1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
|
/* pp_sort.c
*
* Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
* 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
*
* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
*/
/*
* ...they shuffled back towards the rear of the line. 'No, not at the
* rear!' the slave-driver shouted. 'Three files up. And stay there...
*
* [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
*/
/* This file contains pp ("push/pop") functions that
* execute the opcodes that make up a perl program. A typical pp function
* expects to find its arguments on the stack, and usually pushes its
* results onto the stack, hence the 'pp' terminology. Each OP structure
* contains a pointer to the relevant pp_foo() function.
*
* This particular file just contains pp_sort(), which is complex
* enough to merit its own file! See the other pp*.c files for the rest of
* the pp_ functions.
*/
#include "EXTERN.h"
#define PERL_IN_PP_SORT_C
#include "perl.h"
#ifndef SMALLSORT
#define SMALLSORT (200)
#endif
/*
* The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
*
* The original code was written in conjunction with BSD Computer Software
* Research Group at University of California, Berkeley.
*
* See also: "Optimistic Sorting and Information Theoretic Complexity"
* Peter McIlroy
* SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
* pp 467-474, Austin, Texas, 25-27 January 1993.
*
* The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>.
*
* The code can be distributed under the same terms as Perl itself.
*
*/
typedef char * aptr; /* pointer for arithmetic on sizes */
typedef SV * gptr; /* pointers in our lists */
/* Binary merge internal sort, with a few special mods
** for the special perl environment it now finds itself in.
**
** Things that were once options have been hotwired
** to values suitable for this use. In particular, we'll always
** initialize looking for natural runs, we'll always produce stable
** output, and we'll always do Peter McIlroy's binary merge.
*/
/* Pointer types for arithmetic and storage and convenience casts */
#define APTR(P) ((aptr)(P))
#define GPTP(P) ((gptr *)(P))
#define GPPP(P) ((gptr **)(P))
/* byte offset from pointer P to (larger) pointer Q */
#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
#define PSIZE sizeof(gptr)
/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
#ifdef PSHIFT
#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
#define PNBYTE(N) ((N) << (PSHIFT))
#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
#else
/* Leave optimization to compiler */
#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
#define PNBYTE(N) ((N) * (PSIZE))
#define PINDEX(P, N) (GPTP(P) + (N))
#endif
/* Pointer into other corresponding to pointer into this */
#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
/* Runs are identified by a pointer in the auxiliary list.
** The pointer is at the start of the list,
** and it points to the start of the next list.
** NEXT is used as an lvalue, too.
*/
#define NEXT(P) (*GPPP(P))
/* PTHRESH is the minimum number of pairs with the same sense to justify
** checking for a run and extending it. Note that PTHRESH counts PAIRS,
** not just elements, so PTHRESH == 8 means a run of 16.
*/
#define PTHRESH (8)
/* RTHRESH is the number of elements in a run that must compare low
** to the low element from the opposing run before we justify
** doing a binary rampup instead of single stepping.
** In random input, N in a row low should only happen with
** probability 2^(1-N), so we can risk that we are dealing
** with orderly input without paying much when we aren't.
*/
#define RTHRESH (6)
/*
** Overview of algorithm and variables.
** The array of elements at list1 will be organized into runs of length 2,
** or runs of length >= 2 * PTHRESH. We only try to form long runs when
** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
**
** Unless otherwise specified, pair pointers address the first of two elements.
**
** b and b+1 are a pair that compare with sense "sense".
** b is the "bottom" of adjacent pairs that might form a longer run.
**
** p2 parallels b in the list2 array, where runs are defined by
** a pointer chain.
**
** t represents the "top" of the adjacent pairs that might extend
** the run beginning at b. Usually, t addresses a pair
** that compares with opposite sense from (b,b+1).
** However, it may also address a singleton element at the end of list1,
** or it may be equal to "last", the first element beyond list1.
**
** r addresses the Nth pair following b. If this would be beyond t,
** we back it off to t. Only when r is less than t do we consider the
** run long enough to consider checking.
**
** q addresses a pair such that the pairs at b through q already form a run.
** Often, q will equal b, indicating we only are sure of the pair itself.
** However, a search on the previous cycle may have revealed a longer run,
** so q may be greater than b.
**
** p is used to work back from a candidate r, trying to reach q,
** which would mean b through r would be a run. If we discover such a run,
** we start q at r and try to push it further towards t.
** If b through r is NOT a run, we detect the wrong order at (p-1,p).
** In any event, after the check (if any), we have two main cases.
**
** 1) Short run. b <= q < p <= r <= t.
** b through q is a run (perhaps trivial)
** q through p are uninteresting pairs
** p through r is a run
**
** 2) Long run. b < r <= q < t.
** b through q is a run (of length >= 2 * PTHRESH)
**
** Note that degenerate cases are not only possible, but likely.
** For example, if the pair following b compares with opposite sense,
** then b == q < p == r == t.
*/
PERL_STATIC_FORCE_INLINE IV __attribute__always_inline__
dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
{
I32 sense;
gptr *b, *p, *q, *t, *p2;
gptr *last, *r;
IV runs = 0;
b = list1;
last = PINDEX(b, nmemb);
sense = (cmp(aTHX_ *b, *(b+1)) > 0);
for (p2 = list2; b < last; ) {
/* We just started, or just reversed sense.
