix is 'mem', the string parameters don't have to be C strings;
they may contain embedded NUL bytes, do not necessarily have a terminating
NUL, and their lengths can be known only through other means, which in
practice are additional parameter(s) passed to the function. All 'mem'
functions have at least one length parameter. Barring any 'l' or 's' suffix,
there is a single length parameter, in position 3, which applies to both
string parameters. The 's' suffix means, as described above, that the 2nd
string is a literal double-quoted C string (hence its length is calculated by
the macro, and the length parameter to the function applies just to the first
string parameter, and hence is positioned just after it). An 'l' suffix
means that the 2nd string parameter has its own length parameter, and the
signature will look like memFOOl(s1, l1, s2, l2).
BEGIN (and END) are for testing if the 2nd string is an initial (or final)
substring of the 1st string. 'P' if present indicates that the substring
must be a "proper" one in tha mathematical sense that the first one must be
strictly larger than the 2nd.
*/
#define strNE(s1,s2) (strcmp(s1,s2) != 0)
#define strEQ(s1,s2) (strcmp(s1,s2) == 0)
#define strLT(s1,s2) (strcmp(s1,s2) < 0)
#define strLE(s1,s2) (strcmp(s1,s2) <= 0)
#define strGT(s1,s2) (strcmp(s1,s2) > 0)
#define strGE(s1,s2) (strcmp(s1,s2) >= 0)
#define strnNE(s1,s2,l) (strncmp(s1,s2,l) != 0)
#define strnEQ(s1,s2,l) (strncmp(s1,s2,l) == 0)
#define memEQ(s1,s2,l) (memcmp(((const void *) (s1)), ((const void *) (s2)), l) == 0)
#define memNE(s1,s2,l) (! memEQ(s1,s2,l))
/* memEQ and memNE where second comparand is a string constant */
#define memEQs(s1, l, s2) \
(((sizeof(s2)-1) == (l)) && memEQ((s1), ASSERT_IS_LITERAL(s2), (sizeof(s2)-1)))
#define memNEs(s1, l, s2) (! memEQs(s1, l, s2))
/* Keep these private until we decide it was a good idea */
#if defined(PERL_CORE) || defined(PERL_EXT) || defined(PERL_EXT_POSIX)
#define strBEGINs(s1,s2) (strncmp(s1,ASSERT_IS_LITERAL(s2), sizeof(s2)-1) == 0)
#define memBEGINs(s1, l, s2) \
( (ptrdiff_t) (l) >= (ptrdiff_t) sizeof(s2) - 1 \
&& memEQ(s1, ASSERT_IS_LITERAL(s2), sizeof(s2)-1))
#define memBEGINPs(s1, l, s2) \
( (ptrdiff_t) (l) > (ptrdiff_t) sizeof(s2) - 1 \
&& memEQ(s1, ASSERT_IS_LITERAL(s2), sizeof(s2)-1))
#define memENDs(s1, l, s2) \
( (ptrdiff_t) (l) >= (ptrdiff_t) sizeof(s2) - 1 \
&& memEQ(s1 + (l) - (sizeof(s2) - 1), ASSERT_IS_LITERAL(s2), sizeof(s2)-1))
#define memENDPs(s1, l, s2) \
( (ptrdiff_t) (l) > (ptrdiff_t) sizeof(s2) \
&& memEQ(s1 + (l) - (sizeof(s2) - 1), ASSERT_IS_LITERAL(s2), sizeof(s2)-1))
#endif /* End of making macros private */
#define memLT(s1,s2,l) (memcmp(s1,s2,l) < 0)
#define memLE(s1,s2,l) (memcmp(s1,s2,l) <= 0)
#define memGT(s1,s2,l) (memcmp(s1,s2,l) > 0)
#define memGE(s1,s2,l) (memcmp(s1,s2,l) >= 0)
#define memCHRs(s1,c) ((const char *) memchr(ASSERT_IS_LITERAL(s1) , c, sizeof(s1)-1))
/*
* Character classes.
*
* Unfortunately, the introduction of locales means that we
* can't trust isupper(), etc. to tell the truth. And when
* it comes to /\w+/ with tainting enabled, we *must* be able
* to trust our character classes.
*
* Therefore, the default tests in the text of Perl will be independent of
* locale. Any code that wants to depend on the current locale will use the
* macros that contain _LC in their names
*/
#ifdef USE_LOCALE_CTYPE
# ifndef CTYPE256
# define CTYPE256
# endif
#endif
/*
=head1 Character classification
This section is about functions (really macros) that classify characters
into types, such as punctuation versus alphabetic, etc. Most of these are
analogous to regular expression character classes. (See
L<perlrecharclass/POSIX Character Classes>.) There are several variants for
each class. (Not all macros have all variants; each item below lists the
ones valid for it.) None are affected by C<use bytes>, and only the ones
with C<LC> in the name are affected by the current locale.
The base function, e.g., C<isALPHA()>, takes any signed or unsigned value,
treating it as a code point, and returns a boolean as to whether or not the
character represented by it is (or on non-ASCII platforms, corresponds to) an
ASCII character in the named class based on platform, Unicode, and Perl rules.
If the input is a number that doesn't fit in an octet, FALSE is returned.
Variant C<isI<FOO>_A> (e.g., C<isALPHA_A()>) is identical to the base function
with no suffix C<"_A">. This variant is used to emphasize by its name that
only ASCII-range characters can return TRUE.
Variant C<isI<FOO>_L1> imposes the Latin-1 (or EBCDIC equivalent) character set
onto the platform. That is, the code points that are ASCII are unaffected,
since ASCII is a subset of Latin-1. But the non-ASCII code points are treated
as if they are Latin-1 characters. For example, C<isWORDCHAR_L1()> will return
true when called with the code point 0xDF, which is a word character in both
ASCII and EBCDIC (though it represents different characters in each).
If the input is a number that doesn't fit in an octet, FALSE is returned.
(Perl's documentation uses a colloquial definition of Latin-1, to include all
code points below 256.)
Variant C<isI<FOO>_uvchr> is exactly like the C<isI<FOO>_L1> variant, for
inputs below 256, but if the code point is larger than 255, Unicode rules are
used to determine if it is in the character class. For example,
C<isWORDCHAR_uvchr(0x100)> returns TRUE, since 0x100 is LATIN CAPITAL LETTER A
WITH MACRON in Unicode, and is a word character.
Variants C<isI<FOO>_utf8> and C<isI<FOO>_utf8_safe> are like C<isI<FOO>_uvchr>,
but are used for UTF-8 encoded strings. The two forms are different names for
the same thing. Each call to one of these classifies the first character of
the string starting at C<p>. The second parameter, C<e>, points to anywhere in
the string beyond the first character, up to one byte past the end of the
entire string. Although both variants are identical, the suffix C<_safe> in
one name emphasizes that it will not attempt to read beyond S<C<e - 1>>,
provided that the constraint S<C<s E<lt> e>> is true (this is asserted for in
C<-DDEBUGGING> builds). If the UTF-8 for the input character is malformed in
some way, the program may croak, or the function may return FALSE, at the
discretion of the implementation, and subject to change in future releases.
Variant C<isI<FOO>_LC> is like the C<isI<FOO>_A> and C<isI<FOO>_L1> variants,
but the result is based on the current locale, which is what C<LC> in the name
stands for. If Perl can determine that the current locale is a UTF-8 locale,
it uses the published Unicode rules; otherwise, it uses the C library function
that gives the named classification. For example, C<isDIGIT_LC()> when not in
a UTF-8 locale returns the result of calling C<isdigit()>. FALSE is always
returned if the input won't fit into an octet. On some platforms where the C
library function is known to be defective, Perl changes its result to follow
the POSIX standard's rules.
Variant C<isI<FOO>_LC_uvchr> acts exactly like C<isI<FOO>_LC> for inputs less
than 256, but for larger ones it returns the Unicode classification of the code
point.
Variants C<isI<FOO>_LC_utf8> and C<isI<FOO>_LC_utf8_safe> are like
C<isI<FOO>_LC_uvchr>, but are used for UTF-8 encoded strings. The two forms
are different names for the same thing. Each call to one of these classifies
the first character of the string starting at C<p>. The second parameter,
C<e>, points to anywhere in the string beyond the first character, up to one
byte past the end of the entire string. Although both variants are identical,
the suffix C<_safe> in one name emphasizes that it will not attempt to read
beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is true (this
is asserted for in C<-DDEBUGGING> builds). If the UTF-8 for the input
character is malformed in some way, the program may croak, or the function may
return FALSE, at the discretion of the implementation, and subject to change in
future releases.
=for apidoc Am|bool|isALPHA|UV ch
=for apidoc_item ||isALPHA_A|UV ch
=for apidoc_item ||isALPHA_LC|UV ch
=for apidoc_item ||isALPHA_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isALPHA_LC_uvchr|UV ch
=for apidoc_item ||isALPHA_L1|UV ch
=for apidoc_item ||isALPHA_utf8|U8 * s|U8 * end
=for apidoc_item ||isALPHA_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isALPHA_uvchr|UV ch
Returns a boolean indicating whether the specified input is one of C<[A-Za-z]>,
analogous to C<m/[[:alpha:]]/>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
=cut
Here and below, we add the prototypes of these macros for downstream programs
that would be interested in them, such as Devel::PPPort
=for apidoc Am|bool|isALPHANUMERIC|UV ch
=for apidoc_item ||isALPHANUMERIC_A|UV ch
=for apidoc_item ||isALPHANUMERIC_LC|UV ch
=for apidoc_item ||isALPHANUMERIC_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isALPHANUMERIC_LC_uvchr|UV ch
=for apidoc_item ||isALPHANUMERIC_L1|UV ch
=for apidoc_item ||isALPHANUMERIC_utf8|U8 * s|U8 * end
=for apidoc_item ||isALPHANUMERIC_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isALPHANUMERIC_uvchr|UV ch
Returns a boolean indicating whether the specified character is one of
C<[A-Za-z0-9]>, analogous to C<m/[[:alnum:]]/>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
=for apidoc Am|bool|isALNUMC|UV ch
=for apidoc_item ||isALNUMC_A|UV ch
=for apidoc_item ||isALNUMC_LC|UV ch
=for apidoc_item ||isALNUMC_LC_uvchr|UV ch
=for apidoc_item ||isALNUMC_L1|UV ch
These are discouraged, backward compatibility macros for L</C<isALPHANUMERIC>>.
That is, each returns a boolean indicating whether the specified character is
one of C<[A-Za-z0-9]>, analogous to C<m/[[:alnum:]]/>.
The C<C> suffix in the names was meant to indicate that they correspond to the
C language C<L<isalnum(3)>>.
=for apidoc Am|bool|isASCII|UV ch
=for apidoc_item ||isASCII_A|UV ch
=for apidoc_item ||isASCII_LC|UV ch
=for apidoc_item ||isASCII_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isASCII_LC_uvchr|UV ch
=for apidoc_item ||isASCII_L1|UV ch
=for apidoc_item ||isASCII_utf8|U8 * s|U8 * end
=for apidoc_item ||isASCII_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isASCII_uvchr|UV ch
Returns a boolean indicating whether the specified character is one of the 128
characters in the ASCII character set, analogous to C<m/[[:ascii:]]/>.
On non-ASCII platforms, it returns TRUE iff this
character corresponds to an ASCII character. Variants C<isASCII_A()> and
C<isASCII_L1()> are identical to C<isASCII()>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
Note, however, that some platforms do not have the C library routine
C<isascii()>. In these cases, the variants whose names contain C<LC> are the
same as the corresponding ones without.
Also note, that because all ASCII characters are UTF-8 invariant (meaning they
have the exact same representation (always a single byte) whether encoded in
UTF-8 or not), C<isASCII> will give the correct results when called with any
byte in any string encoded or not in UTF-8. And similarly C<isASCII_utf8> and
C<isASCII_utf8_safe> will work properly on any string encoded or not in UTF-8.
=for apidoc Am|bool|isBLANK|UV ch
=for apidoc_item ||isBLANK_A|UV ch
=for apidoc_item ||isBLANK_LC|UV ch
=for apidoc_item ||isBLANK_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isBLANK_LC_uvchr|UV ch
=for apidoc_item ||isBLANK_L1|UV ch
=for apidoc_item ||isBLANK_utf8|U8 * s|U8 * end
=for apidoc_item ||isBLANK_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isBLANK_uvchr|UV ch
Returns a boolean indicating whether the specified character is a
character considered to be a blank, analogous to C<m/[[:blank:]]/>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
Note,
however, that some platforms do not have the C library routine
C<isblank()>. In these cases, the variants whose names contain C<LC> are
the same as the corresponding ones without.
=for apidoc Am|bool|isCNTRL|UV ch
=for apidoc_item ||isCNTRL_A|UV ch
=for apidoc_item ||isCNTRL_LC|UV ch
=for apidoc_item ||isCNTRL_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isCNTRL_LC_uvchr|UV ch
=for apidoc_item ||isCNTRL_L1|UV ch
=for apidoc_item ||isCNTRL_utf8|U8 * s|U8 * end
=for apidoc_item ||isCNTRL_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isCNTRL_uvchr|UV ch
Returns a boolean indicating whether the specified character is a
control character, analogous to C<m/[[:cntrl:]]/>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
On EBCDIC platforms, you almost always want to use the C<isCNTRL_L1> variant.
=for apidoc Am|bool|isDIGIT|UV ch
=for apidoc_item ||isDIGIT_A|UV ch
=for apidoc_item ||isDIGIT_LC|UV ch
=for apidoc_item ||isDIGIT_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isDIGIT_LC_uvchr|UV ch
=for apidoc_item ||isDIGIT_L1|UV ch
=for apidoc_item ||isDIGIT_utf8|U8 * s|U8 * end
=for apidoc_item ||isDIGIT_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isDIGIT_uvchr|UV ch
Returns a boolean indicating whether the specified character is a
digit, analogous to C<m/[[:digit:]]/>.
Variants C<isDIGIT_A> and C<isDIGIT_L1> are identical to C<isDIGIT>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
=for apidoc Am|bool|isGRAPH|UV ch
=for apidoc_item ||isGRAPH_A|UV ch
=for apidoc_item ||isGRAPH_LC|UV ch
=for apidoc_item ||isGRAPH_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isGRAPH_LC_uvchr|UV ch
=for apidoc_item ||isGRAPH_L1|UV ch
=for apidoc_item ||isGRAPH_utf8|U8 * s|U8 * end
=for apidoc_item ||isGRAPH_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isGRAPH_uvchr|UV ch
Returns a boolean indicating whether the specified character is a
graphic character, analogous to C<m/[[:graph:]]/>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
=for apidoc Am|bool|isLOWER|UV ch
=for apidoc_item ||isLOWER_A|UV ch
=for apidoc_item ||isLOWER_LC|UV ch
=for apidoc_item ||isLOWER_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isLOWER_LC_uvchr|UV ch
=for apidoc_item ||isLOWER_L1|UV ch
=for apidoc_item ||isLOWER_utf8|U8 * s|U8 * end
=for apidoc_item ||isLOWER_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isLOWER_uvchr|UV ch
Returns a boolean indicating whether the specified character is a
lowercase character, analogous to C<m/[[:lower:]]/>.
See the L<top of this section|/Character classification> for an explanation of
the variants
=for apidoc Am|bool|isOCTAL|UV ch
=for apidoc_item ||isOCTAL_A|UV ch
=for apidoc_item ||isOCTAL_L1|UV ch
Returns a boolean indicating whether the specified character is an
octal digit, [0-7].
The only two variants are C<isOCTAL_A> and C<isOCTAL_L1>; each is identical to
C<isOCTAL>.
=for apidoc Am|bool|isPUNCT|UV ch
=for apidoc_item ||isPUNCT_A|UV ch
=for apidoc_item ||isPUNCT_LC|UV ch
=for apidoc_item ||isPUNCT_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isPUNCT_LC_uvchr|UV ch
=for apidoc_item ||isPUNCT_L1|UV ch
=for apidoc_item ||isPUNCT_utf8|U8 * s|U8 * end
=for apidoc_item ||isPUNCT_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isPUNCT_uvchr|UV ch
Returns a boolean indicating whether the specified character is a
punctuation character, analogous to C<m/[[:punct:]]/>.
Note that the definition of what is punctuation isn't as
straightforward as one might desire. See L<perlrecharclass/POSIX Character
Classes> for details.
