1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601
|
/* regexec.c
*/
/*
* One Ring to rule them all, One Ring to find them
*
* [p.v of _The Lord of the Rings_, opening poem]
* [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
* [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
*/
/* This file contains functions for executing a regular expression. See
* also regcomp.c which funnily enough, contains functions for compiling
* a regular expression.
*
* This file is also copied at build time to ext/re/re_exec.c, where
* it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
* This causes the main functions to be compiled under new names and with
* debugging support added, which makes "use re 'debug'" work.
*/
/* NOTE: this is derived from Henry Spencer's regexp code, and should not
* confused with the original package (see point 3 below). Thanks, Henry!
*/
/* Additional note: this code is very heavily munged from Henry's version
* in places. In some spots I've traded clarity for efficiency, so don't
* blame Henry for some of the lack of readability.
*/
/* The names of the functions have been changed from regcomp and
* regexec to pregcomp and pregexec in order to avoid conflicts
* with the POSIX routines of the same names.
*/
#ifdef PERL_EXT_RE_BUILD
#include "re_top.h"
#endif
/*
* pregcomp and pregexec -- regsub and regerror are not used in perl
*
* Copyright (c) 1986 by University of Toronto.
* Written by Henry Spencer. Not derived from licensed software.
*
* Permission is granted to anyone to use this software for any
* purpose on any computer system, and to redistribute it freely,
* subject to the following restrictions:
*
* 1. The author is not responsible for the consequences of use of
* this software, no matter how awful, even if they arise
* from defects in it.
*
* 2. The origin of this software must not be misrepresented, either
* by explicit claim or by omission.
*
* 3. Altered versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
*
**** Alterations to Henry's code are...
****
**** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
**** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
**** by Larry Wall and others
****
**** You may distribute under the terms of either the GNU General Public
**** License or the Artistic License, as specified in the README file.
*
* Beware that some of this code is subtly aware of the way operator
* precedence is structured in regular expressions. Serious changes in
* regular-expression syntax might require a total rethink.
*/
#include "EXTERN.h"
#define PERL_IN_REGEX_ENGINE
#define PERL_IN_REGEXEC_C
#include "perl.h"
#ifdef PERL_IN_XSUB_RE
# include "re_comp.h"
#else
# include "regcomp.h"
#endif
#include "invlist_inline.h"
#include "unicode_constants.h"
static const char b_utf8_locale_required[] =
"Use of \\b{} or \\B{} for non-UTF-8 locale is wrong."
" Assuming a UTF-8 locale";
#define CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND \
STMT_START { \
if (! IN_UTF8_CTYPE_LOCALE) { \
Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), \
b_utf8_locale_required); \
} \
} STMT_END
static const char sets_utf8_locale_required[] =
"Use of (?[ ]) for non-UTF-8 locale is wrong. Assuming a UTF-8 locale";
#define CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_SETS(n) \
STMT_START { \
if (! IN_UTF8_CTYPE_LOCALE && (FLAGS(n) & ANYOFL_UTF8_LOCALE_REQD)){\
Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), \
sets_utf8_locale_required); \
} \
} STMT_END
#ifdef DEBUGGING
/* At least one required character in the target string is expressible only in
* UTF-8. */
static const char non_utf8_target_but_utf8_required[]
= "Can't match, because target string needs to be in UTF-8\n";
#endif
#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%s", \
non_utf8_target_but_utf8_required)); \
goto target; \
} STMT_END
#ifndef STATIC
#define STATIC static
#endif
/*
* Forwards.
*/
#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
#define HOPc(pos,off) \
(char *)(reginfo->is_utf8_target \
? reghop3((U8*)pos, off, \
(U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
: (U8*)(pos + off))
/* like HOPMAYBE3 but backwards. lim must be +ve. Returns NULL on overshoot */
#define HOPBACK3(pos, off, lim) \
(reginfo->is_utf8_target \
? reghopmaybe3((U8*)pos, (SSize_t)0-off, (U8*)(lim)) \
: (pos - off >= lim) \
? (U8*)pos - off \
: NULL)
#define HOPBACKc(pos, off) ((char*)HOPBACK3(pos, off, reginfo->strbeg))
#define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
/* lim must be +ve. Returns NULL on overshoot */
#define HOPMAYBE3(pos,off,lim) \
(reginfo->is_utf8_target \
? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \
: ((U8*)pos + off <= lim) \
? (U8*)pos + off \
: NULL)
/* like HOP3, but limits the result to <= lim even for the non-utf8 case.
* off must be >=0; args should be vars rather than expressions */
#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
? reghop3((U8*)(pos), off, (U8*)(lim)) \
: (U8*)((pos + off) > lim ? lim : (pos + off)))
#define HOP3clim(pos,off,lim) ((char*)HOP3lim(pos,off,lim))
#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
? utf8_hop_safe((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
: (U8*)(pos + off))
#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
#define PLACEHOLDER /* Something for the preprocessor to grab onto */
/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
/* for use after a quantifier and before an EXACT-like node -- japhy */
/* it would be nice to rework regcomp.sym to generate this stuff. sigh
*
* NOTE that *nothing* that affects backtracking should be in here, specifically
* VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
* node that is in between two EXACT like nodes when ascertaining what the
* required "follow" character is. This should probably be moved to regex
* compile time although it may be done at run time because of the REF
* possibility - more investigation required. -- demerphq
*/
#define JUMPABLE(rn) ( \
OP(rn) == OPEN || \
(OP(rn) == CLOSE && \
!EVAL_CLOSE_PAREN_IS(cur_eval,PARNO(rn)) ) || \
OP(rn) == EVAL || \
OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
OP(rn) == PLUS || OP(rn) == MINMOD || \
OP(rn) == KEEPS || \
(REGNODE_TYPE(OP(rn)) == CURLY && ARG1i(rn) > 0) \
)
#define IS_EXACT(rn) (REGNODE_TYPE(OP(rn)) == EXACT)
#define HAS_TEXT(rn) ( IS_EXACT(rn) || REGNODE_TYPE(OP(rn)) == REF )
/*
Search for mandatory following text node; for lookahead, the text must
follow but for lookbehind (FLAGS(rn) != 0) we skip to the next step.