** Set t at end of pairs with the prevailing sense.
*/
for (p = b+2, t = p; ++p < last; t = ++p) {
if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
}
q = b;
/* Having laid out the playing field, look for long runs */
do {
p = r = b + (2 * PTHRESH);
if (r >= t) p = r = t; /* too short to care about */
else {
while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
((p -= 2) > q)) {}
if (p <= q) {
/* b through r is a (long) run.
** Extend it as far as possible.
*/
p = q = r;
while (((p += 2) < t) &&
((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
r = p = q + 2; /* no simple pairs, no after-run */
}
}
if (q > b) { /* run of greater than 2 at b */
gptr *savep = p;
p = q += 2;
/* pick up singleton, if possible */
if ((p == t) &&
((t + 1) == last) &&
((cmp(aTHX_ *(p-1), *p) > 0) == sense))
savep = r = p = q = last;
p2 = NEXT(p2) = p2 + (p - b); ++runs;
if (sense)
while (b < --p) {
const gptr c = *b;
*b++ = *p;
*p = c;
}
p = savep;
}
while (q < p) { /* simple pairs */
p2 = NEXT(p2) = p2 + 2; ++runs;
if (sense) {
const gptr c = *q++;
*(q-1) = *q;
*q++ = c;
} else q += 2;
}
if (((b = p) == t) && ((t+1) == last)) {
NEXT(p2) = p2 + 1; ++runs;
b++;
}
q = r;
} while (b < t);
sense = !sense;
}
return runs;
}
/* The original merge sort, in use since 5.7, was as fast as, or faster than,
* qsort on many platforms, but slower than qsort, conspicuously so,
* on others. The most likely explanation was platform-specific
* differences in cache sizes and relative speeds.
*
* The quicksort divide-and-conquer algorithm guarantees that, as the
* problem is subdivided into smaller and smaller parts, the parts
* fit into smaller (and faster) caches. So it doesn't matter how
* many levels of cache exist, quicksort will "find" them, and,
* as long as smaller is faster, take advantage of them.
*
* By contrast, consider how the original mergesort algorithm worked.
* Suppose we have five runs (each typically of length 2 after dynprep).
*
* pass base aux
* 0 1 2 3 4 5
* 1 12 34 5
* 2 1234 5
* 3 12345
* 4 12345
*
* Adjacent pairs are merged in "grand sweeps" through the input.
* This means, on pass 1, the records in runs 1 and 2 aren't revisited until
* runs 3 and 4 are merged and the runs from run 5 have been copied.
* The only cache that matters is one large enough to hold *all* the input.
* On some platforms, this may be many times slower than smaller caches.
*
* The following pseudo-code uses the same basic merge algorithm,
* but in a divide-and-conquer way.
*
* # merge $runs runs at offset $offset of list $list1 into $list2.
* # all unmerged runs ($runs == 1) originate in list $base.
* sub mgsort2 {
* my ($offset, $runs, $base, $list1, $list2) = @_;
*
* if ($runs == 1) {
* if ($list1 is $base) copy run to $list2
* return offset of end of list (or copy)
* } else {
* $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
* mgsort2($off2, $runs/2, $base, $list2, $list1)
* merge the adjacent runs at $offset of $list1 into $list2
* return the offset of the end of the merged runs
* }
* }
* mgsort2(0, $runs, $base, $aux, $base);
*
* For our 5 runs, the tree of calls looks like
*
* 5
* 3 2
* 2 1 1 1
* 1 1
*
* 1 2 3 4 5
*
* and the corresponding activity looks like
*
* copy runs 1 and 2 from base to aux
* merge runs 1 and 2 from aux to base
* (run 3 is where it belongs, no copy needed)
* merge runs 12 and 3 from base to aux
* (runs 4 and 5 are where they belong, no copy needed)
* merge runs 4 and 5 from base to aux
* merge runs 123 and 45 from aux to base
*
* Note that we merge runs 1 and 2 immediately after copying them,
* while they are still likely to be in fast cache. Similarly,
* run 3 is merged with run 12 while it still may be lingering in cache.
* This implementation should therefore enjoy much of the cache-friendly
* behavior that quicksort does. In addition, it does less copying
* than the original mergesort implementation (only runs 1 and 2 are copied)
* and the "balancing" of merges is better (merged runs comprise more nearly
* equal numbers of original runs).
*
* The actual cache-friendly implementation will use a pseudo-stack
* to avoid recursion, and will unroll processing of runs of length 2,
* but it is otherwise similar to the recursive implementation.