See the L<top of this section|/Character classification> for an explanation of
the variants.
=for apidoc Am|bool|isSPACE|UV ch
=for apidoc_item ||isSPACE_A|UV ch
=for apidoc_item ||isSPACE_LC|UV ch
=for apidoc_item ||isSPACE_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isSPACE_LC_uvchr|UV ch
=for apidoc_item ||isSPACE_L1|UV ch
=for apidoc_item ||isSPACE_utf8|U8 * s|U8 * end
=for apidoc_item ||isSPACE_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isSPACE_uvchr|UV ch
Returns a boolean indicating whether the specified character is a
whitespace character. This is analogous
to what C<m/\s/> matches in a regular expression. Starting in Perl 5.18
this also matches what C<m/[[:space:]]/> does. Prior to 5.18, only the
locale forms of this macro (the ones with C<LC> in their names) matched
precisely what C<m/[[:space:]]/> does. In those releases, the only difference,
in the non-locale variants, was that C<isSPACE()> did not match a vertical tab.
(See L</isPSXSPC> for a macro that matches a vertical tab in all releases.)
See the L<top of this section|/Character classification> for an explanation of
the variants.
=for apidoc Am|bool|isPSXSPC|UV ch
=for apidoc_item ||isPSXSPC_A|UV ch
=for apidoc_item ||isPSXSPC_LC|UV ch
=for apidoc_item ||isPSXSPC_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isPSXSPC_LC_uvchr|UV ch
=for apidoc_item ||isPSXSPC_L1|UV ch
=for apidoc_item ||isPSXSPC_utf8|U8 * s|U8 * end
=for apidoc_item ||isPSXSPC_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isPSXSPC_uvchr|UV ch
(short for Posix Space)
Starting in 5.18, this is identical in all its forms to the
corresponding C<isSPACE()> macros.
The locale forms of this macro are identical to their corresponding
C<isSPACE()> forms in all Perl releases. In releases prior to 5.18, the
non-locale forms differ from their C<isSPACE()> forms only in that the
C<isSPACE()> forms don't match a Vertical Tab, and the C<isPSXSPC()> forms do.
Otherwise they are identical. Thus this macro is analogous to what
C<m/[[:space:]]/> matches in a regular expression.
See the L<top of this section|/Character classification> for an explanation of
the variants.
=for apidoc Am|bool|isUPPER|UV ch
=for apidoc_item ||isUPPER_A|UV ch
=for apidoc_item ||isUPPER_LC|UV ch
=for apidoc_item ||isUPPER_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isUPPER_LC_uvchr|UV ch
=for apidoc_item ||isUPPER_L1|UV ch
=for apidoc_item ||isUPPER_utf8|U8 * s|U8 * end
=for apidoc_item ||isUPPER_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isUPPER_uvchr|UV ch
Returns a boolean indicating whether the specified character is an
uppercase character, analogous to C<m/[[:upper:]]/>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
=for apidoc Am|bool|isPRINT|UV ch
=for apidoc_item ||isPRINT_A|UV ch
=for apidoc_item ||isPRINT_LC|UV ch
=for apidoc_item ||isPRINT_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isPRINT_LC_uvchr|UV ch
=for apidoc_item ||isPRINT_L1|UV ch
=for apidoc_item ||isPRINT_utf8|U8 * s|U8 * end
=for apidoc_item ||isPRINT_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isPRINT_uvchr|UV ch
Returns a boolean indicating whether the specified character is a
printable character, analogous to C<m/[[:print:]]/>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
=for apidoc Am|bool|isWORDCHAR|UV ch
=for apidoc_item ||isWORDCHAR_A|UV ch
=for apidoc_item ||isWORDCHAR_LC|UV ch
=for apidoc_item ||isWORDCHAR_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isWORDCHAR_LC_uvchr|UV ch
=for apidoc_item ||isWORDCHAR_L1|UV ch
=for apidoc_item ||isWORDCHAR_utf8|U8 * s|U8 * end
=for apidoc_item ||isWORDCHAR_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isWORDCHAR_uvchr|UV ch
Returns a boolean indicating whether the specified character is a character
that is a word character, analogous to what C<m/\w/> and C<m/[[:word:]]/> match
in a regular expression. A word character is an alphabetic character, a
decimal digit, a connecting punctuation character (such as an underscore), or
a "mark" character that attaches to one of those (like some sort of accent).
See the L<top of this section|/Character classification> for an explanation of
the variants.
C<isWORDCHAR_A>, C<isWORDCHAR_L1>, C<isWORDCHAR_uvchr>,
C<isWORDCHAR_LC>, C<isWORDCHAR_LC_uvchr>, C<isWORDCHAR_LC_utf8>, and
C<isWORDCHAR_LC_utf8_safe> are also as described there, but additionally
include the platform's native underscore.
=for apidoc Am|bool|isALNUM |UV ch
=for apidoc_item ||isALNUM_A |UV ch
=for apidoc_item ||isALNUM_LC |UV ch
=for apidoc_item ||isALNUM_LC_uvchr|UV ch
These are each a synonym for their respectively named L</C<isWORDCHAR>>
variant.
They are provided for backward compatibility, even though a word character
includes more than the standard C language meaning of alphanumeric.
To get the C language definition, use the corresponding L</C<isALPHANUMERIC>>
variant.
=for apidoc Am|bool|isXDIGIT|UV ch
=for apidoc_item ||isXDIGIT_A|UV ch
=for apidoc_item ||isXDIGIT_LC|UV ch
=for apidoc_item ||isXDIGIT_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isXDIGIT_LC_uvchr|UV ch
=for apidoc_item ||isXDIGIT_L1|UV ch
=for apidoc_item ||isXDIGIT_utf8|U8 * s|U8 * end
=for apidoc_item ||isXDIGIT_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isXDIGIT_uvchr|UV ch
Returns a boolean indicating whether the specified character is a hexadecimal
digit. In the ASCII range these are C<[0-9A-Fa-f]>. Variants C<isXDIGIT_A()>
and C<isXDIGIT_L1()> are identical to C<isXDIGIT()>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
=for apidoc Am|bool|isIDFIRST|UV ch
=for apidoc_item ||isIDFIRST_A|UV ch
=for apidoc_item ||isIDFIRST_LC|UV ch
=for apidoc_item ||isIDFIRST_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isIDFIRST_LC_uvchr|UV ch
=for apidoc_item ||isIDFIRST_L1|UV ch
=for apidoc_item ||isIDFIRST_utf8|U8 * s|U8 * end
=for apidoc_item ||isIDFIRST_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isIDFIRST_uvchr|UV ch
Returns a boolean indicating whether the specified character can be the first
character of an identifier. This is very close to, but not quite the same as
the official Unicode property C<XID_Start>. The difference is that this
returns true only if the input character also matches L</isWORDCHAR>.
See the L<top of this section|/Character classification> for an explanation of
the variants.
=for apidoc Am|bool|isIDCONT|UV ch
=for apidoc_item ||isIDCONT_A|UV ch
=for apidoc_item ||isIDCONT_LC|UV ch
=for apidoc_item ||isIDCONT_LC_utf8_safe|U8 * s| U8 *end
=for apidoc_item ||isIDCONT_LC_uvchr|UV ch
=for apidoc_item ||isIDCONT_L1|UV ch
=for apidoc_item ||isIDCONT_utf8|U8 * s|U8 * end
=for apidoc_item ||isIDCONT_utf8_safe|U8 * s|U8 * end
=for apidoc_item ||isIDCONT_uvchr|UV ch
Returns a boolean indicating whether the specified character can be the
second or succeeding character of an identifier. This is very close to, but
not quite the same as the official Unicode property C<XID_Continue>. The
difference is that this returns true only if the input character also matches
L</isWORDCHAR>. See the L<top of this section|/Character classification> for
an explanation of the variants.
=for apidoc_section $numeric
=for apidoc Am|U8|READ_XDIGIT|char str*
Returns the value of an ASCII-range hex digit and advances the string pointer.
Behaviour is only well defined when isXDIGIT(*str) is true.
=head1 Character case changing
Perl uses "full" Unicode case mappings. This means that converting a single
character to another case may result in a sequence of more than one character.
For example, the uppercase of C<E<223>> (LATIN SMALL LETTER SHARP S) is the two
character sequence C<SS>. This presents some complications The lowercase of
all characters in the range 0..255 is a single character, and thus
C<L</toLOWER_L1>> is furnished. But, C<toUPPER_L1> can't exist, as it couldn't
return a valid result for all legal inputs. Instead C<L</toUPPER_uvchr>> has
an API that does allow every possible legal result to be returned.) Likewise
no other function that is crippled by not being able to give the correct
results for the full range of possible inputs has been implemented here.
=for apidoc Am|UV|toUPPER|UV cp
=for apidoc_item |UV|toUPPER_A|UV cp
=for apidoc_item |UV|toUPPER_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toUPPER_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toUPPER_uvchr|UV cp|U8* s|STRLEN* lenp
These all return the uppercase of a character. The differences are what domain
they operate on, and whether the input is specified as a code point (those
forms with a C<cp> parameter) or as a UTF-8 string (the others). In the latter
case, the code point to use is the first one in the buffer of UTF-8 encoded
code points, delineated by the arguments S<C<p .. e - 1>>.
C<toUPPER> and C<toUPPER_A> are synonyms of each other. They return the
uppercase of any lowercase ASCII-range code point. All other inputs are
returned unchanged. Since these are macros, the input type may be any integral
one, and the output will occupy the same number of bits as the input.
There is no C<toUPPER_L1> nor C<toUPPER_LATIN1> as the uppercase of some code
points in the 0..255 range is above that range or consists of multiple
characters. Instead use C<toUPPER_uvchr>.
C<toUPPER_uvchr> returns the uppercase of any Unicode code point. The return
value is identical to that of C<toUPPER_A> for input code points in the ASCII
range. The uppercase of the vast majority of Unicode code points is the same
as the code point itself. For these, and for code points above the legal
Unicode maximum, this returns the input code point unchanged. It additionally
stores the UTF-8 of the result into the buffer beginning at C<s>, and its
length in bytes into C<*lenp>. The caller must have made C<s> large enough to
contain at least C<UTF8_MAXBYTES_CASE+1> bytes to avoid possible overflow.
NOTE: the uppercase of a code point may be more than one code point. The
return value of this function is only the first of these. The entire uppercase
is returned in C<s>. To determine if the result is more than a single code
point, you can do something like this:
uc = toUPPER_uvchr(cp, s, &len);
if (len > UTF8SKIP(s)) { is multiple code points }
else { is a single code point }
C<toUPPER_utf8> and C<toUPPER_utf8_safe> are synonyms of each other. The only
difference between these and C<toUPPER_uvchr> is that the source for these is
encoded in UTF-8, instead of being a code point. It is passed as a buffer
starting at C<p>, with C<e> pointing to one byte beyond its end. The C<p>
buffer may certainly contain more than one code point; but only the first one
(up through S<C<e - 1>>) is examined. If the UTF-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
=for apidoc Am|UV|toFOLD|UV cp
=for apidoc_item |UV|toFOLD_A|UV cp
=for apidoc_item |UV|toFOLD_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toFOLD_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toFOLD_uvchr|UV cp|U8* s|STRLEN* lenp
These all return the foldcase of a character. "foldcase" is an internal case
for C</i> pattern matching. If the foldcase of character A and the foldcase of
character B are the same, they match caselessly; otherwise they don't.
The differences in the forms are what domain they operate on, and whether the
input is specified as a code point (those forms with a C<cp> parameter) or as a
UTF-8 string (the others). In the latter case, the code point to use is the
first one in the buffer of UTF-8 encoded code points, delineated by the
arguments S<C<p .. e - 1>>.
C<toFOLD> and C<toFOLD_A> are synonyms of each other. They return the
foldcase of any ASCII-range code point. In this range, the foldcase is
identical to the lowercase. All other inputs are returned unchanged. Since
these are macros, the input type may be any integral one, and the output will
occupy the same number of bits as the input.
There is no C<toFOLD_L1> nor C<toFOLD_LATIN1> as the foldcase of some code
points in the 0..255 range is above that range or consists of multiple
characters. Instead use C<toFOLD_uvchr>.
C<toFOLD_uvchr> returns the foldcase of any Unicode code point. The return
value is identical to that of C<toFOLD_A> for input code points in the ASCII
range. The foldcase of the vast majority of Unicode code points is the same
as the code point itself. For these, and for code points above the legal
Unicode maximum, this returns the input code point unchanged. It additionally
stores the UTF-8 of the result into the buffer beginning at C<s>, and its
length in bytes into C<*lenp>. The caller must have made C<s> large enough to
contain at least C<UTF8_MAXBYTES_CASE+1> bytes to avoid possible overflow.
NOTE: the foldcase of a code point may be more than one code point. The
return value of this function is only the first of these. The entire foldcase
is returned in C<s>. To determine if the result is more than a single code
point, you can do something like this:
uc = toFOLD_uvchr(cp, s, &len);
if (len > UTF8SKIP(s)) { is multiple code points }
else { is a single code point }
C<toFOLD_utf8> and C<toFOLD_utf8_safe> are synonyms of each other. The only
difference between these and C<toFOLD_uvchr> is that the source for these is
encoded in UTF-8, instead of being a code point. It is passed as a buffer
starting at C<p>, with C<e> pointing to one byte beyond its end. The C<p>
buffer may certainly contain more than one code point; but only the first one
(up through S<C<e - 1>>) is examined. If the UTF-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
=for apidoc Am|UV|toLOWER|UV cp
=for apidoc_item |UV|toLOWER_A|UV cp
=for apidoc_item |UV|toLOWER_LATIN1|UV cp
=for apidoc_item |UV|toLOWER_LC|UV cp
=for apidoc_item |UV|toLOWER_L1|UV cp
=for apidoc_item |UV|toLOWER_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toLOWER_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toLOWER_uvchr|UV cp|U8* s|STRLEN* lenp
These all return the lowercase of a character. The differences are what domain
they operate on, and whether the input is specified as a code point (those
forms with a C<cp> parameter) or as a UTF-8 string (the others). In the latter
case, the code point to use is the first one in the buffer of UTF-8 encoded
code points, delineated by the arguments S<C<p .. e - 1>>.
C<toLOWER> and C<toLOWER_A> are synonyms of each other. They return the
lowercase of any uppercase ASCII-range code point. All other inputs are
returned unchanged. Since these are macros, the input type may be any integral
one, and the output will occupy the same number of bits as the input.
C<toLOWER_L1> and C<toLOWER_LATIN1> are synonyms of each other. They behave
identically as C<toLOWER> for ASCII-range input. But additionally will return
the lowercase of any uppercase code point in the entire 0..255 range, assuming
a Latin-1 encoding (or the EBCDIC equivalent on such platforms).
C<toLOWER_LC> returns the lowercase of the input code point according to the
rules of the current POSIX locale. Input code points outside the range 0..255
are returned unchanged.
C<toLOWER_uvchr> returns the lowercase of any Unicode code point. The return
value is identical to that of C<toLOWER_L1> for input code points in the 0..255
range. The lowercase of the vast majority of Unicode code points is the same
as the code point itself. For these, and for code points above the legal
Unicode maximum, this returns the input code point unchanged. It additionally
stores the UTF-8 of the result into the buffer beginning at C<s>, and its
length in bytes into C<*lenp>. The caller must have made C<s> large enough to
contain at least C<UTF8_MAXBYTES_CASE+1> bytes to avoid possible overflow.
NOTE: the lowercase of a code point may be more than one code point. The
return value of this function is only the first of these. The entire lowercase
is returned in C<s>. To determine if the result is more than a single code
point, you can do something like this:
uc = toLOWER_uvchr(cp, s, &len);
if (len > UTF8SKIP(s)) { is multiple code points }
else { is a single code point }
C<toLOWER_utf8> and C<toLOWER_utf8_safe> are synonyms of each other. The only
difference between these and C<toLOWER_uvchr> is that the source for these is
encoded in UTF-8, instead of being a code point. It is passed as a buffer
starting at C<p>, with C<e> pointing to one byte beyond its end. The C<p>
buffer may certainly contain more than one code point; but only the first one
(up through S<C<e - 1>>) is examined. If the UTF-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
=for apidoc Am|UV|toTITLE|UV cp
=for apidoc_item |UV|toTITLE_A|UV cp
=for apidoc_item |UV|toTITLE_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toTITLE_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
=for apidoc_item |UV|toTITLE_uvchr|UV cp|U8* s|STRLEN* lenp
These all return the titlecase of a character. The differences are what domain
they operate on, and whether the input is specified as a code point (those
forms with a C<cp> parameter) or as a UTF-8 string (the others). In the latter
case, the code point to use is the first one in the buffer of UTF-8 encoded
code points, delineated by the arguments S<C<p .. e - 1>>.