*/
#define FIND_NEXT_IMPT(rn) STMT_START { \
while (JUMPABLE(rn)) { \
const OPCODE type = OP(rn); \
if (type == SUSPEND || REGNODE_TYPE(type) == CURLY) \
rn = REGNODE_AFTER_opcode(rn,type); \
else if (type == PLUS) \
rn = REGNODE_AFTER_type(rn,tregnode_PLUS); \
else if (type == IFMATCH) \
rn = (FLAGS(rn) == 0) ? REGNODE_AFTER_type(rn,tregnode_IFMATCH) \
: rn + ARG1u(rn); \
else rn += NEXT_OFF(rn); \
} \
} STMT_END
#define SLAB_FIRST(s) (&(s)->states[0])
#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
static regmatch_state * S_push_slab(pTHX);
#define REGCP_OTHER_ELEMS 3
#define REGCP_FRAME_ELEMS 1
/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
* are needed for the regexp context stack bookkeeping. */
STATIC CHECKPOINT
S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen comma_pDEPTH)
{
const int retval = PL_savestack_ix;
/* Number of bytes about to be stored in the stack */
const SSize_t paren_bytes_to_push = sizeof(*RXp_OFFSp(rex)) * (maxopenparen - parenfloor);
/* Number of savestack[] entries to be filled by the paren data */
/* Rounding is performed in case we are few elements short */
const int paren_elems_to_push = (paren_bytes_to_push + sizeof(*PL_savestack) - 1) / sizeof(*PL_savestack);
const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGCPPUSH;
if (paren_elems_to_push < 0)
croak("panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i",
(int)paren_elems_to_push, (int)maxopenparen,
(int)parenfloor);
if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
croak("panic: paren_elems_to_push offset %" UVuf
" out of range (%lu-%ld)",
total_elems,
(unsigned long)maxopenparen,
(long)parenfloor);
DEBUG_BUFFERS_r(
if ((int)maxopenparen > (int)parenfloor)
Perl_re_exec_indentf( aTHX_
"rex = 0x%" UVxf " offs = 0x%" UVxf ": saving capture indices:\n",
depth,
PTR2UV(rex),
PTR2UV(RXp_OFFSp(rex))
);
);
SSGROW(total_elems + REGCP_FRAME_ELEMS);
assert((IV)PL_savestack_max > (IV)(total_elems + REGCP_FRAME_ELEMS));
/* memcpy the offs inside the stack - it's faster than for loop */
memcpy(&PL_savestack[PL_savestack_ix], RXp_OFFSp(rex) + parenfloor + 1, paren_bytes_to_push);
PL_savestack_ix += paren_elems_to_push;
DEBUG_BUFFERS_r({
I32 p;
for (p = parenfloor + 1; p <= (I32)maxopenparen; p++) {
Perl_re_exec_indentf(aTHX_
" \\%" UVuf " %" IVdf " (%" IVdf ") .. %" IVdf " (regcppush)\n",
depth,
(UV)p,
(IV)RXp_OFFSp(rex)[p].start,
(IV)RXp_OFFSp(rex)[p].start_tmp,
(IV)RXp_OFFSp(rex)[p].end
);
}
});
/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
SSPUSHINT(maxopenparen);
SSPUSHINT(RXp_LASTPAREN(rex));
SSPUSHINT(RXp_LASTCLOSEPAREN(rex));
SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
DEBUG_BUFFERS_r({
Perl_re_exec_indentf(aTHX_
"finished regcppush returning %" IVdf " cur: %" IVdf "\n",
depth, retval, PL_savestack_ix);
});
return retval;
}
/* These are needed since we do not localize EVAL nodes: */
#define REGCP_SET(cp) \
DEBUG_STATE_r( \
Perl_re_exec_indentf( aTHX_ \
"Setting an EVAL scope, savestack = %" IVdf ",\n", \
depth, (IV)PL_savestack_ix \
) \
); \
cp = PL_savestack_ix
#define REGCP_UNWIND(cp) \
DEBUG_STATE_r( \
if (cp != PL_savestack_ix) \
Perl_re_exec_indentf( aTHX_ \
"Clearing an EVAL scope, savestack = %" \
IVdf "..%" IVdf "\n", \
depth, (IV)(cp), (IV)PL_savestack_ix \
) \
); \
regcpblow(cp)
/* set the start and end positions of capture ix */
#define CLOSE_ANY_CAPTURE(rex, ix, s, e) \
RXp_OFFSp(rex)[(ix)].start = (s); \
RXp_OFFSp(rex)[(ix)].end = (e)
#define CLOSE_CAPTURE(rex, ix, s, e) \
CLOSE_ANY_CAPTURE(rex, ix, s, e); \
if (ix > RXp_LASTPAREN(rex)) \
RXp_LASTPAREN(rex) = (ix); \
RXp_LASTCLOSEPAREN(rex) = (ix); \
DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_ \
"CLOSE: rex = 0x%" UVxf " offs = 0x%" UVxf ": \\%" UVuf ": set %" IVdf " .. %" IVdf " max: %" UVuf "\n", \
depth, \
PTR2UV(rex), \
PTR2UV(RXp_OFFSp(rex)), \
(UV)(ix), \
(IV)RXp_OFFSp(rex)[ix].start, \
(IV)RXp_OFFSp(rex)[ix].end, \
(UV)RXp_LASTPAREN(rex) \
))
/* the lp and lcp args match the relevant members of the
* regexp structure, but in practice they should all be U16
* instead as we have a hard limit of U16_MAX parens. See
* line 4003 or so of regcomp.c where we parse OPEN parens
* of various types. */
PERL_STATIC_INLINE void
S_unwind_paren(pTHX_ regexp *rex, U32 lp, U32 lcp comma_pDEPTH) {
PERL_ARGS_ASSERT_UNWIND_PAREN;
U32 n;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
"UNWIND_PAREN: rex = 0x%" UVxf " offs = 0x%" UVxf
": invalidate (%" UVuf " .. %" UVuf ") set lcp: %" UVuf "\n",
depth,
PTR2UV(rex),
PTR2UV(RXp_OFFSp(rex)),
(UV)(lp),
(UV)(RXp_LASTPAREN(rex)),
(UV)(lcp)
));
for (n = RXp_LASTPAREN(rex); n > lp; n--) {
RXp_OFFSp(rex)[n].end = -1;
}
RXp_LASTPAREN(rex) = n;
RXp_LASTCLOSEPAREN(rex) = lcp;
}
#define UNWIND_PAREN(lp,lcp) unwind_paren(rex,lp,lcp)
PERL_STATIC_INLINE void
S_capture_clear(pTHX_ regexp *rex, U16 from_ix, U16 to_ix, const char *str comma_pDEPTH) {
PERL_ARGS_ASSERT_CAPTURE_CLEAR;
PERL_UNUSED_ARG(str); /* only used for debugging */
U16 my_ix;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
for ( my_ix = from_ix; my_ix <= to_ix; my_ix++ ) {
DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
"CAPTURE_CLEAR %s \\%" IVdf ": "
"%" IVdf "(%" IVdf ") .. %" IVdf
" => "
"%" IVdf "(%" IVdf ") .. %" IVdf
"\n",
depth, str, (IV)my_ix,
(IV)RXp_OFFSp(rex)[my_ix].start,
(IV)RXp_OFFSp(rex)[my_ix].start_tmp,
(IV)RXp_OFFSp(rex)[my_ix].end,
(IV)-1, (IV)-1, (IV)-1));
RXp_OFFSp(rex)[my_ix].start = -1;
RXp_OFFSp(rex)[my_ix].start_tmp = -1;
RXp_OFFSp(rex)[my_ix].end = -1;
}
}
#define CAPTURE_CLEAR(from_ix, to_ix, str) \
if (from_ix) capture_clear(rex,from_ix, to_ix, str)
STATIC void
S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p comma_pDEPTH)
{
UV i;
U32 paren;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGCPPOP;
DEBUG_BUFFERS_r({
Perl_re_exec_indentf(aTHX_
