1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
|
/* peep.c
*
* Copyright (C) 1991-2022 by Larry Wall and others
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
*/
/*
* Aragorn sped on up the hill. Every now and again he bent to the ground.
* Hobbits go light, and their footprints are not easy even for a Ranger to
* read, but not far from the top a spring crossed the path, and in the wet
* earth he saw what he was seeking.
* 'I read the signs aright,' he said to himself. 'Frodo ran to the hill-top.
* I wonder what he saw there? But he returned by the same way, and went down
* the hill again.'
*/
/* This file contains functions for optimizing and finalizing the OP
* structures that hold a compiled perl program
*/
#include "EXTERN.h"
#define PERL_IN_PEEP_C
#include "perl.h"
#define CALL_RPEEP(o) PL_rpeepp(aTHX_ o)
#define cMAXARG3x(o) (o->op_private & OPpARG3_MASK)
static void
S_scalar_slice_warning(pTHX_ const OP *o)
{
OP *kid;
const bool is_hash = o->op_type == OP_HSLICE
|| (o->op_type == OP_NULL && o->op_targ == OP_HSLICE);
SV *name;
if (!(o->op_private & OPpSLICEWARNING))
return;
if (PL_parser && PL_parser->error_count)
/* This warning can be nonsensical when there is a syntax error. */
return;
kid = cLISTOPo->op_first;
kid = OpSIBLING(kid); /* get past pushmark */
/* weed out false positives: any ops that can return lists */
switch (kid->op_type) {
case OP_BACKTICK:
case OP_GLOB:
case OP_READLINE:
case OP_MATCH:
case OP_RV2AV:
case OP_EACH:
case OP_VALUES:
case OP_KEYS:
case OP_SPLIT:
case OP_LIST:
case OP_SORT:
case OP_REVERSE:
case OP_ENTERSUB:
case OP_CALLER:
case OP_LSTAT:
case OP_STAT:
case OP_READDIR:
case OP_SYSTEM:
case OP_TMS:
case OP_LOCALTIME:
case OP_GMTIME:
case OP_ENTEREVAL:
return;
}
/* Don't warn if we have a nulled list either. */
if (kid->op_type == OP_NULL && kid->op_targ == OP_LIST)
return;
assert(OpSIBLING(kid));
name = op_varname(OpSIBLING(kid));
if (!name) /* XS module fiddling with the op tree */
return;
warn_elem_scalar_context(kid, name, is_hash, true);
}
/* info returned by S_sprintf_is_multiconcatable() */
struct sprintf_ismc_info {
SSize_t nargs; /* num of args to sprintf (not including the format) */
char *start; /* start of raw format string */
char *end; /* bytes after end of raw format string */
STRLEN total_len; /* total length (in bytes) of format string, not
including '%s' and half of '%%' */
STRLEN variant; /* number of bytes by which total_len_p would grow
if upgraded to utf8 */
bool utf8; /* whether the format is utf8 */
};
/* is the OP_SPRINTF o suitable for converting into a multiconcat op?
* i.e. its format argument is a const string with only '%s' and '%%'
* formats, and the number of args is known, e.g.
* sprintf "a=%s f=%s", $a[0], scalar(f());
* but not
* sprintf "i=%d a=%s f=%s", $i, @a, f();
*
* If successful, the sprintf_ismc_info struct pointed to by info will be
* populated.
*/
STATIC bool
S_sprintf_is_multiconcatable(pTHX_ OP *o,struct sprintf_ismc_info *info)
{
OP *pm, *constop, *kid;
SV *sv;
char *s, *e, *p;
SSize_t nargs, nformats;
STRLEN cur, total_len, variant;
bool utf8;
/* if sprintf's behaviour changes, die here so that someone
* can decide whether to enhance this function or skip optimising
* under those new circumstances */
assert(!(o->op_flags & OPf_STACKED));
assert(!(PL_opargs[OP_SPRINTF] & OA_TARGLEX));
assert(!(o->op_private & ~OPpARG4_MASK));
pm = cUNOPo->op_first;
if (pm->op_type != OP_PUSHMARK) /* weird coreargs stuff */
return FALSE;
constop = OpSIBLING(pm);
if (!constop || constop->op_type != OP_CONST)
return FALSE;
sv = cSVOPx_sv(constop);
if (SvMAGICAL(sv) || !SvPOK(sv))
return FALSE;
s = SvPV(sv, cur);
e = s + cur;
/* Scan format for %% and %s and work out how many %s there are.
* Abandon if other format types are found.
*/
nformats = 0;
total_len = 0;
variant = 0;
for (p = s; p < e; p++) {
if (*p != '%') {
total_len++;
if (!UTF8_IS_INVARIANT(*p))
variant++;
continue;
}
p++;
if (p >= e)
return FALSE; /* lone % at end gives "Invalid conversion" */
if (*p == '%')
total_len++;
else if (*p == 's')
nformats++;
else
return FALSE;
}
if (!nformats || nformats > PERL_MULTICONCAT_MAXARG)
return FALSE;
utf8 = cBOOL(SvUTF8(sv));
if (utf8)
variant = 0;
/* scan args; they must all be in scalar cxt */
nargs = 0;
kid = OpSIBLING(constop);
while (kid) {
if ((kid->op_flags & OPf_WANT) != OPf_WANT_SCALAR)
return FALSE;
nargs++;
kid = OpSIBLING(kid);
}
if (nargs != nformats)
return FALSE; /* e.g. sprintf("%s%s", $a); */
info->nargs = nargs;
info->start = s;
info->end = e;
info->total_len = total_len;
info->variant = variant;
info->utf8 = utf8;
return TRUE;
}
/* S_maybe_multiconcat():
*
* given an OP_STRINGIFY, OP_SASSIGN, OP_CONCAT or OP_SPRINTF op, possibly
* convert it (and its children) into an OP_MULTICONCAT. See the code
* comments just before pp_multiconcat() for the full details of what
* OP_MULTICONCAT supports.
*
* Basically we're looking for an optree with a chain of OP_CONCATS down
* the LHS (or an OP_SPRINTF), with possibly an OP_SASSIGN, and/or
* OP_STRINGIFY, and/or OP_CONCAT acting as '.=' at its head, e.g.
*
* $x = "$a$b-$c"
*
* looks like
*
* SASSIGN
* |
* STRINGIFY -- PADSV[$x]
* |
* |
* ex-PUSHMARK -- CONCAT/S
* |
* CONCAT/S -- PADSV[$d]
* |
* CONCAT -- CONST["-"]
* |
* PADSV[$a] -- PADSV[$b]
*
* Note that at this stage the OP_SASSIGN may have already been optimised
* away with OPpTARGET_MY set on the OP_STRINGIFY or OP_CONCAT.
*/
STATIC void
S_maybe_multiconcat(pTHX_ OP *o)
{
OP *lastkidop; /* the right-most of any kids unshifted onto o */
OP *topop; /* the top-most op in the concat tree (often equals o,
unless there are assign/stringify ops above it */
OP *parentop; /* the parent op of topop (or itself if no parent) */
OP *targmyop; /* the op (if any) with the OPpTARGET_MY flag */
OP *targetop; /* the op corresponding to target=... or target.=... */
OP *stringop; /* the OP_STRINGIFY op, if any */
OP *nextop; /* used for recreating the op_next chain without consts */
OP *kid; /* general-purpose op pointer */
UNOP_AUX_item *aux;
UNOP_AUX_item *lenp;
char *const_str, *p;
struct sprintf_ismc_info sprintf_info;
/* store info about each arg in args[];
* toparg is the highest used slot; argp is a general
* pointer to args[] slots */
struct {
void *p; /* initially points to const sv (or null for op);
later, set to SvPV(constsv), with ... */
STRLEN len; /* ... len set to SvPV(..., len) */
} *argp, *toparg, args[PERL_MULTICONCAT_MAXARG*2 + 1];
SSize_t nargs = 0;
SSize_t nconst = 0;
SSize_t nadjconst = 0; /* adjacent consts - may be demoted to args */
STRLEN variant;
bool utf8 = FALSE;
bool kid_is_last = FALSE; /* most args will be the RHS kid of a concat op;
the last-processed arg will the LHS of one,
as args are processed in reverse order */
U8 stacked_last = 0; /* whether the last seen concat op was STACKED */
STRLEN total_len = 0; /* sum of the lengths of the const segments */
U8 flags = 0; /* what will become the op_flags and ... */
U8 private_flags = 0; /* ... op_private of the multiconcat op */
bool is_sprintf = FALSE; /* we're optimising an sprintf */
bool is_targable = FALSE; /* targetop is an OPpTARGET_MY candidate */
bool prev_was_const = FALSE; /* previous arg was a const */
/* -----------------------------------------------------------------
* Phase 1:
*
* Examine the optree non-destructively to determine whether it's
* suitable to be converted into an OP_MULTICONCAT. Accumulate
* information about the optree in args[].
*/
argp = args;
targmyop = NULL;
targetop = NULL;
stringop = NULL;
topop = o;
parentop = o;
assert( o->op_type == OP_SASSIGN
|| o->op_type == OP_CONCAT
|| o->op_type == OP_SPRINTF
|| o->op_type == OP_STRINGIFY);
Zero(&sprintf_info, 1, struct sprintf_ismc_info);
/* first see if, at the top of the tree, there is an assign,
* append and/or stringify */
if (topop->op_type == OP_SASSIGN) {
/* expr = ..... */
if (o->op_ppaddr != PL_ppaddr[OP_SASSIGN])
return;
if (o->op_private & (OPpASSIGN_BACKWARDS|OPpASSIGN_CV_TO_GV))
return;
assert(!(o->op_private & ~OPpARG2_MASK)); /* barf on unknown flags */
parentop = topop;
topop = cBINOPo->op_first;
targetop = OpSIBLING(topop);
if (!targetop) /* probably some sort of syntax error */
return;
/* don't optimise away assign in 'local $foo = ....' */
if ( (targetop->op_private & OPpLVAL_INTRO)
/* these are the common ops which do 'local', but
* not all */
&& ( targetop->op_type == OP_GVSV
|| targetop->op_type == OP_RV2SV
|| targetop->op_type == OP_AELEM
|| targetop->op_type == OP_HELEM
)
)
return;
}
else if ( topop->op_type == OP_CONCAT
&& (topop->op_flags & OPf_STACKED)
&& (!(topop->op_private & OPpCONCAT_NESTED))
)
{
/* expr .= ..... */
/* OPpTARGET_MY shouldn't be able to be set here. If it is,
* decide what to do about it */
assert(!(o->op_private & OPpTARGET_MY));
/* barf on unknown flags */
assert(!(o->op_private & ~(OPpARG2_MASK|OPpTARGET_MY)));
private_flags |= OPpMULTICONCAT_APPEND;
targetop = cBINOPo->op_first;
parentop = topop;
topop = OpSIBLING(targetop);
/* $x .= <FOO> gets optimised to rcatline instead */
if (topop->op_type == OP_READLINE)
return;
}
if (targetop) {
/* Can targetop (the LHS) if it's a padsv, be optimised
* away and use OPpTARGET_MY instead?
*/
if ( (targetop->op_type == OP_PADSV)
&& !(targetop->op_private & OPpDEREF)
&& !(targetop->op_private & OPpPAD_STATE)
/* we don't support 'my $x .= ...' */
&& ( o->op_type == OP_SASSIGN
|| !(targetop->op_private & OPpLVAL_INTRO))
)
is_targable = TRUE;
}
if (topop->op_type == OP_STRINGIFY) {
if (topop->op_ppaddr != PL_ppaddr[OP_STRINGIFY])
return;
stringop = topop;
/* barf on unknown flags */
assert(!(o->op_private & ~(OPpARG4_MASK|OPpTARGET_MY)));
if ((topop->op_private & OPpTARGET_MY)) {
if (o->op_type == OP_SASSIGN)
return; /* can't have two assigns */
targmyop = topop;
}
private_flags |= OPpMULTICONCAT_STRINGIFY;
parentop = topop;
topop = cBINOPx(topop)->op_first;
assert(OP_TYPE_IS_OR_WAS_NN(topop, OP_PUSHMARK));
topop = OpSIBLING(topop);
}
if (topop->op_type == OP_SPRINTF) {
if (topop->op_ppaddr != PL_ppaddr[OP_SPRINTF])
return;
if (S_sprintf_is_multiconcatable(aTHX_ topop, &sprintf_info)) {
nargs = sprintf_info.nargs;
total_len = sprintf_info.total_len;
variant = sprintf_info.variant;
utf8 = sprintf_info.utf8;
is_sprintf = TRUE;
private_flags |= OPpMULTICONCAT_FAKE;
toparg = argp;
/* we have an sprintf op rather than a concat optree.
* Skip most of the code below which is associated with
* processing that optree. We also skip phase 2, determining
* whether its cost effective to optimise, since for sprintf,
* multiconcat is *always* faster */
goto create_aux;
}
/* note that even if the sprintf itself isn't multiconcatable,
* the expression as a whole may be, e.g. in
* $x .= sprintf("%d",...)
* the sprintf op will be left as-is, but the concat/S op may
* be upgraded to multiconcat
*/
}
else if (topop->op_type == OP_CONCAT) {
if (topop->op_ppaddr != PL_ppaddr[OP_CONCAT])
return;
if ((topop->op_private & OPpTARGET_MY)) {
if (o->op_type == OP_SASSIGN || targmyop)
return; /* can't have two assigns */
targmyop = topop;
}
}
/* Is it safe to convert a sassign/stringify/concat op into
* a multiconcat? */
assert((PL_opargs[OP_SASSIGN] & OA_CLASS_MASK) == OA_BINOP);
assert((PL_opargs[OP_CONCAT] & OA_CLASS_MASK) == OA_BINOP);
assert((PL_opargs[OP_STRINGIFY] & OA_CLASS_MASK) == OA_LISTOP);
assert((PL_opargs[OP_SPRINTF] & OA_CLASS_MASK) == OA_LISTOP);
STATIC_ASSERT_STMT( STRUCT_OFFSET(BINOP, op_last)
== STRUCT_OFFSET(UNOP_AUX, op_aux));
STATIC_ASSERT_STMT( STRUCT_OFFSET(LISTOP, op_last)
== STRUCT_OFFSET(UNOP_AUX, op_aux));
/* Now scan the down the tree looking for a series of
* CONCAT/OPf_STACKED ops on the LHS (with the last one not
* stacked). For example this tree:
*
* |
* CONCAT/STACKED
* |
* CONCAT/STACKED -- EXPR5
* |
* CONCAT/STACKED -- EXPR4
* |
* CONCAT -- EXPR3
* |
* EXPR1 -- EXPR2
*
* corresponds to an expression like
*
* (EXPR1 . EXPR2 . EXPR3 . EXPR4 . EXPR5)
*
* Record info about each EXPR in args[]: in particular, whether it is
* a stringifiable OP_CONST and if so what the const sv is.
*
* The reason why the last concat can't be STACKED is the difference
* between
*
* ((($a .= $a) .= $a) .= $a) .= $a
*
* and
* $a . $a . $a . $a . $a
*
* The main difference between the optrees for those two constructs
* is the presence of the last STACKED. As well as modifying $a,
* the former sees the changed $a between each concat, so if $s is
* initially 'a', the first returns 'a' x 16, while the latter returns
* 'a' x 5. And pp_multiconcat can't handle that kind of thing.
*/
kid = topop;
for (;;) {
OP *argop;
SV *sv;
bool last = FALSE;
if ( kid->op_type == OP_CONCAT
&& !kid_is_last
) {
OP *k1, *k2;
k1 = cUNOPx(kid)->op_first;
k2 = OpSIBLING(k1);
/* shouldn't happen except maybe after compile err? */
if (!k2)
return;
/* avoid turning (A . B . ($lex = C) ...) into (A . B . C ...) */
if (kid->op_private & OPpTARGET_MY)
kid_is_last = TRUE;
stacked_last = (kid->op_flags & OPf_STACKED);
if (!stacked_last)
kid_is_last = TRUE;
kid = k1;
argop = k2;
}
else {
argop = kid;
last = TRUE;
}
if ( nargs + nadjconst > PERL_MULTICONCAT_MAXARG - 2
|| (argp - args + 1) > (PERL_MULTICONCAT_MAXARG*2 + 1) - 2)
{
/* At least two spare slots are needed to decompose both
* concat args. If there are no slots left, continue to
* examine the rest of the optree, but don't push new values
* on args[]. If the optree as a whole is legal for conversion
* (in particular that the last concat isn't STACKED), then
* the first PERL_MULTICONCAT_MAXARG elements of the optree
* can be converted into an OP_MULTICONCAT now, with the first
* child of that op being the remainder of the optree -
* which may itself later be converted to a multiconcat op
* too.