*/
typedef struct {
IV offset; /* offset of 1st of 2 runs at this level */
IV runs; /* how many runs must be combined into 1 */
} off_runs; /* pseudo-stack element */
PERL_STATIC_FORCE_INLINE void
S_sortsv_flags_impl(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
{
IV i, run, offset;
I32 sense, level;
gptr *f1, *f2, *t, *b, *p;
int iwhich;
gptr *aux;
gptr *p1;
gptr small[SMALLSORT];
gptr *which[3];
off_runs stack[60], *stackp;
PERL_UNUSED_ARG(flags);
PERL_ARGS_ASSERT_SORTSV_FLAGS_IMPL;
if (nmemb <= 1) return; /* sorted trivially */
if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
else { Newx(aux,nmemb,gptr); } /* allocate auxiliary array */
level = 0;
stackp = stack;
stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
stackp->offset = offset = 0;
which[0] = which[2] = base;
which[1] = aux;
for (;;) {
/* On levels where both runs have be constructed (stackp->runs == 0),
* merge them, and note the offset of their end, in case the offset
* is needed at the next level up. Hop up a level, and,
* as long as stackp->runs is 0, keep merging.
*/
IV runs = stackp->runs;
if (runs == 0) {
gptr *list1, *list2;
iwhich = level & 1;
list1 = which[iwhich]; /* area where runs are now */
list2 = which[++iwhich]; /* area for merged runs */
do {
gptr *l1, *l2, *tp2;
offset = stackp->offset;
f1 = p1 = list1 + offset; /* start of first run */
p = tp2 = list2 + offset; /* where merged run will go */
t = NEXT(p); /* where first run ends */
f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
t = NEXT(t); /* where second runs ends */
l2 = POTHER(t, list2, list1); /* ... on the other side */
offset = PNELEM(list2, t);
while (f1 < l1 && f2 < l2) {
/* If head 1 is larger than head 2, find ALL the elements
** in list 2 strictly less than head1, write them all,
** then head 1. Then compare the new heads, and repeat,
** until one or both lists are exhausted.
**
** In all comparisons (after establishing
** which head to merge) the item to merge
** (at pointer q) is the first operand of
** the comparison. When we want to know
** if "q is strictly less than the other",
** we can't just do
** cmp(q, other) < 0
** because stability demands that we treat equality
** as high when q comes from l2, and as low when
** q was from l1. So we ask the question by doing
** cmp(q, other) <= sense
** and make sense == 0 when equality should look low,
** and -1 when equality should look high.
*/
gptr *q;
if (cmp(aTHX_ *f1, *f2) <= 0) {
q = f2; b = f1; t = l1;
sense = -1;
} else {
q = f1; b = f2; t = l2;
sense = 0;
}
/* ramp up
**
** Leave t at something strictly
** greater than q (or at the end of the list),
** and b at something strictly less than q.
*/
for (i = 1, run = 0 ;;) {
if ((p = PINDEX(b, i)) >= t) {
/* off the end */
if (((p = PINDEX(t, -1)) > b) &&
(cmp(aTHX_ *q, *p) <= sense))
t = p;
else b = p;
break;
} else if (cmp(aTHX_ *q, *p) <= sense) {
t = p;
break;
} else b = p;
if (++run >= RTHRESH) i += i;
}
/* q is known to follow b and must be inserted before t.
** Increment b, so the range of possibilities is [b,t).
** Round binary split down, to favor early appearance.
** Adjust b and t until q belongs just before t.
*/
b++;
while (b < t) {
p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
if (cmp(aTHX_ *q, *p) <= sense) {
t = p;
} else b = p + 1;
}
/* Copy all the strictly low elements */
if (q == f1) {
FROMTOUPTO(f2, tp2, t);
*tp2++ = *f1++;
} else {
FROMTOUPTO(f1, tp2, t);
*tp2++ = *f2++;
}
}
/* Run out remaining list */
if (f1 == l1) {
if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
} else FROMTOUPTO(f1, tp2, l1);
p1 = NEXT(p1) = POTHER(tp2, list2, list1);
if (--level == 0) goto done;
--stackp;
t = list1; list1 = list2; list2 = t; /* swap lists */
} while ((runs = stackp->runs) == 0);
}
stackp->runs = 0; /* current run will finish level */
/* While there are more than 2 runs remaining,
* turn them into exactly 2 runs (at the "other" level),
* each made up of approximately half the runs.
* Stack the second half for later processing,
* and set about producing the first half now.
*/
while (runs > 2) {
++level;
++stackp;
stackp->offset = offset;
runs -= stackp->runs = runs / 2;
}
/* We must construct a single run from 1 or 2 runs.
* All the original runs are in which[0] == base.
* The run we construct must end up in which[level&1].
*/
iwhich = level & 1;
if (runs == 1) {
/* Constructing a single run from a single run.
* If it's where it belongs already, there's nothing to do.
* Otherwise, copy it to where it belongs.
* A run of 1 is either a singleton at level 0,
* or the second half of a split 3. In neither event
* is it necessary to set offset. It will be set by the merge
* that immediately follows.
*/
if (iwhich) { /* Belongs in aux, currently in base */
f1 = b = PINDEX(base, offset); /* where list starts */
f2 = PINDEX(aux, offset); /* where list goes */
t = NEXT(f2); /* where list will end */
offset = PNELEM(aux, t); /* offset thereof */
t = PINDEX(base, offset); /* where it currently ends */
FROMTOUPTO(f1, f2, t); /* copy */
NEXT(b) = t; /* set up parallel pointer */
} else if (level == 0) goto done; /* single run at level 0 */
} else {
/* Constructing a single run from two runs.