"starting regcppop at %" IVdf "\n",
depth, PL_savestack_ix);
});
/* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
i = SSPOPUV;
assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
RXp_LASTCLOSEPAREN(rex) = SSPOPINT;
RXp_LASTPAREN(rex) = SSPOPINT;
*maxopenparen_p = SSPOPINT;
i -= REGCP_OTHER_ELEMS;
/* Now restore the parentheses context. */
DEBUG_BUFFERS_r(
if (i || RXp_LASTPAREN(rex) + 1 <= rex->nparens)
Perl_re_exec_indentf( aTHX_
"rex = 0x%" UVxf " offs = 0x%" UVxf ": restoring capture indices to:\n",
depth,
PTR2UV(rex),
PTR2UV(RXp_OFFSp(rex))
);
);
/* substract remaining elements from the stack */
PL_savestack_ix -= i;
/* static assert that offs struc size is not less than stack elem size */
STATIC_ASSERT_STMT(sizeof(*RXp_OFFSp(rex)) >= sizeof(*PL_savestack));
/* calculate actual number of offs/capture groups stored */
/* by doing integer division (leaving potential alignment aside) */
i = (i * sizeof(*PL_savestack)) / sizeof(*RXp_OFFSp(rex));
/* calculate paren starting point */
/* i is our number of entries which we are subtracting from *maxopenparen_p */
/* and we are storing + 1 this to get the beginning */
paren = *maxopenparen_p - i + 1;
/* restore them */
memcpy(RXp_OFFSp(rex) + paren, &PL_savestack[PL_savestack_ix], i * sizeof(*RXp_OFFSp(rex)));
DEBUG_BUFFERS_r(
for (; paren <= *maxopenparen_p; ++paren) {
Perl_re_exec_indentf(aTHX_
" \\%" UVuf " %" IVdf "(%" IVdf ") .. %" IVdf " %s (regcppop)\n",
depth,
(UV)paren,
(IV)RXp_OFFSp(rex)[paren].start,
(IV)RXp_OFFSp(rex)[paren].start_tmp,
(IV)RXp_OFFSp(rex)[paren].end,
(paren > RXp_LASTPAREN(rex) ? "(skipped)" : ""));
}
);
#if 1
/* It would seem that the similar code in regtry()
* already takes care of this, and in fact it is in
* a better location to since this code can #if 0-ed out
* but the code in regtry() is needed or otherwise tests
* requiring null fields (pat.t#187 and split.t#{13,14}
* (as of patchlevel 7877) will fail. Then again,
* this code seems to be necessary or otherwise
* this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
* --jhi updated by dapm */
for (i = RXp_LASTPAREN(rex) + 1; i <= rex->nparens; i++) {
if (i > *maxopenparen_p) {
RXp_OFFSp(rex)[i].start = -1;
}
RXp_OFFSp(rex)[i].end = -1;
DEBUG_BUFFERS_r( Perl_re_exec_indentf( aTHX_
" \\%" UVuf ": %s ..-1 undeffing (regcppop)\n",
depth,
(UV)i,
(i > *maxopenparen_p) ? "-1" : " "
));
}
#endif
DEBUG_BUFFERS_r({
Perl_re_exec_indentf(aTHX_
"finished regcppop at %" IVdf "\n",
depth, PL_savestack_ix);
});
}
/* restore the parens and associated vars at savestack position ix,
* but without popping the stack */
STATIC void
S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p comma_pDEPTH)
{
I32 tmpix = PL_savestack_ix;
PERL_ARGS_ASSERT_REGCP_RESTORE;
PL_savestack_ix = ix;
regcppop(rex, maxopenparen_p);
PL_savestack_ix = tmpix;
}
#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
STATIC bool
S_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
{
/* Returns a boolean as to whether or not 'character' is a member of the
* Posix character class given by 'classnum' that should be equivalent to a
* value in the typedef 'char_class_number_'.
*
* Ideally this could be replaced by a just an array of function pointers
* to the C library functions that implement the macros this calls.
* However, to compile, the precise function signatures are required, and
* these may vary from platform to platform. To avoid having to figure
* out what those all are on each platform, I (khw) am using this method,
* which adds an extra layer of function call overhead (unless the C
* optimizer strips it away). But we don't particularly care about
* performance with locales anyway. */
if (IN_UTF8_CTYPE_LOCALE) {
return cBOOL(generic_isCC_(character, classnum));
}
switch ((char_class_number_) classnum) {
case CC_ENUM_ALPHANUMERIC_: return isU8_ALPHANUMERIC_LC(character);
case CC_ENUM_ALPHA_: return isU8_ALPHA_LC(character);
case CC_ENUM_ASCII_: return isU8_ASCII_LC(character);
case CC_ENUM_BLANK_: return isU8_BLANK_LC(character);
case CC_ENUM_CASED_: return isU8_CASED_LC(character);
case CC_ENUM_CNTRL_: return isU8_CNTRL_LC(character);
case CC_ENUM_DIGIT_: return isU8_DIGIT_LC(character);
case CC_ENUM_GRAPH_: return isU8_GRAPH_LC(character);
case CC_ENUM_LOWER_: return isU8_LOWER_LC(character);
case CC_ENUM_PRINT_: return isU8_PRINT_LC(character);
case CC_ENUM_PUNCT_: return isU8_PUNCT_LC(character);
case CC_ENUM_SPACE_: return isU8_SPACE_LC(character);
case CC_ENUM_UPPER_: return isU8_UPPER_LC(character);
case CC_ENUM_WORDCHAR_: return isU8_WORDCHAR_LC(character);
case CC_ENUM_XDIGIT_: return isU8_XDIGIT_LC(character);
default: /* VERTSPACE should never occur in locales */
break;
}
croak(
"panic: isFOO_lc() has an unexpected character class '%d'",
classnum);
NOT_REACHED; /* NOTREACHED */
return false;
}
PERL_STATIC_INLINE I32
S_foldEQ_latin1_s2_folded(pTHX_ const char *s1, const char *s2, I32 len)
{
/* Compare non-UTF-8 using Unicode (Latin1) semantics. s2 must already be
* folded. Works on all folds representable without UTF-8, except for
* LATIN_SMALL_LETTER_SHARP_S, and does not check for this. Nor does it
* check that the strings each have at least 'len' characters.
*
* There is almost an identical API function where s2 need not be folded:
* Perl_foldEQ_latin1() */
const U8 *a = (const U8 *)s1;
const U8 *b = (const U8 *)s2;
PERL_ARGS_ASSERT_FOLDEQ_LATIN1_S2_FOLDED;
assert(len >= 0);
while (len--) {
assert(! isUPPER_L1(*b));
if (toLOWER_L1(*a) != *b) {
return 0;
}
a++, b++;
}
return 1;
}
STATIC bool
S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character, const U8* e)
{
/* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
* 'character' is a member of the Posix character class given by 'classnum'
* that should be equivalent to a value in the typedef
* 'char_class_number_'.