C<toTITLE> and C<toTITLE_A> are synonyms of each other. They return the
titlecase of any lowercase ASCII-range code point. In this range, the
titlecase is identical to the uppercase. All other inputs are returned
unchanged. Since these are macros, the input type may be any integral one, and
the output will occupy the same number of bits as the input.
There is no C<toTITLE_L1> nor C<toTITLE_LATIN1> as the titlecase of some code
points in the 0..255 range is above that range or consists of multiple
characters. Instead use C<toTITLE_uvchr>.
C<toTITLE_uvchr> returns the titlecase of any Unicode code point. The return
value is identical to that of C<toTITLE_A> for input code points in the ASCII
range. The titlecase of the vast majority of Unicode code points is the same
as the code point itself. For these, and for code points above the legal
Unicode maximum, this returns the input code point unchanged. It additionally
stores the UTF-8 of the result into the buffer beginning at C<s>, and its
length in bytes into C<*lenp>. The caller must have made C<s> large enough to
contain at least C<UTF8_MAXBYTES_CASE+1> bytes to avoid possible overflow.
NOTE: the titlecase of a code point may be more than one code point. The
return value of this function is only the first of these. The entire titlecase
is returned in C<s>. To determine if the result is more than a single code
point, you can do something like this:
uc = toTITLE_uvchr(cp, s, &len);
if (len > UTF8SKIP(s)) { is multiple code points }
else { is a single code point }
C<toTITLE_utf8> and C<toTITLE_utf8_safe> are synonyms of each other. The only
difference between these and C<toTITLE_uvchr> is that the source for these is
encoded in UTF-8, instead of being a code point. It is passed as a buffer
starting at C<p>, with C<e> pointing to one byte beyond its end. The C<p>
buffer may certainly contain more than one code point; but only the first one
(up through S<C<e - 1>>) is examined. If the UTF-8 for the input character is
malformed in some way, the program may croak, or the function may return the
REPLACEMENT CHARACTER, at the discretion of the implementation, and subject to
change in future releases.
=cut
XXX Still undocumented isVERTWS_uvchr and _utf8; it's unclear what their names
really should be. Also toUPPER_LC and toFOLD_LC, which are subject to change,
and aren't general purpose as they don't work on U+DF, and assert against that.
and isCASED_LC, as it really is more of an internal thing.
Note that these macros are repeated in Devel::PPPort, so should also be
patched there. The file as of this writing is cpan/Devel-PPPort/parts/inc/misc
*/
/*
void below because that's the best fit, and works for Devel::PPPort
=for apidoc_section $integer
=for apidoc AyT||WIDEST_UTYPE
Yields the widest unsigned integer type on the platform, currently either
C<U32> or C<U64>. This can be used in declarations such as
WIDEST_UTYPE my_uv;
or casts
my_uv = (WIDEST_UTYPE) val;
=cut
*/
#define WIDEST_UTYPE PERL_UINTMAX_T
/* Where there could be some confusion, use this as a static assert in macros
* to make sure that a parameter isn't a pointer. But some compilers can't
* handle this. The only one known so far that doesn't is gcc 3.3.6; the check
* below isn't thorough for such an old compiler, so may have to be revised if
* experience so dictates. */
#if ! PERL_IS_GCC || PERL_GCC_VERSION_GT(3,3,6)
/* The '| 0' part in ASSERT_NOT_PTR ensures a compiler error if c is not
* integer (like e.g., a pointer) */
# define ASSERT_NOT_PTR(x) ((x) | 0)
#else
# define ASSERT_NOT_PTR(x) (x)
#endif
/* Likewise, this is effectively a static assert to be used to guarantee the
* parameter is a pointer
*
* NOT suitable for void*
*/
#define ASSERT_IS_PTR(x) (__ASSERT_(sizeof(*(x))) (x))
/* FITS_IN_8_BITS(c) returns true if c doesn't have a bit set other than in
* the lower 8. It is designed to be hopefully bomb-proof, making sure that no
* bits of information are lost even on a 64-bit machine, but to get the
* compiler to optimize it out if possible. This is because Configure makes
* sure that the machine has an 8-bit byte, so if c is stored in a byte, the
* sizeof() guarantees that this evaluates to a constant true at compile time.
*
* For Coverity, be always true, because otherwise Coverity thinks
* it finds several expressions that are always true, independent
* of operands. Well, they are, but that is kind of the point.
*/
#ifndef __COVERITY__
# define FITS_IN_8_BITS(c) ( (sizeof(c) == 1) \
|| (((WIDEST_UTYPE) ASSERT_NOT_PTR(c)) >> 8) == 0)
#else
# define FITS_IN_8_BITS(c) (1)
#endif
/* Returns true if l <= c <= (l + n), where 'l' and 'n' are non-negative
* Written this way so that after optimization, only one conditional test is
* needed. (The NV casts stop any warnings about comparison always being true
* if called with an unsigned. The cast preserves the sign, which is all we
* care about.) */
#define withinCOUNT(c, l, n) (__ASSERT_((NV) (l) >= 0) \
__ASSERT_((NV) (n) >= 0) \
withinCOUNT_KNOWN_VALID_((c), (l), (n)))
/* For internal use only, this can be used in places where it is known that the
* parameters to withinCOUNT() are valid, to avoid the asserts. For example,
* inRANGE() below, calls this several times, but does all the necessary
* asserts itself, once. The reason that this is necessary is that the
* duplicate asserts were exceeding the internal limits of some compilers */
#define withinCOUNT_KNOWN_VALID_(c, l, n) \
((((WIDEST_UTYPE) (c)) - ASSERT_NOT_PTR(l)) \
<= ((WIDEST_UTYPE) ASSERT_NOT_PTR(n)))
/* Returns true if c is in the range l..u, where 'l' is non-negative
* Written this way so that after optimization, only one conditional test is
* needed. */
#define inRANGE(c, l, u) (__ASSERT_((NV) (l) >= 0) __ASSERT_((u) >= (l)) \
( (sizeof(c) == sizeof(U8)) ? inRANGE_helper_(U8, (c), (l), ((u))) \
: (sizeof(c) == sizeof(U16)) ? inRANGE_helper_(U16,(c), (l), ((u))) \
: (sizeof(c) == sizeof(U32)) ? inRANGE_helper_(U32,(c), (l), ((u))) \
: (__ASSERT_(sizeof(c) == sizeof(WIDEST_UTYPE)) \
inRANGE_helper_(WIDEST_UTYPE,(c), (l), ((u))))))
/* For internal use, this is used by machine-generated code which generates
* known valid calls, with a known sizeof(). This avoids the extra code and
* asserts that were exceeding internal limits of some compilers. */
#define inRANGE_helper_(cast, c, l, u) \
withinCOUNT_KNOWN_VALID_(((cast) (c)), (l), ((u) - (l)))
#ifdef EBCDIC
# ifndef _ALL_SOURCE
/* The native libc isascii() et.al. functions return the wrong results
* on at least z/OS unless this is defined. */
# error _ALL_SOURCE should probably be defined
# endif
#else
/* There is a simple definition of ASCII for ASCII platforms. But the
* EBCDIC one isn't so simple, so is defined using table look-up like the
* other macros below.
*
* The cast here is used instead of '(c) >= 0', because some compilers emit
* a warning that that test is always true when the parameter is an
* unsigned type. khw supposes that it could be written as
* && ((c) == '\0' || (c) > 0)
* to avoid the message, but the cast will likely avoid extra branches even
* with stupid compilers. */
# define isASCII(c) (((WIDEST_UTYPE) ASSERT_NOT_PTR(c)) < 128)
#endif
/* Take the eight possible bit patterns of the lower 3 bits and you get the
* lower 3 bits of the 8 octal digits, in both ASCII and EBCDIC, so those bits
* can be ignored. If the rest match '0', we have an octal */
#define isOCTAL_A(c) ((((WIDEST_UTYPE) ASSERT_NOT_PTR(c)) & ~7) == '0')
#ifdef H_PERL /* If have access to perl.h, lookup in its table */
/* Character class numbers. For internal core Perl use only. The ones less
* than 32 are used in PL_charclass[] and the ones up through the one that
* corresponds to <HIGHEST_REGCOMP_DOT_H_SYNC_> are used by regcomp.h and
* related files. PL_charclass ones use names used in l1_char_class_tab.h but
* their actual definitions are here. If that file has a name not used here,
* it won't compile.
*
* The first group of these is ordered in what I (khw) estimate to be the
* frequency of their use. This gives a slight edge to exiting a loop earlier
* (in reginclass() in regexec.c). Except \v should be last, as it isn't a
* real Posix character class, and some (small) inefficiencies in regular
* expression handling would be introduced by putting it in the middle of those
* that are. Also, cntrl and ascii come after the others as it may be useful
* to group these which have no members that match above Latin1, (or above
* ASCII in the latter case) */
# define CC_WORDCHAR_ 0 /* \w and [:word:] */
# define CC_DIGIT_ 1 /* \d and [:digit:] */
# define CC_ALPHA_ 2 /* [:alpha:] */
# define CC_LOWER_ 3 /* [:lower:] */
# define CC_UPPER_ 4 /* [:upper:] */
# define CC_PUNCT_ 5 /* [:punct:] */
# define CC_PRINT_ 6 /* [:print:] */
# define CC_ALPHANUMERIC_ 7 /* [:alnum:] */
# define CC_GRAPH_ 8 /* [:graph:] */
# define CC_CASED_ 9 /* [:lower:] or [:upper:] under /i */
# define CC_SPACE_ 10 /* \s, [:space:] */
# define CC_BLANK_ 11 /* [:blank:] */
# define CC_XDIGIT_ 12 /* [:xdigit:] */
# define CC_CNTRL_ 13 /* [:cntrl:] */
# define CC_ASCII_ 14 /* [:ascii:] */
# define CC_VERTSPACE_ 15 /* \v */
# define HIGHEST_REGCOMP_DOT_H_SYNC_ CC_VERTSPACE_
/* The members of the third group below do not need to be coordinated with data
* structures in regcomp.[ch] and regexec.c. */
# define CC_IDFIRST_ 16
# define CC_CHARNAME_CONT_ 17
# define CC_NONLATIN1_FOLD_ 18
# define CC_NONLATIN1_SIMPLE_FOLD_ 19
# define CC_QUOTEMETA_ 20
# define CC_NON_FINAL_FOLD_ 21
# define CC_IS_IN_SOME_FOLD_ 22
# define CC_BINDIGIT_ 23
# define CC_OCTDIGIT_ 24
# define CC_MNEMONIC_CNTRL_ 25
/* Unused: 26-31
* If more bits are needed, one could add a second word for non-64bit
* QUAD_IS_INT systems, using some #ifdefs to distinguish between having a 2nd
* word or not. The IS_IN_SOME_FOLD bit is the most easily expendable, as it
* is used only for optimization (as of this writing), and differs in the
* Latin1 range from the ALPHA bit only in two relatively unimportant
* characters: the masculine and feminine ordinal indicators, so removing it
* would just cause /i regexes which match them to run less efficiently.