*/
if (last) {
/* the last arg is the rest of the optree */
argp++->p = NULL;
nargs++;
}
}
else if ( argop->op_type == OP_CONST
&& ((sv = cSVOPx_sv(argop)))
/* defer stringification until runtime of 'constant'
* things that might stringify variantly, e.g. the radix
* point of NVs, or overloaded RVs */
&& (SvPOK(sv) || SvIOK(sv))
&& (!SvGMAGICAL(sv))
) {
if (argop->op_private & OPpCONST_STRICT)
no_bareword_allowed(argop);
argp++->p = sv;
utf8 |= cBOOL(SvUTF8(sv));
nconst++;
if (prev_was_const)
/* this const may be demoted back to a plain arg later;
* make sure we have enough arg slots left */
nadjconst++;
prev_was_const = !prev_was_const;
}
else {
argp++->p = NULL;
nargs++;
prev_was_const = FALSE;
}
if (last)
break;
}
toparg = argp - 1;
if (stacked_last)
return; /* we don't support ((A.=B).=C)...) */
/* look for two adjacent consts and don't fold them together:
* $o . "a" . "b"
* should do
* $o->concat("a")->concat("b")
* rather than
* $o->concat("ab")
* (but $o .= "a" . "b" should still fold)
*/
{
bool seen_nonconst = FALSE;
for (argp = toparg; argp >= args; argp--) {
if (argp->p == NULL) {
seen_nonconst = TRUE;
continue;
}
if (!seen_nonconst)
continue;
if (argp[1].p) {
/* both previous and current arg were constants;
* leave the current OP_CONST as-is */
argp->p = NULL;
nconst--;
nargs++;
}
}
}
/* -----------------------------------------------------------------
* Phase 2:
*
* At this point we have determined that the optree *can* be converted
* into a multiconcat. Having gathered all the evidence, we now decide
* whether it *should*.
*/
/* we need at least one concat action, e.g.:
*
* Y . Z
* X = Y . Z
* X .= Y
*
* otherwise we could be doing something like $x = "foo", which
* if treated as a concat, would fail to COW.
*/
if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 2)
return;
/* Benchmarking seems to indicate that we gain if:
* * we optimise at least two actions into a single multiconcat
* (e.g., concat+concat, sassign+concat);
* * or if we can eliminate at least 1 OP_CONST;
* * or if we can eliminate a padsv via OPpTARGET_MY
*/
if (
/* eliminated at least one OP_CONST */
nconst >= 1
/* eliminated an OP_SASSIGN */
|| o->op_type == OP_SASSIGN
/* eliminated an OP_PADSV */
|| (!targmyop && is_targable)
)
/* definitely a net gain to optimise */
goto optimise;
/* ... if not, what else? */
/* special-case '$lex1 = expr . $lex1' (where expr isn't lex1):
* multiconcat is faster (due to not creating a temporary copy of
* $lex1), whereas for a general $lex1 = $lex2 . $lex3, concat is
* faster.
*/
if ( nconst == 0
&& nargs == 2
&& targmyop
&& topop->op_type == OP_CONCAT
) {
PADOFFSET t = targmyop->op_targ;
OP *k1 = cBINOPx(topop)->op_first;
OP *k2 = cBINOPx(topop)->op_last;
if ( k2->op_type == OP_PADSV
&& k2->op_targ == t
&& ( k1->op_type != OP_PADSV
|| k1->op_targ != t)
)
goto optimise;
}
/* need at least two concats */
if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 3)
return;
/* -----------------------------------------------------------------
* Phase 3:
*
* At this point the optree has been verified as ok to be optimised
* into an OP_MULTICONCAT. Now start changing things.
*/
optimise:
/* stringify all const args and determine utf8ness */
variant = 0;
for (argp = args; argp <= toparg; argp++) {
SV *sv = (SV*)argp->p;
if (!sv)
continue; /* not a const op */
if (utf8 && !SvUTF8(sv))
sv_utf8_upgrade_nomg(sv);
argp->p = SvPV_nomg(sv, argp->len);
total_len += argp->len;
/* see if any strings would grow if converted to utf8 */
if (!utf8) {
variant += variant_under_utf8_count((U8 *) argp->p,
(U8 *) argp->p + argp->len);
}
}
/* create and populate aux struct */
create_aux:
aux = (UNOP_AUX_item*)PerlMemShared_malloc(
sizeof(UNOP_AUX_item)
* (
PERL_MULTICONCAT_HEADER_SIZE
+ ((nargs + 1) * (variant ? 2 : 1))
)
);
const_str = (char *)PerlMemShared_malloc(total_len ? total_len : 1);
/* Extract all the non-const expressions from the concat tree then
* dispose of the old tree, e.g. convert the tree from this:
*
* o => SASSIGN
* |
* STRINGIFY -- TARGET
* |
* ex-PUSHMARK -- CONCAT
* |
* CONCAT -- EXPR5
* |
* CONCAT -- EXPR4
* |
* CONCAT -- EXPR3
* |
* EXPR1 -- EXPR2
*
*
* to:
*
* o => MULTICONCAT
* |
* ex-PUSHMARK -- EXPR1 -- EXPR2 -- EXPR3 -- EXPR4 -- EXPR5 -- TARGET
*
* except that if EXPRi is an OP_CONST, it's discarded.
*
* During the conversion process, EXPR ops are stripped from the tree
* and unshifted onto o. Finally, any of o's remaining original
* children are discarded and o is converted into an OP_MULTICONCAT.
*
* In this middle of this, o may contain both: unshifted args on the
* left, and some remaining original args on the right. lastkidop
* is set to point to the right-most unshifted arg to delineate
* between the two sets.
*/
if (is_sprintf) {
/* create a copy of the format with the %'s removed, and record
* the sizes of the const string segments in the aux struct */
char *q, *oldq;
lenp = aux + PERL_MULTICONCAT_IX_LENGTHS;
p = sprintf_info.start;
q = const_str;
oldq = q;
for (; p < sprintf_info.end; p++) {
if (*p == '%') {
p++;
if (*p != '%') {
(lenp++)->ssize = q - oldq;
oldq = q;
continue;
}
}
*q++ = *p;
}
lenp->ssize = q - oldq;
assert((STRLEN)(q - const_str) == total_len);
/* Attach all the args (i.e. the kids of the sprintf) to o (which
* may or may not be topop) The pushmark and const ops need to be
* kept in case they're an op_next entry point.
*/
lastkidop = cLISTOPx(topop)->op_last;
kid = cUNOPx(topop)->op_first; /* pushmark */
op_null(kid);
op_null(OpSIBLING(kid)); /* const */
if (o != topop) {
kid = op_sibling_splice(topop, NULL, -1, NULL); /* cut all args */
op_sibling_splice(o, NULL, 0, kid); /* and attach to o */
lastkidop->op_next = o;
}
}
else {
p = const_str;
lenp = aux + PERL_MULTICONCAT_IX_LENGTHS;
lenp->ssize = -1;
/* Concatenate all const strings into const_str.
* Note that args[] contains the RHS args in reverse order, so
* we scan args[] from top to bottom to get constant strings
* in L-R order
*/
for (argp = toparg; argp >= args; argp--) {
if (!argp->p)
/* not a const op */
(++lenp)->ssize = -1;
else {
STRLEN l = argp->len;
Copy(argp->p, p, l, char);
p += l;
if (lenp->ssize == -1)
lenp->ssize = l;
else
lenp->ssize += l;
}
}
kid = topop;
nextop = o;
lastkidop = NULL;
for (argp = args; argp <= toparg; argp++) {
/* only keep non-const args, except keep the first-in-next-chain
* arg no matter what it is (but nulled if OP_CONST), because it
* may be the entry point to this subtree from the previous
* op_next.
*/
bool last = (argp == toparg);
OP *prev;
/* set prev to the sibling *before* the arg to be cut out,
* e.g. when cutting EXPR:
*
* |
* kid= CONCAT
* |
* prev= CONCAT -- EXPR
* |
*/
if (argp == args && kid->op_type != OP_CONCAT) {
/* in e.g. '$x .= f(1)' there's no RHS concat tree
* so the expression to be cut isn't kid->op_last but
* kid itself */
OP *o1, *o2;
/* find the op before kid */
o1 = NULL;
o2 = cUNOPx(parentop)->op_first;
while (o2 && o2 != kid) {
o1 = o2;
o2 = OpSIBLING(o2);
}
assert(o2 == kid);
prev = o1;
kid = parentop;
}
else if (kid == o && lastkidop)
prev = last ? lastkidop : OpSIBLING(lastkidop);
else
prev = last ? NULL : cUNOPx(kid)->op_first;
if (!argp->p || last) {
/* cut RH op */
OP *aop = op_sibling_splice(kid, prev, 1, NULL);
/* and unshift to front of o */
op_sibling_splice(o, NULL, 0, aop);
/* record the right-most op added to o: later we will
* free anything to the right of it */
if (!lastkidop)
lastkidop = aop;
aop->op_next = nextop;
if (last) {
if (argp->p)
/* null the const at start of op_next chain */
op_null(aop);
}
else if (prev)
nextop = prev->op_next;
}
/* the last two arguments are both attached to the same concat op */
if (argp < toparg - 1)
kid = prev;
}
}
/* Populate the aux struct */
aux[PERL_MULTICONCAT_IX_NARGS].ssize = nargs;
aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv = utf8 ? NULL : const_str;
aux[PERL_MULTICONCAT_IX_PLAIN_LEN].ssize = utf8 ? 0 : total_len;
aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = const_str;
aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = total_len;
/* if variant > 0, calculate a variant const string and lengths where
* the utf8 version of the string will take 'variant' more bytes than
* the plain one. */
if (variant) {
char *p = const_str;
STRLEN ulen = total_len + variant;
UNOP_AUX_item *lens = aux + PERL_MULTICONCAT_IX_LENGTHS;
UNOP_AUX_item *ulens = lens + (nargs + 1);
char *up = (char*)PerlMemShared_malloc(ulen);
SSize_t n;
aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = up;
aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = ulen;
for (n = 0; n < (nargs + 1); n++) {
SSize_t i;
char * orig_up = up;
for (i = (lens++)->ssize; i > 0; i--) {
U8 c = *p++;
append_utf8_from_native_byte(c, (U8**)&up);
}
(ulens++)->ssize = (i < 0) ? i : up - orig_up;
}
}
if (stringop) {
/* if there was a top(ish)-level OP_STRINGIFY, we need to keep
* that op's first child - an ex-PUSHMARK - because the op_next of
* the previous op may point to it (i.e. it's the entry point for
* the o optree)
*/
OP *pmop =
(stringop == o)
? op_sibling_splice(o, lastkidop, 1, NULL)
: op_sibling_splice(stringop, NULL, 1, NULL);
assert(OP_TYPE_IS_OR_WAS_NN(pmop, OP_PUSHMARK));
op_sibling_splice(o, NULL, 0, pmop);
if (!lastkidop)
lastkidop = pmop;
}
/* Optimise
* target = A.B.C...
* target .= A.B.C...
*/
if (targetop) {
assert(!targmyop);
if (o->op_type == OP_SASSIGN) {
/* Move the target subtree from being the last of o's children
* to being the last of o's preserved children.
* Note the difference between 'target = ...' and 'target .= ...':
* for the former, target is executed last; for the latter,
* first.
*/
kid = OpSIBLING(lastkidop);
op_sibling_splice(o, kid, 1, NULL); /* cut target op */
op_sibling_splice(o, lastkidop, 0, targetop); /* and paste */
lastkidop->op_next = kid->op_next;
lastkidop = targetop;
}
else {
/* Move the target subtree from being the first of o's
* original children to being the first of *all* o's children.
*/
if (lastkidop) {
op_sibling_splice(o, lastkidop, 1, NULL); /* cut target op */
op_sibling_splice(o, NULL, 0, targetop); /* and paste*/
}
else {
/* if the RHS of .= doesn't contain a concat (e.g.
* $x .= "foo"), it gets missed by the "strip ops from the
* tree and add to o" loop earlier */
assert(topop->op_type != OP_CONCAT);
if (stringop) {
/* in e.g. $x .= "$y", move the $y expression
* from being a child of OP_STRINGIFY to being the
* second child of the OP_CONCAT
*/
assert(cUNOPx(stringop)->op_first == topop);
op_sibling_splice(stringop, NULL, 1, NULL);
op_sibling_splice(o, cUNOPo->op_first, 0, topop);
}
assert(topop == OpSIBLING(cBINOPo->op_first));
if (toparg->p)
op_null(topop);
lastkidop = topop;
}
}
if (is_targable) {
/* optimise
* my $lex = A.B.C...
* $lex = A.B.C...
* $lex .= A.B.C...
* The original padsv op is kept but nulled in case it's the
* entry point for the optree (which it will be for
* '$lex .= ... '
*/
private_flags |= OPpTARGET_MY;
private_flags |= (targetop->op_private & OPpLVAL_INTRO);
o->op_targ = targetop->op_targ;
targetop->op_targ = 0;
op_null(targetop);
}
else
flags |= OPf_STACKED;
}
else if (targmyop) {
private_flags |= OPpTARGET_MY;
if (o != targmyop) {
o->op_targ = targmyop->op_targ;
targmyop->op_targ = 0;
}
}
/* detach the emaciated husk of the sprintf/concat optree and free it */
for (;;) {
kid = op_sibling_splice(o, lastkidop, 1, NULL);
if (!kid)
break;
op_free(kid);
}
/* and convert o into a multiconcat */
o->op_flags = (flags|OPf_KIDS|stacked_last
|(o->op_flags & (OPf_WANT|OPf_PARENS)));
o->op_private = private_flags;
o->op_type = OP_MULTICONCAT;
o->op_ppaddr = PL_ppaddr[OP_MULTICONCAT];
cUNOP_AUXo->op_aux = aux;
/* add some PADTMPs, as needed, for the 'fallback to OP_CONCAT
* behaviour if magic / overloaded etc present' code path */
/* general PADTMP for the target of each concat */
aux[PERL_MULTICONCAT_IX_PADTMP0].pad_offset =
pad_alloc(OP_MULTICONCAT, SVs_PADTMP);
/* PADTMP for recreating OP_CONST return values */
aux[PERL_MULTICONCAT_IX_PADTMP1].pad_offset =
(is_sprintf || nconst) ? pad_alloc(OP_MULTICONCAT, SVs_PADTMP) : 0;
/* PADTMP for stringifying the result */
aux[PERL_MULTICONCAT_IX_PADTMP2].pad_offset =
(o->op_private &OPpMULTICONCAT_STRINGIFY)
? pad_alloc(OP_MULTICONCAT, SVs_PADTMP) : 0;
}
/*
=for apidoc_section $optree_manipulation
=for apidoc optimize_optree
This function applies some optimisations to the optree in top-down order.
It is called before the peephole optimizer, which processes ops in
execution order. Note that finalize_optree() also does a top-down scan,
but is called *after* the peephole optimizer.
=cut
*/
void
Perl_optimize_optree(pTHX_ OP* o)
{
PERL_ARGS_ASSERT_OPTIMIZE_OPTREE;
ENTER;
SAVEVPTR(PL_curcop);
optimize_op(o);
LEAVE;
}
#define warn_implicit_snail_cvsig(o) S_warn_implicit_snail_cvsig(aTHX_ o)
static void
S_warn_implicit_snail_cvsig(pTHX_ OP *o)
{
CV *cv = PL_compcv;
while(cv && CvEVAL(cv))
cv = CvOUTSIDE(cv);
if(cv && CvSIGNATURE(cv))
ck_warner_d(packWARN(WARN_EXPERIMENTAL__ARGS_ARRAY_WITH_SIGNATURES),
"Implicit use of @_ in %s with signatured subroutine is experimental", OP_DESC(o));
}
#define OP_ZOOM(o) (OP_TYPE_IS(o, OP_NULL) ? cUNOPx(o)->op_first : (o))
/* helper for optimize_optree() which optimises one op then recurses
* to optimise any children.
*/
STATIC void
S_optimize_op(pTHX_ OP* o)
{
OP *top_op = o;
PERL_ARGS_ASSERT_OPTIMIZE_OP;
while (1) {
OP * next_kid = NULL;
assert(o->op_type != OP_FREED);
switch (o->op_type) {
case OP_NEXTSTATE:
case OP_DBSTATE:
PL_curcop = ((COP*)o); /* for warnings */
break;
case OP_CONCAT:
case OP_SASSIGN:
case OP_STRINGIFY:
case OP_SPRINTF:
S_maybe_multiconcat(aTHX_ o);
break;
case OP_SUBST:
if (cPMOPo->op_pmreplrootu.op_pmreplroot) {
/* we can't assume that op_pmreplroot->op_sibparent == o
* and that it is thus possible to walk back up the tree
* past op_pmreplroot. So, although we try to avoid
* recursing through op trees, do it here. After all,
* there are unlikely to be many nested s///e's within
* the replacement part of a s///e.