*
* This just calls isFOO_lc on the code point for the character if it is in
* the range 0-255. Outside that range, all characters use Unicode
* rules, ignoring any locale. So use the Unicode function if this class
* requires an inversion list, and use the Unicode macro otherwise. */
PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
if (UTF8_IS_INVARIANT(*character)) {
return isFOO_lc(classnum, *character);
}
else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
return isFOO_lc(classnum,
EIGHT_BIT_UTF8_TO_NATIVE(*character, *(character + 1)));
}
CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG_(character, e);
switch ((char_class_number_) classnum) {
case CC_ENUM_SPACE_: return is_XPERLSPACE_high(character);
case CC_ENUM_BLANK_: return is_HORIZWS_high(character);
case CC_ENUM_XDIGIT_: return is_XDIGIT_high(character);
case CC_ENUM_VERTSPACE_: return is_VERTWS_high(character);
default:
return _invlist_contains_cp(PL_XPosix_ptrs[classnum],
utf8_to_uv_or_die(character, e, NULL));
}
NOT_REACHED; /* NOTREACHED */
}
STATIC U8 *
S_find_span_end(U8 * s, const U8 * send, const U8 span_byte)
{
/* Returns the position of the first byte in the sequence between 's' and
* 'send-1' inclusive that isn't 'span_byte'; returns 'send' if none found.
* */
PERL_ARGS_ASSERT_FIND_SPAN_END;
assert(send >= s);
if ((STRLEN) (send - s) >= PERL_WORDSIZE
+ PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s)
- (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK))
{
PERL_UINTMAX_T span_word;
/* Process per-byte until reach word boundary. XXX This loop could be
* eliminated if we knew that this platform had fast unaligned reads */
while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) {
if (*s != span_byte) {
return s;
}
s++;
}
/* Create a word filled with the bytes we are spanning */
span_word = PERL_COUNT_MULTIPLIER * span_byte;
/* Process per-word as long as we have at least a full word left */
do {
/* Keep going if the whole word is composed of 'span_byte's */
if ((* (PERL_UINTMAX_T *) s) == span_word) {
s += PERL_WORDSIZE;
continue;
}
/* Here, at least one byte in the word isn't 'span_byte'. */
#ifdef EBCDIC
break;
#else
/* This xor leaves 1 bits only in those non-matching bytes */
span_word ^= * (PERL_UINTMAX_T *) s;
/* Make sure the upper bit of each non-matching byte is set. This
* makes each such byte look like an ASCII platform variant byte */
span_word |= span_word << 1;
span_word |= span_word << 2;
span_word |= span_word << 4;
/* That reduces the problem to what this function solves */
return s + variant_byte_number(span_word);
#endif
} while (s + PERL_WORDSIZE <= send);
}
/* Process the straggler bytes beyond the final word boundary */
while (s < send) {
if (*s != span_byte) {
return s;
}
s++;
}
return s;
}
STATIC U8 *
S_find_next_masked(U8 * s, const U8 * send, const U8 byte, const U8 mask)
{
/* Returns the position of the first byte in the sequence between 's'
* and 'send-1' inclusive that when ANDed with 'mask' yields 'byte';
* returns 'send' if none found. It uses word-level operations instead of
* byte to speed up the process */
PERL_ARGS_ASSERT_FIND_NEXT_MASKED;
assert(send >= s);
assert((byte & mask) == byte);
#ifndef EBCDIC
if ((STRLEN) (send - s) >= PERL_WORDSIZE
+ PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s)
- (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK))
{
PERL_UINTMAX_T word, mask_word;
while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) {
if (((*s) & mask) == byte) {
return s;
}
s++;
}
word = PERL_COUNT_MULTIPLIER * byte;
mask_word = PERL_COUNT_MULTIPLIER * mask;
do {
PERL_UINTMAX_T masked = (* (PERL_UINTMAX_T *) s) & mask_word;
/* If 'masked' contains bytes with the bit pattern of 'byte' within
* it, xoring with 'word' will leave each of the 8 bits in such
* bytes be 0, and no byte containing any other bit pattern will be
* 0. */
masked ^= word;
/* This causes the most significant bit to be set to 1 for any
* bytes in the word that aren't completely 0 */
masked |= masked << 1;
masked |= masked << 2;
masked |= masked << 4;
/* The msbits are the same as what marks a byte as variant, so we
* can use this mask. If all msbits are 1, the word doesn't
* contain 'byte' */
if ((masked & PERL_VARIANTS_WORD_MASK) == PERL_VARIANTS_WORD_MASK) {
s += PERL_WORDSIZE;
continue;
}
/* Here, the msbit of bytes in the word that aren't 'byte' are 1,
* and any that are, are 0. Complement and re-AND to swap that */
masked = ~ masked;
masked &= PERL_VARIANTS_WORD_MASK;
/* This reduces the problem to that solved by this function */
s += variant_byte_number(masked);
return s;
} while (s + PERL_WORDSIZE <= send);
}
#endif
while (s < send) {
if (((*s) & mask) == byte) {
return s;
}
s++;
}
return s;
}
STATIC U8 *
S_find_span_end_mask(U8 * s, const U8 * send, const U8 span_byte, const U8 mask)
{
/* Returns the position of the first byte in the sequence between 's' and
* 'send-1' inclusive that when ANDed with 'mask' isn't 'span_byte'.
* 'span_byte' should have been ANDed with 'mask' in the call of this
* function. Returns 'send' if none found. Works like find_span_end(),
* except for the AND */
PERL_ARGS_ASSERT_FIND_SPAN_END_MASK;
assert(send >= s);
assert((span_byte & mask) == span_byte);
if ((STRLEN) (send - s) >= PERL_WORDSIZE
+ PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s)
- (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK))
{
PERL_UINTMAX_T span_word, mask_word;
while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) {
if (((*s) & mask) != span_byte) {
return s;
}
s++;
}
span_word = PERL_COUNT_MULTIPLIER * span_byte;
mask_word = PERL_COUNT_MULTIPLIER * mask;
do {
PERL_UINTMAX_T masked = (* (PERL_UINTMAX_T *) s) & mask_word;
if (masked == span_word) {
s += PERL_WORDSIZE;
continue;
}
#ifdef EBCDIC
break;
#else
masked ^= span_word;
masked |= masked << 1;
masked |= masked << 2;
masked |= masked << 4;
return s + variant_byte_number(masked);
#endif
} while (s + PERL_WORDSIZE <= send);
}
while (s < send) {
if (((*s) & mask) != span_byte) {
return s;
}
s++;
}
return s;
}
/*
* pregexec and friends
*/
#ifndef PERL_IN_XSUB_RE
/*
- pregexec - match a regexp against a string
*/
I32
Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
/* stringarg: the point in the string at which to begin matching */
/* strend: pointer to null at end of string */
/* strbeg: real beginning of string */
/* minend: end of match must be >= minend bytes after stringarg. */
/* screamer: SV being matched: only used for utf8 flag, pos() etc; string
* itself is accessed via the pointers above */
/* nosave: For optimizations. */
{
PERL_ARGS_ASSERT_PREGEXEC;
return
regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
nosave ? 0 : REXEC_COPY_STR);
}
#endif
/* re_intuit_start():
*
* Based on some optimiser hints, try to find the earliest position in the
* string where the regex could match.