* Similarly the EBCDIC-only bits are used just for speed, and could be
* replaced by other means */
#if defined(PERL_CORE) || defined(PERL_EXT)
/* An enum version of the character class numbers, to help compilers
* optimize */
typedef enum {
CC_ENUM_ALPHA_ = CC_ALPHA_,
CC_ENUM_ALPHANUMERIC_ = CC_ALPHANUMERIC_,
CC_ENUM_ASCII_ = CC_ASCII_,
CC_ENUM_BLANK_ = CC_BLANK_,
CC_ENUM_CASED_ = CC_CASED_,
CC_ENUM_CNTRL_ = CC_CNTRL_,
CC_ENUM_DIGIT_ = CC_DIGIT_,
CC_ENUM_GRAPH_ = CC_GRAPH_,
CC_ENUM_LOWER_ = CC_LOWER_,
CC_ENUM_PRINT_ = CC_PRINT_,
CC_ENUM_PUNCT_ = CC_PUNCT_,
CC_ENUM_SPACE_ = CC_SPACE_,
CC_ENUM_UPPER_ = CC_UPPER_,
CC_ENUM_VERTSPACE_ = CC_VERTSPACE_,
CC_ENUM_WORDCHAR_ = CC_WORDCHAR_,
CC_ENUM_XDIGIT_ = CC_XDIGIT_
} char_class_number_;
#endif
#define POSIX_CC_COUNT (HIGHEST_REGCOMP_DOT_H_SYNC_ + 1)
START_EXTERN_C
# ifdef DOINIT
EXTCONST U32 PL_charclass[] = {
# include "l1_char_class_tab.h"
};
# else /* ! DOINIT */
EXTCONST U32 PL_charclass[];
# endif
END_EXTERN_C
/* The 1U keeps Solaris from griping when shifting sets the uppermost bit */
# define CC_mask_(classnum) (1U << (classnum))
/* For internal core Perl use only: the base macro for defining macros like
* isALPHA */
# define generic_isCC_(c, classnum) cBOOL(FITS_IN_8_BITS(c) \
&& (PL_charclass[(U8) (c)] & CC_mask_(classnum)))
/* The mask for the _A versions of the macros; it just adds in the bit for
* ASCII. */
# define CC_mask_A_(classnum) (CC_mask_(classnum) | CC_mask_(CC_ASCII_))
/* For internal core Perl use only: the base macro for defining macros like
* isALPHA_A. The foo_A version makes sure that both the desired bit and
* the ASCII bit are present */
# define generic_isCC_A_(c, classnum) (FITS_IN_8_BITS(c) \
&& ((PL_charclass[(U8) (c)] & CC_mask_A_(classnum)) \
== CC_mask_A_(classnum)))
/* On ASCII platforms certain classes form a single range. It's faster to
* special case these. isDIGIT is a single range on all platforms */
# ifdef EBCDIC
# define isALPHA_A(c) generic_isCC_A_(c, CC_ALPHA_)
# define isGRAPH_A(c) generic_isCC_A_(c, CC_GRAPH_)
# define isLOWER_A(c) generic_isCC_A_(c, CC_LOWER_)
# define isPRINT_A(c) generic_isCC_A_(c, CC_PRINT_)
# define isUPPER_A(c) generic_isCC_A_(c, CC_UPPER_)
# else
/* By folding the upper and lowercase, we can use a single range */
# define isALPHA_A(c) inRANGE((~('A' ^ 'a') & (c)), 'A', 'Z')
# define isGRAPH_A(c) inRANGE(c, ' ' + 1, 0x7e)
# define isLOWER_A(c) inRANGE(c, 'a', 'z')
# define isPRINT_A(c) inRANGE(c, ' ', 0x7e)
# define isUPPER_A(c) inRANGE(c, 'A', 'Z')
# endif
# define isALPHANUMERIC_A(c) generic_isCC_A_(c, CC_ALPHANUMERIC_)
# define isBLANK_A(c) generic_isCC_A_(c, CC_BLANK_)
# define isCNTRL_A(c) generic_isCC_A_(c, CC_CNTRL_)
# define isDIGIT_A(c) inRANGE(c, '0', '9')
# define isPUNCT_A(c) generic_isCC_A_(c, CC_PUNCT_)
# define isSPACE_A(c) generic_isCC_A_(c, CC_SPACE_)
# define isWORDCHAR_A(c) generic_isCC_A_(c, CC_WORDCHAR_)
# define isXDIGIT_A(c) generic_isCC_(c, CC_XDIGIT_) /* No non-ASCII xdigits */
# define isIDFIRST_A(c) generic_isCC_A_(c, CC_IDFIRST_)
# define isALPHA_L1(c) generic_isCC_(c, CC_ALPHA_)
# define isALPHANUMERIC_L1(c) generic_isCC_(c, CC_ALPHANUMERIC_)
# define isBLANK_L1(c) generic_isCC_(c, CC_BLANK_)
/* continuation character for legal NAME in \N{NAME} */
# define isCHARNAME_CONT(c) generic_isCC_(c, CC_CHARNAME_CONT_)
# define isCNTRL_L1(c) generic_isCC_(c, CC_CNTRL_)
# define isGRAPH_L1(c) generic_isCC_(c, CC_GRAPH_)
# define isLOWER_L1(c) generic_isCC_(c, CC_LOWER_)
# define isPRINT_L1(c) generic_isCC_(c, CC_PRINT_)
# define isPSXSPC_L1(c) isSPACE_L1(c)
# define isPUNCT_L1(c) generic_isCC_(c, CC_PUNCT_)
# define isSPACE_L1(c) generic_isCC_(c, CC_SPACE_)
# define isUPPER_L1(c) generic_isCC_(c, CC_UPPER_)
# define isWORDCHAR_L1(c) generic_isCC_(c, CC_WORDCHAR_)
# define isIDFIRST_L1(c) generic_isCC_(c, CC_IDFIRST_)
# ifdef EBCDIC
# define isASCII(c) generic_isCC_(c, CC_ASCII_)
# endif
/* Participates in a single-character fold with a character above 255 */
# if defined(PERL_IN_REGCOMP_ANY) || defined(PERL_IN_REGEXEC_C)
# define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(c) \
(( ! cBOOL(FITS_IN_8_BITS(c))) \
|| (PL_charclass[(U8) (c)] & CC_mask_(CC_NONLATIN1_SIMPLE_FOLD_)))
# define IS_NON_FINAL_FOLD(c) generic_isCC_(c, CC_NON_FINAL_FOLD_)
# define IS_IN_SOME_FOLD_L1(c) generic_isCC_(c, CC_IS_IN_SOME_FOLD_)
# endif
/* Like the above, but also can be part of a multi-char fold */
# define HAS_NONLATIN1_FOLD_CLOSURE(c) \
( (! cBOOL(FITS_IN_8_BITS(c))) \
|| (PL_charclass[(U8) (c)] & CC_mask_(CC_NONLATIN1_FOLD_)))
# define _isQUOTEMETA(c) generic_isCC_(c, CC_QUOTEMETA_)
/* is c a control character for which we have a mnemonic? */
# if defined(PERL_CORE) || defined(PERL_EXT)
# define isMNEMONIC_CNTRL(c) generic_isCC_(c, CC_MNEMONIC_CNTRL_)
# endif
#else /* else we don't have perl.h H_PERL */
/* If we don't have perl.h, we are compiling a utility program. Below we
* hard-code various macro definitions that wouldn't otherwise be available
* to it. Most are coded based on first principles. These are written to
* avoid EBCDIC vs. ASCII #ifdef's as much as possible. */
# define isDIGIT_A(c) inRANGE(c, '0', '9')
# define isBLANK_A(c) ((c) == ' ' || (c) == '\t')
# define isSPACE_A(c) (isBLANK_A(c) \
|| (c) == '\n' \
|| (c) == '\r' \
|| (c) == '\v' \
|| (c) == '\f')
/* On EBCDIC, there are gaps between 'i' and 'j'; 'r' and 's'. Same for
* uppercase. The tests for those aren't necessary on ASCII, but hurt only
* performance (if optimization isn't on), and allow the same code to be
* used for both platform types */
# define isLOWER_A(c) inRANGE((c), 'a', 'i') \
|| inRANGE((c), 'j', 'r') \
|| inRANGE((c), 's', 'z')
# define isUPPER_A(c) inRANGE((c), 'A', 'I') \
|| inRANGE((c), 'J', 'R') \
|| inRANGE((c), 'S', 'Z')
# define isALPHA_A(c) (isUPPER_A(c) || isLOWER_A(c))
# define isALPHANUMERIC_A(c) (isALPHA_A(c) || isDIGIT_A(c))
# define isWORDCHAR_A(c) (isALPHANUMERIC_A(c) || (c) == '_')
# define isIDFIRST_A(c) (isALPHA_A(c) || (c) == '_')
# define isXDIGIT_A(c) ( isDIGIT_A(c) \
|| inRANGE((c), 'a', 'f') \
|| inRANGE((c), 'A', 'F')
# define isPUNCT_A(c) ((c) == '-' || (c) == '!' || (c) == '"' \
|| (c) == '#' || (c) == '$' || (c) == '%' \
|| (c) == '&' || (c) == '\'' || (c) == '(' \
|| (c) == ')' || (c) == '*' || (c) == '+' \
|| (c) == ',' || (c) == '.' || (c) == '/' \
|| (c) == ':' || (c) == ';' || (c) == '<' \
|| (c) == '=' || (c) == '>' || (c) == '?' \
|| (c) == '@' || (c) == '[' || (c) == '\\' \
|| (c) == ']' || (c) == '^' || (c) == '_' \
|| (c) == '`' || (c) == '{' || (c) == '|' \
|| (c) == '}' || (c) == '~')
# define isGRAPH_A(c) (isALPHANUMERIC_A(c) || isPUNCT_A(c))
# define isPRINT_A(c) (isGRAPH_A(c) || (c) == ' ')
# ifdef EBCDIC
/* The below is accurate for the 3 EBCDIC code pages traditionally
* supported by perl. The only difference between them in the controls
* is the position of \n, and that is represented symbolically below */
# define isCNTRL_A(c) ((c) == '\0' || (c) == '\a' || (c) == '\b' \
|| (c) == '\f' || (c) == '\n' || (c) == '\r' \
|| (c) == '\t' || (c) == '\v' \
|| inRANGE((c), 1, 3) /* SOH, STX, ETX */ \
|| (c) == 7F /* U+7F DEL */ \
|| inRANGE((c), 0x0E, 0x13) /* SO SI DLE \
DC[1-3] */ \
|| (c) == 0x18 /* U+18 CAN */ \
|| (c) == 0x19 /* U+19 EOM */ \
|| inRANGE((c), 0x1C, 0x1F) /* [FGRU]S */ \
|| (c) == 0x26 /* U+17 ETB */ \
|| (c) == 0x27 /* U+1B ESC */ \
|| (c) == 0x2D /* U+05 ENQ */ \
|| (c) == 0x2E /* U+06 ACK */ \
|| (c) == 0x32 /* U+16 SYN */ \
|| (c) == 0x37 /* U+04 EOT */ \
|| (c) == 0x3C /* U+14 DC4 */ \
|| (c) == 0x3D /* U+15 NAK */ \
|| (c) == 0x3F)/* U+1A SUB */
# define isASCII(c) (isCNTRL_A(c) || isPRINT_A(c))
# else /* isASCII is already defined for ASCII platforms, so can use that to
define isCNTRL */
# define isCNTRL_A(c) (isASCII(c) && ! isPRINT_A(c))
# endif
/* The _L1 macros may be unnecessary for the utilities; I (khw) added them
* during debugging, and it seems best to keep them. We may be called
* without NATIVE_TO_LATIN1 being defined. On ASCII platforms, it doesn't
* do anything anyway, so make it not a problem */
# if ! defined(EBCDIC) && ! defined(NATIVE_TO_LATIN1)
# define NATIVE_TO_LATIN1(ch) (ch)
# endif
# define isALPHA_L1(c) (isUPPER_L1(c) || isLOWER_L1(c))
# define isALPHANUMERIC_L1(c) (isALPHA_L1(c) || isDIGIT_A(c))
# define isBLANK_L1(c) (isBLANK_A(c) \
|| (FITS_IN_8_BITS(c) \
&& NATIVE_TO_LATIN1((U8) c) == 0xA0))
# define isCNTRL_L1(c) (FITS_IN_8_BITS(c) && (! isPRINT_L1(c)))
# define isGRAPH_L1(c) (isPRINT_L1(c) && (! isBLANK_L1(c)))
# define isLOWER_L1(c) (isLOWER_A(c) \
|| (FITS_IN_8_BITS(c) \
&& (( NATIVE_TO_LATIN1((U8) c) >= 0xDF \
&& NATIVE_TO_LATIN1((U8) c) != 0xF7) \
|| NATIVE_TO_LATIN1((U8) c) == 0xAA \
|| NATIVE_TO_LATIN1((U8) c) == 0xBA \
|| NATIVE_TO_LATIN1((U8) c) == 0xB5)))
# define isPRINT_L1(c) (isPRINT_A(c) \
|| (FITS_IN_8_BITS(c) \
&& NATIVE_TO_LATIN1((U8) c) >= 0xA0))
# define isPUNCT_L1(c) (isPUNCT_A(c) \
|| (FITS_IN_8_BITS(c) \
&& ( NATIVE_TO_LATIN1((U8) c) == 0xA1 \
|| NATIVE_TO_LATIN1((U8) c) == 0xA7 \
|| NATIVE_TO_LATIN1((U8) c) == 0xAB \
|| NATIVE_TO_LATIN1((U8) c) == 0xB6 \
|| NATIVE_TO_LATIN1((U8) c) == 0xB7 \
|| NATIVE_TO_LATIN1((U8) c) == 0xBB \
|| NATIVE_TO_LATIN1((U8) c) == 0xBF)))
# define isSPACE_L1(c) (isSPACE_A(c) \
|| (FITS_IN_8_BITS(c) \
&& ( NATIVE_TO_LATIN1((U8) c) == 0x85 \
|| NATIVE_TO_LATIN1((U8) c) == 0xA0)))
# define isUPPER_L1(c) (isUPPER_A(c) \
|| (FITS_IN_8_BITS(c) \
&& ( IN_RANGE(NATIVE_TO_LATIN1((U8) c), \
0xC0, 0xDE) \
&& NATIVE_TO_LATIN1((U8) c) != 0xD7)))
# define isWORDCHAR_L1(c) (isIDFIRST_L1(c) || isDIGIT_A(c))
# define isIDFIRST_L1(c) (isALPHA_L1(c) || NATIVE_TO_LATIN1(c) == '_')
# define isCHARNAME_CONT(c) (isWORDCHAR_L1(c) \
|| isBLANK_L1(c) \
|| (c) == '-' \
|| (c) == '(' \
|| (c) == ')')
/* The following are not fully accurate in the above-ASCII range. I (khw)
* don't think it's necessary to be so for the purposes where this gets
* compiled */
# define isQUOTEMETA_(c) (FITS_IN_8_BITS(c) && ! isWORDCHAR_L1(c))
/* Many of the macros later in this file are defined in terms of these. By
* implementing them with a function, which converts the class number into
* a call to the desired macro, all of the later ones work. However, that
* function won't be actually defined when building a utility program (no
* perl.h), and so a compiler error will be generated if one is attempted
* to be used. And the above-Latin1 code points require Unicode tables to
* be present, something unlikely to be the case when bootstrapping */
# define generic_isCC_(c, classnum) \
(FITS_IN_8_BITS(c) && S_bootstrap_ctype((U8) (c), (classnum), TRUE))
# define generic_isCC_A_(c, classnum) \
(FITS_IN_8_BITS(c) && S_bootstrap_ctype((U8) (c), (classnum), FALSE))
#endif /* End of no perl.h H_PERL */
#define isALPHANUMERIC(c) isALPHANUMERIC_A(c)
#define isALPHA(c) isALPHA_A(c)
#define isASCII_A(c) isASCII(c)
#define isASCII_L1(c) isASCII(c)
#define isBLANK(c) isBLANK_A(c)
#define isCNTRL(c) isCNTRL_A(c)
#define isDIGIT(c) isDIGIT_A(c)
#define isGRAPH(c) isGRAPH_A(c)
#define isIDFIRST(c) isIDFIRST_A(c)
#define isLOWER(c) isLOWER_A(c)
#define isPRINT(c) isPRINT_A(c)
#define isPSXSPC_A(c) isSPACE_A(c)
#define isPSXSPC(c) isPSXSPC_A(c)
#define isPSXSPC_L1(c) isSPACE_L1(c)
#define isPUNCT(c) isPUNCT_A(c)
#define isSPACE(c) isSPACE_A(c)
#define isUPPER(c) isUPPER_A(c)
#define isWORDCHAR(c) isWORDCHAR_A(c)
#define isXDIGIT(c) isXDIGIT_A(c)
/* ASCII casing. These could also be written as
#define toLOWER(c) (isASCII(c) ? toLOWER_LATIN1(c) : (c))
#define toUPPER(c) (isASCII(c) ? toUPPER_LATIN1_MOD(c) : (c))
which uses table lookup and mask instead of subtraction. (This would
work because the _MOD does not apply in the ASCII range).
These actually are UTF-8 invariant casing, not just ASCII, as any non-ASCII
UTF-8 invariants are neither upper nor lower. (Only on EBCDIC platforms are
there non-ASCII invariants, and all of them are controls.) */
#define toLOWER(c) (isUPPER(c) ? (U8)((c) + ('a' - 'A')) : (c))
#define toUPPER(c) (isLOWER(c) ? (U8)((c) - ('a' - 'A')) : (c))
/* In the ASCII range, these are equivalent to what they're here defined to be.
* But by creating these definitions, other code doesn't have to be aware of
* this detail. Actually this works for all UTF-8 invariants, not just the
* ASCII range. (EBCDIC platforms can have non-ASCII invariants.) */
#define toFOLD(c) toLOWER(c)
#define toTITLE(c) toUPPER(c)
#define toLOWER_A(c) toLOWER(c)
#define toUPPER_A(c) toUPPER(c)
#define toFOLD_A(c) toFOLD(c)
#define toTITLE_A(c) toTITLE(c)
/* Use table lookup for speed; returns the input itself if is out-of-range */
#define toLOWER_LATIN1(c) ((! FITS_IN_8_BITS(c)) \
? (c) \
: PL_latin1_lc[ (U8) (c) ])
#define toLOWER_L1(c) toLOWER_LATIN1(c) /* Synonym for consistency */
/* Modified uc. Is correct uc except for three non-ascii chars which are
* all mapped to one of them, and these need special handling; returns the
* input itself if is out-of-range */
#define toUPPER_LATIN1_MOD(c) ((! FITS_IN_8_BITS(c)) \
? (c) \
: PL_mod_latin1_uc[ (U8) (c) ])
#ifdef USE_LOCALE_CTYPE
# define IN_UTF8_CTYPE_LOCALE PL_in_utf8_CTYPE_locale
# define IN_UTF8_TURKIC_LOCALE PL_in_utf8_turkic_locale
#else
# define IN_UTF8_CTYPE_LOCALE false
# define IN_UTF8_TURKIC_LOCALE false
#endif
/* Use foo_LC_uvchr() instead of these for beyond the Latin1 range */
/* For internal core Perl use only: the base macro for defining macros like
* isALPHA_LC, which uses the current LC_CTYPE locale. 'c' is the code point
* (0-255) to check. In a UTF-8 locale, the result is the same as calling
* isFOO_L1(); 'classnum' is something like CC_UPPER_, which gives the class
* number for doing this. For non-UTF-8 locales, the code to actually do the
* test this is passed in 'non_utf8'. If 'c' is above 255, 0 is returned. For
* accessing the full range of possible code points under locale rules, use the
* macros based on generic_LC_uvchr_ instead of this. */
#define generic_LC_base_(c, classnum, non_utf8_func) \
(! FITS_IN_8_BITS(c) \
? 0 \
: IN_UTF8_CTYPE_LOCALE \
? cBOOL(PL_charclass[(U8) (c)] & CC_mask_(classnum)) \
: cBOOL(non_utf8_func(c)))
/* A helper macro for defining macros like isALPHA_LC. On systems without
* proper locales, these reduce to, e.g., isALPHA_A */
#ifdef CTYPE256
# define generic_LC_(c, classnum, non_utf8_func) \
generic_LC_base_(c, classnum, non_utf8_func)
#else
# define generic_LC_(c, classnum, non_utf8_func) \
generic_isCC_A_(c, classnum)
#endif
/* Below are the definitions for the locale-sensitive character classification
* macros whose input domain is a byte, and the locale isn't UTF-8. These are
* as close as possible to the bare versions on the platform and still yield
* POSIX Standard-compliant results.
*
* There is currently only one place these definitions should be used, in
* certain function calls like Perl_iswordchar_() in inline.h.
*
* Most likely you want to use the macros a ways below with names like
* isALPHA_LC(). Rarely, you may want isU8_ALPHA_LC(), somewhat below.