*/
optimize_op(cPMOPo->op_pmreplrootu.op_pmreplroot);
}
break;
case OP_RV2AV:
{
OP *first = (o->op_flags & OPf_KIDS) ? cUNOPo->op_first : NULL;
CV *cv = PL_compcv;
while(cv && CvEVAL(cv))
cv = CvOUTSIDE(cv);
if(cv && CvSIGNATURE(cv) &&
OP_TYPE_IS(first, OP_GV) && cGVOPx_gv(first) == PL_defgv) {
OP *parent = op_parent(o);
while(OP_TYPE_IS(parent, OP_NULL))
parent = op_parent(parent);
ck_warner_d(packWARN(WARN_EXPERIMENTAL__ARGS_ARRAY_WITH_SIGNATURES),
"Use of @_ in %s with signatured subroutine is experimental", OP_DESC(parent));
}
break;
}
case OP_SHIFT:
case OP_POP:
if(!CvUNIQUE(PL_compcv) && !(o->op_flags & OPf_KIDS))
warn_implicit_snail_cvsig(o);
break;
case OP_ENTERSUB:
if(!(o->op_flags & OPf_STACKED))
warn_implicit_snail_cvsig(o);
break;
case OP_GOTO:
{
OP *first = (o->op_flags & OPf_KIDS) ? cUNOPo->op_first : NULL;
OP *ffirst;
if(OP_TYPE_IS(first, OP_SREFGEN) &&
(ffirst = OP_ZOOM(cUNOPx(first)->op_first)) &&
OP_TYPE_IS(ffirst, OP_RV2CV))
warn_implicit_snail_cvsig(o);
break;
}
default:
break;
}
if (o->op_flags & OPf_KIDS)
next_kid = cUNOPo->op_first;
/* if a kid hasn't been nominated to process, continue with the
* next sibling, or if no siblings left, go back to the parent's
* siblings and so on
*/
while (!next_kid) {
if (o == top_op)
return; /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o))
next_kid = o->op_sibparent;
else
o = o->op_sibparent; /*try parent's next sibling */
}
/* this label not yet used. Goto here if any code above sets
* next-kid
get_next_op:
*/
o = next_kid;
}
}
/*
=for apidoc finalize_optree
This function finalizes the optree. Should be called directly after
the complete optree is built. It does some additional
checking which can't be done in the normal C<ck_>xxx functions and makes
the tree thread-safe.
=cut
*/
void
Perl_finalize_optree(pTHX_ OP* o)
{
PERL_ARGS_ASSERT_FINALIZE_OPTREE;
ENTER;
SAVEVPTR(PL_curcop);
finalize_op(o);
LEAVE;
}
/*
=for apidoc traverse_op_tree
Return the next op in a depth-first traversal of the op tree,
returning NULL when the traversal is complete.
The initial call must supply the root of the tree as both top and o.
For now it's static, but it may be exposed to the API in the future.
=cut
*/
STATIC OP*
S_traverse_op_tree(pTHX_ OP *top, OP *o) {
OP *sib;
PERL_ARGS_ASSERT_TRAVERSE_OP_TREE;
if ((o->op_flags & OPf_KIDS) && cUNOPo->op_first) {
return cUNOPo->op_first;
}
else if ((sib = OpSIBLING(o))) {
return sib;
}
else {
OP *parent = o->op_sibparent;
assert(!(o->op_moresib));
while (parent && parent != top) {
OP *sib = OpSIBLING(parent);
if (sib)
return sib;
parent = parent->op_sibparent;
}
return NULL;
}
}
STATIC void
S_finalize_op(pTHX_ OP* o)
{
OP * const top = o;
PERL_ARGS_ASSERT_FINALIZE_OP;
do {
assert(o->op_type != OP_FREED);
switch (o->op_type) {
case OP_NEXTSTATE:
case OP_DBSTATE:
PL_curcop = ((COP*)o); /* for warnings */
break;
case OP_EXEC:
if (OpHAS_SIBLING(o)) {
OP *sib = OpSIBLING(o);
if (OP_TYPE_IS_COP_NN(sib) && ckWARN(WARN_EXEC) && OpHAS_SIBLING(sib))
{
const OPCODE type = OpSIBLING(sib)->op_type;
if (type != OP_EXIT && type != OP_WARN && type != OP_DIE) {
const line_t oldline = CopLINE(PL_curcop);
CopLINE_set(PL_curcop, CopLINE((COP*)sib));
warner(packWARN(WARN_EXEC),
"Statement unlikely to be reached");
warner(packWARN(WARN_EXEC),
"\t(Maybe you meant system() when you said exec()?)\n");
CopLINE_set(PL_curcop, oldline);
}
}
}
break;
case OP_GV:
if ((o->op_private & OPpEARLY_CV) && ckWARN(WARN_PROTOTYPE)) {
GV * const gv = cGVOPo_gv;
if (SvTYPE(gv) == SVt_PVGV && GvCV(gv) && SvPVX_const(GvCV(gv))) {
/* XXX could check prototype here instead of just carping */
SV * const sv = sv_newmortal();
gv_efullname3(sv, gv, NULL);
warner(packWARN(WARN_PROTOTYPE),
"%" SVf "() called too early to check prototype",
SVfARG(sv));
}
}
break;
case OP_CONST:
if (cSVOPo->op_private & OPpCONST_STRICT)
no_bareword_allowed(o);
#ifdef USE_ITHREADS
/* FALLTHROUGH */
case OP_HINTSEVAL:
op_relocate_sv(&cSVOPo->op_sv, &o->op_targ);
#endif
break;
#ifdef USE_ITHREADS
/* Relocate all the METHOP's SVs to the pad for thread safety. */
case OP_METHOD_NAMED:
case OP_METHOD_SUPER:
case OP_METHOD_REDIR:
case OP_METHOD_REDIR_SUPER:
op_relocate_sv(&cMETHOPo->op_u.op_meth_sv, &o->op_targ);
break;
#endif
case OP_HELEM: {
UNOP *rop;
SVOP *key_op;
OP *kid;
if ((key_op = cSVOPx(cBINOPo->op_last))->op_type != OP_CONST)
break;
rop = cUNOPx(cBINOPo->op_first);
goto check_keys;
case OP_HSLICE:
S_scalar_slice_warning(aTHX_ o);
/* FALLTHROUGH */
case OP_KVHSLICE:
kid = OpSIBLING(cLISTOPo->op_first);
if (/* I bet there's always a pushmark... */
OP_TYPE_ISNT_AND_WASNT_NN(kid, OP_LIST)
&& OP_TYPE_ISNT_NN(kid, OP_CONST))
{
break;
}
key_op = cSVOPx(kid->op_type == OP_CONST
? kid
: OpSIBLING(kLISTOP->op_first));
rop = cUNOPx(cLISTOPo->op_last);
check_keys:
if (o->op_private & OPpLVAL_INTRO || rop->op_type != OP_RV2HV)
rop = NULL;
check_hash_fields_and_hekify(rop, key_op, 1);
break;
}
case OP_NULL:
if (o->op_targ != OP_HSLICE && o->op_targ != OP_ASLICE)
break;
/* FALLTHROUGH */
case OP_ASLICE:
S_scalar_slice_warning(aTHX_ o);
break;
case OP_SUBST: {
if (cPMOPo->op_pmreplrootu.op_pmreplroot)
finalize_op(cPMOPo->op_pmreplrootu.op_pmreplroot);
break;
}
default:
break;
}
#ifdef DEBUGGING
if (o->op_flags & OPf_KIDS) {
OP *kid;
/* check that op_last points to the last sibling, and that
* the last op_sibling/op_sibparent field points back to the
* parent, and that the only ops with KIDS are those which are
* entitled to them */
U32 type = o->op_type;
U32 family;
bool has_last;
if (type == OP_NULL) {
type = o->op_targ;
/* ck_glob creates a null UNOP with ex-type GLOB
* (which is a list op. So pretend it wasn't a listop */
if (type == OP_GLOB)
type = OP_NULL;
}
family = PL_opargs[type] & OA_CLASS_MASK;
has_last = ( family == OA_BINOP
|| family == OA_LISTOP
|| family == OA_PMOP
|| family == OA_LOOP
);
assert( has_last /* has op_first and op_last, or ...
... has (or may have) op_first: */
|| family == OA_UNOP
|| family == OA_UNOP_AUX
|| family == OA_LOGOP
|| family == OA_BASEOP_OR_UNOP
|| family == OA_FILESTATOP
|| family == OA_LOOPEXOP
|| family == OA_METHOP
|| type == OP_CUSTOM
|| type == OP_NULL /* new_logop does this */
);
for (kid = cUNOPo->op_first; kid; kid = OpSIBLING(kid)) {
if (!OpHAS_SIBLING(kid)) {
if (has_last)
assert(kid == cLISTOPo->op_last);
assert(kid->op_sibparent == o);
}
}
}
#endif
} while (( o = traverse_op_tree(top, o)) != NULL);
}
/*
---------------------------------------------------------
Common vars in list assignment
There now follows some enums and static functions for detecting
common variables in list assignments. Here is a little essay I wrote
for myself when trying to get my head around this. DAPM.
----
First some random observations:
* If a lexical var is an alias of something else, e.g.
for my $x ($lex, $pkg, $a[0]) {...}
then the act of aliasing will increase the reference count of the SV
* If a package var is an alias of something else, it may still have a
reference count of 1, depending on how the alias was created, e.g.
in *a = *b, $a may have a refcount of 1 since the GP is shared
with a single GvSV pointer to the SV. So If it's an alias of another
package var, then RC may be 1; if it's an alias of another scalar, e.g.
a lexical var or an array element, then it will have RC > 1.
* There are many ways to create a package alias; ultimately, XS code
may quite legally do GvSV(gv) = SvREFCNT_inc(sv) for example, so
run-time tracing mechanisms are unlikely to be able to catch all cases.
* When the LHS is all my declarations, the same vars can't appear directly
on the RHS, but they can indirectly via closures, aliasing and lvalue
subs. But those techniques all involve an increase in the lexical
scalar's ref count.
* When the LHS is all lexical vars (but not necessarily my declarations),
it is possible for the same lexicals to appear directly on the RHS, and
without an increased ref count, since the stack isn't refcounted.
This case can be detected at compile time by scanning for common lex
vars with PL_generation.
* lvalue subs defeat common var detection, but they do at least
return vars with a temporary ref count increment. Also, you can't
tell at compile time whether a sub call is lvalue.
So...
A: There are a few circumstances where there definitely can't be any
commonality:
LHS empty: () = (...);
RHS empty: (....) = ();
RHS contains only constants or other 'can't possibly be shared'
elements (e.g. ops that return PADTMPs): (...) = (1,2, length)
i.e. they only contain ops not marked as dangerous, whose children
are also not dangerous;
LHS ditto;
LHS contains a single scalar element: e.g. ($x) = (....); because
after $x has been modified, it won't be used again on the RHS;
RHS contains a single element with no aggregate on LHS: e.g.
($a,$b,$c) = ($x); again, once $a has been modified, its value
won't be used again.
B: If LHS are all 'my' lexical var declarations (or safe ops, which
we can ignore):
my ($a, $b, @c) = ...;
Due to closure and goto tricks, these vars may already have content.
For the same reason, an element on the RHS may be a lexical or package
alias of one of the vars on the left, or share common elements, for
example:
my ($x,$y) = f(); # $x and $y on both sides
sub f : lvalue { ($x,$y) = (1,2); $y, $x }
and
my $ra = f();
my @a = @$ra; # elements of @a on both sides
sub f { @a = 1..4; \@a }
First, just consider scalar vars on LHS:
RHS is safe only if (A), or in addition,
* contains only lexical *scalar* vars, where neither side's
lexicals have been flagged as aliases
If RHS is not safe, then it's always legal to check LHS vars for
RC==1, since the only RHS aliases will always be associated
with an RC bump.
Note that in particular, RHS is not safe if:
* it contains package scalar vars; e.g.:
f();
my ($x, $y) = (2, $x_alias);
sub f { $x = 1; *x_alias = \$x; }
* It contains other general elements, such as flattened or
* spliced or single array or hash elements, e.g.
f();
my ($x,$y) = @a; # or $a[0] or @a{@b} etc
sub f {
($x, $y) = (1,2);
use feature 'refaliasing';
\($a[0], $a[1]) = \($y,$x);
}
It doesn't matter if the array/hash is lexical or package.
* it contains a function call that happens to be an lvalue
sub which returns one or more of the above, e.g.
f();
my ($x,$y) = f();
sub f : lvalue {
($x, $y) = (1,2);
*x1 = \$x;
$y, $x1;
}
(so a sub call on the RHS should be treated the same
as having a package var on the RHS).
* any other "dangerous" thing, such an op or built-in that
returns one of the above, e.g. pp_preinc
If RHS is not safe, what we can do however is at compile time flag
that the LHS are all my declarations, and at run time check whether
all the LHS have RC == 1, and if so skip the full scan.
Now consider array and hash vars on LHS: e.g. my (...,@a) = ...;
Here the issue is whether there can be elements of @a on the RHS
which will get prematurely freed when @a is cleared prior to
assignment. This is only a problem if the aliasing mechanism
is one which doesn't increase the refcount - only if RC == 1
will the RHS element be prematurely freed.
Because the array/hash is being INTROed, it or its elements
can't directly appear on the RHS:
my (@a) = ($a[0], @a, etc) # NOT POSSIBLE
but can indirectly, e.g.:
my $r = f();
my (@a) = @$r;
sub f { @a = 1..3; \@a }
So if the RHS isn't safe as defined by (A), we must always
mortalise and bump the ref count of any remaining RHS elements
when assigning to a non-empty LHS aggregate.
Lexical scalars on the RHS aren't safe if they've been involved in
aliasing, e.g.
use feature 'refaliasing';
f();
\(my $lex) = \$pkg;
my @a = ($lex,3); # equivalent to ($a[0],3)
sub f {
@a = (1,2);
\$pkg = \$a[0];
}
Similarly with lexical arrays and hashes on the RHS:
f();
my @b;
my @a = (@b);
sub f {
@a = (1,2);
\$b[0] = \$a[1];
\$b[1] = \$a[0];
}
C: As (B), but in addition the LHS may contain non-intro lexicals, e.g.
my $a; ($a, my $b) = (....);
The difference between (B) and (C) is that it is now physically
possible for the LHS vars to appear on the RHS too, where they
are not reference counted; but in this case, the compile-time
PL_generation sweep will detect such common vars.
So the rules for (C) differ from (B) in that if common vars are
detected, the runtime "test RC==1" optimisation can no longer be used,
and a full mark and sweep is required
D: As (C), but in addition the LHS may contain package vars.
Since package vars can be aliased without a corresponding refcount
increase, all bets are off. It's only safe if (A). E.g.
my ($x, $y) = (1,2);
for $x_alias ($x) {
($x_alias, $y) = (3, $x); # whoops
}
Ditto for LHS aggregate package vars.
E: Any other dangerous ops on LHS, e.g.
(f(), $a[0], @$r) = (...);
this is similar to (E) in that all bets are off. In addition, it's
impossible to determine at compile time whether the LHS
contains a scalar or an aggregate, e.g.
sub f : lvalue { @a }
(f()) = 1..3;
* ---------------------------------------------------------
*/
/* A set of bit flags returned by S_aassign_scan(). Each flag indicates
* that at least one of the things flagged was seen.
*/
enum {
AAS_MY_SCALAR = 0x001, /* my $scalar */
AAS_MY_AGG = 0x002, /* aggregate: my @array or my %hash */
AAS_LEX_SCALAR = 0x004, /* $lexical */
AAS_LEX_AGG = 0x008, /* @lexical or %lexical aggregate */
AAS_LEX_SCALAR_COMM = 0x010, /* $lexical seen on both sides */
AAS_PKG_SCALAR = 0x020, /* $scalar (where $scalar is pkg var) */
AAS_PKG_AGG = 0x040, /* package @array or %hash aggregate */
AAS_DANGEROUS = 0x080, /* an op (other than the above)
that's flagged OA_DANGEROUS */
AAS_SAFE_SCALAR = 0x100, /* produces at least one scalar SV that's
not in any of the categories above */
AAS_DEFAV = 0x200 /* contains just a single '@_' on RHS */
};
/* helper function for S_aassign_scan().
* check a PAD-related op for commonality and/or set its generation number.
* Returns a boolean indicating whether its shared */
static bool
S_aassign_padcheck(pTHX_ OP* o, bool rhs)
{
if (PAD_COMPNAME_GEN(o->op_targ) == PERL_INT_MAX)
/* lexical used in aliasing */
return TRUE;
if (rhs)
return cBOOL(PAD_COMPNAME_GEN(o->op_targ) == (STRLEN)PL_generation);
else
PAD_COMPNAME_GEN_set(o->op_targ, PL_generation);
return FALSE;
}
/*
Helper function for OPpASSIGN_COMMON* detection in rpeep().
It scans the left or right hand subtree of the aassign op, and returns a
set of flags indicating what sorts of things it found there.
'rhs' indicates whether we're scanning the LHS or RHS. If the former, we
set PL_generation on lexical vars; if the latter, we see if
PL_generation matches.
'scalars_p' is a pointer to a counter of the number of scalar SVs seen.
This fn will increment it by the number seen. It's not intended to
be an accurate count (especially as many ops can push a variable
number of SVs onto the stack); rather it's used as to test whether there
can be at most 1 SV pushed; so it's only meanings are "0, 1, many".