*
* rx: the regex to match against
* sv: the SV being matched: only used for utf8 flag; the string
* itself is accessed via the pointers below. Note that on
* something like an overloaded SV, SvPOK(sv) may be false
* and the string pointers may point to something unrelated to
* the SV itself.
* strbeg: real beginning of string
* strpos: the point in the string at which to begin matching
* strend: pointer to the byte following the last char of the string
* flags currently unused; set to 0
* data: currently unused; set to NULL
*
* The basic idea of re_intuit_start() is to use some known information
* about the pattern, namely:
*
* a) the longest known anchored substring (i.e. one that's at a
* constant offset from the beginning of the pattern; but not
* necessarily at a fixed offset from the beginning of the
* string);
* b) the longest floating substring (i.e. one that's not at a constant
* offset from the beginning of the pattern);
* c) Whether the pattern is anchored to the string; either
* an absolute anchor: /^../, or anchored to \n: /^.../m,
* or anchored to pos(): /\G/;
* d) A start class: a real or synthetic character class which
* represents which characters are legal at the start of the pattern;
*
* to either quickly reject the match, or to find the earliest position
* within the string at which the pattern might match, thus avoiding
* running the full NFA engine at those earlier locations, only to
* eventually fail and retry further along.
*
* Returns NULL if the pattern can't match, or returns the address within
* the string which is the earliest place the match could occur.
*
* The longest of the anchored and floating substrings is called 'check'
* and is checked first. The other is called 'other' and is checked
* second. The 'other' substring may not be present. For example,
*
* /(abc|xyz)ABC\d{0,3}DEFG/
*
* will have
*
* check substr (float) = "DEFG", offset 6..9 chars
* other substr (anchored) = "ABC", offset 3..3 chars
* stclass = [ax]
*
* Be aware that during the course of this function, sometimes 'anchored'
* refers to a substring being anchored relative to the start of the
* pattern, and sometimes to the pattern itself being anchored relative to
* the string. For example:
*
* /\dabc/: "abc" is anchored to the pattern;
* /^\dabc/: "abc" is anchored to the pattern and the string;
* /\d+abc/: "abc" is anchored to neither the pattern nor the string;
* /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
* but the pattern is anchored to the string.
*/
char *
Perl_re_intuit_start(pTHX_
REGEXP * const rx,
SV *sv,
const char * const strbeg,
char *strpos,
char *strend,
const U32 flags,
re_scream_pos_data *data)
{
struct regexp *const prog = ReANY(rx);
SSize_t start_shift = prog->check_offset_min;
/* Should be nonnegative! */
SSize_t end_shift = 0;
/* current lowest pos in string where the regex can start matching */
char *rx_origin = strpos;
SV *check;
const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
U8 other_ix = 1 - prog->substrs->check_ix;
bool ml_anch = 0;
char *other_last = strpos;/* latest pos 'other' substr already checked to */
char *check_at = NULL; /* check substr found at this pos */
const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
RXi_GET_DECL(prog,progi);
regmatch_info reginfo_buf; /* create some info to pass to find_byclass */
regmatch_info *const reginfo = ®info_buf;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_RE_INTUIT_START;
PERL_UNUSED_ARG(flags);
PERL_UNUSED_ARG(data);
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"Intuit: trying to determine minimum start position...\n"));
/* for now, assume that all substr offsets are positive. If at some point
* in the future someone wants to do clever things with lookbehind and
* -ve offsets, they'll need to fix up any code in this function
* which uses these offsets. See the thread beginning
* <20140113145929.GF27210@iabyn.com>
*/
assert(prog->substrs->data[0].min_offset >= 0);
assert(prog->substrs->data[0].max_offset >= 0);
assert(prog->substrs->data[1].min_offset >= 0);
assert(prog->substrs->data[1].max_offset >= 0);
assert(prog->substrs->data[2].min_offset >= 0);
assert(prog->substrs->data[2].max_offset >= 0);
/* for now, assume that if both present, that the floating substring
* doesn't start before the anchored substring.
* If you break this assumption (e.g. doing better optimisations
* with lookahead/behind), then you'll need to audit the code in this
* function carefully first
*/
assert(
! ( (prog->anchored_utf8 || prog->anchored_substr)
&& (prog->float_utf8 || prog->float_substr))
|| (prog->float_min_offset >= prog->anchored_offset));
/* byte rather than char calculation for efficiency. It fails
* to quickly reject some cases that can't match, but will reject
* them later after doing full char arithmetic */
if (prog->minlen > strend - strpos) {
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" String too short...\n"));
goto fail;
}
RXp_MATCH_UTF8_set(prog, utf8_target);
reginfo->is_utf8_target = cBOOL(utf8_target);
reginfo->info_aux = NULL;
reginfo->strbeg = strbeg;
reginfo->strend = strend;
reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
reginfo->intuit = 1;
/* not actually used within intuit, but zero for safety anyway */
reginfo->poscache_maxiter = 0;
if (utf8_target) {
if ((!prog->anchored_utf8 && prog->anchored_substr)
|| (!prog->float_utf8 && prog->float_substr))
to_utf8_substr(prog);
check = prog->check_utf8;
} else {
if (!prog->check_substr && prog->check_utf8) {
if (! to_byte_substr(prog)) {
NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
}
}
check = prog->check_substr;
}
/* dump the various substring data */
DEBUG_OPTIMISE_MORE_r({
int i;
for (i = 0; i <= 2; i++) {
SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
: prog->substrs->data[i].substr);
if (!sv)
continue;
Perl_re_printf( aTHX_
" substrs[%d]: min = %" IVdf " max = %" IVdf " end shift = %" IVdf
" useful = %" IVdf " utf8 = %d [%s]\n",
i,
(IV)prog->substrs->data[i].min_offset,
(IV)prog->substrs->data[i].max_offset,
(IV)prog->substrs->data[i].end_shift,
BmUSEFUL(sv),
utf8_target ? 1 : 0,
SvPEEK(sv));
}
});
if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
/* ml_anch: check after \n?
*
* A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
* with /.*.../, these flags will have been added by the
* compiler:
* /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL
* /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL
*/
ml_anch = (prog->intflags & PREGf_ANCH_MBOL)
&& !(prog->intflags & PREGf_IMPLICIT);
if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
/* we are only allowed to match at BOS or \G */
/* trivially reject if there's a BOS anchor and we're not at BOS.
*
* Note that we don't try to do a similar quick reject for
* \G, since generally the caller will have calculated strpos
* based on pos() and gofs, so the string is already correctly
* anchored by definition; and handling the exceptions would
* be too fiddly (e.g. REXEC_IGNOREPOS).