*
* The first two aren't in C89, so the fallback is to use the non-locale
* sensitive versions; these are the same for all platforms */
#if defined(HAS_ISASCII)
# define is_posix_ASCII(c) isascii((U8) (c))
#else
# define is_posix_ASCII(c) isASCII(c)
#endif
#if defined(HAS_ISBLANK)
# define is_posix_BLANK(c) isblank((U8) (c))
#else
# define is_posix_BLANK(c) isBLANK(c)
#endif
/* The next few are the same in all platforms. */
#define is_posix_CNTRL(c) iscntrl((U8) (c))
#define is_posix_IDFIRST(c) (UNLIKELY((c) == '_') || is_posix_ALPHA(c))
#define is_posix_SPACE(c) isspace((U8) (c))
#define is_posix_WORDCHAR(c) (UNLIKELY((c) == '_') || is_posix_ALPHANUMERIC(c))
/* The base-level case changing macros are also the same in all platforms */
#define to_posix_LOWER(c) tolower((U8) (c))
#define to_posix_UPPER(c) toupper((U8) (c))
#define to_posix_FOLD(c) to_posix_LOWER(c)
#ifdef WIN32
/* The Windows functions don't bother to follow the POSIX standard, which for
* example says that something can't both be a printable and a control. But
* Windows treats \t as both a control and a printable, and does such things as
* making superscripts into both digits and punctuation. These #defines tame
* these flaws by assuming that the definitions of controls (and the other few
* ones defined above) are correct, and then making sure that other definitions
* don't have weirdnesses, by adding a check that \w and its subsets aren't
* ispunct(), and things that are \W, like ispunct(), arent't controls. Not
* all possible weirdnesses are checked for, just ones that were detected on
* actual Microsoft code pages */
# define is_posix_ALPHA(c) \
(isalpha((U8) (c)) && ! is_posix_PUNCT(c))
# define is_posix_ALPHANUMERIC(c) \
(isalnum((U8) (c)) && ! is_posix_PUNCT(c))
# define is_posix_CASED(c) \
((isupper((U8) (c)) || islower((U8) (c))) && ! is_posix_PUNCT(c))
# define is_posix_DIGIT(c) \
(isdigit((U8) (c)) && ! is_posix_PUNCT(c))
# define is_posix_GRAPH(c) \
(isgraph((U8) (c)) && ! is_posix_CNTRL(c))
# define is_posix_LOWER(c) \
(islower((U8) (c)) && ! is_posix_PUNCT(c))
# define is_posix_PRINT(c) \
(isprint((U8) (c)) && ! is_posix_CNTRL(c))
# define is_posix_PUNCT(c) \
(ispunct((U8) (c)) && ! is_posix_CNTRL(c))
# define is_posix_UPPER(c) \
(isupper((U8) (c)) && ! is_posix_PUNCT(c))
# define is_posix_XDIGIT(c) \
(isxdigit((U8) (c)) && ! is_posix_PUNCT(c))
#else
/* For all other platforms, as far as we know, isdigit(), etc. work sanely
* enough */
# define is_posix_ALPHA(c) isalpha((U8) (c))
# define is_posix_ALPHANUMERIC(c) isalnum((U8) (c))
# define is_posix_CASED(c) (islower((U8) (c)) || isupper((U8) (c)))
# define is_posix_DIGIT(c) isdigit((U8) (c))
/* ... But it seems that IBM products treat NBSP as both a space and a
* graphic; these are the two platforms that we have active test beds for.
*/
# if defined(OS390) || defined(_AIX)
# define is_posix_GRAPH(c) (isgraph((U8) (c)) && ! isspace((U8) (c)))
# else
# define is_posix_GRAPH(c) isgraph((U8) (c))
# endif
# define is_posix_LOWER(c) islower((U8) (c))
# define is_posix_PRINT(c) isprint((U8) (c))
# define is_posix_PUNCT(c) ispunct((U8) (c))
# define is_posix_UPPER(c) isupper((U8) (c))
# define is_posix_XDIGIT(c) isxdigit((U8) (c))
#endif
/* Below is the next level up, which currently expands to nothing more
* than the previous layer. These are the macros to use if you really need
* something whose input domain is a byte, and the locale isn't UTF-8; that is,
* where you normally would have to use things like bare isalnum().
*
* But most likely you should instead use the layer defined further below which
* has names like isALPHA_LC. They deal with larger-than-byte inputs, and
* UTF-8 locales.
*
* (Note, proper general operation of the bare libc functions requires you to
* cast to U8. These do that for you automatically.) */
# define WRAP_U8_LC_(c, classnum, posix) posix(c)
#define isU8_ALPHANUMERIC_LC(c) \
WRAP_U8_LC_((c), CC_ALPHANUMERIC_, is_posix_ALPHANUMERIC)
#define isU8_ALPHA_LC(c) WRAP_U8_LC_((c), CC_ALPHA_, is_posix_ALPHA)
#define isU8_ASCII_LC(c) WRAP_U8_LC_((c), CC_ASCII_, is_posix_ASCII)
#define isU8_BLANK_LC(c) WRAP_U8_LC_((c), CC_BLANK_, is_posix_BLANK)
#define isU8_CASED_LC(c) WRAP_U8_LC_((c), CC_CASED_, is_posix_CASED)
#define isU8_CNTRL_LC(c) WRAP_U8_LC_((c), CC_CNTRL_, is_posix_CNTRL)
#define isU8_DIGIT_LC(c) WRAP_U8_LC_((c), CC_DIGIT_, is_posix_DIGIT)
#define isU8_GRAPH_LC(c) WRAP_U8_LC_((c), CC_GRAPH_, is_posix_GRAPH)
#define isU8_IDFIRST_LC(c) WRAP_U8_LC_((c), CC_IDFIRST_, is_posix_IDFIRST)
#define isU8_LOWER_LC(c) WRAP_U8_LC_((c), CC_LOWER_, is_posix_LOWER)
#define isU8_PRINT_LC(c) WRAP_U8_LC_((c), CC_PRINT_, is_posix_PRINT)
#define isU8_PUNCT_LC(c) WRAP_U8_LC_((c), CC_PUNCT_, is_posix_PUNCT)
#define isU8_SPACE_LC(c) WRAP_U8_LC_((c), CC_SPACE_, is_posix_SPACE)
#define isU8_UPPER_LC(c) WRAP_U8_LC_((c), CC_UPPER_, is_posix_UPPER)
#define isU8_WORDCHAR_LC(c) WRAP_U8_LC_((c), CC_WORDCHAR_, is_posix_WORDCHAR)
#define isU8_XDIGIT_LC(c) WRAP_U8_LC_((c), CC_XDIGIT_, is_posix_XDIGIT)
#define toU8_LOWER_LC(c) WRAP_U8_LC_((c), CC_TOLOWER_, to_posix_LOWER)
#define toU8_UPPER_LC(c) WRAP_U8_LC_((c), CC_TOUPPER_, to_posix_UPPER)
#define toU8_FOLD_LC(c) toU8_LOWER_LC(c)
/* The definitions below use the ones above to create versions in which the
* input domain isn't restricted to bytes (though always returning false if the
* input doesn't fit in a byte), and to behave properly should the locale be
* UTF-8. These are the documented ones, suitable for general use (though
* toUPPER_LC and toFOLD_LC aren't documented because they need special
* handling to deal with SHARP S expanding to two characters). */
#define isASCII_LC(c) (FITS_IN_8_BITS(c) && isU8_ASCII_LC(c))
#define isALPHA_LC(c) generic_LC_(c, CC_ALPHA_, isU8_ALPHA_LC)
#define isALPHANUMERIC_LC(c) \
generic_LC_(c, CC_ALPHANUMERIC_, isU8_ALPHANUMERIC_LC)
#define isBLANK_LC(c) generic_LC_(c, CC_BLANK_, isU8_BLANK_LC)
#define isCASED_LC(c) generic_LC_(c, CC_CASED_, isU8_CASED_LC)
#define isCNTRL_LC(c) generic_LC_(c, CC_CNTRL_, isU8_CNTRL_LC)
#define isDIGIT_LC(c) generic_LC_(c, CC_DIGIT_, isU8_DIGIT_LC)
#define isGRAPH_LC(c) generic_LC_(c, CC_GRAPH_, isU8_GRAPH_LC)
#define isIDFIRST_LC(c) generic_LC_(c, CC_IDFIRST_, isU8_IDFIRST_LC)
#define isLOWER_LC(c) generic_LC_(c, CC_LOWER_, isU8_LOWER_LC)
#define isPRINT_LC(c) generic_LC_(c, CC_PRINT_, isU8_PRINT_LC)
#define isPUNCT_LC(c) generic_LC_(c, CC_PUNCT_, isU8_PUNCT_LC)
#define isSPACE_LC(c) generic_LC_(c, CC_SPACE_, isU8_SPACE_LC)
#define isUPPER_LC(c) generic_LC_(c, CC_UPPER_, isU8_UPPER_LC)
#define isWORDCHAR_LC(c) generic_LC_(c, CC_WORDCHAR_, isU8_WORDCHAR_LC)
#define isXDIGIT_LC(c) generic_LC_(c, CC_XDIGIT_, isU8_XDIGIT_LC)
#ifndef CTYPE256
# define toLOWER_LC(c) toLOWER_A(c)
# define toUPPER_LC(c) toUPPER_A(c)
# define toFOLD_LC(c) toFOLD_A(c)
#else
/* In the next three macros, the reason for using the PL_latin arrays is in
* case the system function is defective; it ensures uniform results that
* conform to the Unicode standard. */
/* This does not handle the anomalies in UTF-8 Turkic locales. */
# define toLOWER_LC(c) ((! FITS_IN_8_BITS(c)) \
? (c) \
: ((IN_UTF8_CTYPE_LOCALE) \
? PL_latin1_lc[ (U8) (c) ] \
: ((U8) toU8_LOWER_LC(c))))
/* In this macro, note that the result can be larger than a byte in a UTF-8
* locale. It returns a single value, so can't adequately return the upper
* case of LATIN SMALL LETTER SHARP S in a UTF-8 locale (which should be a
* string of two values "SS"); instead it asserts against that under
* DEBUGGING, and otherwise returns its input. It does not handle the
* anomalies in UTF-8 Turkic locales. */
# define toUPPER_LC(c) \
((! FITS_IN_8_BITS(c)) \
? (c) \
: ((! IN_UTF8_CTYPE_LOCALE) \
? ((U8) toU8_UPPER_LC(c)) \
: (UNLIKELY(((U8)(c)) == MICRO_SIGN) \
? GREEK_CAPITAL_LETTER_MU \
: ((UNLIKELY(((U8) (c)) == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) \
? LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS \
: (UNLIKELY(((U8)(c)) == LATIN_SMALL_LETTER_SHARP_S) \
? (__ASSERT_(0) (c)) /* Fail on Sharp S in DEBUGGING */ \
: PL_mod_latin1_uc[ (U8) (c) ]))))))
/* In this macro, note that the result can be larger than a byte in a UTF-8
* locale. It returns a single value, so can't adequately return the fold case
* of LATIN SMALL LETTER SHARP S in a UTF-8 locale (which should be a string of
* two values "ss"); instead it asserts against that under DEBUGGING, and
* otherwise returns its input. It does not handle the anomalies in UTF-8
* Turkic locales */
# define toFOLD_LC(c) \
((UNLIKELY((c) == MICRO_SIGN) && IN_UTF8_CTYPE_LOCALE) \
? GREEK_SMALL_LETTER_MU \
: (__ASSERT_( ! IN_UTF8_CTYPE_LOCALE \
|| LIKELY((c) != LATIN_SMALL_LETTER_SHARP_S)) \
toLOWER_LC(c)))
#endif
#define isIDCONT(c) isWORDCHAR(c)
#define isIDCONT_A(c) isWORDCHAR_A(c)
#define isIDCONT_L1(c) isWORDCHAR_L1(c)
#define isIDCONT_LC(c) isWORDCHAR_LC(c)
#define isPSXSPC_LC(c) isSPACE_LC(c)
/* For internal core Perl use only: the base macros for defining macros like
* isALPHA_uvchr. 'c' is the code point to check. 'classnum' is the POSIX class
* number defined earlier in this file. generic_uvchr_() is used for POSIX
* classes where there is a macro or function 'above_latin1' that takes the
* single argument 'c' and returns the desired value. These exist for those
* classes which have simple definitions, avoiding the overhead of an inversion
* list binary search. generic_invlist_uvchr_() can be used
* for classes where that overhead is faster than a direct lookup.