*/
static int
S_aassign_scan(pTHX_ OP* o, bool rhs, int *scalars_p)
{
OP *top_op = o;
OP *effective_top_op = o;
int all_flags = 0;
while (1) {
bool top = o == effective_top_op;
int flags = 0;
OP* next_kid = NULL;
/* first, look for a solitary @_ on the RHS */
if ( rhs
&& top
&& (o->op_flags & OPf_KIDS)
&& OP_TYPE_IS_OR_WAS(o, OP_LIST)
) {
OP *kid = cUNOPo->op_first;
if ( ( kid->op_type == OP_PUSHMARK
|| kid->op_type == OP_PADRANGE) /* ex-pushmark */
&& ((kid = OpSIBLING(kid)))
&& !OpHAS_SIBLING(kid)
&& kid->op_type == OP_RV2AV
&& !(kid->op_flags & OPf_REF)
&& !(kid->op_private & (OPpLVAL_INTRO|OPpMAYBE_LVSUB))
&& ((kid->op_flags & OPf_WANT) == OPf_WANT_LIST)
&& ((kid = cUNOPx(kid)->op_first))
&& kid->op_type == OP_GV
&& cGVOPx_gv(kid) == PL_defgv
)
flags = AAS_DEFAV;
}
switch (o->op_type) {
case OP_GVSV:
(*scalars_p)++;
all_flags |= AAS_PKG_SCALAR;
goto do_next;
case OP_PADAV:
case OP_PADHV:
(*scalars_p) += 2;
/* if !top, could be e.g. @a[0,1] */
all_flags |= (top && (o->op_flags & OPf_REF))
? ((o->op_private & OPpLVAL_INTRO)
? AAS_MY_AGG : AAS_LEX_AGG)
: AAS_DANGEROUS;
goto do_next;
case OP_PADSV:
{
int comm = S_aassign_padcheck(aTHX_ o, rhs)
? AAS_LEX_SCALAR_COMM : 0;
(*scalars_p)++;
all_flags |= (o->op_private & OPpLVAL_INTRO)
? (AAS_MY_SCALAR|comm) : (AAS_LEX_SCALAR|comm);
goto do_next;
}
case OP_RV2AV:
case OP_RV2HV:
(*scalars_p) += 2;
if (cUNOPx(o)->op_first->op_type != OP_GV)
all_flags |= AAS_DANGEROUS; /* @{expr}, %{expr} */
/* @pkg, %pkg */
/* if !top, could be e.g. @a[0,1] */
else if (top && (o->op_flags & OPf_REF))
all_flags |= AAS_PKG_AGG;
else
all_flags |= AAS_DANGEROUS;
goto do_next;
case OP_RV2SV:
(*scalars_p)++;
if (cUNOPx(o)->op_first->op_type != OP_GV) {
(*scalars_p) += 2;
all_flags |= AAS_DANGEROUS; /* ${expr} */
}
else
all_flags |= AAS_PKG_SCALAR; /* $pkg */
goto do_next;
case OP_SPLIT:
if (o->op_private & OPpSPLIT_ASSIGN) {
/* the assign in @a = split() has been optimised away
* and the @a attached directly to the split op
* Treat the array as appearing on the RHS, i.e.
* ... = (@a = split)
* is treated like
* ... = @a;
*/
if (o->op_flags & OPf_STACKED) {
/* @{expr} = split() - the array expression is tacked
* on as an extra child to split - process kid */
next_kid = cLISTOPo->op_last;
goto do_next;
}
/* ... else array is directly attached to split op */
(*scalars_p) += 2;
all_flags |= (PL_op->op_private & OPpSPLIT_LEX)
? ((o->op_private & OPpLVAL_INTRO)
? AAS_MY_AGG : AAS_LEX_AGG)
: AAS_PKG_AGG;
goto do_next;
}
(*scalars_p)++;
/* other args of split can't be returned */
all_flags |= AAS_SAFE_SCALAR;
goto do_next;
case OP_UNDEF:
/* undef on LHS following a var is significant, e.g.
* my $x = 1;
* @a = (($x, undef) = (2 => $x));
* # @a shoul be (2,1) not (2,2)
*
* undef on RHS counts as a scalar:
* ($x, $y) = (undef, $x); # 2 scalars on RHS: unsafe
*/
if ((!rhs && *scalars_p) || rhs)
(*scalars_p)++;
flags = AAS_SAFE_SCALAR;
break;
case OP_PUSHMARK:
case OP_STUB:
/* these are all no-ops; they don't push a potentially common SV
* onto the stack, so they are neither AAS_DANGEROUS nor
* AAS_SAFE_SCALAR */
goto do_next;
case OP_PADRANGE: /* Ignore padrange; checking its siblings is enough */
break;
case OP_NULL:
case OP_LIST:
/* these do nothing, but may have children */
break;
default:
if (PL_opargs[o->op_type] & OA_DANGEROUS) {
(*scalars_p) += 2;
flags = AAS_DANGEROUS;
break;
}
if ( (PL_opargs[o->op_type] & OA_TARGLEX)
&& (o->op_private & OPpTARGET_MY))
{
(*scalars_p)++;
all_flags |= S_aassign_padcheck(aTHX_ o, rhs)
? AAS_LEX_SCALAR_COMM : AAS_LEX_SCALAR;
goto do_next;
}
/* if its an unrecognised, non-dangerous op, assume that it
* is the cause of at least one safe scalar */
(*scalars_p)++;
flags = AAS_SAFE_SCALAR;
break;
}
all_flags |= flags;
/* by default, process all kids next
* XXX this assumes that all other ops are "transparent" - i.e. that
* they can return some of their children. While this true for e.g.
* sort and grep, it's not true for e.g. map. We really need a
* 'transparent' flag added to regen/opcodes
*/
if (o->op_flags & OPf_KIDS) {
next_kid = cUNOPo->op_first;
/* these ops do nothing but may have children; but their
* children should also be treated as top-level */
if ( o == effective_top_op
&& (o->op_type == OP_NULL || o->op_type == OP_LIST)
)
effective_top_op = next_kid;
}
/* If next_kid is set, someone in the code above wanted us to process
* that kid and all its remaining siblings. Otherwise, work our way
* back up the tree */
do_next:
while (!next_kid) {
if (o == top_op)
return all_flags; /* at top; no parents/siblings to try */
if (OpHAS_SIBLING(o)) {
next_kid = o->op_sibparent;
if (o == effective_top_op)
effective_top_op = next_kid;
}
else if (o == effective_top_op)
effective_top_op = o->op_sibparent;
o = o->op_sibparent; /* try parent's next sibling */
}
o = next_kid;
} /* while */
}
/* S_maybe_multideref(): given an op_next chain of ops beginning at 'start'
* that potentially represent a series of one or more aggregate derefs
* (such as $a->[1]{$key}), examine the chain, and if appropriate, convert
* the whole chain to a single OP_MULTIDEREF op (maybe with a few
* additional ops left in too).
*
* The caller will have already verified that the first few ops in the
* chain following 'start' indicate a multideref candidate, and will have
* set 'orig_o' to the point further on in the chain where the first index
* expression (if any) begins. 'orig_action' specifies what type of
* beginning has already been determined by the ops between start..orig_o
* (e.g. $lex_ary[], $pkg_ary->{}, expr->[], etc).
*
* 'hints' contains any hints flags that need adding (currently just
* OPpHINT_STRICT_REFS) as found in any rv2av/hv skipped by the caller.
*/
STATIC void
S_maybe_multideref(pTHX_ OP *start, OP *orig_o, UV orig_action, U8 hints)
{
int pass;
UNOP_AUX_item *arg_buf = NULL;
bool reset_start_targ = FALSE; /* start->op_targ needs zeroing */
int index_skip = -1; /* don't output index arg on this action */
/* similar to regex compiling, do two passes; the first pass
* determines whether the op chain is convertible and calculates the
* buffer size; the second pass populates the buffer and makes any
* changes necessary to ops (such as moving consts to the pad on
* threaded builds).
*
* NB: for things like Coverity, note that both passes take the same
* path through the logic tree (except for 'if (pass)' bits), since
* both passes are following the same op_next chain; and in
* particular, if it would return early on the second pass, it would
* already have returned early on the first pass.
*/
for (pass = 0; pass < 2; pass++) {
OP *o = orig_o;
UV action = orig_action;
OP *first_elem_op = NULL; /* first seen aelem/helem */
OP *top_op = NULL; /* highest [ah]elem/exists/del/rv2[ah]v */
int action_count = 0; /* number of actions seen so far */
int action_ix = 0; /* action_count % (actions per IV) */
bool next_is_hash = FALSE; /* is the next lookup to be a hash? */
bool is_last = FALSE; /* no more derefs to follow */
bool maybe_aelemfast = FALSE; /* we can replace with aelemfast? */
UV action_word = 0; /* all actions so far */
size_t argi = 0;
UNOP_AUX_item *action_ptr = arg_buf;
argi++; /* reserve slot for first action word */
switch (action) {
case MDEREF_HV_gvsv_vivify_rv2hv_helem:
case MDEREF_HV_gvhv_helem:
next_is_hash = TRUE;
/* FALLTHROUGH */
case MDEREF_AV_gvsv_vivify_rv2av_aelem:
case MDEREF_AV_gvav_aelem:
if (pass) {
#ifdef USE_ITHREADS
arg_buf[argi].pad_offset = cPADOPx(start)->op_padix;
/* stop it being swiped when nulled */
cPADOPx(start)->op_padix = 0;
#else
arg_buf[argi].sv = cSVOPx(start)->op_sv;
cSVOPx(start)->op_sv = NULL;
#endif
}
argi++;
break;
case MDEREF_HV_padhv_helem:
case MDEREF_HV_padsv_vivify_rv2hv_helem:
next_is_hash = TRUE;
/* FALLTHROUGH */
case MDEREF_AV_padav_aelem:
case MDEREF_AV_padsv_vivify_rv2av_aelem:
if (pass) {
arg_buf[argi].pad_offset = start->op_targ;
/* we skip setting op_targ = 0 for now, since the intact
* OP_PADXV is needed by check_hash_fields_and_hekify */
reset_start_targ = TRUE;
}
argi++;
break;
case MDEREF_HV_pop_rv2hv_helem:
next_is_hash = TRUE;
/* FALLTHROUGH */
case MDEREF_AV_pop_rv2av_aelem:
break;
default:
NOT_REACHED; /* NOTREACHED */
return;
}
while (!is_last) {
/* look for another (rv2av/hv; get index;
* aelem/helem/exists/delele) sequence */
OP *kid;
bool is_deref;
bool ok;
UV index_type = MDEREF_INDEX_none;
if (action_count) {
/* if this is not the first lookup, consume the rv2av/hv */
/* for N levels of aggregate lookup, we normally expect
* that the first N-1 [ah]elem ops will be flagged as
* /DEREF (so they autovivify if necessary), and the last
* lookup op not to be.
* For other things (like @{$h{k1}{k2}}) extra scope or
* leave ops can appear, so abandon the effort in that
* case */
if (o->op_type != OP_RV2AV && o->op_type != OP_RV2HV)
return;
/* rv2av or rv2hv sKR/1 */
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_KIDS|OPf_PARENS
|OPf_REF|OPf_MOD|OPf_SPECIAL)));
if (o->op_flags != (OPf_WANT_SCALAR|OPf_KIDS|OPf_REF))
return;
/* at this point, we wouldn't expect any of these
* possible private flags:
* OPpMAYBE_LVSUB, OPpOUR_INTRO, OPpLVAL_INTRO
* OPpTRUEBOOL, OPpMAYBE_TRUEBOOL (rv2hv only)
*/
ASSUME(!(o->op_private &
~(OPpHINT_STRICT_REFS|OPpARG1_MASK|OPpSLICEWARNING)));
hints = (o->op_private & OPpHINT_STRICT_REFS);
/* make sure the type of the previous /DEREF matches the
* type of the next lookup */
ASSUME(o->op_type == (next_is_hash ? OP_RV2HV : OP_RV2AV));
top_op = o;
action = next_is_hash
? MDEREF_HV_vivify_rv2hv_helem
: MDEREF_AV_vivify_rv2av_aelem;
o = o->op_next;
}
/* if this is the second pass, and we're at the depth where
* previously we encountered a non-simple index expression,
* stop processing the index at this point */
if (action_count != index_skip) {
/* look for one or more simple ops that return an array
* index or hash key */
switch (o->op_type) {
case OP_PADSV:
/* it may be a lexical var index */
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_PARENS
|OPf_REF|OPf_MOD|OPf_SPECIAL)));
ASSUME(!(o->op_private &
~(OPpPAD_STATE|OPpDEREF|OPpLVAL_INTRO)));
if ( OP_GIMME(o,0) == G_SCALAR
&& !(o->op_flags & (OPf_REF|OPf_MOD))
&& o->op_private == 0)
{
if (pass)
arg_buf[argi].pad_offset = o->op_targ;
argi++;
index_type = MDEREF_INDEX_padsv;
o = o->op_next;
}
break;
case OP_CONST:
if (next_is_hash) {
/* it's a constant hash index */
if (!(SvFLAGS(cSVOPo_sv) & (SVf_IOK|SVf_NOK|SVf_POK)))
/* "use constant foo => FOO; $h{+foo}" for
* some weird FOO, can leave you with constants
* that aren't simple strings. It's not worth
* the extra hassle for those edge cases */
break;
{
UNOP *rop = NULL;
OP * helem_op = o->op_next;
ASSUME( helem_op->op_type == OP_HELEM
|| helem_op->op_type == OP_NULL
|| pass == 0);
if (helem_op->op_type == OP_HELEM) {
rop = cUNOPx(cBINOPx(helem_op)->op_first);
if ( helem_op->op_private & OPpLVAL_INTRO
|| rop->op_type != OP_RV2HV
)
rop = NULL;
}
/* on first pass just check; on second pass
* hekify */
check_hash_fields_and_hekify(rop, cSVOPo, pass);
}
if (pass) {
#ifdef USE_ITHREADS
/* Relocate sv to the pad for thread safety */
op_relocate_sv(&cSVOPo->op_sv, &o->op_targ);
arg_buf[argi].pad_offset = o->op_targ;
o->op_targ = 0;
#else
arg_buf[argi].sv = cSVOPx_sv(o);
#endif
}
}
else {
/* it's a constant array index */
IV iv;
SV *ix_sv = cSVOPo->op_sv;
if (!SvIOK(ix_sv))
break;
iv = SvIV(ix_sv);
if ( action_count == 0
&& iv >= -128
&& iv <= 127
&& ( action == MDEREF_AV_padav_aelem
|| action == MDEREF_AV_gvav_aelem)
)
maybe_aelemfast = TRUE;
if (pass) {
arg_buf[argi].iv = iv;
SvREFCNT_dec_NN(cSVOPo->op_sv);
}
}
if (pass)
/* we've taken ownership of the SV */
cSVOPo->op_sv = NULL;
argi++;
index_type = MDEREF_INDEX_const;
o = o->op_next;
break;
case OP_GV:
/* it may be a package var index */
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_PARENS|OPf_SPECIAL)));
ASSUME(!(o->op_private & ~(OPpEARLY_CV)));
if ( (o->op_flags & ~(OPf_PARENS|OPf_SPECIAL)) != OPf_WANT_SCALAR
|| o->op_private != 0
)
break;
kid = o->op_next;
if (kid->op_type != OP_RV2SV)
break;
ASSUME(!(kid->op_flags &
~(OPf_WANT|OPf_KIDS|OPf_MOD|OPf_REF
|OPf_SPECIAL|OPf_PARENS)));
ASSUME(!(kid->op_private &
~(OPpARG1_MASK
|OPpHINT_STRICT_REFS|OPpOUR_INTRO
|OPpDEREF|OPpLVAL_INTRO)));
if( (kid->op_flags &~ OPf_PARENS)
!= (OPf_WANT_SCALAR|OPf_KIDS)
|| (kid->op_private & ~(OPpARG1_MASK|HINT_STRICT_REFS))
)
break;
if (pass) {
#ifdef USE_ITHREADS
arg_buf[argi].pad_offset = cPADOPx(o)->op_padix;
/* stop it being swiped when nulled */
cPADOPx(o)->op_padix = 0;
#else
arg_buf[argi].sv = cSVOPx(o)->op_sv;
cSVOPo->op_sv = NULL;
#endif
}
argi++;
index_type = MDEREF_INDEX_gvsv;
o = kid->op_next;
break;
} /* switch */
} /* action_count != index_skip */
action |= index_type;
/* at this point we have either:
* * detected what looks like a simple index expression,
* and expect the next op to be an [ah]elem, or
* an nulled [ah]elem followed by a delete or exists;
* * found a more complex expression, so something other
* than the above follows.
*/
/* possibly an optimised away [ah]elem (where op_next is
* exists or delete) */
if (o->op_type == OP_NULL)
o = o->op_next;
/* at this point we're looking for an OP_AELEM, OP_HELEM,
* OP_EXISTS or OP_DELETE */
/* if a custom array/hash access checker is in scope,
* abandon optimisation attempt */
if ( (o->op_type == OP_AELEM || o->op_type == OP_HELEM)
&& PL_check[o->op_type] != Perl_ck_null)
return;
/* similarly for customised exists and delete */
if ( (o->op_type == OP_EXISTS)
&& PL_check[o->op_type] != Perl_ck_exists)
return;
if ( (o->op_type == OP_DELETE)
&& PL_check[o->op_type] != Perl_ck_delete)
return;
if ( o->op_type != OP_AELEM
|| (o->op_private &
(OPpLVAL_INTRO|OPpLVAL_DEFER|OPpDEREF|OPpMAYBE_LVSUB))
)
maybe_aelemfast = FALSE;
/* look for aelem/helem/exists/delete. If it's not the last elem
* lookup, it *must* have OPpDEREF_AV/HV, but not many other
* flags; if it's the last, then it mustn't have
* OPpDEREF_AV/HV, but may have lots of other flags, like
* OPpLVAL_INTRO etc
*/
if ( index_type == MDEREF_INDEX_none
|| ( o->op_type != OP_AELEM && o->op_type != OP_HELEM
&& o->op_type != OP_EXISTS && o->op_type != OP_DELETE)
)
ok = FALSE;
else {
/* we have aelem/helem/exists/delete with valid simple index */
is_deref = (o->op_type == OP_AELEM || o->op_type == OP_HELEM)
&& ( (o->op_private & OPpDEREF) == OPpDEREF_AV
|| (o->op_private & OPpDEREF) == OPpDEREF_HV);
/* This doesn't make much sense but is legal:
* @{ local $x[0][0] } = 1
* Since scope exit will undo the autovivification,
* don't bother in the first place. The OP_LEAVE
* assertion is in case there are other cases of both
* OPpLVAL_INTRO and OPpDEREF which don't include a scope
* exit that would undo the local - in which case this
* block of code would need rethinking.