* The merge code at the top will do that.
* We need only make sure the two runs are in the "other" array,
* so they'll end up in the correct array after the merge.
*/
++level;
++stackp;
stackp->offset = offset;
stackp->runs = 0; /* take care of both runs, trigger merge */
if (!iwhich) { /* Merged runs belong in aux, copy 1st */
f1 = b = PINDEX(base, offset); /* where first run starts */
f2 = PINDEX(aux, offset); /* where it will be copied */
t = NEXT(f2); /* where first run will end */
offset = PNELEM(aux, t); /* offset thereof */
p = PINDEX(base, offset); /* end of first run */
t = NEXT(t); /* where second run will end */
t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
FROMTOUPTO(f1, f2, t); /* copy both runs */
NEXT(b) = p; /* paralleled pointer for 1st */
NEXT(p) = t; /* ... and for second */
}
}
}
done:
if (aux != small) Safefree(aux); /* free iff allocated */
return;
}
/*
=for apidoc sortsv_flags
In-place sort an array of SV pointers with the given comparison routine,
with various SORTf_* flag options.
=cut
*/
void
Perl_sortsv_flags(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
{
PERL_ARGS_ASSERT_SORTSV_FLAGS;
sortsv_flags_impl(base, nmemb, cmp, flags);
}
/*
* Each of sortsv_* functions contains an inlined copy of
* sortsv_flags_impl() with an inlined comparator. Basically, we are
* emulating C++ templates by using __attribute__((always_inline)).
*
* The purpose of that is to avoid the function call overhead inside
* the sorting routine, which calls the comparison function multiple
* times per sorted item.
*/
static void
sortsv_amagic_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp, flags);
}
static void
sortsv_amagic_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp_desc, flags);
}
static void
sortsv_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_sv_i_ncmp, flags);
}
static void
sortsv_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_sv_i_ncmp_desc, flags);
}
static void
sortsv_amagic_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_ncmp, flags);
}
static void
sortsv_amagic_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_ncmp_desc, flags);
}
static void
sortsv_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_sv_ncmp, flags);
}
static void
sortsv_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_sv_ncmp_desc, flags);
}
static void
sortsv_amagic_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_cmp, flags);
}
static void
sortsv_amagic_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_cmp_desc, flags);
}
static void
sortsv_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, Perl_sv_cmp, flags);
}
static void
sortsv_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_cmp_desc, flags);
}
#ifdef USE_LOCALE_COLLATE
static void
sortsv_amagic_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale, flags);
}
static void
sortsv_amagic_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale_desc, flags);
}
static void
sortsv_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, Perl_sv_cmp_locale, flags);
}
static void
sortsv_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
{
sortsv_flags_impl(base, nmemb, S_cmp_locale_desc, flags);
}
#endif
/*
=for apidoc sortsv
In-place sort an array of SV pointers with the given comparison routine.
Currently this always uses mergesort. See C<L</sortsv_flags>> for a more
flexible routine.
=cut
*/
void
Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
{
PERL_ARGS_ASSERT_SORTSV;
sortsv_flags(array, nmemb, cmp, 0);
}
#define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
#define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
#define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
PP(pp_sort)
{
dMARK; dORIGMARK;
SV **p1 = ORIGMARK+1, **p2;
SSize_t max, i;
AV* av = NULL;
GV *gv;
CV *cv = NULL;
U8 gimme = GIMME_V;
OP* const nextop = PL_op->op_next;
I32 overloading = 0;
bool hasargs = FALSE; /* the sort sub has proto($$)? */
bool copytmps;
I32 is_xsub = 0;
const U8 priv = PL_op->op_private;
const U8 flags = PL_op->op_flags;
U32 sort_flags = 0;
I32 all_SIVs = 1, descending = 0;
if ((priv & OPpSORT_DESCEND) != 0)
descending = 1;
if (gimme != G_LIST) {
rpp_popfree_to_NN(mark);
rpp_xpush_IMM(&PL_sv_undef);
return NORMAL;
}
ENTER;
SAVEVPTR(PL_sortcop);
/* Important flag meanings:
*
* OPf_STACKED sort <function_name> args
*
* (OPf_STACKED
* |OPf_SPECIAL) sort { <block> } args
*
* ---- standard block; e.g. sort { $a <=> $b } args
*
*
* OPpSORT_NUMERIC { $a <=> $b } (as opposed to $a cmp $b)
* OPpSORT_INTEGER ditto in scope of 'use integer'
* OPpSORT_DESCEND { $b <=> $a }
* OPpSORT_REVERSE @a= reverse sort ....;
* OPpSORT_INPLACE @a = sort @a;
*/
if (flags & OPf_STACKED) {
if (flags & OPf_SPECIAL) {
OP *nullop = OpSIBLING(cLISTOP->op_first); /* pass pushmark */
assert(nullop->op_type == OP_NULL);
PL_sortcop = nullop->op_next;
}
else {
/* sort <function_name> list */
GV *autogv = NULL;
HV *stash;
SV *fn = *++MARK;
cv = sv_2cv(fn, &stash, &gv, GV_ADD);
/* want to remove the function name from the stack,
* but mustn't trigger cv being freed at the same time.