* generic_uvchr_() won't compile if 'c' isn't unsigned, as it won't match the
* 'above_latin1' prototype. generic_isCC_() macro does bounds checking, so
* have duplicate checks here, so could create versions of the macros that
* don't, but experiments show that gcc optimizes them out anyway. */
/* Note that all ignore 'use bytes' */
#define generic_uvchr_(classnum, above_latin1, c) ((c) < 256 \
? generic_isCC_(c, classnum) \
: above_latin1(c))
#define generic_invlist_uvchr_(classnum, c) ((c) < 256 \
? generic_isCC_(c, classnum) \
: _is_uni_FOO(classnum, c))
#define isALPHA_uvchr(c) generic_invlist_uvchr_(CC_ALPHA_, c)
#define isALPHANUMERIC_uvchr(c) generic_invlist_uvchr_(CC_ALPHANUMERIC_, c)
#define isASCII_uvchr(c) isASCII(c)
#define isBLANK_uvchr(c) generic_uvchr_(CC_BLANK_, is_HORIZWS_cp_high, c)
#define isCNTRL_uvchr(c) isCNTRL_L1(c) /* All controls are in Latin1 */
#define isDIGIT_uvchr(c) generic_invlist_uvchr_(CC_DIGIT_, c)
#define isGRAPH_uvchr(c) generic_invlist_uvchr_(CC_GRAPH_, c)
#define isIDCONT_uvchr(c) \
generic_uvchr_(CC_WORDCHAR_, _is_uni_perl_idcont, c)
#define isIDFIRST_uvchr(c) \
generic_uvchr_(CC_IDFIRST_, _is_uni_perl_idstart, c)
#define isLOWER_uvchr(c) generic_invlist_uvchr_(CC_LOWER_, c)
#define isPRINT_uvchr(c) generic_invlist_uvchr_(CC_PRINT_, c)
#define isPUNCT_uvchr(c) generic_invlist_uvchr_(CC_PUNCT_, c)
#define isSPACE_uvchr(c) generic_uvchr_(CC_SPACE_, is_XPERLSPACE_cp_high, c)
#define isPSXSPC_uvchr(c) isSPACE_uvchr(c)
#define isUPPER_uvchr(c) generic_invlist_uvchr_(CC_UPPER_, c)
#define isVERTWS_uvchr(c) generic_uvchr_(CC_VERTSPACE_, is_VERTWS_cp_high, c)
#define isWORDCHAR_uvchr(c) generic_invlist_uvchr_(CC_WORDCHAR_, c)
#define isXDIGIT_uvchr(c) generic_uvchr_(CC_XDIGIT_, is_XDIGIT_cp_high, c)
#define toFOLD_uvchr(c,s,l) to_uni_fold(c,s,l)
#define toLOWER_uvchr(c,s,l) to_uni_lower(c,s,l)
#define toTITLE_uvchr(c,s,l) to_uni_title(c,s,l)
#define toUPPER_uvchr(c,s,l) to_uni_upper(c,s,l)
/* For backwards compatibility, even though '_uni' should mean official Unicode
* code points, in Perl it means native for those below 256 */
#define isALPHA_uni(c) isALPHA_uvchr(c)
#define isALPHANUMERIC_uni(c) isALPHANUMERIC_uvchr(c)
#define isASCII_uni(c) isASCII_uvchr(c)
#define isBLANK_uni(c) isBLANK_uvchr(c)
#define isCNTRL_uni(c) isCNTRL_uvchr(c)
#define isDIGIT_uni(c) isDIGIT_uvchr(c)
#define isGRAPH_uni(c) isGRAPH_uvchr(c)
#define isIDCONT_uni(c) isIDCONT_uvchr(c)
#define isIDFIRST_uni(c) isIDFIRST_uvchr(c)
#define isLOWER_uni(c) isLOWER_uvchr(c)
#define isPRINT_uni(c) isPRINT_uvchr(c)
#define isPUNCT_uni(c) isPUNCT_uvchr(c)
#define isSPACE_uni(c) isSPACE_uvchr(c)
#define isPSXSPC_uni(c) isPSXSPC_uvchr(c)
#define isUPPER_uni(c) isUPPER_uvchr(c)
#define isVERTWS_uni(c) isVERTWS_uvchr(c)
#define isWORDCHAR_uni(c) isWORDCHAR_uvchr(c)
#define isXDIGIT_uni(c) isXDIGIT_uvchr(c)
#define toFOLD_uni(c,s,l) toFOLD_uvchr(c,s,l)
#define toLOWER_uni(c,s,l) toLOWER_uvchr(c,s,l)
#define toTITLE_uni(c,s,l) toTITLE_uvchr(c,s,l)
#define toUPPER_uni(c,s,l) toUPPER_uvchr(c,s,l)
/* For internal core Perl use only: the base macros for defining macros like
* isALPHA_LC_uvchr. These are like isALPHA_LC, but the input can be any code
* point, not just 0-255. Like generic_uvchr_, there are two versions, one for
* simple class definitions; the other for more complex. These are like
* generic_uvchr_, so see it for more info. */
#define generic_LC_uvchr_(latin1, above_latin1, c) \
(c < 256 ? latin1(c) : above_latin1(c))
#define generic_LC_invlist_uvchr_(latin1, classnum, c) \
(c < 256 ? latin1(c) : _is_uni_FOO(classnum, c))
#define isALPHA_LC_uvchr(c) generic_LC_invlist_uvchr_(isALPHA_LC, CC_ALPHA_, c)
#define isALPHANUMERIC_LC_uvchr(c) generic_LC_invlist_uvchr_(isALPHANUMERIC_LC, \
CC_ALPHANUMERIC_, c)
#define isASCII_LC_uvchr(c) isASCII_LC(c)
#define isBLANK_LC_uvchr(c) generic_LC_uvchr_(isBLANK_LC, \
is_HORIZWS_cp_high, c)
#define isCNTRL_LC_uvchr(c) (c < 256 ? isCNTRL_LC(c) : 0)
#define isDIGIT_LC_uvchr(c) generic_LC_invlist_uvchr_(isDIGIT_LC, CC_DIGIT_, c)
#define isGRAPH_LC_uvchr(c) generic_LC_invlist_uvchr_(isGRAPH_LC, CC_GRAPH_, c)
#define isIDCONT_LC_uvchr(c) generic_LC_uvchr_(isIDCONT_LC, \
_is_uni_perl_idcont, c)
#define isIDFIRST_LC_uvchr(c) generic_LC_uvchr_(isIDFIRST_LC, \
_is_uni_perl_idstart, c)
#define isLOWER_LC_uvchr(c) generic_LC_invlist_uvchr_(isLOWER_LC, CC_LOWER_, c)
#define isPRINT_LC_uvchr(c) generic_LC_invlist_uvchr_(isPRINT_LC, CC_PRINT_, c)
#define isPSXSPC_LC_uvchr(c) isSPACE_LC_uvchr(c)
#define isPUNCT_LC_uvchr(c) generic_LC_invlist_uvchr_(isPUNCT_LC, CC_PUNCT_, c)
#define isSPACE_LC_uvchr(c) generic_LC_uvchr_(isSPACE_LC, \
is_XPERLSPACE_cp_high, c)
#define isUPPER_LC_uvchr(c) generic_LC_invlist_uvchr_(isUPPER_LC, CC_UPPER_, c)
#define isWORDCHAR_LC_uvchr(c) generic_LC_invlist_uvchr_(isWORDCHAR_LC, \
CC_WORDCHAR_, c)
#define isXDIGIT_LC_uvchr(c) generic_LC_uvchr_(isXDIGIT_LC, \
is_XDIGIT_cp_high, c)
#define isBLANK_LC_uni(c) isBLANK_LC_uvchr(UNI_TO_NATIVE(c))
/* The "_safe" macros make sure that we don't attempt to read the byte at 'e'
* or beyond, but they don't otherwise go out of their way to look for
* malformed UTF-8. If they can return accurate results without knowing if the
* input is otherwise malformed, they do so. For example isASCII is accurate
* in spite of any non-length malformations because it looks only at a single
* byte. Likewise isDIGIT looks just at the first byte for code points 0-255,
* as all UTF-8 variant ones return FALSE. But, if the input has to be
* well-formed in order for the results to be accurate, the macros will test
* and if malformed will call a routine to die
*
* Except for toke.c, the macros do assume that e > p, asserting that on
* DEBUGGING builds. Much code that calls these depends on this being true,
* for other reasons. toke.c is treated specially as using the regular
* assertion breaks it in many ways. All strings that these operate on there
* are supposed to have an extra NUL character at the end, so that *e = \0. A
* bunch of code in toke.c assumes that this is true, so the assertion allows
* for that */
#ifdef PERL_IN_TOKE_C
# define _utf8_safe_assert(p,e) ((e) > (p) || ((e) == (p) && *(p) == '\0'))
#else
# define _utf8_safe_assert(p,e) ((e) > (p))
#endif
#define generic_utf8_safe_(classnum, p, e, above_latin1) \
((! _utf8_safe_assert(p, e)) \
? (force_out_malformed_utf8_message_((U8 *) (p), (U8 *) (e), 0, MALFORMED_UTF8_DIE), 0)\
: (UTF8_IS_INVARIANT(*(p))) \
? generic_isCC_(*(p), classnum) \
: (UTF8_IS_DOWNGRADEABLE_START(*(p)) \
? ((LIKELY((e) - (p) > 1 && UTF8_IS_CONTINUATION(*((p)+1)))) \
? generic_isCC_(EIGHT_BIT_UTF8_TO_NATIVE(*(p), *((p)+1 )), \
classnum) \
: (force_out_malformed_utf8_message_( \
(U8 *) (p), (U8 *) (e), 0, MALFORMED_UTF8_DIE), 0)) \
: above_latin1))
/* Like the above, but calls 'above_latin1(p)' to get the utf8 value.
* 'above_latin1' can be a macro */
#define generic_func_utf8_safe_(classnum, above_latin1, p, e) \
generic_utf8_safe_(classnum, p, e, above_latin1(p, e))
#define generic_non_invlist_utf8_safe_(classnum, above_latin1, p, e) \
generic_utf8_safe_(classnum, p, e, \
(UNLIKELY((e) - (p) < UTF8SKIP(p)) \
? (force_out_malformed_utf8_message_( \
(U8 *) (p), (U8 *) (e), 0, MALFORMED_UTF8_DIE), 0) \
: above_latin1(p)))
/* Like the above, but passes classnum to _isFOO_utf8(), instead of having an
* 'above_latin1' parameter */
#define generic_invlist_utf8_safe_(classnum, p, e) \
generic_utf8_safe_(classnum, p, e, _is_utf8_FOO(classnum, p, e))
/* Like the above, but should be used only when it is known that there are no
* characters in the upper-Latin1 range (128-255 on ASCII platforms) which the
* class is TRUE for. Hence it can skip the tests for this range.
* 'above_latin1' should include its arguments */
#define generic_utf8_safe_no_upper_latin1_(classnum, p, e, above_latin1) \
(__ASSERT_(_utf8_safe_assert(p, e)) \
(isASCII(*(p))) \
? generic_isCC_(*(p), classnum) \
: (UTF8_IS_DOWNGRADEABLE_START(*(p))) \
? 0 /* Note that doesn't check validity for latin1 */ \
: above_latin1)
#define isALPHA_utf8(p, e) isALPHA_utf8_safe(p, e)
#define isALPHANUMERIC_utf8(p, e) isALPHANUMERIC_utf8_safe(p, e)
#define isASCII_utf8(p, e) isASCII_utf8_safe(p, e)
#define isBLANK_utf8(p, e) isBLANK_utf8_safe(p, e)
#define isCNTRL_utf8(p, e) isCNTRL_utf8_safe(p, e)
#define isDIGIT_utf8(p, e) isDIGIT_utf8_safe(p, e)
#define isGRAPH_utf8(p, e) isGRAPH_utf8_safe(p, e)
#define isIDCONT_utf8(p, e) isIDCONT_utf8_safe(p, e)
#define isIDFIRST_utf8(p, e) isIDFIRST_utf8_safe(p, e)
#define isLOWER_utf8(p, e) isLOWER_utf8_safe(p, e)
#define isPRINT_utf8(p, e) isPRINT_utf8_safe(p, e)
#define isPSXSPC_utf8(p, e) isPSXSPC_utf8_safe(p, e)
#define isPUNCT_utf8(p, e) isPUNCT_utf8_safe(p, e)
#define isSPACE_utf8(p, e) isSPACE_utf8_safe(p, e)
#define isUPPER_utf8(p, e) isUPPER_utf8_safe(p, e)
#define isVERTWS_utf8(p, e) isVERTWS_utf8_safe(p, e)
#define isWORDCHAR_utf8(p, e) isWORDCHAR_utf8_safe(p, e)
#define isXDIGIT_utf8(p, e) isXDIGIT_utf8_safe(p, e)
#define isALPHA_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_ALPHA_, p, e)
#define isALPHANUMERIC_utf8_safe(p, e) \
generic_invlist_utf8_safe_(CC_ALPHANUMERIC_, p, e)
#define isASCII_utf8_safe(p, e) \
/* Because ASCII is invariant under utf8, the non-utf8 macro \
* works */ \
(__ASSERT_(_utf8_safe_assert(p, e)) isASCII(*(p)))
#define isBLANK_utf8_safe(p, e) \
generic_non_invlist_utf8_safe_(CC_BLANK_, is_HORIZWS_high, p, e)
#ifdef EBCDIC
/* Because all controls are UTF-8 invariants in EBCDIC, we can use this
* more efficient macro instead of the more general one */
# define isCNTRL_utf8_safe(p, e) \
(__ASSERT_(_utf8_safe_assert(p, e)) isCNTRL_L1(*(p)))
#else
# define isCNTRL_utf8_safe(p, e) generic_utf8_safe_(CC_CNTRL_, p, e, 0)
#endif
#define isDIGIT_utf8_safe(p, e) \
generic_utf8_safe_no_upper_latin1_(CC_DIGIT_, p, e, \
_is_utf8_FOO(CC_DIGIT_, p, e))
#define isGRAPH_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_GRAPH_, p, e)
#define isIDCONT_utf8_safe(p, e) generic_func_utf8_safe_(CC_WORDCHAR_, \
_is_utf8_perl_idcont, p, e)
/* To prevent S_scan_word in toke.c from hanging, we have to make sure that
* IDFIRST is an alnum. See
* https://github.com/Perl/perl5/issues/10275 for more detail than you
* ever wanted to know about. (In the ASCII range, there isn't a difference.)
* This used to be not the XID version, but we decided to go with the more
* modern Unicode definition */
#define isIDFIRST_utf8_safe(p, e) \
generic_func_utf8_safe_(CC_IDFIRST_, \
_is_utf8_perl_idstart, (U8 *) (p), (U8 *) (e))
#define isLOWER_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_LOWER_, p, e)
#define isPRINT_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_PRINT_, p, e)
#define isPSXSPC_utf8_safe(p, e) isSPACE_utf8_safe(p, e)
#define isPUNCT_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_PUNCT_, p, e)
#define isSPACE_utf8_safe(p, e) \
generic_non_invlist_utf8_safe_(CC_SPACE_, is_XPERLSPACE_high, p, e)
#define isUPPER_utf8_safe(p, e) generic_invlist_utf8_safe_(CC_UPPER_, p, e)
#define isVERTWS_utf8_safe(p, e) \
generic_non_invlist_utf8_safe_(CC_VERTSPACE_, is_VERTWS_high, p, e)
#define isWORDCHAR_utf8_safe(p, e) \
generic_invlist_utf8_safe_(CC_WORDCHAR_, p, e)
#define isXDIGIT_utf8_safe(p, e) \
generic_utf8_safe_no_upper_latin1_(CC_XDIGIT_, p, e, \
(UNLIKELY((e) - (p) < UTF8SKIP(p)) \
? (force_out_malformed_utf8_message_( \
(U8 *) (p), (U8 *) (e), 0, MALFORMED_UTF8_DIE), 0) \
: is_XDIGIT_high(p)))
#define toFOLD_utf8(p,e,s,l) toFOLD_utf8_safe(p,e,s,l)
#define toLOWER_utf8(p,e,s,l) toLOWER_utf8_safe(p,e,s,l)
#define toTITLE_utf8(p,e,s,l) toTITLE_utf8_safe(p,e,s,l)
#define toUPPER_utf8(p,e,s,l) toUPPER_utf8_safe(p,e,s,l)
/* For internal core use only, subject to change */
#define _toFOLD_utf8_flags(p,e,s,l,f) _to_utf8_fold_flags (p,e,s,l,f)
#define _toLOWER_utf8_flags(p,e,s,l,f) _to_utf8_lower_flags(p,e,s,l,f)
#define _toTITLE_utf8_flags(p,e,s,l,f) _to_utf8_title_flags(p,e,s,l,f)
#define _toUPPER_utf8_flags(p,e,s,l,f) _to_utf8_upper_flags(p,e,s,l,f)
#define toFOLD_utf8_safe(p,e,s,l) _toFOLD_utf8_flags(p,e,s,l, FOLD_FLAGS_FULL)
#define toLOWER_utf8_safe(p,e,s,l) _toLOWER_utf8_flags(p,e,s,l, 0)
#define toTITLE_utf8_safe(p,e,s,l) _toTITLE_utf8_flags(p,e,s,l, 0)
#define toUPPER_utf8_safe(p,e,s,l) _toUPPER_utf8_flags(p,e,s,l, 0)
#define isALPHA_LC_utf8(p, e) isALPHA_LC_utf8_safe(p, e)
#define isALPHANUMERIC_LC_utf8(p, e) isALPHANUMERIC_LC_utf8_safe(p, e)
#define isASCII_LC_utf8(p, e) isASCII_LC_utf8_safe(p, e)
#define isBLANK_LC_utf8(p, e) isBLANK_LC_utf8_safe(p, e)
#define isCNTRL_LC_utf8(p, e) isCNTRL_LC_utf8_safe(p, e)
#define isDIGIT_LC_utf8(p, e) isDIGIT_LC_utf8_safe(p, e)
#define isGRAPH_LC_utf8(p, e) isGRAPH_LC_utf8_safe(p, e)
#define isIDCONT_LC_utf8(p, e) isIDCONT_LC_utf8_safe(p, e)
#define isIDFIRST_LC_utf8(p, e) isIDFIRST_LC_utf8_safe(p, e)
#define isLOWER_LC_utf8(p, e) isLOWER_LC_utf8_safe(p, e)
#define isPRINT_LC_utf8(p, e) isPRINT_LC_utf8_safe(p, e)
#define isPSXSPC_LC_utf8(p, e) isPSXSPC_LC_utf8_safe(p, e)
#define isPUNCT_LC_utf8(p, e) isPUNCT_LC_utf8_safe(p, e)
#define isSPACE_LC_utf8(p, e) isSPACE_LC_utf8_safe(p, e)
#define isUPPER_LC_utf8(p, e) isUPPER_LC_utf8_safe(p, e)
#define isWORDCHAR_LC_utf8(p, e) isWORDCHAR_LC_utf8_safe(p, e)
#define isXDIGIT_LC_utf8(p, e) isXDIGIT_LC_utf8_safe(p, e)
/* For internal core Perl use only: the base macros for defining macros like
* isALPHA_LC_utf8_safe. These are like generic_utf8_, but if the first code
* point in 'p' is within the 0-255 range, it uses locale rules from the
* passed-in 'macro' parameter */
#define generic_LC_utf8_safe_(macro, p, e, above_latin1) \
(__ASSERT_(_utf8_safe_assert(p, e)) \
(UTF8_IS_INVARIANT(*(p))) \
? macro(*(p)) \
: (UTF8_IS_DOWNGRADEABLE_START(*(p)) \
? ((LIKELY((e) - (p) > 1 && UTF8_IS_CONTINUATION(*((p)+1)))) \
? macro(EIGHT_BIT_UTF8_TO_NATIVE(*(p), *((p)+1))) \
: (force_out_malformed_utf8_message_( \
(U8 *) (p), (U8 *) (e), 0, MALFORMED_UTF8_DIE), 0)) \
: above_latin1))
#define generic_LC_invlist_utf8_safe_(macro, classnum, p, e) \
generic_LC_utf8_safe_(macro, p, e, \
_is_utf8_FOO(classnum, p, e))