*/
if ( strpos != strbeg
&& (prog->intflags & PREGf_ANCH_SBOL))
{
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" Not at start...\n"));
goto fail;
}
/* in the presence of an anchor, the anchored (relative to the
* start of the regex) substr must also be anchored relative
* to strpos. So quickly reject if substr isn't found there.
* This works for \G too, because the caller will already have
* subtracted gofs from pos, and gofs is the offset from the
* \G to the start of the regex. For example, in /.abc\Gdef/,
* where substr = "abcdef", pos() = 3, gofs = 4, offset_min = 1:
* caller will have set strpos = pos()-4; we look for the substr
* at position pos()-4+1, which lines up with the "a" */
if (prog->check_offset_min == prog->check_offset_max) {
/* Substring at constant offset from beg-of-str... */
SSize_t slen = SvCUR(check);
char *s = HOP3c(strpos, prog->check_offset_min, strend);
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" Looking for check substr at fixed offset %" IVdf "...\n",
(IV)prog->check_offset_min));
if (SvTAIL(check)) {
/* In this case, the regex is anchored at the end too.
* Unless it's a multiline match, the lengths must match
* exactly, give or take a \n. NB: slen >= 1 since
* the last char of check is \n */
if (!multiline
&& ( strend - s > slen
|| strend - s < slen - 1
|| (strend - s == slen && strend[-1] != '\n')))
{
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" String too long...\n"));
goto fail_finish;
}
/* Now should match s[0..slen-2] */
slen--;
}
if (slen && (strend - s < slen
|| *SvPVX_const(check) != *s
|| (slen > 1 && (memNE(SvPVX_const(check), s, slen)))))
{
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" String not equal...\n"));
goto fail_finish;
}
check_at = s;
goto success_at_start;
}
}
}
end_shift = prog->check_end_shift;
#ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
if (end_shift < 0)
croak("panic: end_shift: %" IVdf " pattern:\n%s\n ",
(IV)end_shift, RX_PRECOMP(rx));
#endif
restart:
/* This is the (re)entry point of the main loop in this function.
* The goal of this loop is to:
* 1) find the "check" substring in the region rx_origin..strend
* (adjusted by start_shift / end_shift). If not found, reject
* immediately.
* 2) If it exists, look for the "other" substr too if defined; for
* example, if the check substr maps to the anchored substr, then
* check the floating substr, and vice-versa. If not found, go
* back to (1) with rx_origin suitably incremented.
* 3) If we find an rx_origin position that doesn't contradict
* either of the substrings, then check the possible additional
* constraints on rx_origin of /^.../m or a known start class.
* If these fail, then depending on which constraints fail, jump
* back to here, or to various other re-entry points further along
* that skip some of the first steps.
* 4) If we pass all those tests, update the BmUSEFUL() count on the
* substring. If the start position was determined to be at the
* beginning of the string - so, not rejected, but not optimised,
* since we have to run regmatch from position 0 - decrement the
* BmUSEFUL() count. Otherwise increment it.
*/
/* first, look for the 'check' substring */
{
U8* start_point;
U8* end_point;
DEBUG_OPTIMISE_MORE_r({
Perl_re_printf( aTHX_
" At restart: rx_origin = %" IVdf " Check offset min: %" IVdf
" Start shift: %" IVdf " End shift %" IVdf
" Real end Shift: %" IVdf "\n",
(IV)(rx_origin - strbeg),
(IV)prog->check_offset_min,
(IV)start_shift,
(IV)end_shift,
(IV)prog->check_end_shift);
});
end_point = HOPBACK3(strend, end_shift, rx_origin);
if (!end_point)
goto fail_finish;
start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
if (!start_point)
goto fail_finish;
/* If the regex is absolutely anchored to either the start of the
* string (SBOL) or to pos() (ANCH_GPOS), then
* check_offset_max represents an upper bound on the string where
* the substr could start. For the ANCH_GPOS case, we assume that
* the caller of intuit will have already set strpos to
* pos()-gofs, so in this case strpos + offset_max will still be
* an upper bound on the substr.
*/
if (!ml_anch
&& prog->intflags & PREGf_ANCH
&& prog->check_offset_max != SSize_t_MAX)
{
SSize_t check_len = SvCUR(check) - cBOOL(SvTAIL(check));
const char * const anchor =
(prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
SSize_t targ_len = (char*)end_point - anchor;
if (check_len > targ_len) {
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"Target string too short to match required substring...\n"));
goto fail_finish;
}
/* do a bytes rather than chars comparison. It's conservative;
* so it skips doing the HOP if the result can't possibly end
* up earlier than the old value of end_point.
*/
assert(anchor + check_len <= (char *)end_point);
if (prog->check_offset_max + check_len < targ_len) {
end_point = HOP3lim((U8*)anchor,
prog->check_offset_max,
end_point - check_len
)
+ check_len;
if (end_point < start_point)
goto fail_finish;
}
}
check_at = fbm_instr( start_point, end_point,
check, multiline ? FBMrf_MULTILINE : 0);
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" doing 'check' fbm scan, [%" IVdf "..%" IVdf "] gave %" IVdf "\n",
(IV)((char*)start_point - strbeg),
(IV)((char*)end_point - strbeg),
(IV)(check_at ? check_at - strbeg : -1)
));
/* Update the count-of-usability, remove useless subpatterns,
unshift s. */
DEBUG_EXECUTE_r({
RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
Perl_re_printf( aTHX_ " %s %s substr %s%s%s",
(check_at ? "Found" : "Did not find"),
(check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
? "anchored" : "floating"),
quoted,
RE_SV_TAIL(check),
(check_at ? " at offset " : "...\n") );
});
if (!check_at)
goto fail_finish;
/* set rx_origin to the minimum position where the regex could start
* matching, given the constraint of the just-matched check substring.
* But don't set it lower than previously.
*/
if (check_at - rx_origin > prog->check_offset_max)
rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
/* Finish the diagnostic message */
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"%ld (rx_origin now %" IVdf ")...\n",
(long)(check_at - strbeg),
(IV)(rx_origin - strbeg)
));
}
/* now look for the 'other' substring if defined */
if (prog->substrs->data[other_ix].utf8_substr
|| prog->substrs->data[other_ix].substr)
{
/* Take into account the "other" substring. */
char *last, *last1;
char *s;
SV* must;
struct reg_substr_datum *other;
do_other_substr:
other = &prog->substrs->data[other_ix];
if (!utf8_target && !other->substr) {
if (!to_byte_substr(prog)) {
NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
}
}
/* if "other" is anchored:
* we've previously found a floating substr starting at check_at.