*/
if (is_deref && (o->op_private & OPpLVAL_INTRO)) {
#ifdef DEBUGGING
OP *n = o->op_next;
while (n && ( n->op_type == OP_NULL
|| n->op_type == OP_LIST
|| n->op_type == OP_SCALAR))
n = n->op_next;
assert(n && n->op_type == OP_LEAVE);
#endif
o->op_private &= ~OPpDEREF;
is_deref = FALSE;
}
if (is_deref) {
ASSUME(!(o->op_flags &
~(OPf_WANT|OPf_KIDS|OPf_MOD|OPf_PARENS)));
ASSUME(!(o->op_private & ~(OPpARG2_MASK|OPpDEREF)));
ok = (o->op_flags &~ OPf_PARENS)
== (OPf_WANT_SCALAR|OPf_KIDS|OPf_MOD)
&& !(o->op_private & ~(OPpDEREF|OPpARG2_MASK));
}
else if (o->op_type == OP_EXISTS) {
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_KIDS|OPf_PARENS
|OPf_REF|OPf_MOD|OPf_SPECIAL)));
ASSUME(!(o->op_private & ~(OPpARG1_MASK|OPpEXISTS_SUB)));
ok = !(o->op_private & ~OPpARG1_MASK);
}
else if (o->op_type == OP_DELETE) {
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_KIDS|OPf_PARENS
|OPf_REF|OPf_MOD|OPf_SPECIAL)));
ASSUME(!(o->op_private &
~(OPpARG1_MASK|OPpSLICE|OPpLVAL_INTRO)));
/* don't handle slices or 'local delete'; the latter
* is fairly rare, and has a complex runtime */
ok = !(o->op_private & ~OPpARG1_MASK);
if (OP_TYPE_IS_OR_WAS(cUNOPo->op_first, OP_AELEM))
/* skip handling run-tome error */
ok = (ok && cBOOL(o->op_flags & OPf_SPECIAL));
}
else {
ASSUME(o->op_type == OP_AELEM || o->op_type == OP_HELEM);
ASSUME(!(o->op_flags & ~(OPf_WANT|OPf_KIDS|OPf_MOD
|OPf_PARENS|OPf_REF|OPf_SPECIAL)));
ASSUME(!(o->op_private & ~(OPpARG2_MASK|OPpMAYBE_LVSUB
|OPpLVAL_DEFER|OPpDEREF|OPpLVAL_INTRO)));
ok = (o->op_private & OPpDEREF) != OPpDEREF_SV;
}
}
if (ok) {
if (!first_elem_op)
first_elem_op = o;
top_op = o;
if (is_deref) {
next_is_hash = cBOOL((o->op_private & OPpDEREF) == OPpDEREF_HV);
o = o->op_next;
}
else {
is_last = TRUE;
action |= MDEREF_FLAG_last;
}
}
else {
/* at this point we have something that started
* promisingly enough (with rv2av or whatever), but failed
* to find a simple index followed by an
* aelem/helem/exists/delete. If this is the first action,
* give up; but if we've already seen at least one
* aelem/helem, then keep them and add a new action with
* MDEREF_INDEX_none, which causes it to do the vivify
* from the end of the previous lookup, and do the deref,
* but stop at that point. So $a[0][expr] will do one
* av_fetch, vivify and deref, then continue executing at
* expr */
if (!action_count)
return;
is_last = TRUE;
index_skip = action_count;
action |= MDEREF_FLAG_last;
if (index_type != MDEREF_INDEX_none)
argi--;
}
action_word |= (action << (action_ix * MDEREF_SHIFT));
action_ix++;
action_count++;
/* if there's no space for the next action, reserve a new slot
* for it *before* we start adding args for that action */
if ((action_ix + 1) * MDEREF_SHIFT > UVSIZE*8) {
if (pass) {
action_ptr->uv = action_word;
action_ptr = arg_buf + argi;
}
action_word = 0;
argi++;
action_ix = 0;
}
} /* while !is_last */
/* success! */
if (!action_ix)
/* slot reserved for next action word not now needed */
argi--;
else if (pass)
action_ptr->uv = action_word;
if (pass) {
OP *mderef;
OP *p, *q;
mderef = newUNOP_AUX(OP_MULTIDEREF, 0, NULL, arg_buf);
if (index_skip == -1) {
mderef->op_flags = o->op_flags
& (OPf_WANT|OPf_MOD|(next_is_hash ? OPf_SPECIAL : 0));
if (o->op_type == OP_EXISTS)
mderef->op_private = OPpMULTIDEREF_EXISTS;
else if (o->op_type == OP_DELETE)
mderef->op_private = OPpMULTIDEREF_DELETE;
else
mderef->op_private = o->op_private
& (OPpMAYBE_LVSUB|OPpLVAL_DEFER|OPpLVAL_INTRO);
}
/* accumulate strictness from every level (although I don't think
* they can actually vary) */
mderef->op_private |= hints;
/* integrate the new multideref op into the optree and the
* op_next chain.
*
* In general an op like aelem or helem has two child
* sub-trees: the aggregate expression (a_expr) and the
* index expression (i_expr):
*
* aelem
* |
* a_expr - i_expr
*
* The a_expr returns an AV or HV, while the i-expr returns an
* index. In general a multideref replaces most or all of a
* multi-level tree, e.g.
*
* exists
* |
* ex-aelem
* |
* rv2av - i_expr1
* |
* helem
* |
* rv2hv - i_expr2
* |
* aelem
* |
* a_expr - i_expr3
*
* With multideref, all the i_exprs will be simple vars or
* constants, except that i_expr1 may be arbitrary in the case
* of MDEREF_INDEX_none.
*
* The bottom-most a_expr will be either:
* 1) a simple var (so padXv or gv+rv2Xv);
* 2) a simple scalar var dereferenced (e.g. $r->[0]):
* so a simple var with an extra rv2Xv;
* 3) or an arbitrary expression.
*
* 'start', the first op in the execution chain, will point to
* 1),2): the padXv or gv op;
* 3): the rv2Xv which forms the last op in the a_expr
* execution chain, and the top-most op in the a_expr
* subtree.
*
* For all cases, the 'start' node is no longer required,
* but we can't free it since one or more external nodes
* may point to it. E.g. consider
* $h{foo} = $a ? $b : $c
* Here, both the op_next and op_other branches of the
* cond_expr point to the gv[*h] of the hash expression, so
* we can't free the 'start' op.
*
* For expr->[...], we need to save the subtree containing the
* expression; for the other cases, we just need to save the
* start node.
* So in all cases, we null the start op and keep it around by
* making it the child of the multideref op; for the expr->
* case, the expr will be a subtree of the start node.
*
* So in the simple 1,2 case the optree above changes to
*
* ex-exists
* |
* multideref
* |
* ex-gv (or ex-padxv)
*
* with the op_next chain being
*
* -> ex-gv -> multideref -> op-following-ex-exists ->
*
* In the 3 case, we have
*
* ex-exists
* |
* multideref
* |
* ex-rv2xv
* |
* rest-of-a_expr
* subtree
*
* and
*
* -> rest-of-a_expr subtree ->
* ex-rv2xv -> multideref -> op-following-ex-exists ->
*
*
* Where the last i_expr is non-simple (i.e. MDEREF_INDEX_none,
* e.g. $a[0]{foo}[$x+1], the next rv2xv is nulled and the
* multideref attached as the child, e.g.
*
* exists
* |
* ex-aelem
* |
* ex-rv2av - i_expr1
* |
* multideref
* |
* ex-whatever
*
*/
/* if we free this op, don't free the pad entry */
if (reset_start_targ)
start->op_targ = 0;
/* Cut the bit we need to save out of the tree and attach to
* the multideref op, then free the rest of the tree */
/* find parent of node to be detached (for use by splice) */
p = first_elem_op;
if ( orig_action == MDEREF_AV_pop_rv2av_aelem
|| orig_action == MDEREF_HV_pop_rv2hv_helem)
{
/* there is an arbitrary expression preceding us, e.g.
* expr->[..]? so we need to save the 'expr' subtree */
if (p->op_type == OP_EXISTS || p->op_type == OP_DELETE)
p = cUNOPx(p)->op_first;
ASSUME( start->op_type == OP_RV2AV
|| start->op_type == OP_RV2HV);
}
else {
/* either a padXv or rv2Xv+gv, maybe with an ex-Xelem
* above for exists/delete. */
while ( (p->op_flags & OPf_KIDS)
&& cUNOPx(p)->op_first != start
)
p = cUNOPx(p)->op_first;
}
ASSUME(cUNOPx(p)->op_first == start);
/* detach from main tree, and re-attach under the multideref */
op_sibling_splice(mderef, NULL, 0,
op_sibling_splice(p, NULL, 1, NULL));
op_null(start);
start->op_next = mderef;
mderef->op_next = index_skip == -1 ? o->op_next : o;
/* excise and free the original tree, and replace with
* the multideref op */
p = op_sibling_splice(top_op, NULL, -1, mderef);
while (p) {
q = OpSIBLING(p);
op_free(p);
p = q;
}
op_null(top_op);
}
else {
Size_t size = argi;
if (maybe_aelemfast && action_count == 1)
return;
arg_buf = (UNOP_AUX_item*)PerlMemShared_malloc(
sizeof(UNOP_AUX_item) * (size + 1));
/* for dumping etc: store the length in a hidden first slot;
* we set the op_aux pointer to the second slot */
arg_buf->uv = size;
arg_buf++;
}
} /* for (pass = ...) */
}
/* See if the ops following o are such that o will always be executed in
* boolean context: that is, the SV which o pushes onto the stack will
* only ever be consumed by later ops via SvTRUE(sv) or similar.
* If so, set a suitable private flag on o. Normally this will be
* bool_flag; but see below why maybe_flag is needed too.
*
* Typically the two flags you pass will be the generic OPpTRUEBOOL and
* OPpMAYBE_TRUEBOOL, buts it's possible that for some ops those bits may
* already be taken, so you'll have to give that op two different flags.
*
* More explanation of 'maybe_flag' and 'safe_and' parameters.
* The binary logical ops &&, ||, // (plus 'if' and 'unless' which use
* those underlying ops) short-circuit, which means that rather than
* necessarily returning a truth value, they may return the LH argument,
* which may not be boolean. For example in $x = (keys %h || -1), keys
* should return a key count rather than a boolean, even though its
* sort-of being used in boolean context.
*
* So we only consider such logical ops to provide boolean context to
* their LH argument if they themselves are in void or boolean context.
* However, sometimes the context isn't known until run-time. In this
* case the op is marked with the maybe_flag flag it.
*
* Consider the following.
*
* sub f { ....; if (%h) { .... } }
*
* This is actually compiled as
*
* sub f { ....; %h && do { .... } }
*
* Here we won't know until runtime whether the final statement (and hence
* the &&) is in void context and so is safe to return a boolean value.
* So mark o with maybe_flag rather than the bool_flag.
* Note that there is cost associated with determining context at runtime
* (e.g. a call to block_gimme()), so it may not be worth setting (at
* compile time) and testing (at runtime) maybe_flag if the scalar verses
* boolean costs savings are marginal.
*
* However, we can do slightly better with && (compared to || and //):
* this op only returns its LH argument when that argument is false. In
* this case, as long as the op promises to return a false value which is
* valid in both boolean and scalar contexts, we can mark an op consumed
* by && with bool_flag rather than maybe_flag.
* For example as long as pp_padhv and pp_rv2hv return &PL_sv_zero rather
* than &PL_sv_no for a false result in boolean context, then it's safe. An
* op which promises to handle this case is indicated by setting safe_and
* to true.
*/
static void
S_check_for_bool_cxt(OP*o, bool safe_and, U8 bool_flag, U8 maybe_flag)
{
OP *lop;
U8 flag = 0;
assert((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR);
/* OPpTARGET_MY and boolean context probably don't mix well.
* If someone finds a valid use case, maybe add an extra flag to this
* function which indicates its safe to do so for this op? */
assert(!( (PL_opargs[o->op_type] & OA_TARGLEX)
&& (o->op_private & OPpTARGET_MY)));
lop = o->op_next;
while (lop) {
switch (lop->op_type) {
case OP_NULL:
case OP_SCALAR:
break;
/* these two consume the stack argument in the scalar case,
* and treat it as a boolean in the non linenumber case */
case OP_FLIP:
case OP_FLOP:
if ( ((lop->op_flags & OPf_WANT) == OPf_WANT_LIST)
|| (lop->op_private & OPpFLIP_LINENUM))
{
lop = NULL;
break;
}
/* FALLTHROUGH */
/* these never leave the original value on the stack */
case OP_NOT:
case OP_XOR:
case OP_COND_EXPR:
case OP_GREPWHILE:
flag = bool_flag;
lop = NULL;
break;
/* OR DOR and AND evaluate their arg as a boolean, but then may
* leave the original scalar value on the stack when following the
* op_next route. If not in void context, we need to ensure
* that whatever follows consumes the arg only in boolean context
* too.
*/
case OP_AND:
if (safe_and) {
flag = bool_flag;
lop = NULL;
break;
}
/* FALLTHROUGH */
case OP_OR:
case OP_DOR:
if ((lop->op_flags & OPf_WANT) == OPf_WANT_VOID) {
flag = bool_flag;
lop = NULL;
}
else if (!(lop->op_flags & OPf_WANT)) {
/* unknown context - decide at runtime */
flag = maybe_flag;
lop = NULL;
}
break;
default:
lop = NULL;
break;
}
if (lop)
lop = lop->op_next;
}
o->op_private |= flag;
}
/* mechanism for deferring recursion in rpeep() */
#define MAX_DEFERRED 4
#define DEFER(o) \
STMT_START { \
if (defer_ix == (MAX_DEFERRED-1)) { \
OP **defer = defer_queue[defer_base]; \
CALL_RPEEP(*defer); \
op_prune_chain_head(defer); \
defer_base = (defer_base + 1) % MAX_DEFERRED; \
defer_ix--; \
} \
defer_queue[(defer_base + ++defer_ix) % MAX_DEFERRED] = &(o); \
} STMT_END
#define IS_AND_OP(o) (o->op_type == OP_AND)
#define IS_OR_OP(o) (o->op_type == OP_OR)
/* A peephole optimizer. We visit the ops in the order they're to execute.
* See the comments at the top of this file for more details about when
* peep() is called */
void
Perl_rpeep(pTHX_ OP *o)
{
OP* oldop = NULL;
OP* oldoldop = NULL;
OP** defer_queue[MAX_DEFERRED] = { NULL }; /* small queue of deferred branches */
int defer_base = 0;
int defer_ix = -1;
if (!o || o->op_opt)
return;
assert(o->op_type != OP_FREED);
ENTER;
SAVEOP();
SAVEVPTR(PL_curcop);
for (;; o = o->op_next) {
if (o && o->op_opt)
o = NULL;
if (!o) {
while (defer_ix >= 0) {
OP **defer =
defer_queue[(defer_base + defer_ix--) % MAX_DEFERRED];
CALL_RPEEP(*defer);
op_prune_chain_head(defer);
}
break;
}
redo:
/* oldoldop -> oldop -> o should be a chain of 3 adjacent ops */
assert(!oldoldop || oldoldop->op_next == oldop);
assert(!oldop || oldop->op_next == o);
/* By default, this op has now been optimised. A couple of cases below
clear this again. */
o->op_opt = 1;
PL_op = o;
/* look for a series of 1 or more aggregate derefs, e.g.
* $a[1]{foo}[$i]{$k}
* and replace with a single OP_MULTIDEREF op.
* Each index must be either a const, or a simple variable,
*
* First, look for likely combinations of starting ops,
* corresponding to (global and lexical variants of)
* $a[...] $h{...}
* $r->[...] $r->{...}
* (preceding expression)->[...]
* (preceding expression)->{...}
* and if so, call maybe_multideref() to do a full inspection
* of the op chain and if appropriate, replace with an
* OP_MULTIDEREF
*/
{
UV action;
OP *o2 = o;
U8 hints = 0;
switch (o2->op_type) {
case OP_GV:
/* $pkg[..] : gv[*pkg]
* $pkg->[...]: gv[*pkg]; rv2sv sKM/DREFAV */
/* Fail if there are new op flag combinations that we're
* not aware of, rather than:
* * silently failing to optimise, or
* * silently optimising the flag away.
* If this ASSUME starts failing, examine what new flag
* has been added to the op, and decide whether the
* optimisation should still occur with that flag, then
* update the code accordingly. This applies to all the
* other ASSUMEs in the block of code too.