#define generic_LC_func_utf8_safe_(macro, above_latin1, p, e) \
generic_LC_utf8_safe_(macro, p, e, above_latin1(p, e))
#define generic_LC_non_invlist_utf8_safe_(classnum, above_latin1, p, e) \
generic_LC_utf8_safe_(classnum, p, e, \
(UNLIKELY((e) - (p) < UTF8SKIP(p)) \
? (force_out_malformed_utf8_message_( \
(U8 *) (p), (U8 *) (e), 0, MALFORMED_UTF8_DIE), 0) \
: above_latin1(p)))
#define isALPHANUMERIC_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isALPHANUMERIC_LC, \
CC_ALPHANUMERIC_, p, e)
#define isALPHA_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isALPHA_LC, CC_ALPHA_, p, e)
#define isASCII_LC_utf8_safe(p, e) \
(__ASSERT_(_utf8_safe_assert(p, e)) isASCII_LC(*(p)))
#define isBLANK_LC_utf8_safe(p, e) \
generic_LC_non_invlist_utf8_safe_(isBLANK_LC, is_HORIZWS_high, p, e)
#define isCNTRL_LC_utf8_safe(p, e) \
generic_LC_utf8_safe_(isCNTRL_LC, p, e, 0)
#define isDIGIT_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isDIGIT_LC, CC_DIGIT_, p, e)
#define isGRAPH_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isGRAPH_LC, CC_GRAPH_, p, e)
#define isIDCONT_LC_utf8_safe(p, e) \
generic_LC_func_utf8_safe_(isIDCONT_LC, \
_is_utf8_perl_idcont, p, e)
#define isIDFIRST_LC_utf8_safe(p, e) \
generic_LC_func_utf8_safe_(isIDFIRST_LC, \
_is_utf8_perl_idstart, p, e)
#define isLOWER_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isLOWER_LC, CC_LOWER_, p, e)
#define isPRINT_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isPRINT_LC, CC_PRINT_, p, e)
#define isPSXSPC_LC_utf8_safe(p, e) isSPACE_LC_utf8_safe(p, e)
#define isPUNCT_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isPUNCT_LC, CC_PUNCT_, p, e)
#define isSPACE_LC_utf8_safe(p, e) \
generic_LC_non_invlist_utf8_safe_(isSPACE_LC, is_XPERLSPACE_high, p, e)
#define isUPPER_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isUPPER_LC, CC_UPPER_, p, e)
#define isWORDCHAR_LC_utf8_safe(p, e) \
generic_LC_invlist_utf8_safe_(isWORDCHAR_LC, CC_WORDCHAR_, p, e)
#define isXDIGIT_LC_utf8_safe(p, e) \
generic_LC_non_invlist_utf8_safe_(isXDIGIT_LC, is_XDIGIT_high, p, e)
/* Macros for backwards compatibility and for completeness when the ASCII and
* Latin1 values are identical */
#define isALPHAU(c) isALPHA_L1(c)
#define isDIGIT_L1(c) isDIGIT_A(c)
#define isOCTAL(c) isOCTAL_A(c)
#define isOCTAL_L1(c) isOCTAL_A(c)
#define isXDIGIT_L1(c) isXDIGIT_A(c)
#define isALNUM(c) isWORDCHAR(c)
#define isALNUM_A(c) isALNUM(c)
#define isALNUMU(c) isWORDCHAR_L1(c)
#define isALNUM_LC(c) isWORDCHAR_LC(c)
#define isALNUM_uni(c) isWORDCHAR_uni(c)
#define isALNUM_LC_uvchr(c) isWORDCHAR_LC_uvchr(c)
#define isALNUM_utf8(p,e) isWORDCHAR_utf8(p,e)
#define isALNUM_utf8_safe(p,e) isWORDCHAR_utf8_safe(p,e)
#define isALNUM_LC_utf8(p,e)isWORDCHAR_LC_utf8(p,e)
#define isALNUM_LC_utf8_safe(p,e)isWORDCHAR_LC_utf8_safe(p,e)
#define isALNUMC_A(c) isALPHANUMERIC_A(c) /* Mnemonic: "C's alnum" */
#define isALNUMC_L1(c) isALPHANUMERIC_L1(c)
#define isALNUMC(c) isALPHANUMERIC(c)
#define isALNUMC_LC(c) isALPHANUMERIC_LC(c)
#define isALNUMC_uni(c) isALPHANUMERIC_uni(c)
#define isALNUMC_LC_uvchr(c) isALPHANUMERIC_LC_uvchr(c)
#define isALNUMC_utf8(p,e) isALPHANUMERIC_utf8(p,e)
#define isALNUMC_utf8_safe(p,e) isALPHANUMERIC_utf8_safe(p,e)
#define isALNUMC_LC_utf8_safe(p,e) isALPHANUMERIC_LC_utf8_safe(p,e)
/* On EBCDIC platforms, CTRL-@ is 0, CTRL-A is 1, etc, just like on ASCII,
* except that they don't necessarily mean the same characters, e.g. CTRL-D is
* 4 on both systems, but that is EOT on ASCII; ST on EBCDIC.
* '?' is special-cased on EBCDIC to APC, which is the control there that is
* the outlier from the block that contains the other controls, just like
* toCTRL('?') on ASCII yields DEL, the control that is the outlier from the C0
* block. If it weren't special cased, it would yield a non-control.
* The conversion works both ways, so toCTRL('D') is 4, and toCTRL(4) is D,
* etc. */
#ifndef EBCDIC
# define toCTRL(c) (__ASSERT_(FITS_IN_8_BITS(c)) toUPPER(((U8)(c))) ^ 64)
#else
# define toCTRL(c) (__ASSERT_(FITS_IN_8_BITS(c)) \
((isPRINT_A(c)) \
? (UNLIKELY((c) == '?') \
? QUESTION_MARK_CTRL \
: (NATIVE_TO_LATIN1(toUPPER((U8) (c))) ^ 64)) \
: (UNLIKELY((c) == QUESTION_MARK_CTRL) \
? '?' \
: (LATIN1_TO_NATIVE(((U8) (c)) ^ 64)))))
#endif
/*
=for apidoc Ay||line_t
The typedef to use to declare variables that are to hold line numbers.
=cut
Line numbers are unsigned, 32 bits.
*/
typedef U32 line_t;
#define LINE_Tf U32uf
#define NOLINE ((line_t) 4294967295UL) /* = FFFFFFFF */
/* Helpful alias for version prescan */
#define is_LAX_VERSION(a,b) \
(a != Perl_prescan_version(aTHX_ a, FALSE, b, NULL, NULL, NULL, NULL))
#define is_STRICT_VERSION(a,b) \
(a != Perl_prescan_version(aTHX_ a, TRUE, b, NULL, NULL, NULL, NULL))
#define BADVERSION(a,b,c) \
if (b) { \
*b = c; \
} \
return a;
/* Converts a character KNOWN to represent a hexadecimal digit (0-9, A-F, or
* a-f) to its numeric value without using any branches. The input is
* validated only by an assert() in DEBUGGING builds.
*
* It works by right shifting and isolating the bit that is 0 for the digits,
* and 1 for at least the alphas A-F, a-f. The bit is shifted to the ones
* position, and then to the eights position. Both are added together to form
* 0 if the input is '0'-'9' and to form 9 if alpha. This is added to the
* final four bits of the input to form the correct value. */
#define XDIGIT_VALUE(c) (__ASSERT_(isXDIGIT(c)) \
((NATIVE_TO_LATIN1(c) >> 6) & 1) /* 1 if alpha; 0 if not */ \
+ ((NATIVE_TO_LATIN1(c) >> 3) & 8) /* 8 if alpha; 0 if not */ \
+ ((c) & 0xF)) /* 0-9 if input valid hex digit */
/* The argument is a string pointer, which is advanced. */
#define READ_XDIGIT(s) ((s)++, XDIGIT_VALUE(*((s) - 1)))
/* Converts a character known to represent an octal digit (0-7) to its numeric
* value. The input is validated only by an assert() in DEBUGGING builds. In
* both ASCII and EBCDIC the last 3 bits of the octal digits range from 0-7. */
#define OCTAL_VALUE(c) (__ASSERT_(isOCTAL(c)) (7 & (c)))
/* Efficiently returns a boolean as to if two native characters are equivalent
* case-insensitively. At least one of the characters must be one of [A-Za-z];
* the ALPHA in the name is to remind you of that. This is asserted() in
* DEBUGGING builds. Because [A-Za-z] are invariant under UTF-8, this macro
* works (on valid input) for both non- and UTF-8-encoded bytes.
*
* When one of the inputs is a compile-time constant and gets folded by the
* compiler, this reduces to an AND and a TEST. On both EBCDIC and ASCII
* machines, 'A' and 'a' differ by a single bit; the same with the upper and
* lower case of all other ASCII-range alphabetics. On ASCII platforms, they
* are 32 apart; on EBCDIC, they are 64. At compile time, this uses an
* exclusive 'or' to find that bit and then inverts it to form a mask, with
* just a single 0, in the bit position where the upper- and lowercase differ.
* */
#define isALPHA_FOLD_EQ(c1, c2) \
(__ASSERT_(isALPHA_A(c1) || isALPHA_A(c2)) \
((c1) & ~('A' ^ 'a')) == ((c2) & ~('A' ^ 'a')))
#define isALPHA_FOLD_NE(c1, c2) (! isALPHA_FOLD_EQ((c1), (c2)))
/*
=for apidoc_section $memory
=for apidoc Am|void|Newx|void* ptr|int nitems|type
=for apidoc_item |void*|safemalloc|size_t size
The XSUB-writer's interface to the C C<malloc> function.
Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
In 5.9.3, Newx() and friends replace the older New() API, and drops
the first parameter, I<x>, a debug aid which allowed callers to identify
themselves. This aid has been superseded by a new build option,
PERL_MEM_LOG (see L<perlhacktips/PERL_MEM_LOG>). The older API is still
there for use in XS modules supporting older perls.
=for apidoc Am|void|Newxc|void* ptr|int nitems|type|cast
The XSUB-writer's interface to the C C<malloc> function, with
cast. See also C<L</Newx>>.
Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
=for apidoc Am|void|Newxz|void* ptr|int nitems|type
=for apidoc_item |void*|safecalloc|size_t nitems|size_t item_size
The XSUB-writer's interface to the C C<calloc> function. The allocated
memory is zeroed with C<memzero>. See also C<L</Newx>>.
Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
=for apidoc Am|void|Renew|void* ptr|int nitems|type
=for apidoc_item |void*|saferealloc|void *ptr|size_t size
The XSUB-writer's interface to the C C<realloc> function.
Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
=for apidoc Am|void|Renewc|void* ptr|int nitems|type|cast
The XSUB-writer's interface to the C C<realloc> function, with
cast.
Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
=for apidoc Am|void|Safefree|void* ptr
The XSUB-writer's interface to the C C<free> function.
This should B<ONLY> be used on memory obtained using L</"Newx"> and friends.
=for apidoc_section $string
=for apidoc Am|void |Move |void* src|void* dest|int nitems|type
=for apidoc_item |void *|MoveD|void* src|void* dest|int nitems|type
The XSUB-writer's interface to the C C<memmove> function. The C<src> is the
source, C<dest> is the destination, C<nitems> is the number of items, and
C<type> is the type. Can do overlapping moves. See also C<L</Copy>>.
C<MoveD> is like C<Move> but returns C<dest>. Useful
for encouraging compilers to tail-call
optimise.
=for apidoc Am|void |Copy |void* src|void* dest|int nitems|type
=for apidoc_item |void *|CopyD|void* src|void* dest|int nitems|type
The XSUB-writer's interface to the C C<memcpy> function. The C<src> is the
source, C<dest> is the destination, C<nitems> is the number of items, and
C<type> is the type. May fail on overlapping copies. See also C<L</Move>>.
C<CopyD> is like C<Copy> but returns C<dest>. Useful
for encouraging compilers to tail-call
optimise.
=for apidoc Am|void |NewCopy |void* src|void* dest|int nitems|type
Combines Newx() and Copy() into a single macro. Dest will be allocated
using Newx() and then src will be copied into it.
=for apidoc Am|void |Zero |void* dest|int nitems|type
=for apidoc_item |void *|ZeroD|void* dest|int nitems|type
The XSUB-writer's interface to the C C<memzero> function. The C<dest> is the
destination, C<nitems> is the number of items, and C<type> is the type.
C<ZeroD> is like C<Zero> but returns C<dest>. Useful
for encouraging compilers to tail-call
optimise.
=for apidoc_section $utility
=for apidoc Amu|void|StructCopy|type *src|type *dest|type
This is an architecture-independent macro that does a shallow copy of one
structure to another.
=for apidoc Am|void|PoisonWith|void* dest|int nitems|type|U8 byte
Fill up memory with a byte pattern (a byte repeated over and over
again) that hopefully catches attempts to access uninitialized memory.
=for apidoc Am|void|PoisonNew|void* dest|int nitems|type
C<PoisonWith(0xAB)> for catching access to allocated but uninitialized memory.
=for apidoc Am|void|PoisonFree|void* dest|int nitems|type
=for apidoc_item|void|Poison |void* dest|int nitems|type
These each call C<PoisonWith(0xEF)> for catching access to freed memory.
=cut */
/* Maintained for backwards-compatibility only. Use newSV() instead. */
#ifndef PERL_CORE
#define NEWSV(x,len) newSV(len)
#endif
#define MEM_SIZE_MAX ((MEM_SIZE)-1)
#define _PERL_STRLEN_ROUNDUP_UNCHECKED(n) (((n) - 1 + PERL_STRLEN_ROUNDUP_QUANTUM) & ~((MEM_SIZE)PERL_STRLEN_ROUNDUP_QUANTUM - 1))
#ifdef PERL_MALLOC_WRAP
/* This expression will be constant-folded at compile time. It checks
* whether or not the type of the count n is so small (e.g. U8 or U16, or
* U32 on 64-bit systems) that there's no way a wrap-around could occur.
* As well as avoiding the need for a run-time check in some cases, it's
* designed to avoid compiler warnings like:
* comparison is always false due to limited range of data type
* It's mathematically equivalent to
* max(n) * sizeof(t) > MEM_SIZE_MAX
*/
# define _MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) \
( sizeof(MEM_SIZE) < sizeof(n) \
|| sizeof(t) > ((MEM_SIZE)1 << 8*(sizeof(MEM_SIZE) - sizeof(n))))
/* This is written in a slightly odd way to avoid various spurious
* compiler warnings. We *want* to write the expression as
* _MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) && (n > C)
* (for some compile-time constant C), but even when the LHS
* constant-folds to false at compile-time, g++ insists on emitting
* warnings about the RHS (e.g. "comparison is always false"), so instead
* we write it as
*
* (cond ? n : X) > C
*
* where X is a constant with X > C always false. Choosing a value for X
* is tricky. If 0, some compilers will complain about 0 > C always being
* false; if 1, Coverity complains when n happens to be the constant value
* '1', that cond ? 1 : 1 has the same value on both branches; so use C
* for X and hope that nothing else whines.
*/
# define _MEM_WRAP_WILL_WRAP(n,t) \
((_MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) ? (MEM_SIZE)(n) : \
MEM_SIZE_MAX/sizeof(t)) > MEM_SIZE_MAX/sizeof(t))
# define MEM_WRAP_CHECK(n,t) \
(void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
&& (croak_memory_wrap(),0))
# define MEM_WRAP_CHECK_1(n,t,a) \
(void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
&& (Perl_croak_nocontext("%s",(a)),0))
/* "a" arg must be a string literal */
# define MEM_WRAP_CHECK_s(n,t,a) \
( (void) (UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
&& (Perl_croak_nocontext(ASSERT_IS_LITERAL(a)), 0)))
# define MEM_WRAP_CHECK_(n,t) MEM_WRAP_CHECK(n,t),
# define PERL_STRLEN_ROUNDUP(n) ((void)(((n) > MEM_SIZE_MAX - 2 * PERL_STRLEN_ROUNDUP_QUANTUM) ? (croak_memory_wrap(),0) : 0), _PERL_STRLEN_ROUNDUP_UNCHECKED(n))
#else
# define MEM_WRAP_CHECK(n,t)
# define MEM_WRAP_CHECK_1(n,t,a)
# define MEM_WRAP_CHECK_s(n,t,a)
# define MEM_WRAP_CHECK_(n,t)
# define PERL_STRLEN_ROUNDUP(n) _PERL_STRLEN_ROUNDUP_UNCHECKED(n)
#endif
#ifdef PERL_MEM_LOG
/*
* If PERL_MEM_LOG is defined, all Newx()s, Renew()s, and Safefree()s
* go through functions, which are handy for debugging breakpoints, but
* which more importantly get the immediate calling environment (file and
* line number, and C function name if available) passed in. This info can
* then be used for logging the calls, for which one gets a sample
* implementation unless -DPERL_MEM_LOG_NOIMPL is also defined.