* This means that the regex origin must lie somewhere
* between min (rx_origin): HOP3(check_at, -check_offset_max)
* and max: HOP3(check_at, -check_offset_min)
* (except that min will be >= strpos)
* So the fixed substr must lie somewhere between
* HOP3(min, anchored_offset)
* HOP3(max, anchored_offset) + SvCUR(substr)
*/
/* if "other" is floating
* Calculate last1, the absolute latest point where the
* floating substr could start in the string, ignoring any
* constraints from the earlier fixed match. It is calculated
* as follows:
*
* strend - prog->minlen (in chars) is the absolute latest
* position within the string where the origin of the regex
* could appear. The latest start point for the floating
* substr is float_min_offset(*) on from the start of the
* regex. last1 simply combines thee two offsets.
*
* (*) You might think the latest start point should be
* float_max_offset from the regex origin, and technically
* you'd be correct. However, consider
* /a\d{2,4}bcd\w/
* Here, float min, max are 3,5 and minlen is 7.
* This can match either
* /a\d\dbcd\w/
* /a\d\d\dbcd\w/
* /a\d\d\d\dbcd\w/
* In the first case, the regex matches minlen chars; in the
* second, minlen+1, in the third, minlen+2.
* In the first case, the floating offset is 3 (which equals
* float_min), in the second, 4, and in the third, 5 (which
* equals float_max). In all cases, the floating string bcd
* can never start more than 4 chars from the end of the
* string, which equals minlen - float_min. As the substring
* starts to match more than float_min from the start of the
* regex, it makes the regex match more than minlen chars,
* and the two cancel each other out. So we can always use
* float_min - minlen, rather than float_max - minlen for the
* latest position in the string.
*
* Note that -minlen + float_min_offset is equivalent (AFAIKT)
* to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
*/
assert(prog->minlen >= other->min_offset);
last1 = HOP3c(strend,
other->min_offset - prog->minlen, strbeg);
if (other_ix) {/* i.e. if (other-is-float) */
/* last is the latest point where the floating substr could
* start, *given* any constraints from the earlier fixed
* match. This constraint is that the floating string starts
* <= float_max_offset chars from the regex origin (rx_origin).
* If this value is less than last1, use it instead.
*/
assert(rx_origin <= last1);
last =
/* this condition handles the offset == infinity case, and
* is a short-cut otherwise. Although it's comparing a
* byte offset to a char length, it does so in a safe way,
* since 1 char always occupies 1 or more bytes,
* so if a string range is (last1 - rx_origin) bytes,
* it will be less than or equal to (last1 - rx_origin)
* chars; meaning it errs towards doing the accurate HOP3
* rather than just using last1 as a short-cut */
(last1 - rx_origin) < other->max_offset
? last1
: (char*)HOP3lim(rx_origin, other->max_offset, last1);
}
else {
assert(strpos + start_shift <= check_at);
last = HOP4c(check_at, other->min_offset - start_shift,
strbeg, strend);
}
s = HOP3c(rx_origin, other->min_offset, strend);
if (s < other_last) /* These positions already checked */
s = other_last;
must = utf8_target ? other->utf8_substr : other->substr;
assert(SvPOK(must));
{
char *from = s;
char *to = last + SvCUR(must) - (SvTAIL(must)!=0);
if (to > strend)
to = strend;
if (from > to) {
s = NULL;
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" skipping 'other' fbm scan: %" IVdf " > %" IVdf "\n",
(IV)(from - strbeg),
(IV)(to - strbeg)
));
}
else {
s = fbm_instr(
(unsigned char*)from,
(unsigned char*)to,
must,
multiline ? FBMrf_MULTILINE : 0
);
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" doing 'other' fbm scan, [%" IVdf "..%" IVdf "] gave %" IVdf "\n",
(IV)(from - strbeg),
(IV)(to - strbeg),
(IV)(s ? s - strbeg : -1)
));
}
}
DEBUG_EXECUTE_r({
RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
Perl_re_printf( aTHX_ " %s %s substr %s%s",
s ? "Found" : "Contradicts",
other_ix ? "floating" : "anchored",
quoted, RE_SV_TAIL(must));
});
if (!s) {
/* last1 is latest possible substr location. If we didn't
* find it before there, we never will */
if (last >= last1) {
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"; giving up...\n"));
goto fail_finish;
}
/* try to find the check substr again at a later
* position. Maybe next time we'll find the "other" substr
* in range too */
other_last = HOP3c(last, 1, strend) /* highest failure */;
rx_origin =
other_ix /* i.e. if other-is-float */
? HOP3c(rx_origin, 1, strend)
: HOP4c(last, 1 - other->min_offset, strbeg, strend);
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"; about to retry %s at offset %ld (rx_origin now %" IVdf ")...\n",
(other_ix ? "floating" : "anchored"),
(long)(HOP3c(check_at, 1, strend) - strbeg),
(IV)(rx_origin - strbeg)
));
goto restart;
}
else {
if (other_ix) { /* if (other-is-float) */
/* other_last is set to s, not s+1, since its possible for
* a floating substr to fail first time, then succeed
* second time at the same floating position; e.g.:
* "-AB--AABZ" =~ /\wAB\d*Z/
* The first time round, anchored and float match at
* "-(AB)--AAB(Z)" then fail on the initial \w character
* class. Second time round, they match at "-AB--A(AB)(Z)".
*/
other_last = s;
}
else {
rx_origin = HOP3c(s, -other->min_offset, strbeg);
other_last = HOP3c(s, 1, strend);
}
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" at offset %ld (rx_origin now %" IVdf ")...\n",
(long)(s - strbeg),
(IV)(rx_origin - strbeg)
));
}
}
else {
DEBUG_OPTIMISE_MORE_r(
Perl_re_printf( aTHX_
" Check-only match: offset min:%" IVdf " max:%" IVdf
" check_at:%" IVdf " rx_origin:%" IVdf " rx_origin-check_at:%" IVdf
" strend:%" IVdf "\n",
(IV)prog->check_offset_min,
(IV)prog->check_offset_max,
(IV)(check_at-strbeg),
(IV)(rx_origin-strbeg),
(IV)(rx_origin-check_at),
(IV)(strend-strbeg)
)
);
}
postprocess_substr_matches:
/* handle the extra constraint of /^.../m if present */
if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
char *s;
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" looking for /^/m anchor"));
/* we have failed the constraint of a \n before rx_origin.
* Find the next \n, if any, even if it's beyond the current
* anchored and/or floating substrings. Whether we should be
* scanning ahead for the next \n or the next substr is debatable.
* On the one hand you'd expect rare substrings to appear less
* often than \n's. On the other hand, searching for \n means
* we're effectively flipping between check_substr and "\n" on each
* iteration as the current "rarest" candidate string, which
* means for example that we'll quickly reject the whole string if
* hasn't got a \n, rather than trying every substr position
* first
*/
s = HOP3c(strend, - prog->minlen, strpos);
if (s <= rx_origin ||
! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
{
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" Did not find /%s^%s/m...\n",
PL_colors[0], PL_colors[1]));
goto fail_finish;
}
/* earliest possible origin is 1 char after the \n.