*/
ASSUME(!(o2->op_flags &
~(OPf_WANT|OPf_MOD|OPf_PARENS|OPf_SPECIAL)));
ASSUME(!(o2->op_private & ~OPpEARLY_CV));
o2 = o2->op_next;
if (o2->op_type == OP_RV2AV) {
action = MDEREF_AV_gvav_aelem;
goto do_deref;
}
if (o2->op_type == OP_RV2HV) {
action = MDEREF_HV_gvhv_helem;
goto do_deref;
}
if (o2->op_type != OP_RV2SV)
break;
/* at this point we've seen gv,rv2sv, so the only valid
* construct left is $pkg->[] or $pkg->{} */
ASSUME(!(o2->op_flags & OPf_STACKED));
if ((o2->op_flags & (OPf_WANT|OPf_REF|OPf_MOD|OPf_SPECIAL))
!= (OPf_WANT_SCALAR|OPf_MOD))
break;
ASSUME(!(o2->op_private & ~(OPpARG1_MASK|HINT_STRICT_REFS
|OPpOUR_INTRO|OPpDEREF|OPpLVAL_INTRO)));
if (o2->op_private & (OPpOUR_INTRO|OPpLVAL_INTRO))
break;
if ( (o2->op_private & OPpDEREF) != OPpDEREF_AV
&& (o2->op_private & OPpDEREF) != OPpDEREF_HV)
break;
o2 = o2->op_next;
if (o2->op_type == OP_RV2AV) {
action = MDEREF_AV_gvsv_vivify_rv2av_aelem;
goto do_deref;
}
if (o2->op_type == OP_RV2HV) {
action = MDEREF_HV_gvsv_vivify_rv2hv_helem;
goto do_deref;
}
break;
case OP_PADSV:
/* $lex->[...]: padsv[$lex] sM/DREFAV */
ASSUME(!(o2->op_flags &
~(OPf_WANT|OPf_PARENS|OPf_REF|OPf_MOD|OPf_SPECIAL)));
if ((o2->op_flags &
(OPf_WANT|OPf_REF|OPf_MOD|OPf_SPECIAL))
!= (OPf_WANT_SCALAR|OPf_MOD))
break;
ASSUME(!(o2->op_private &
~(OPpPAD_STATE|OPpDEREF|OPpLVAL_INTRO)));
/* skip if state or intro, or not a deref */
if ( o2->op_private != OPpDEREF_AV
&& o2->op_private != OPpDEREF_HV)
break;
o2 = o2->op_next;
if (o2->op_type == OP_RV2AV) {
action = MDEREF_AV_padsv_vivify_rv2av_aelem;
goto do_deref;
}
if (o2->op_type == OP_RV2HV) {
action = MDEREF_HV_padsv_vivify_rv2hv_helem;
goto do_deref;
}
break;
case OP_PADAV:
case OP_PADHV:
/* $lex[..]: padav[@lex:1,2] sR *
* or $lex{..}: padhv[%lex:1,2] sR */
ASSUME(!(o2->op_flags & ~(OPf_WANT|OPf_MOD|OPf_PARENS|
OPf_REF|OPf_SPECIAL)));
if ((o2->op_flags &
(OPf_WANT|OPf_REF|OPf_MOD|OPf_SPECIAL))
!= (OPf_WANT_SCALAR|OPf_REF))
break;
if (o2->op_flags != (OPf_WANT_SCALAR|OPf_REF))
break;
/* OPf_PARENS isn't currently used in this case;
* if that changes, let us know! */
ASSUME(!(o2->op_flags & OPf_PARENS));
/* at this point, we wouldn't expect any of the remaining
* possible private flags:
* OPpPAD_STATE, OPpLVAL_INTRO, OPpTRUEBOOL,
* OPpMAYBE_TRUEBOOL, OPpMAYBE_LVSUB
*
* OPpSLICEWARNING shouldn't affect runtime
*/
ASSUME(!(o2->op_private & ~(OPpSLICEWARNING)));
action = o2->op_type == OP_PADAV
? MDEREF_AV_padav_aelem
: MDEREF_HV_padhv_helem;
o2 = o2->op_next;
S_maybe_multideref(aTHX_ o, o2, action, 0);
break;
case OP_RV2AV:
case OP_RV2HV:
action = o2->op_type == OP_RV2AV
? MDEREF_AV_pop_rv2av_aelem
: MDEREF_HV_pop_rv2hv_helem;
/* FALLTHROUGH */
do_deref:
/* (expr)->[...]: rv2av sKR/1;
* (expr)->{...}: rv2hv sKR/1; */
ASSUME(o2->op_type == OP_RV2AV || o2->op_type == OP_RV2HV);
ASSUME(!(o2->op_flags & ~(OPf_WANT|OPf_KIDS|OPf_PARENS
|OPf_REF|OPf_MOD|OPf_STACKED|OPf_SPECIAL)));
if (o2->op_flags != (OPf_WANT_SCALAR|OPf_KIDS|OPf_REF))
break;
/* at this point, we wouldn't expect any of these
* possible private flags:
* OPpMAYBE_LVSUB, OPpLVAL_INTRO
* OPpTRUEBOOL, OPpMAYBE_TRUEBOOL, (rv2hv only)
*/
ASSUME(!(o2->op_private &
~(OPpHINT_STRICT_REFS|OPpARG1_MASK|OPpSLICEWARNING
|OPpOUR_INTRO)));
hints |= (o2->op_private & OPpHINT_STRICT_REFS);
o2 = o2->op_next;
S_maybe_multideref(aTHX_ o, o2, action, hints);
break;
default:
break;
}
}
switch (o->op_type) {
case OP_DBSTATE:
PL_curcop = ((COP*)o); /* for warnings */
break;
case OP_NEXTSTATE:
PL_curcop = ((COP*)o); /* for warnings */
/* Optimise a "return ..." at the end of a sub to just be "...".
* This saves 2 ops. Before:
* 1 <;> nextstate(main 1 -e:1) v ->2
* 4 <@> return K ->5
* 2 <0> pushmark s ->3
* - <1> ex-rv2sv sK/1 ->4
* 3 <#> gvsv[*cat] s ->4
*
* After:
* - <@> return K ->-
* - <0> pushmark s ->2
* - <1> ex-rv2sv sK/1 ->-
* 2 <$> gvsv(*cat) s ->3
*/
{
OP *next = o->op_next;
OP *sibling = OpSIBLING(o);
if ( OP_TYPE_IS(next, OP_PUSHMARK)
&& OP_TYPE_IS(sibling, OP_RETURN)
&& OP_TYPE_IS(sibling->op_next, OP_LINESEQ)
&& ( OP_TYPE_IS(sibling->op_next->op_next, OP_LEAVESUB)
||OP_TYPE_IS(sibling->op_next->op_next,
OP_LEAVESUBLV))
&& cUNOPx(sibling)->op_first == next
&& OpHAS_SIBLING(next) && OpSIBLING(next)->op_next
&& next->op_next
) {
/* Look through the PUSHMARK's siblings for one that
* points to the RETURN */
OP *top = OpSIBLING(next);
while (top && top->op_next) {
if (top->op_next == sibling) {
top->op_next = sibling->op_next;
o->op_next = next->op_next;
break;
}
top = OpSIBLING(top);
}
}
}
/* Optimise 'my $x; my $y;' into 'my ($x, $y);'
*
* This latter form is then suitable for conversion into padrange
* later on. Convert:
*
* nextstate1 -> padop1 -> nextstate2 -> padop2 -> nextstate3
*
* into:
*
* nextstate1 -> listop -> nextstate3
* / \
* pushmark -> padop1 -> padop2
*/
if (o->op_next && (
o->op_next->op_type == OP_PADSV
|| o->op_next->op_type == OP_PADAV
|| o->op_next->op_type == OP_PADHV
)
&& !(o->op_next->op_private & ~OPpLVAL_INTRO)
&& o->op_next->op_next && o->op_next->op_next->op_type == OP_NEXTSTATE
&& o->op_next->op_next->op_next && (
o->op_next->op_next->op_next->op_type == OP_PADSV
|| o->op_next->op_next->op_next->op_type == OP_PADAV
|| o->op_next->op_next->op_next->op_type == OP_PADHV
)
&& !(o->op_next->op_next->op_next->op_private & ~OPpLVAL_INTRO)
&& o->op_next->op_next->op_next->op_next && o->op_next->op_next->op_next->op_next->op_type == OP_NEXTSTATE
&& (!CopLABEL((COP*)o)) /* Don't mess with labels */
&& (!CopLABEL((COP*)o->op_next->op_next)) /* ... */
) {
OP *pad1, *ns2, *pad2, *ns3, *newop, *newpm;
pad1 = o->op_next;
ns2 = pad1->op_next;
pad2 = ns2->op_next;
ns3 = pad2->op_next;
/* we assume here that the op_next chain is the same as
* the op_sibling chain */
assert(OpSIBLING(o) == pad1);
assert(OpSIBLING(pad1) == ns2);
assert(OpSIBLING(ns2) == pad2);
assert(OpSIBLING(pad2) == ns3);
/* excise and delete ns2 */
op_sibling_splice(NULL, pad1, 1, NULL);
op_free(ns2);
/* excise pad1 and pad2 */
op_sibling_splice(NULL, o, 2, NULL);
/* create new listop, with children consisting of:
* a new pushmark, pad1, pad2. */
newop = newLISTOP(OP_LIST, 0, pad1, pad2);
newop->op_flags |= OPf_PARENS;
newop->op_flags = (newop->op_flags & ~OPf_WANT) | OPf_WANT_VOID;
/* insert newop between o and ns3 */
op_sibling_splice(NULL, o, 0, newop);
/*fixup op_next chain */
newpm = cUNOPx(newop)->op_first; /* pushmark */
o ->op_next = newpm;
newpm->op_next = pad1;
pad1 ->op_next = pad2;
pad2 ->op_next = newop; /* listop */
newop->op_next = ns3;
/* Ensure pushmark has this flag if padops do */
if (pad1->op_flags & OPf_MOD && pad2->op_flags & OPf_MOD) {
newpm->op_flags |= OPf_MOD;
}
break;
}
/* Two NEXTSTATEs in a row serve no purpose. Except if they happen
to carry two labels. For now, take the easier option, and skip
this optimisation if the first NEXTSTATE has a label.
Yves asked what about if they have different hints or features?
Tony thinks that as we remove the first of the pair it should
be fine.
*/
if (!CopLABEL((COP*)o) && !PERLDB_NOOPT) {
OP *nextop = o->op_next;
while (nextop) {
switch (nextop->op_type) {
case OP_NULL:
case OP_SCALAR:
case OP_LINESEQ:
case OP_SCOPE:
nextop = nextop->op_next;
continue;
}
break;
}
if (nextop && (nextop->op_type == OP_NEXTSTATE)) {
op_null(o);
if (oldop)
oldop->op_next = nextop;
o = nextop;
/* Skip (old)oldop assignment since the current oldop's
op_next already points to the next op. */
goto redo;
}
}
break;
case OP_CONCAT:
if (o->op_next && o->op_next->op_type == OP_STRINGIFY) {
if (o->op_next->op_private & OPpTARGET_MY) {
if (o->op_flags & OPf_STACKED) /* chained concats */
break; /* ignore_optimization */
else {
/* assert(PL_opargs[o->op_type] & OA_TARGLEX); */
o->op_targ = o->op_next->op_targ;
o->op_next->op_targ = 0;
o->op_private |= OPpTARGET_MY;
}
}
op_null(o->op_next);
}
break;
case OP_STUB:
if ((o->op_flags & OPf_WANT) != OPf_WANT_LIST) {
break; /* Scalar stub must produce undef. List stub is noop */
}
goto nothin;
case OP_NULL:
if (o->op_targ == OP_NEXTSTATE
|| o->op_targ == OP_DBSTATE)
{
PL_curcop = ((COP*)o);
}
/* XXX: We avoid setting op_seq here to prevent later calls
to rpeep() from mistakenly concluding that optimisation
has already occurred. This doesn't fix the real problem,
though (See 20010220.007 (#5874)). AMS 20010719 */
/* op_seq functionality is now replaced by op_opt */
o->op_opt = 0;
/* FALLTHROUGH */
case OP_SCALAR:
case OP_LINESEQ:
case OP_SCOPE:
nothin:
if (oldop) {
oldop->op_next = o->op_next;
o->op_opt = 0;
continue;
}
break;
case OP_PUSHMARK:
/* Given
5 repeat/DOLIST
3 ex-list
1 pushmark
2 scalar or const
4 const[0]
convert repeat into a stub with no kids.
*/
if (o->op_next->op_type == OP_CONST
|| ( o->op_next->op_type == OP_PADSV
&& !(o->op_next->op_private & OPpLVAL_INTRO))
|| ( o->op_next->op_type == OP_GV
&& o->op_next->op_next->op_type == OP_RV2SV
&& !(o->op_next->op_next->op_private
& (OPpLVAL_INTRO|OPpOUR_INTRO))))
{
const OP *kid = o->op_next->op_next;
if (o->op_next->op_type == OP_GV)
kid = kid->op_next;
/* kid is now the ex-list. */
if (kid->op_type == OP_NULL
&& (kid = kid->op_next)->op_type == OP_CONST
/* kid is now the repeat count. */
&& kid->op_next->op_type == OP_REPEAT
&& kid->op_next->op_private & OPpREPEAT_DOLIST
&& (kid->op_next->op_flags & OPf_WANT) == OPf_WANT_LIST
&& SvIOK(kSVOP_sv) && SvIVX(kSVOP_sv) == 0
&& oldop)
{
o = kid->op_next; /* repeat */
oldop->op_next = o;
op_free(cBINOPo->op_first);
op_free(cBINOPo->op_last );
o->op_flags &=~ OPf_KIDS;
/* stub is a baseop; repeat is a binop */
STATIC_ASSERT_STMT(sizeof(OP) <= sizeof(BINOP));
OpTYPE_set(o, OP_STUB);
o->op_private = 0;
break;
}
}
/* Convert a series of PAD ops for my vars plus support into a
* single padrange op. Basically
*
* pushmark -> pad[ahs]v -> pad[ahs]?v -> ... -> (list) -> rest
*
* becomes, depending on circumstances, one of
*
* padrange ----------------------------------> (list) -> rest
* padrange --------------------------------------------> rest
*
* where all the pad indexes are sequential and of the same type
* (INTRO or not).
* We convert the pushmark into a padrange op, then skip
* any other pad ops, and possibly some trailing ops.
* Note that we don't null() the skipped ops, to make it
* easier for Deparse to undo this optimisation (and none of
* the skipped ops are holding any resources). It also makes
* it easier for find_uninit_var(), as it can just ignore
* padrange, and examine the original pad ops.
*/
{
OP *p;
OP *followop = NULL; /* the op that will follow the padrange op */
U8 count = 0;
U8 intro = 0;
PADOFFSET base = 0; /* init only to stop compiler whining */
bool gvoid = 0; /* init only to stop compiler whining */
bool defav = 0; /* seen (...) = @_ */
bool reuse = 0; /* reuse an existing padrange op */
/* look for a pushmark -> gv[_] -> rv2av */
{
OP *rv2av, *q;
p = o->op_next;
if ( p->op_type == OP_GV
&& cGVOPx_gv(p) == PL_defgv
&& (rv2av = p->op_next)
&& rv2av->op_type == OP_RV2AV
&& !(rv2av->op_flags & OPf_REF)
&& !(rv2av->op_private & (OPpLVAL_INTRO|OPpMAYBE_LVSUB))
&& ((rv2av->op_flags & OPf_WANT) == OPf_WANT_LIST)
) {
q = rv2av->op_next;
if (q->op_type == OP_NULL)
q = q->op_next;
if (q->op_type == OP_PUSHMARK) {
defav = 1;
p = q;
}
}
}
if (!defav) {
p = o;
}
/* scan for PAD ops */
for (p = p->op_next; p; p = p->op_next) {
if (p->op_type == OP_NULL)
continue;
if (( p->op_type != OP_PADSV
&& p->op_type != OP_PADAV
&& p->op_type != OP_PADHV
)
/* any private flag other than INTRO? e.g. STATE */
|| (p->op_private & ~OPpLVAL_INTRO)
)
break;
/* let $a[N] potentially be optimised into AELEMFAST_LEX
* instead */
if ( p->op_type == OP_PADAV
&& p->op_next
&& p->op_next->op_type == OP_CONST
&& p->op_next->op_next
&& p->op_next->op_next->op_type == OP_AELEM
)
break;
/* for 1st padop, note what type it is and the range
* start; for the others, check that it's the same type
* and that the targs are contiguous */
if (count == 0) {
intro = (p->op_private & OPpLVAL_INTRO);
base = p->op_targ;
gvoid = OP_GIMME(p,0) == G_VOID;
}
else {
if ((p->op_private & OPpLVAL_INTRO) != intro)
break;
/* Note that you'd normally expect targs to be
* contiguous in my($a,$b,$c), but that's not the case
* when external modules start doing things, e.g.