* Normally the name is a PV while cv is CV (duh!) but
* for lexical subs, fn can already be the CV (but is kept
* alive by a reference from the pad */
#ifdef PERL_RC_STACK
assert(fn != (SV*)cv || SvREFCNT(fn) > 1);
SvREFCNT_dec(fn);
#endif
*MARK = NULL;
check_cv:
if (cv && SvPOK(cv)) {
const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
if (proto && strEQ(proto, "$$")) {
hasargs = TRUE;
}
}
if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
is_xsub = 1;
}
else if (!(cv && CvROOT(cv))) {
if (gv) {
goto autoload;
}
else if (!CvANON(cv) && (gv = CvGV(cv))) {
if (cv != GvCV(gv)) cv = GvCV(gv);
autoload:
if (!autogv && (
autogv = gv_autoload_pvn(
GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
GvNAMEUTF8(gv) ? SVf_UTF8 : 0
)
)) {
cv = GvCVu(autogv);
goto check_cv;
}
else {
SV *tmpstr = sv_newmortal();
gv_efullname3(tmpstr, gv, NULL);
DIE(aTHX_ "Undefined sort subroutine \"%" SVf "\" called",
SVfARG(tmpstr));
}
}
else {
DIE(aTHX_ "Undefined subroutine in sort");
}
}
if (is_xsub)
PL_sortcop = (OP*)cv;
else
PL_sortcop = CvSTART(cv);
}
}
else {
PL_sortcop = NULL;
}
/* optimiser converts "@a = sort @a" to "sort \@a". In this case,
* push (@a) onto stack, then assign result back to @a at the end of
* this function */
if (priv & OPpSORT_INPLACE) {
assert( MARK+1 == PL_stack_sp
&& *PL_stack_sp
&& SvTYPE(*PL_stack_sp) == SVt_PVAV);
(void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
av = MUTABLE_AV((*PL_stack_sp));
if (SvREADONLY(av))
croak_no_modify();
max = AvFILL(av) + 1;
I32 oldmark = MARK - PL_stack_base;
rpp_extend(max);
MARK = PL_stack_base + oldmark;
if (SvMAGICAL(av)) {
for (i=0; i < max; i++) {
SV **svp = av_fetch(av, i, FALSE);
SV *sv;
if (svp) {
sv = *svp;
#ifdef PERL_RC_STACK
SvREFCNT_inc_simple_void_NN(sv);
#endif
}
else
sv = NULL;
*++PL_stack_sp = sv;
}
}
else {
SV **svp = AvARRAY(av);
assert(svp || max == 0);
for (i = 0; i < max; i++) {
SV *sv = *svp++;
#ifdef PERL_RC_STACK
SvREFCNT_inc_simple_void(sv);
#endif
*++PL_stack_sp = sv;
}
}
p1 = p2 = PL_stack_sp - (max-1);
/* we've kept av on the stacck (just below the pushed contents) so
* that a reference-counted stack keeps a reference to it for now
*/
assert((SV*)av == p1[-1]);
}
else {
p2 = MARK+1;
max = PL_stack_sp - MARK;
}
/* shuffle stack down, removing optional initial cv (p1!=p2), plus
* any nulls; also stringify or converting to integer or number as
* required any args */
/* no ref-counted SVs at base to be overwritten */
assert(p1 == p2 || (p1+1 == p2 && !*p1));
copytmps = cBOOL(PL_sortcop);
for (i=max; i > 0 ; i--) {
SV *sv = *p2++;
if (sv) { /* Weed out nulls. */
if (copytmps && SvPADTMP(sv)) {
SV *nsv = sv_mortalcopy(sv);
#ifdef PERL_RC_STACK
SvREFCNT_dec_NN(sv);
SvREFCNT_inc_simple_void_NN(nsv);
#endif
sv = nsv;
}
SvTEMP_off(sv);
if (!PL_sortcop) {
if (priv & OPpSORT_NUMERIC) {
if (priv & OPpSORT_INTEGER) {
if (!SvIOK(sv))
(void)sv_2iv_flags(sv, SV_GMAGIC|SV_SKIP_OVERLOAD);
}
else {
if (!SvNSIOK(sv))
(void)sv_2nv_flags(sv, SV_GMAGIC|SV_SKIP_OVERLOAD);
if (all_SIVs && !SvSIOK(sv))
all_SIVs = 0;
}
}
else {
if (!SvPOK(sv))
(void)sv_2pv_flags(sv, 0,
SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
}
if (SvAMAGIC(sv))
overloading = 1;
}
*p1++ = sv;
}
else
max--;
}
if (max > 1) {
SV **start;
if (PL_sortcop) {
PERL_CONTEXT *cx;
const bool oldcatch = CATCH_GET;
I32 old_savestack_ix = PL_savestack_ix;
SAVEOP();
CATCH_SET(TRUE);
push_stackinfo(PERLSI_SORT, 1);
if (!hasargs && !is_xsub) {
/* standard perl sub with values passed as $a and $b */
SAVEGENERICSV(PL_firstgv);
SAVEGENERICSV(PL_secondgv);
PL_firstgv = GvREFCNT_inc(
gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV)
);
PL_secondgv = GvREFCNT_inc(
gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV)
);
/* make sure the GP isn't removed out from under us for
* the SAVESPTR() */
save_gp(PL_firstgv, 0);
save_gp(PL_secondgv, 0);
/* we don't want modifications localized */
GvINTRO_off(PL_firstgv);