*
* Known problems:
* - not all memory allocs get logged, only those
* that go through Newx() and derivatives (while all
* Safefrees do get logged)
* - __FILE__ and __LINE__ do not work everywhere
* - __func__ or __FUNCTION__ even less so
* - I think more goes on after the perlio frees but
* the thing is that STDERR gets closed (as do all
* the file descriptors)
* - no deeper calling stack than the caller of the Newx()
* or the kind, but do I look like a C reflection/introspection
* utility to you?
* - the function prototypes for the logging functions
* probably should maybe be somewhere else than handy.h
* - one could consider inlining (macrofying) the logging
* for speed, but I am too lazy
* - one could imagine recording the allocations in a hash,
* (keyed by the allocation address?), and maintain that
* through reallocs and frees, but how to do that without
* any News() happening...?
* - lots of -Ddefines to get useful/controllable output
* - lots of ENV reads
*/
# ifdef PERL_CORE
# ifndef PERL_MEM_LOG_NOIMPL
enum mem_log_type {
MLT_ALLOC,
MLT_REALLOC,
MLT_FREE,
MLT_NEW_SV,
MLT_DEL_SV
};
# endif
# endif
#endif
#ifdef PERL_MEM_LOG
#define MEM_LOG_ALLOC(n,t,a) Perl_mem_log_alloc(n,sizeof(t),STRINGIFY(t),a,__FILE__,__LINE__,FUNCTION__)
#define MEM_LOG_REALLOC(n,t,v,a) Perl_mem_log_realloc(n,sizeof(t),STRINGIFY(t),v,a,__FILE__,__LINE__,FUNCTION__)
#define MEM_LOG_FREE(a) Perl_mem_log_free(a,__FILE__,__LINE__,FUNCTION__)
#endif
#ifndef MEM_LOG_ALLOC
#define MEM_LOG_ALLOC(n,t,a) (a)
#endif
#ifndef MEM_LOG_REALLOC
#define MEM_LOG_REALLOC(n,t,v,a) (a)
#endif
#ifndef MEM_LOG_FREE
#define MEM_LOG_FREE(a) (a)
#endif
#define Newx(v,n,t) (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_ALLOC(n,t,safemalloc((MEM_SIZE)((n)*sizeof(t))))))
#define Newxc(v,n,t,c) (v = (MEM_WRAP_CHECK_(n,t) (c*)MEM_LOG_ALLOC(n,t,safemalloc((MEM_SIZE)((n)*sizeof(t))))))
#define Newxz(v,n,t) (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_ALLOC(n,t,safecalloc((n),sizeof(t)))))
#ifndef PERL_CORE
/* pre 5.9.x compatibility */
#define New(x,v,n,t) Newx(v,n,t)
#define Newc(x,v,n,t,c) Newxc(v,n,t,c)
#define Newz(x,v,n,t) Newxz(v,n,t)
#endif
#define Renew(v,n,t) \
(v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_REALLOC(n,t,v,saferealloc((Malloc_t)(v),(MEM_SIZE)((n)*sizeof(t))))))
#define Renewc(v,n,t,c) \
(v = (MEM_WRAP_CHECK_(n,t) (c*)MEM_LOG_REALLOC(n,t,v,saferealloc((Malloc_t)(v),(MEM_SIZE)((n)*sizeof(t))))))
#ifdef PERL_POISON
#define Safefree(d) \
((d) ? (void)(safefree(MEM_LOG_FREE((Malloc_t)(d))), Poison(&(d), 1, Malloc_t)) : (void) 0)
#else
#define Safefree(d) safefree(MEM_LOG_FREE((Malloc_t)(d)))
#endif
/* assert that a valid ptr has been supplied - use this instead of assert(ptr) *
* as it handles cases like constant string arguments without throwing warnings *
* the cast is required, as is the inequality check, to avoid warnings */
#define perl_assert_ptr(p) assert( ((void*)(p)) != 0 )
#define Move(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), (void)memmove((char*)(d),(const char*)(s), (n) * sizeof(t)))
#define Copy(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), (void)memcpy((char*)(d),(const char*)(s), (n) * sizeof(t)))
#define Zero(d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), (void)memzero((char*)(d), (n) * sizeof(t)))
/* Like above, but returns a pointer to 'd' */
#define MoveD(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), memmove((char*)(d),(const char*)(s), (n) * sizeof(t)))
#define CopyD(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), memcpy((char*)(d),(const char*)(s), (n) * sizeof(t)))
#define ZeroD(d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), memzero((char*)(d), (n) * sizeof(t)))
#define NewCopy(s,d,n,t) STMT_START { \
Newx(d,n,t); \
Copy(s,d,n,t); \
} STMT_END
#define PoisonWith(d,n,t,b) (MEM_WRAP_CHECK_(n,t) (void)memset((char*)(d), (U8)(b), (n) * sizeof(t)))
#define PoisonNew(d,n,t) PoisonWith(d,n,t,0xAB)
#define PoisonFree(d,n,t) PoisonWith(d,n,t,0xEF)
#define Poison(d,n,t) PoisonFree(d,n,t)
#ifdef PERL_POISON
# define PERL_POISON_EXPR(x) x
#else
# define PERL_POISON_EXPR(x)
#endif
/* Shallow copy */
#define StructCopy(s,d,t) (*((t*)(d)) = *((t*)(s)))
/*
=for apidoc_section $utility
=for apidoc Am|STRLEN|C_ARRAY_LENGTH|void *a
Returns the number of elements in the input C array (so you want your
zero-based indices to be less than but not equal to).
=for apidoc Am|void *|C_ARRAY_END|void *a
Returns a pointer to one element past the final element of the input C array.
=cut
C_ARRAY_END is one past the last: half-open/half-closed range, not
last-inclusive range.
*/
#define C_ARRAY_LENGTH(a) (sizeof(a)/sizeof((a)[0]))
#define C_ARRAY_END(a) ((a) + C_ARRAY_LENGTH(a))
#if defined(PERL_CORE) || defined(PERL_EXT_RE_BUILD)
/* strlen() of a literal string constant. Restricting this to core, in part
* because it can generate compiler warnings about comparing unlike signs */
# define STRLENs(s) (sizeof("" s "") - 1)
#endif
#ifdef NEED_VA_COPY
# ifdef va_copy
# define Perl_va_copy(s, d) va_copy(d, s)
# elif defined(__va_copy)
# define Perl_va_copy(s, d) __va_copy(d, s)
# else
# define Perl_va_copy(s, d) Copy(s, d, 1, va_list)
# endif
#endif
/* convenience debug macros */
#ifdef USE_ITHREADS
#define pTHX_FORMAT "Perl interpreter: 0x%p"
#define pTHX__FORMAT ", Perl interpreter: 0x%p"
#define pTHX_VALUE_ (void *)my_perl,
#define pTHX_VALUE (void *)my_perl
#define pTHX__VALUE_ ,(void *)my_perl,
#define pTHX__VALUE ,(void *)my_perl
#else
#define pTHX_FORMAT
#define pTHX__FORMAT
#define pTHX_VALUE_
#define pTHX_VALUE
#define pTHX__VALUE_
#define pTHX__VALUE
#endif /* USE_ITHREADS */
/*
Perl_deprecate was not part of the public API, and did not have a deprecate()
shortcut macro defined without -DPERL_CORE. Neither codesearch.google.com nor
CPAN::Unpack show any users outside the core.
=for apidoc_section $warning
=for apidoc Cdm||deprecate|U32 category|"message"
Wrapper around Perl_ck_warner_d() to produce a deprecated warning in the
given category with an appropriate message. The C<message> argument must
be a C string. The string " is deprecated" will automatically be added
to the end of the C<message>.
=for apidoc Cdm||deprecate_disappears_in|U32 category|"when"|"message"
Wrapper around Perl_ck_warner_d() to produce a deprecated warning in the
given category with an appropriate message that the construct referred
to by the message will disappear in a specific release. The C<when> and
C<message> arguments must be a C string. The C<when> string is expected
to be of the form "5.40", with no minor element in the version. The actual
message output will be the result of the following expression C<message
" is deprecated, and will disappear in Perl " when> which is why C<message>
and C<when> must be literal C strings.
=for apidoc Cdm||deprecate_fatal_in|U32 category|"when"|"message"
Wrapper around Perl_ck_warner_d() to produce a deprecated warning in the
given category with an appropriate message that the construct referred
to by the message will become fatal in a specific release. The C<when>
and C<message> arguments must be a C string. The C<when> string is expected
to be of the form "5.40", with no minor element in the version. The actual
message output will be the result of the following expression C<message " is
deprecated, and will become fatal in Perl " when> which is why C<message>
and C<when> must be literal C strings.
=cut
*/
#ifdef PERL_CORE
# define deprecate(category,message) \
Perl_ck_warner_d(aTHX_ packWARN(category), \
message " is deprecated")
# define deprecate_disappears_in(category,when,message) \
Perl_ck_warner_d(aTHX_ packWARN(category), \
message " is deprecated, and will disappear in Perl " when)
# define deprecate_fatal_in(category,when,message) \
Perl_ck_warner_d(aTHX_ packWARN(category), \
message " is deprecated, and will become fatal in Perl " when)
#endif
/* Internal macros to deal with gids and uids */
#ifdef PERL_CORE
# if Uid_t_size > IVSIZE
# define sv_setuid(sv, uid) sv_setnv((sv), (NV)(uid))
# define SvUID(sv) SvNV(sv)
# elif Uid_t_sign <= 0
# define sv_setuid(sv, uid) sv_setiv((sv), (IV)(uid))
# define SvUID(sv) SvIV(sv)
# else
# define sv_setuid(sv, uid) sv_setuv((sv), (UV)(uid))
# define SvUID(sv) SvUV(sv)
# endif /* Uid_t_size */
# if Gid_t_size > IVSIZE
# define sv_setgid(sv, gid) sv_setnv((sv), (NV)(gid))
# define SvGID(sv) SvNV(sv)
# elif Gid_t_sign <= 0
# define sv_setgid(sv, gid) sv_setiv((sv), (IV)(gid))
# define SvGID(sv) SvIV(sv)
# else
# define sv_setgid(sv, gid) sv_setuv((sv), (UV)(gid))
# define SvGID(sv) SvUV(sv)
# endif /* Gid_t_size */
#endif
/* These are simple Marsaglia XOR-SHIFT RNG's for 64 and 32 bits. These
* RNG's are of reasonable quality, very fast, and have the interesting
* property that provided 'x' is non-zero they create a cycle of 2^32-1
* or 2^64-1 "random" like numbers, with the exception of 0. Thus they
* are very useful when you want an integer to "dance" in a random way,
* but you also never want it to become 0 and thus false.
*
* Obviously they leave x unchanged if it starts out as 0.
*
* We have two variants just because that can be helpful in certain
* places. There is no advantage to either, they are equally bad as each
* other as far RNG's go. Sufficiently random for many purposes, but
* insufficiently random for serious use as they fail important tests in
* the Test01 BigCrush RNG test suite by L’Ecuyer and Simard. (Note
* that Drand48 also fails BigCrush). The main point is they produce
* different sequences and in places where we want some randomlike
* behavior they are cheap and easy.
*
* Marsaglia was one of the early researchers into RNG testing and wrote
* the Diehard RNG test suite, which after his death become the
* Dieharder RNG suite, and was generally supplanted by the Test01 suite
* by L'Ecruyer and associates.
*
* There are dozens of shift parameters that create a pseudo random ring
* of integers 1..2^N-1, if you need a different sequence just read the
* paper and select a set of parameters. In fact, simply reversing the
* shift order from L/R/L to R/L/R should result in another valid
* example, but read the paper before you do that.
*
* PDF of the original paper:
* https://www.jstatsoft.org/article/download/v008i14/916
* Wikipedia:
* https://en.wikipedia.org/wiki/Xorshift
* Criticism:
* https://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
* Test01:
* http://simul.iro.umontreal.ca/testu01/tu01.html
* Diehard:
* https://en.wikipedia.org/wiki/Diehard_tests
* Dieharder:
* https://webhome.phy.duke.edu/~rgb/General/rand_rate/rand_rate.abs
*
*/
/* 32 bit version */
#define PERL_XORSHIFT32_A(x) \
STMT_START { \
(x) ^= ((x) << 13); \
(x) ^= ((x) >> 17); \
(x) ^= ((x) << 5); \
} STMT_END
/* 64 bit version */
#define PERL_XORSHIFT64_A(x) \
STMT_START { \
(x) ^= ((x) << 13); \
(x) ^= ((x) >> 7); \
(x) ^= ((x) << 17); \
} STMT_END
/* 32 bit version */
#define PERL_XORSHIFT32_B(x) \
STMT_START { \
(x) ^= ((x) << 5); \
(x) ^= ((x) >> 27); \
(x) ^= ((x) << 8); \
} STMT_END
/* 64 bit version - currently this is unused,
* it is provided here to complement the 32 bit _B
* variant which IS used. */
#define PERL_XORSHIFT64_B(x) \
STMT_START { \
(x) ^= ((x) << 15); \
(x) ^= ((x) >> 49); \
(x) ^= ((x) << 26); \
} STMT_END
/* Convenience macros for dealing with IV_MIN:
In two's complement system, the absolute value of IV_MIN (i.e. -IV_MIN)
cannot be represented in an IV. Thus we cannot use simple negation
(like "-iv") if "iv" might be IV_MIN or -IV_MIN.
Note that expressions like "iv = -(UV)iv;" are also not portable
as "-(UV)iv" may not fit in the IV range and attempting to convert such
a value to an IV is undefined behavior which will get an
implementation-defined result or raise a signal.
*/
/*
=for apidoc_section $integer
=for apidoc m|UV|NEGATE_2UV|IV iv
Returns the absolute value of C<iv>, which must be negative, while avoiding
undefined behavior even if C<iv> is L<perlapi/C<IV_MIN>>.
=cut
Negate IV in the range [IV_MIN, 0) to positive (absolute) UV value.
Written this way to avoid any subexpression causing signed integer
overflow (even for two's complement), and to make it possible to be compiled
into a single negation by optimizing compilers. */
# define NEGATE_2UV(iv) (ASSUME((iv) < 0), (UV) -((iv) + 1) + 1U)
/*
=for apidoc_section $integer
=for apidoc mn|UV|ABS_IV_MIN
Returns the absolute value of L<perlapi/C<IV_MIN>>, suitable for use in a UV
=cut
*/
# define ABS_IV_MIN NEGATE_2UV(IV_MIN)
/*
=for apidoc_section $integer
=for apidoc m|IV|NEGATE_2IV|UV uv
Returns the negative value of C<uv>, which must be non-negative, for use in an
IV. The results are undefined if that value would be less than
L<perlapi/C<IV_MIN>>. This macro is needed because naively saying C<-uv> gives
undefined behavior when C<uv> is equal to C<L</ABS_IV_MIN>>.
=cut
Negate UV in the range [0, abs(IV_MIN)] to zero or negative IV value
in the range [IV_MIN, 0]. Written this way to avoid casting non-IV value
into IV (which is either the result is implementation-defined or an
implementation-defined signal is raised). Note that "8" below is an
arbitrary value to force both branches of the conditional operator to be
non-constant and eventually make it possible to be compiled into
a single negation by optimizing compilers. */
# define NEGATE_2IV(uv) (ASSUME((uv) <= ABS_IV_MIN), \
(uv) < 8U ? -(IV)(uv) : -(IV)((uv) - 8U) - 8)
#endif /* PERL_HANDY_H_ */
/*
* ex: set ts=8 sts=4 sw=4 et:
*/
|