* Function::Parameters */
if (p->op_targ != base + count)
break;
assert(p->op_targ == base + count);
/* Either all the padops or none of the padops should
be in void context. Since we only do the optimisa-
tion for av/hv when the aggregate itself is pushed
on to the stack (one item), there is no need to dis-
tinguish list from scalar context. */
if (gvoid != (OP_GIMME(p,0) == G_VOID))
break;
}
/* for AV, HV, only when we're not flattening */
if ( p->op_type != OP_PADSV
&& !gvoid
&& !(p->op_flags & OPf_REF)
)
break;
if (count >= OPpPADRANGE_COUNTMASK)
break;
/* there's a biggest base we can fit into a
* SAVEt_CLEARPADRANGE in pp_padrange.
* (The sizeof() stuff will be constant-folded, and is
* intended to avoid getting "comparison is always false"
* compiler warnings. See the comments above
* MEM_WRAP_CHECK for more explanation on why we do this
* in a weird way to avoid compiler warnings.)
*/
if ( intro
&& (8*sizeof(base) >
8*sizeof(UV)-OPpPADRANGE_COUNTSHIFT-SAVE_TIGHT_SHIFT
? (Size_t)base
: (UV_MAX >> (OPpPADRANGE_COUNTSHIFT+SAVE_TIGHT_SHIFT))
) >
(UV_MAX >> (OPpPADRANGE_COUNTSHIFT+SAVE_TIGHT_SHIFT))
)
break;
/* Success! We've got another valid pad op to optimise away */
count++;
followop = p->op_next;
}
if (count < 1 || (count == 1 && !defav))
break;
/* pp_padrange in specifically compile-time void context
* skips pushing a mark and lexicals; in all other contexts
* (including unknown till runtime) it pushes a mark and the
* lexicals. We must be very careful then, that the ops we
* optimise away would have exactly the same effect as the
* padrange.
* In particular in void context, we can only optimise to
* a padrange if we see the complete sequence
* pushmark, pad*v, ...., list
* which has the net effect of leaving the markstack as it
* was. Not pushing onto the stack (whereas padsv does touch
* the stack) makes no difference in void context.
*/
assert(followop);
if (gvoid) {
if (followop->op_type == OP_LIST
&& OP_GIMME(followop,0) == G_VOID
)
{
followop = followop->op_next; /* skip OP_LIST */
/* consolidate two successive my(...);'s */
if ( oldoldop
&& oldoldop->op_type == OP_PADRANGE
&& (oldoldop->op_flags & OPf_WANT) == OPf_WANT_VOID
&& (oldoldop->op_private & OPpLVAL_INTRO) == intro
&& !(oldoldop->op_flags & OPf_SPECIAL)
) {
U8 old_count;
assert(oldoldop->op_next == oldop);
assert(OP_TYPE_IS_COP_NN(oldop));
assert(oldop->op_next == o);
old_count
= (oldoldop->op_private & OPpPADRANGE_COUNTMASK);
/* Do not assume pad offsets for $c and $d are con-
tiguous in
my ($a,$b,$c);
my ($d,$e,$f);
*/
if ( oldoldop->op_targ + old_count == base
&& old_count < OPpPADRANGE_COUNTMASK - count) {
base = oldoldop->op_targ;
count += old_count;
reuse = 1;
}
}
/* if there's any immediately following singleton
* my var's; then swallow them and the associated
* nextstates; i.e.
* my ($a,$b); my $c; my $d;
* is treated as
* my ($a,$b,$c,$d);
*/
while ( ((p = followop->op_next))
&& ( p->op_type == OP_PADSV
|| p->op_type == OP_PADAV
|| p->op_type == OP_PADHV)
&& (p->op_flags & OPf_WANT) == OPf_WANT_VOID
&& (p->op_private & OPpLVAL_INTRO) == intro
&& !(p->op_private & ~OPpLVAL_INTRO)
&& p->op_next
&& OP_TYPE_IS_COP_NN(p->op_next)
&& count < OPpPADRANGE_COUNTMASK
&& base + count == p->op_targ
) {
count++;
followop = p->op_next;
}
}
else
break;
}
if (reuse) {
assert(oldoldop->op_type == OP_PADRANGE);
oldoldop->op_next = followop;
oldoldop->op_private = (intro | count);
o = oldoldop;
oldop = NULL;
oldoldop = NULL;
}
else {
/* Convert the pushmark into a padrange.
* To make Deparse easier, we guarantee that a padrange was
* *always* formerly a pushmark */
assert(o->op_type == OP_PUSHMARK);
o->op_next = followop;
OpTYPE_set(o, OP_PADRANGE);
o->op_targ = base;
/* bit 7: INTRO; bit 6..0: count */
o->op_private = (intro | count);
o->op_flags = ((o->op_flags & ~(OPf_WANT|OPf_SPECIAL))
| gvoid * OPf_WANT_VOID
| (defav ? OPf_SPECIAL : 0));
}
break;
}
case OP_RV2AV:
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
break;
case OP_RV2HV:
case OP_PADHV:
/*'keys %h' in void or scalar context: skip the OP_KEYS
* and perform the functionality directly in the RV2HV/PADHV
* op
*/
if (o->op_flags & OPf_REF) {
OP *k = o->op_next;
U8 want = (k->op_flags & OPf_WANT);
if ( k
&& k->op_type == OP_KEYS
&& ( want == OPf_WANT_VOID
|| want == OPf_WANT_SCALAR)
&& !(k->op_private & OPpMAYBE_LVSUB)
&& !(k->op_flags & OPf_MOD)
) {
o->op_next = k->op_next;
o->op_flags &= ~(OPf_REF|OPf_WANT);
o->op_flags |= want;
o->op_private |= (o->op_type == OP_PADHV ?
OPpPADHV_ISKEYS : OPpRV2HV_ISKEYS);
/* for keys(%lex), hold onto the OP_KEYS's targ
* since padhv doesn't have its own targ to return
* an int with */
if (!(o->op_type ==OP_PADHV && want == OPf_WANT_SCALAR))
op_null(k);
}
}
/* see if %h is used in boolean context */
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, OPpMAYBE_TRUEBOOL);
if (o->op_type != OP_PADHV)
break;
/* FALLTHROUGH */
case OP_PADAV:
if ( o->op_type == OP_PADAV
&& (o->op_flags & OPf_WANT) == OPf_WANT_SCALAR
)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
/* FALLTHROUGH */
case OP_PADSV:
/* Skip over state($x) in void context. */
if (oldop && o->op_private == (OPpPAD_STATE|OPpLVAL_INTRO)
&& (o->op_flags & OPf_WANT) == OPf_WANT_VOID)
{
oldop->op_next = o->op_next;
goto redo_nextstate;
}
if (o->op_type != OP_PADAV)
break;
/* FALLTHROUGH */
case OP_GV:
if (o->op_type == OP_PADAV || o->op_next->op_type == OP_RV2AV) {
OP* const pop = (o->op_type == OP_PADAV) ?
o->op_next : o->op_next->op_next;
IV i;
if (pop && pop->op_type == OP_CONST &&
((PL_op = pop->op_next)) &&
pop->op_next->op_type == OP_AELEM &&
!(pop->op_next->op_private &
(OPpLVAL_INTRO|OPpLVAL_DEFER|OPpDEREF|OPpMAYBE_LVSUB)) &&
(i = SvIV(cSVOPx(pop)->op_sv)) >= -128 && i <= 127)
{
GV *gv;
if (cSVOPx(pop)->op_private & OPpCONST_STRICT)
no_bareword_allowed(pop);
if (o->op_type == OP_GV)
op_null(o->op_next);
op_null(pop->op_next);
op_null(pop);
o->op_flags |= pop->op_next->op_flags & OPf_MOD;
o->op_next = pop->op_next->op_next;
o->op_ppaddr = PL_ppaddr[OP_AELEMFAST];
o->op_private = (U8)i;
if (o->op_type == OP_GV) {
gv = cGVOPo_gv;
GvAVn(gv);
o->op_type = OP_AELEMFAST;
}
else
o->op_type = OP_AELEMFAST_LEX;
}
if (o->op_type != OP_GV)
break;
}
/* Remove $foo from the op_next chain in void context. */
if (oldop
&& ( o->op_next->op_type == OP_RV2SV
|| o->op_next->op_type == OP_RV2AV
|| o->op_next->op_type == OP_RV2HV )
&& (o->op_next->op_flags & OPf_WANT) == OPf_WANT_VOID
&& !(o->op_next->op_private & OPpLVAL_INTRO))
{
oldop->op_next = o->op_next->op_next;
/* Reprocess the previous op if it is a nextstate, to
allow double-nextstate optimisation. */
redo_nextstate:
if (oldop->op_type == OP_NEXTSTATE) {
oldop->op_opt = 0;
o = oldop;
oldop = oldoldop;
oldoldop = NULL;
goto redo;
}
o = oldop->op_next;
goto redo;
}
else if (o->op_next->op_type == OP_RV2SV) {
if (!(o->op_next->op_private & OPpDEREF)) {
op_null(o->op_next);
o->op_private |= o->op_next->op_private & (OPpLVAL_INTRO
| OPpOUR_INTRO);
o->op_next = o->op_next->op_next;
OpTYPE_set(o, OP_GVSV);
}
}
else if (o->op_next->op_type == OP_READLINE
&& o->op_next->op_next->op_type == OP_CONCAT
&& (o->op_next->op_next->op_flags & OPf_STACKED))
{
/* Turn "$a .= <FH>" into an OP_RCATLINE. AMS 20010917 */
OpTYPE_set(o, OP_RCATLINE);
o->op_flags |= OPf_STACKED;
op_null(o->op_next->op_next);
op_null(o->op_next);
}
break;
case OP_NOT:
break;
case OP_AND:
case OP_OR:
case OP_DOR:
case OP_CMPCHAIN_AND:
case OP_PUSHDEFER:
while (cLOGOP->op_other->op_type == OP_NULL)
cLOGOP->op_other = cLOGOP->op_other->op_next;
while (o->op_next && ( o->op_type == o->op_next->op_type
|| o->op_next->op_type == OP_NULL))
o->op_next = o->op_next->op_next;
/* If we're an OR and our next is an AND in void context, we'll
follow its op_other on short circuit, same for reverse.
We can't do this with OP_DOR since if it's true, its return
value is the underlying value which must be evaluated
by the next op. */
if (o->op_next &&
(
(IS_AND_OP(o) && IS_OR_OP(o->op_next))
|| (IS_OR_OP(o) && IS_AND_OP(o->op_next))
)
&& (o->op_next->op_flags & OPf_WANT) == OPf_WANT_VOID
) {
o->op_next = cLOGOPx(o->op_next)->op_other;
}
DEFER(cLOGOP->op_other);
o->op_opt = 1;
break;
case OP_GREPWHILE:
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
/* FALLTHROUGH */
case OP_COND_EXPR:
case OP_MAPWHILE:
case OP_ANDASSIGN:
case OP_ORASSIGN:
case OP_DORASSIGN:
case OP_RANGE:
case OP_ONCE:
case OP_ARGDEFELEM:
while (cLOGOP->op_other->op_type == OP_NULL)
cLOGOP->op_other = cLOGOP->op_other->op_next;
DEFER(cLOGOP->op_other);
break;
case OP_ENTERLOOP:
case OP_ENTERITER:
while (cLOOP->op_redoop->op_type == OP_NULL)
cLOOP->op_redoop = cLOOP->op_redoop->op_next;
while (cLOOP->op_nextop->op_type == OP_NULL)
cLOOP->op_nextop = cLOOP->op_nextop->op_next;
while (cLOOP->op_lastop->op_type == OP_NULL)
cLOOP->op_lastop = cLOOP->op_lastop->op_next;
/* a while(1) loop doesn't have an op_next that escapes the
* loop, so we have to explicitly follow the op_lastop to
* process the rest of the code */
DEFER(cLOOP->op_lastop);
break;
case OP_ENTERTRY:
assert(cLOGOPo->op_other->op_type == OP_LEAVETRY);
DEFER(cLOGOPo->op_other);
break;
case OP_ENTERTRYCATCH:
assert(cLOGOPo->op_other->op_type == OP_CATCH);
/* catch body is the ->op_other of the OP_CATCH */
DEFER(cLOGOPx(cLOGOPo->op_other)->op_other);
break;
case OP_SUBST:
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
assert(!(cPMOP->op_pmflags & PMf_ONCE));
while (cPMOP->op_pmstashstartu.op_pmreplstart &&
cPMOP->op_pmstashstartu.op_pmreplstart->op_type == OP_NULL)
cPMOP->op_pmstashstartu.op_pmreplstart
= cPMOP->op_pmstashstartu.op_pmreplstart->op_next;
DEFER(cPMOP->op_pmstashstartu.op_pmreplstart);
break;
case OP_SORT: {
OP *oright;
if (o->op_flags & OPf_SPECIAL) {
/* first arg is a code block */
OP * const nullop = OpSIBLING(cLISTOP->op_first);
OP * kid = cUNOPx(nullop)->op_first;
assert(nullop->op_type == OP_NULL);
assert(kid->op_type == OP_SCOPE
|| (kid->op_type == OP_NULL && kid->op_targ == OP_LEAVE));
/* since OP_SORT doesn't have a handy op_other-style
* field that can point directly to the start of the code
* block, store it in the otherwise-unused op_next field
* of the top-level OP_NULL. This will be quicker at
* run-time, and it will also allow us to remove leading
* OP_NULLs by just messing with op_nexts without
* altering the basic op_first/op_sibling layout. */
kid = kLISTOP->op_first;
assert(
(kid->op_type == OP_NULL
&& ( kid->op_targ == OP_NEXTSTATE
|| kid->op_targ == OP_DBSTATE ))
|| kid->op_type == OP_STUB
|| kid->op_type == OP_ENTER
|| (PL_parser && PL_parser->error_count));
nullop->op_next = kid->op_next;
DEFER(nullop->op_next);
}
/* check that RHS of sort is a single plain array */
oright = cUNOPo->op_first;
if (!oright || oright->op_type != OP_PUSHMARK)
break;
if (o->op_private & OPpSORT_INPLACE)
break;
/* reverse sort ... can be optimised. */
if (!OpHAS_SIBLING(cUNOPo)) {
/* Nothing follows us on the list. */
OP * const reverse = o->op_next;
if (reverse->op_type == OP_REVERSE &&
(reverse->op_flags & OPf_WANT) == OPf_WANT_LIST) {
OP * const pushmark = cUNOPx(reverse)->op_first;
if (pushmark && (pushmark->op_type == OP_PUSHMARK)
&& (OpSIBLING(cUNOPx(pushmark)) == o)) {
/* reverse -> pushmark -> sort */
o->op_private |= OPpSORT_REVERSE;
op_null(reverse);
pushmark->op_next = oright->op_next;
op_null(oright);
}
}
}
break;
}
case OP_REVERSE: {
OP *ourmark, *theirmark, *ourlast, *iter, *expushmark, *rv2av;
OP *gvop = NULL;
LISTOP *enter, *exlist;
if (o->op_private & OPpSORT_INPLACE)
break;
enter = cLISTOPx(o->op_next);
if (!enter)
break;
if (enter->op_type == OP_NULL) {
enter = cLISTOPx(enter->op_next);
if (!enter)
break;
}
/* for $a (...) will have OP_GV then OP_RV2GV here.
for (...) just has an OP_GV. */
if (enter->op_type == OP_GV) {
gvop = (OP *) enter;
enter = cLISTOPx(enter->op_next);
if (!enter)
break;
if (enter->op_type == OP_RV2GV) {
enter = cLISTOPx(enter->op_next);
if (!enter)
break;
}
}
if (enter->op_type != OP_ENTERITER)
break;
iter = enter->op_next;
if (!iter || iter->op_type != OP_ITER)
break;
expushmark = enter->op_first;
if (!expushmark || expushmark->op_type != OP_NULL
|| expushmark->op_targ != OP_PUSHMARK)
break;
exlist = cLISTOPx(OpSIBLING(expushmark));
if (!exlist || exlist->op_type != OP_NULL
|| exlist->op_targ != OP_LIST)
break;
if (exlist->op_last != o) {
/* Mmm. Was expecting to point back to this op. */
break;
}
theirmark = exlist->op_first;
if (!theirmark || theirmark->op_type != OP_PUSHMARK)
break;
if (OpSIBLING(theirmark) != o) {
/* There's something between the mark and the reverse, eg
for (1, reverse (...))
so no go. */
break;
}
ourmark = cLISTOPo->op_first;
if (!ourmark || ourmark->op_type != OP_PUSHMARK)
break;
ourlast = cLISTOPo->op_last;
if (!ourlast || ourlast->op_next != o)
break;
rv2av = OpSIBLING(ourmark);
if (rv2av && rv2av->op_type == OP_RV2AV && !OpHAS_SIBLING(rv2av)
&& rv2av->op_flags == (OPf_WANT_LIST | OPf_KIDS)) {
/* We're just reversing a single array. */
rv2av->op_flags = OPf_WANT_SCALAR | OPf_KIDS | OPf_REF;
enter->op_flags |= OPf_STACKED;
}
/* We don't have control over who points to theirmark, so sacrifice
ours. */
theirmark->op_next = ourmark->op_next;
theirmark->op_flags = ourmark->op_flags;
ourlast->op_next = gvop ? gvop : (OP *) enter;
op_null(ourmark);
op_null(o);
enter->op_private |= OPpITER_REVERSED;
iter->op_private |= OPpITER_REVERSED;
oldoldop = NULL;
oldop = ourlast;
o = oldop->op_next;
goto redo;
NOT_REACHED; /* NOTREACHED */
break;
}
case OP_UNDEF:
if ((o->op_flags & OPf_KIDS) &&
(cUNOPx(o)->op_first->op_type == OP_PADSV)) {
/* Convert:
* undef
* padsv[$x]
* to:
* undef[$x]
*/
OP * padsv = cUNOPx(o)->op_first;
o->op_private = OPpTARGET_MY |
(padsv->op_private & (OPpLVAL_INTRO|OPpPAD_STATE));
o->op_targ = padsv->op_targ; padsv->op_targ = 0;
op_null(padsv);
/* Optimizer does NOT seem to fix up the padsv op_next ptr */
if (oldoldop)
oldoldop->op_next = o;
oldop = oldoldop;
oldoldop = NULL;
} else if (o->op_next->op_type == OP_PADSV) {
OP * padsv = o->op_next;
OP * sassign = (padsv->op_next &&
padsv->op_next->op_type == OP_SASSIGN) ?
padsv->op_next : NULL;
if (sassign && cBINOPx(sassign)->op_first == o) {
/* Convert:
* sassign
* undef
* padsv[$x]
* to:
* undef[$x]
* NOTE: undef does not have the "T" flag set in
* regen/opcodes, as this would cause
* S_maybe_targlex to do the optimization.