GvINTRO_off(PL_secondgv);
SAVEGENERICSV(GvSV(PL_firstgv));
SvREFCNT_inc(GvSV(PL_firstgv));
SAVEGENERICSV(GvSV(PL_secondgv));
SvREFCNT_inc(GvSV(PL_secondgv));
}
gimme = G_SCALAR;
cx = cx_pushblock(CXt_NULL, gimme, PL_stack_base, old_savestack_ix);
if (!(flags & OPf_SPECIAL)) {
cx->cx_type = CXt_SUB|CXp_MULTICALL;
cx_pushsub(cx, cv, NULL, hasargs);
if (!is_xsub) {
PADLIST * const padlist = CvPADLIST(cv);
if (++CvDEPTH(cv) >= 2)
pad_push(padlist, CvDEPTH(cv));
PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
if (hasargs) {
/* This is mostly copied from pp_entersub */
AV * const av0 = MUTABLE_AV(PAD_SVl(0));
cx->blk_sub.savearray = GvAV(PL_defgv);
GvAV(PL_defgv) = AvREFCNT_inc_simple(av0);
}
}
}
start = p1 - max;
Perl_sortsv_flags(aTHX_ start, max,
(is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
sort_flags);
/* Reset cx, in case the context stack has been reallocated. */
cx = CX_CUR();
/* the code used to think this could be > 0 */
assert(cx->blk_oldsp == 0);
rpp_popfree_to_NN(PL_stack_base);
CX_LEAVE_SCOPE(cx);
if (!(flags & OPf_SPECIAL)) {
assert(CxTYPE(cx) == CXt_SUB);
cx_popsub(cx);
}
else
assert(CxTYPE(cx) == CXt_NULL);
/* there isn't a POPNULL ! */
cx_popblock(cx);
CX_POP(cx);
pop_stackinfo();
CATCH_SET(oldcatch);
}
else {
/* call one of the built-in sort functions */
/* XXX this extend has been here since perl5.000. With safe
* signals, I don't think it's needed any more - DAPM.
MEXTEND(SP, 20); Can't afford stack realloc on signal.
*/
start = p1 - max;
if (priv & OPpSORT_NUMERIC) {
if ((priv & OPpSORT_INTEGER) || all_SIVs) {
if (overloading)
if (descending)
sortsv_amagic_i_ncmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_amagic_i_ncmp(aTHX_ start, max, sort_flags);
else
if (descending)
sortsv_i_ncmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_i_ncmp(aTHX_ start, max, sort_flags);
}
else {
if (overloading)
if (descending)
sortsv_amagic_ncmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_amagic_ncmp(aTHX_ start, max, sort_flags);
else
if (descending)
sortsv_ncmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_ncmp(aTHX_ start, max, sort_flags);
}
}
#ifdef USE_LOCALE_COLLATE
else if(IN_LC_RUNTIME(LC_COLLATE)) {
if (overloading)
if (descending)
sortsv_amagic_cmp_locale_desc(aTHX_ start, max, sort_flags);
else
sortsv_amagic_cmp_locale(aTHX_ start, max, sort_flags);
else
if (descending)
sortsv_cmp_locale_desc(aTHX_ start, max, sort_flags);
else
sortsv_cmp_locale(aTHX_ start, max, sort_flags);
}
#endif
else {
if (overloading)
if (descending)
sortsv_amagic_cmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_amagic_cmp(aTHX_ start, max, sort_flags);
else
if (descending)
sortsv_cmp_desc(aTHX_ start, max, sort_flags);
else
sortsv_cmp(aTHX_ start, max, sort_flags);
}
}
if ((priv & OPpSORT_REVERSE) != 0) {
SV **q = start+max-1;
while (start < q) {
SV * const tmp = *start;
*start++ = *q;
*q-- = tmp;
}
}
}
if (!av) {
LEAVE;
PL_stack_sp = ORIGMARK + max;
return nextop;
}
/* OPpSORT_INPLACE: copy back result to the array */
{
SV** const base = MARK+2;
SSize_t max_minus_one = max - 1; /* attempt to work around mingw bug */
/* we left the AV there so on a refcounted stack it wouldn't be
* prematurely freed */
assert(base[-1] == (SV*)av);
if (SvMAGICAL(av)) {
for (i = 0; i <= max_minus_one; i++) {
SV *sv = base[i];
base[i] = newSVsv(sv);
#ifdef PERL_RC_STACK
SvREFCNT_dec_NN(sv);
#endif
}
av_clear(av);
if (max_minus_one >= 0)
av_extend(av, max_minus_one);
for (i=0; i <= max_minus_one; i++) {
SV * const sv = base[i];
SV ** const didstore = av_store(av, i, sv);
if (SvSMAGICAL(sv))
mg_set(sv);
#ifdef PERL_RC_STACK
if (didstore)
SvREFCNT_inc_simple_void_NN(sv);
#else
if (!didstore)
sv_2mortal(sv);
#endif
}
}
else {
/* the elements of av are likely to be the same as the
* (non-refcounted) elements on the stack, just in a different
* order. However, its possible that someone's messed with av
* in the meantime.
* So to avoid freeing most/all the stack elements when
* doing av_clear(), first bump the count on each element.
* In addition, normally a *copy* of each sv should be
* assigned to each array element; but if the only reference
* to that sv was from the array, then we can skip the copy.
*
* For a refcounted stack, it's not necessary to bump the
* refcounts initially, as the stack itself keeps the
* elements alive during av_clear().
*
*/
for (i = 0; i <= max_minus_one; i++) {
SV *sv = base[i];
assert(sv);
#ifdef PERL_RC_STACK
if (SvREFCNT(sv) > 2) {
base[i] = newSVsv(sv);
SvREFCNT_dec_NN(sv);
}
#else
if (SvREFCNT(sv) > 1)
base[i] = newSVsv(sv);
else
SvREFCNT_inc_simple_void_NN(sv);
#endif
}
av_clear(av);
if (max_minus_one >= 0) {
av_extend(av, max_minus_one);
Copy(base, AvARRAY(av), max, SV*);
}
AvFILLp(av) = max_minus_one;
AvREIFY_off(av);
AvREAL_on(av);
}
/* sort is only ever optimised with OPpSORT_INPLACE when the
* (@a = sort @a) is in void context. (As an aside: the context
* flag aught to be copied to the sort op: then we could assert
* here that it's void).
* Thus we can simply discard the stack elements now: their
* reference counts have already claimed by av - hence not using
* rpp_popfree_to() here.
*/
PL_stack_sp = ORIGMARK;
#ifdef PERL_RC_STACK
SvREFCNT_dec_NN(av);
#endif
LEAVE;
return nextop;
}
}
/* call a traditional perl compare function, setting $a and $b */
static I32
S_sortcv(pTHX_ SV *const a, SV *const b)
{
const I32 oldsaveix = PL_savestack_ix;
I32 result;
PMOP * const pm = PL_curpm;
COP * const cop = PL_curcop;
SV *olda, *oldb;
PERL_ARGS_ASSERT_SORTCV;
#ifdef PERL_RC_STACK
assert(rpp_stack_is_rc());
#endif
olda = GvSV(PL_firstgv);
GvSV(PL_firstgv) = SvREFCNT_inc_simple_NN(a);
SvREFCNT_dec(olda);
oldb = GvSV(PL_secondgv);
GvSV(PL_secondgv) = SvREFCNT_inc_simple_NN(b);
SvREFCNT_dec(oldb);
assert(PL_stack_sp == PL_stack_base);
PL_op = PL_sortcop;
CALLRUNOPS(aTHX);
PL_curcop = cop;
/* entry zero of a stack is always PL_sv_undef, which
* simplifies converting a '()' return into undef in scalar context */
assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
result = SvIV(*PL_stack_sp);
rpp_popfree_to_NN(PL_stack_base);
LEAVE_SCOPE(oldsaveix);
PL_curpm = pm;
return result;
}
/* call a perl compare function that has a ($$) prototype, setting @_ */
static I32
S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
{
const I32 oldsaveix = PL_savestack_ix;
I32 result;
AV * const av = GvAV(PL_defgv);
PMOP * const pm = PL_curpm;
COP * const cop = PL_curcop;
PERL_ARGS_ASSERT_SORTCV_STACKED;
#ifdef PERL_RC_STACK
assert(rpp_stack_is_rc());
#endif
#ifdef PERL_RC_STACK
assert(AvREAL(av));
av_clear(av);
#else
if (AvREAL(av)) {
av_clear(av);
AvREAL_off(av);
AvREIFY_on(av);
}
#endif
if (AvMAX(av) < 1) {
SV **ary = AvALLOC(av);
if (AvARRAY(av) != ary) {
AvMAX(av) += AvARRAY(av) - AvALLOC(av);
AvARRAY(av) = ary;
}
if (AvMAX(av) < 1) {
Renew(ary,2,SV*);
AvMAX(av) = 1;
AvARRAY(av) = ary;
AvALLOC(av) = ary;
}
}
AvFILLp(av) = 1;
AvARRAY(av)[0] = a;
AvARRAY(av)[1] = b;
#ifdef PERL_RC_STACK
SvREFCNT_inc_simple_void_NN(a);
SvREFCNT_inc_simple_void_NN(b);
#endif
assert(PL_stack_sp == PL_stack_base);
PL_op = PL_sortcop;
CALLRUNOPS(aTHX);
PL_curcop = cop;
/* entry zero of a stack is always PL_sv_undef, which
* simplifies converting a '()' return into undef in scalar context */
assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
result = SvIV(*PL_stack_sp);
rpp_popfree_to_NN(PL_stack_base);
LEAVE_SCOPE(oldsaveix);
PL_curpm = pm;
return result;
}
/* call an XS compare function. (The two args are always passed on the
* stack, regardless of whether it has a ($$) prototype or not.) */
static I32
S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
{
const I32 oldsaveix = PL_savestack_ix;
CV * const cv=MUTABLE_CV(PL_sortcop);
I32 result;