* Seems easier to keep it all here, rather
* than have an undef-specific branch in
* S_maybe_targlex just to add the
* OPpUNDEF_KEEP_PV flag.
*/
o->op_private = OPpTARGET_MY | OPpUNDEF_KEEP_PV |
(padsv->op_private & (OPpLVAL_INTRO|OPpPAD_STATE));
o->op_targ = padsv->op_targ; padsv->op_targ = 0;
op_null(padsv);
op_null(sassign);
/* Optimizer DOES seems to fix up the op_next ptrs */
}
}
break;
case OP_QR:
case OP_MATCH:
if (!(cPMOP->op_pmflags & PMf_ONCE)) {
assert (!cPMOP->op_pmstashstartu.op_pmreplstart);
}
break;
case OP_RUNCV:
if (!(o->op_private & OPpOFFBYONE) && !CvCLONE(PL_compcv)
&& (!CvANON(PL_compcv) || (!PL_cv_has_eval && !PL_perldb)))
{
SV *sv;
if (CvEVAL(PL_compcv)) sv = &PL_sv_undef;
else {
sv = newRV((SV *)PL_compcv);
sv_rvweaken(sv);
SvREADONLY_on(sv);
}
OpTYPE_set(o, OP_CONST);
o->op_flags |= OPf_SPECIAL;
cSVOPo->op_sv = sv;
}
break;
case OP_SUBSTR: {
OP *expr, *offs, *len, *repl = NULL;
/* Specialize substr($x, 0, $y) and substr($x,0,$y,"") */
/* Does this substr have 3-4 args and amiable flags? */
if (
((cMAXARG3x(o) == 4) || (cMAXARG3x(o) == 3))
/* No lvalue cases, no OPpSUBSTR_REPL_FIRST*/
&& !(o->op_private & (OPpSUBSTR_REPL_FIRST|OPpMAYBE_LVSUB))
&& !(o->op_flags & OPf_MOD)
){
/* Should be a leading ex-pushmark */
OP *pushmark = cBINOPx(o)->op_first;
assert(pushmark->op_type == OP_NULL);
expr = OpSIBLING(pushmark);
offs = OpSIBLING(expr);
/* Gets complicated fast if the expr isn't simple*/
if (expr->op_type != OP_PADSV)
break;
/* Is the offset CONST zero? */
if (offs->op_type != OP_CONST)
break;
SV *offs_sv = cSVOPx_sv(offs);
if (!(SvIOK(offs_sv) && SvIVX(offs_sv) == 0))
break;
len = OpSIBLING(offs);
if (cMAXARG3x(o) == 4) {/* replacement */
/* Is the replacement string CONST ""? */
repl = OpSIBLING(len);
if (repl->op_type != OP_CONST)
break;
SV *repl_sv = cSVOPx_sv(repl);
if(!(SvPOK(repl_sv) && SvCUR(repl_sv) == 0))
break;
}
} else {
break;
}
/* It's on! */
/* Take out the static LENGTH OP. */
/* (The finalizer does not seem to change op_next here) */
expr->op_next = offs->op_next;
o->op_private = cMAXARG3x(o);
/* We have a problem if padrange pushes the expr OP for us,
* then jumps straight to the offs CONST OP. For example:
* push @{$pref{ substr($key, 0, 1) }}, $key;
* We don't want to hit that OP, but cannot easily figure
* out if that is going to happen and adjust for it.
* So we have to null out the OP, and then do a fixup in
* B::Deparse. :/ */
op_null(offs);
/* There can be multiple pointers to repl, see GH #22914.
* substr $x, 0, $y ? 2 : 3, "";
* So instead of rewriting all of len, null out repl. */
if (repl) {
op_null(repl);
/* We can still rewrite the simple len case though.*/
len->op_next = o;
}
/* Upgrade the SUBSTR to a SUBSTR_LEFT */
OpTYPE_set(o, OP_SUBSTR_LEFT);
/* oldop will be the OP_CONST associated with "" */
/* oldoldop is more unpredictable */
oldoldop = oldop = NULL;
/* pp_substr may be unsuitable for TARGMY optimization
* because of its potential RETPUSHUNDEF, and use of
* bit 4 for OPpSUBSTR_REPL_FIRST, but no such
* problems with pp_substr_left. Must just avoid
* sv == TARG.*/
if (OP_TYPE_IS(o->op_next, OP_PADSV) &&
!(o->op_next->op_private) &&
OP_TYPE_IS(o->op_next->op_next, OP_SASSIGN) &&
(o->op_next->op_targ != expr->op_targ)
) {
OP * padsv = o->op_next;
OP * sassign = padsv->op_next;
/* Carry over some flags */
o->op_flags = OPf_KIDS | (o->op_flags & OPf_PARENS) |
(sassign->op_flags & (OPf_WANT|OPf_PARENS));
o->op_private |= OPpTARGET_MY;
/* Steal the TARG, set op_next pointers*/
o->op_targ = padsv->op_targ;
padsv->op_targ = 0;
o->op_next = sassign->op_next;
/* Null the replaced OPs*/
op_null(padsv);
op_null(sassign);
}
}
break;
case OP_SASSIGN: {
if (OP_GIMME(o,0) == G_VOID
|| ( o->op_next->op_type == OP_LINESEQ
&& ( o->op_next->op_next->op_type == OP_LEAVESUB
|| ( o->op_next->op_next->op_type == OP_RETURN
&& !CvLVALUE(PL_compcv)))))
{
OP *right = cBINOP->op_first;
if (right) {
/* sassign
* RIGHT
* substr
* pushmark
* arg1
* arg2
* ...
* becomes
*
* ex-sassign
* substr
* pushmark
* RIGHT
* arg1
* arg2
* ...
*/
OP *left = OpSIBLING(right);
if (left->op_type == OP_SUBSTR
&& (cMAXARG3x(left) < 4)) {
op_null(o);
/* cut out right */
op_sibling_splice(o, NULL, 1, NULL);
/* and insert it as second child of OP_SUBSTR */
op_sibling_splice(left, cBINOPx(left)->op_first, 0,
right);
left->op_private |= OPpSUBSTR_REPL_FIRST;
left->op_flags =
(o->op_flags & ~OPf_WANT) | OPf_WANT_VOID;
}
}
}
OP* rhs = cBINOPx(o)->op_first;
OP* lval = cBINOPx(o)->op_last;
/* Combine a simple SASSIGN OP with a PADSV lvalue child OP
* into a single OP. */
/* This optimization covers arbitrarily complicated RHS OP
* trees. Separate optimizations may exist for specific,
* single RHS OPs, such as:
* "my $foo = undef;" or "my $bar = $other_padsv;" */
if (!(o->op_private & (OPpASSIGN_BACKWARDS|OPpASSIGN_CV_TO_GV))
&& lval && (lval->op_type == OP_PADSV) &&
!(lval->op_private & OPpDEREF)
/* skip if padrange has already gazumped the padsv */
&& (lval == oldop)
/* Memoize::Once produces a non-standard SASSIGN that
* doesn't actually point to pp_sassign, has only one
* child (PADSV), and gets to it via op_other rather
* than op_next. Don't try to optimize this. */
&& (lval != rhs)
/* For efficiency, pp_padsv_store() doesn't push its
* result onto the stack. For the relatively rare case of
* the $lex assignment not in void context, we just do it
* the old slow way. */
&& OP_GIMME(o,0) == G_VOID
) {
/* SASSIGN's bitfield flags, such as op_moresib and
* op_slabbed, will be carried over unchanged. */
OpTYPE_set(o, OP_PADSV_STORE);
/* Explicitly craft the new OP's op_flags, carrying
* some bits over from the SASSIGN */
o->op_flags = (
OPf_KIDS | OPf_STACKED |
(o->op_flags & (OPf_WANT|OPf_PARENS))
);
/* Reset op_private flags, taking relevant private flags
* from the PADSV */
o->op_private = (lval->op_private &
(OPpLVAL_INTRO|OPpPAD_STATE|OPpDEREF));
/* Steal the targ from the PADSV */
o->op_targ = lval->op_targ; lval->op_targ = 0;
/* Fixup op_next ptrs */
assert(oldop->op_type == OP_PADSV);
/* oldoldop can be arbitrarily deep in the RHS OP tree */
oldoldop->op_next = o;
/* Even when (rhs != oldoldop), rhs might still have a
* relevant op_next ptr to lval. This is definitely true
* when rhs is OP_NULL with a LOGOP kid (e.g. orassign).
* There may be other cases. */
if (rhs->op_next == lval)
rhs->op_next = o;
/* Now null-out the PADSV */
op_null(lval);
/* NULL the previous op ptrs, so rpeep can continue */
oldoldop = NULL; oldop = NULL;
}
/* Combine a simple SASSIGN OP with an AELEMFAST_LEX lvalue
* into a single OP. This optimization covers arbitrarily
* complicated RHS OP trees. */
if (!(o->op_private & (OPpASSIGN_BACKWARDS|OPpASSIGN_CV_TO_GV))
&& (lval->op_type == OP_NULL) && (lval->op_private == 2) &&
(cBINOPx(lval)->op_first->op_type == OP_AELEMFAST_LEX)
/* For efficiency, pp_aelemfastlex_store() doesn't push its
* result onto the stack. For the relatively rare case of
* the array assignment not in void context, we just do it
* the old slow way. */
&& OP_GIMME(o,0) == G_VOID
) {
OP * lex = cBINOPx(lval)->op_first;
/* SASSIGN's bitfield flags, such as op_moresib and
* op_slabbed, will be carried over unchanged. */
OpTYPE_set(o, OP_AELEMFASTLEX_STORE);
/* Explicitly craft the new OP's op_flags, carrying
* some bits over from the SASSIGN */
o->op_flags = (
OPf_KIDS | OPf_STACKED |
(o->op_flags & (OPf_WANT|OPf_PARENS))
);
/* Copy the AELEMFAST_LEX op->private, which contains
* the key index. */
o->op_private = lex->op_private;
/* Take the targ from the AELEMFAST_LEX */
o->op_targ = lex->op_targ; lex->op_targ = 0;
assert(oldop->op_type == OP_AELEMFAST_LEX);
/* oldoldop can be arbitrarily deep in the RHS OP tree */
oldoldop->op_next = o;
/* Even when (rhs != oldoldop), rhs might still have a
* relevant op_next ptr to lex. (Updating it here can
* also cause other ops in the RHS to get the desired
* op_next pointer, presumably thanks to the finalizer.)
* This is definitely truewhen rhs is OP_NULL with a
* LOGOP kid (e.g. orassign). There may be other cases. */
if (rhs->op_next == lex)
rhs->op_next = o;
/* Now null-out the AELEMFAST_LEX */
op_null(lex);
/* NULL the previous op ptrs, so rpeep can continue */
oldop = oldoldop; oldoldop = NULL;
}
break;
}
case OP_AASSIGN: {
int l, r, lr, lscalars, rscalars;
/* handle common vars detection, e.g. ($a,$b) = ($b,$a).
Note that we do this now rather than in newASSIGNOP(),
since only by now are aliased lexicals flagged as such
See the essay "Common vars in list assignment" above for
the full details of the rationale behind all the conditions
below.
PL_generation sorcery:
To detect whether there are common vars, the global var
PL_generation is incremented for each assign op we scan.
Then we run through all the lexical variables on the LHS,
of the assignment, setting a spare slot in each of them to
PL_generation. Then we scan the RHS, and if any lexicals
already have that value, we know we've got commonality.
Also, if the generation number is already set to
PERL_INT_MAX, then the variable is involved in aliasing, so
we also have potential commonality in that case.
*/
PL_generation++;
/* scan LHS */
lscalars = 0;
l = S_aassign_scan(aTHX_ cLISTOPo->op_last, FALSE, &lscalars);
/* scan RHS */
rscalars = 0;
r = S_aassign_scan(aTHX_ cLISTOPo->op_first, TRUE, &rscalars);
lr = (l|r);
/* After looking for things which are *always* safe, this main
* if/else chain selects primarily based on the type of the
* LHS, gradually working its way down from the more dangerous
* to the more restrictive and thus safer cases */
if ( !l /* () = ....; */
|| !r /* .... = (); */
|| !(l & ~AAS_SAFE_SCALAR) /* (undef, pos()) = ...; */
|| !(r & ~AAS_SAFE_SCALAR) /* ... = (1,2,length,undef); */
|| (lscalars < 2) /* (undef, $x) = ... */
) {
NOOP; /* always safe */
}
else if (l & AAS_DANGEROUS) {
/* always dangerous */
o->op_private |= OPpASSIGN_COMMON_SCALAR;
o->op_private |= OPpASSIGN_COMMON_AGG;
}
else if (l & (AAS_PKG_SCALAR|AAS_PKG_AGG)) {
/* package vars are always dangerous - too many
* aliasing possibilities */
if (l & AAS_PKG_SCALAR)
o->op_private |= OPpASSIGN_COMMON_SCALAR;
if (l & AAS_PKG_AGG)
o->op_private |= OPpASSIGN_COMMON_AGG;
}
else if (l & ( AAS_MY_SCALAR|AAS_MY_AGG
|AAS_LEX_SCALAR|AAS_LEX_AGG))
{
/* LHS contains only lexicals and safe ops */
if (l & (AAS_MY_AGG|AAS_LEX_AGG))
o->op_private |= OPpASSIGN_COMMON_AGG;
if (l & (AAS_MY_SCALAR|AAS_LEX_SCALAR)) {
if (lr & AAS_LEX_SCALAR_COMM)
o->op_private |= OPpASSIGN_COMMON_SCALAR;
else if ( !(l & AAS_LEX_SCALAR)
&& (r & AAS_DEFAV))
{
/* falsely mark
* my (...) = @_
* as scalar-safe for performance reasons.
* (it will still have been marked _AGG if necessary */
NOOP;
}
else if (r & (AAS_PKG_SCALAR|AAS_PKG_AGG|AAS_DANGEROUS))
/* if there are only lexicals on the LHS and no
* common ones on the RHS, then we assume that the
* only way those lexicals could also get
* on the RHS is via some sort of dereffing or
* closure, e.g.
* $r = \$lex;
* ($lex, $x) = (1, $$r)
* and in this case we assume the var must have
* a bumped ref count. So if its ref count is 1,
* it must only be on the LHS.
*/
o->op_private |= OPpASSIGN_COMMON_RC1;
}
}
/* ... = ($x)
* may have to handle aggregate on LHS, but we can't
* have common scalars. */
if (rscalars < 2)
o->op_private &=
~(OPpASSIGN_COMMON_SCALAR|OPpASSIGN_COMMON_RC1);
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpASSIGN_TRUEBOOL, 0);
break;
}
case OP_REF:
case OP_BLESSED:
/* if the op is used in boolean context, set the TRUEBOOL flag
* which enables an optimisation at runtime which avoids creating
* a stack temporary for known-true package names */
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, OPpMAYBE_TRUEBOOL);
break;
case OP_LENGTH:
/* see if the op is used in known boolean context,
* but not if OA_TARGLEX optimisation is enabled */
if ( (o->op_flags & OPf_WANT) == OPf_WANT_SCALAR
&& !(o->op_private & OPpTARGET_MY)
)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
break;
case OP_POS:
/* see if the op is used in known boolean context */
if ((o->op_flags & OPf_WANT) == OPf_WANT_SCALAR)
S_check_for_bool_cxt(o, 1, OPpTRUEBOOL, 0);
break;
case OP_CUSTOM: {
Perl_cpeep_t cpeep =
XopENTRYCUSTOM(o, xop_peep);
if (cpeep)
cpeep(aTHX_ o, oldop);
break;
}
}
/* did we just null the current op? If so, re-process it to handle
* eliding "empty" ops from the chain */
if (o->op_type == OP_NULL && oldop && oldop->op_next == o) {
o->op_opt = 0;
o = oldop;
}
else {
oldoldop = oldop;
oldop = o;
}
}
LEAVE;
}
void
Perl_peep(pTHX_ OP *o)
{
CALL_RPEEP(o);
}
/*
* ex: set ts=8 sts=4 sw=4 et:
*/
|