PMOP * const pm = PL_curpm;
PERL_ARGS_ASSERT_SORTCV_XSUB;
#ifdef PERL_RC_STACK
assert(rpp_stack_is_rc());
#endif
assert(PL_stack_sp == PL_stack_base);
PUSHMARK(PL_stack_sp);
rpp_xpush_2(a, b);
rpp_invoke_xs(cv);
/* entry zero of a stack is always PL_sv_undef, which
* simplifies converting a '()' return into undef in scalar context */
assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
result = SvIV(*PL_stack_sp);
rpp_popfree_to_NN(PL_stack_base);
LEAVE_SCOPE(oldsaveix);
PL_curpm = pm;
return result;
}
PERL_STATIC_FORCE_INLINE I32
S_sv_ncmp(pTHX_ SV *const a, SV *const b)
{
I32 cmp = do_ncmp(a, b);
PERL_ARGS_ASSERT_SV_NCMP;
if (cmp == 2) {
if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
return 0;
}
return cmp;
}
PERL_STATIC_FORCE_INLINE I32
S_sv_ncmp_desc(pTHX_ SV *const a, SV *const b)
{
PERL_ARGS_ASSERT_SV_NCMP_DESC;
return -S_sv_ncmp(aTHX_ a, b);
}
PERL_STATIC_FORCE_INLINE I32
S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
{
const IV iv1 = SvIV(a);
const IV iv2 = SvIV(b);
PERL_ARGS_ASSERT_SV_I_NCMP;
return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
}
PERL_STATIC_FORCE_INLINE I32
S_sv_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
{
PERL_ARGS_ASSERT_SV_I_NCMP_DESC;
return -S_sv_i_ncmp(aTHX_ a, b);
}
#define tryCALL_AMAGICbin(left,right,meth) \
(SvAMAGIC(left)||SvAMAGIC(right)) \
? amagic_call(left, right, meth, 0) \
: NULL;
#define SORT_NORMAL_RETURN_VALUE(val) (((val) > 0) ? 1 : ((val) ? -1 : 0))
PERL_STATIC_FORCE_INLINE I32
S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
{
SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
PERL_ARGS_ASSERT_AMAGIC_NCMP;
if (tmpsv) {
if (SvIOK(tmpsv)) {
const I32 i = SvIVX(tmpsv);
return SORT_NORMAL_RETURN_VALUE(i);
}
else {
const NV d = SvNV(tmpsv);
return SORT_NORMAL_RETURN_VALUE(d);
}
}
return S_sv_ncmp(aTHX_ a, b);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_ncmp_desc(pTHX_ SV *const a, SV *const b)
{
PERL_ARGS_ASSERT_AMAGIC_NCMP_DESC;
return -S_amagic_ncmp(aTHX_ a, b);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
{
SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
if (tmpsv) {
if (SvIOK(tmpsv)) {
const I32 i = SvIVX(tmpsv);
return SORT_NORMAL_RETURN_VALUE(i);
}
else {
const NV d = SvNV(tmpsv);
return SORT_NORMAL_RETURN_VALUE(d);
}
}
return S_sv_i_ncmp(aTHX_ a, b);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
{
PERL_ARGS_ASSERT_AMAGIC_I_NCMP_DESC;
return -S_amagic_i_ncmp(aTHX_ a, b);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
{
SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
PERL_ARGS_ASSERT_AMAGIC_CMP;
if (tmpsv) {
if (SvIOK(tmpsv)) {
const I32 i = SvIVX(tmpsv);
return SORT_NORMAL_RETURN_VALUE(i);
}
else {
const NV d = SvNV(tmpsv);
return SORT_NORMAL_RETURN_VALUE(d);
}
}
return sv_cmp(str1, str2);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_desc(pTHX_ SV *const str1, SV *const str2)
{
PERL_ARGS_ASSERT_AMAGIC_CMP_DESC;
return -S_amagic_cmp(aTHX_ str1, str2);
}
PERL_STATIC_FORCE_INLINE I32
S_cmp_desc(pTHX_ SV *const str1, SV *const str2)
{
PERL_ARGS_ASSERT_CMP_DESC;
return -sv_cmp(str1, str2);
}
#ifdef USE_LOCALE_COLLATE
PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
{
SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
if (tmpsv) {
if (SvIOK(tmpsv)) {
const I32 i = SvIVX(tmpsv);
return SORT_NORMAL_RETURN_VALUE(i);
}
else {
const NV d = SvNV(tmpsv);
return SORT_NORMAL_RETURN_VALUE(d);
}
}
return sv_cmp_locale(str1, str2);
}
PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
{
PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE_DESC;
return -S_amagic_cmp_locale(aTHX_ str1, str2);
}
PERL_STATIC_FORCE_INLINE I32
S_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
{
PERL_ARGS_ASSERT_CMP_LOCALE_DESC;
return -sv_cmp_locale(str1, str2);
}
#endif
/*
* ex: set ts=8 sts=4 sw=4 et:
*/
|