* (since *rx_origin == '\n', it's safe to ++ here rather than
* HOP(rx_origin, 1)) */
rx_origin++;
if (prog->substrs->check_ix == 0 /* check is anchored */
|| rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos))
{
/* Position contradicts check-string; either because
* check was anchored (and thus has no wiggle room),
* or check was float and rx_origin is above the float range */
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
goto restart;
}
/* if we get here, the check substr must have been float,
* is in range, and we may or may not have had an anchored
* "other" substr which still contradicts */
assert(prog->substrs->check_ix); /* check is float */
if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
/* whoops, the anchored "other" substr exists, so we still
* contradict. On the other hand, the float "check" substr
* didn't contradict, so just retry the anchored "other"
* substr */
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" Found /%s^%s/m, rescanning for anchored from offset %" IVdf " (rx_origin now %" IVdf ")...\n",
PL_colors[0], PL_colors[1],
(IV)(rx_origin - strbeg + prog->anchored_offset),
(IV)(rx_origin - strbeg)
));
goto do_other_substr;
}
/* success: we don't contradict the found floating substring
* (and there's no anchored substr). */
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" Found /%s^%s/m with rx_origin %ld...\n",
PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
}
else {
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" (multiline anchor test skipped)\n"));
}
success_at_start:
/* if we have a starting character class, then test that extra constraint.
* (trie stclasses are too expensive to use here, we are better off to
* leave it to regmatch itself) */
if (progi->regstclass && REGNODE_TYPE(OP(progi->regstclass))!=TRIE) {
const U8* const str = (U8*)STRING(progi->regstclass);
/* XXX this value could be pre-computed */
const SSize_t cl_l = (REGNODE_TYPE(OP(progi->regstclass)) == EXACT
? (reginfo->is_utf8_pat
? (SSize_t)utf8_distance(str + STR_LEN(progi->regstclass), str)
: (SSize_t)STR_LEN(progi->regstclass))
: 1);
char * endpos;
char *s;
/* latest pos that a matching float substr constrains rx start to */
char *rx_max_float = NULL;
/* if the current rx_origin is anchored, either by satisfying an
* anchored substring constraint, or a /^.../m constraint, then we
* can reject the current origin if the start class isn't found
* at the current position. If we have a float-only match, then
* rx_origin is constrained to a range; so look for the start class
* in that range. if neither, then look for the start class in the
* whole rest of the string */
/* XXX DAPM it's not clear what the minlen test is for, and why
* it's not used in the floating case. Nothing in the test suite
* causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
* Here are some old comments, which may or may not be correct:
*
* minlen == 0 is possible if regstclass is \b or \B,
* and the fixed substr is ''$.
* Since minlen is already taken into account, rx_origin+1 is
* before strend; accidentally, minlen >= 1 guaranties no false
* positives at rx_origin + 1 even for \b or \B. But (minlen? 1 :
* 0) below assumes that regstclass does not come from lookahead...
* If regstclass takes bytelength more than 1: If charlength == 1, OK.
* This leaves EXACTF-ish only, which are dealt with in
* find_byclass().
*/
if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
endpos = HOP3clim(rx_origin, (prog->minlen ? cl_l : 0), strend);
else if (prog->float_substr || prog->float_utf8) {
rx_max_float = HOP3c(check_at, -start_shift, strbeg);
endpos = HOP3clim(rx_max_float, cl_l, strend);
}
else
endpos = strend;
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" looking for class: start_shift: %" IVdf " check_at: %" IVdf
" rx_origin: %" IVdf " endpos: %" IVdf "\n",
(IV)start_shift, (IV)(check_at - strbeg),
(IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
reginfo);
if (!s) {
if (endpos == strend) {
DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
" Could not match STCLASS...\n") );
goto fail;
}
DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
" This position contradicts STCLASS...\n") );
if ((prog->intflags & PREGf_ANCH) && !ml_anch
&& !(prog->intflags & PREGf_IMPLICIT))
goto fail;
/* Contradict one of substrings */
if (prog->anchored_substr || prog->anchored_utf8) {
if (prog->substrs->check_ix == 1) { /* check is float */
/* Have both, check_string is floating */
assert(rx_origin + start_shift <= check_at);
if (rx_origin + start_shift != check_at) {
/* not at latest position float substr could match:
* Recheck anchored substring, but not floating.
* The condition above is in bytes rather than
* chars for efficiency. It's conservative, in
* that it errs on the side of doing 'goto
* do_other_substr'. In this case, at worst,
* an extra anchored search may get done, but in
* practice the extra fbm_instr() is likely to
* get skipped anyway. */
DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
" about to retry anchored at offset %ld (rx_origin now %" IVdf ")...\n",
(long)(other_last - strbeg),
(IV)(rx_origin - strbeg)
));
goto do_other_substr;
}
}
}
else {
/* float-only */
if (ml_anch) {
/* In the presence of ml_anch, we might be able to
* find another \n without breaking the current float
* constraint. */
/* strictly speaking this should be HOP3c(..., 1, ...),
* but since we goto a block of code that's going to
* search for the next \n if any, its safe here */
rx_origin++;
DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
" about to look for /%s^%s/m starting at rx_origin %ld...\n",
PL_colors[0], PL_colors[1],
(long)(rx_origin - strbeg)) );
goto postprocess_substr_matches;
}
/* strictly speaking this can never be true; but might
* be if we ever allow intuit without substrings */
if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
goto fail;
rx_origin = rx_max_float;
}
/* at this point, any matching substrings have been
* contradicted. Start again... */
rx_origin = HOP3c(rx_origin, 1, strend);
/* uses bytes rather than char calculations for efficiency.
* It's conservative: it errs on the side of doing 'goto restart',
* where there is code that does a proper char-based test */
if (rx_origin + start_shift + end_shift > strend) {
DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
" Could not match STCLASS...\n") );
goto fail;
}
DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
" about to look for %s substr starting at offset %ld (rx_origin now %" IVdf ")...\n",
(prog->substrs->check_ix ? "floating" : "anchored"),
(long)(rx_origin + start_shift - strbeg),
(IV)(rx_origin - strbeg)
));
goto restart;
}
/* Success !!! */
if (rx_origin != s) {
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" By STCLASS: moving %ld --> %ld\n",
(long)(rx_origin - strbeg), (long)(s - strbeg))
);
}
else {
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
" Does not contradict STCLASS...\n");
);
}
}
/* Decide whether using the substrings helped */
if (rx_origin != strpos) {
/* Fixed substring is found far enough so that the match
cannot start at strpos. */
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " try at offset...\n"));
++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
}
else {
/* The found rx_origin position does not prohibit matching at
* strpos, so calling intuit didn't gain us anything. Decrement
* the BmUSEFUL() count on the check substring, and if we reach
* zero, free it. */
if (!(prog->intflags & PREGf_NAUGHTY)
&& (utf8_target ? (
prog->check_utf8 /* Could be deleted already */
&& --BmUSEFUL(prog->check_utf8) < 0
&& (prog->check_utf8 == prog->float_utf8)
) : (
prog->check_substr /* Could be deleted already */
&& --BmUSEFUL(prog->check_substr) < 0
&& (prog->check_substr == prog->float_substr)
)))
{
/* If flags & SOMETHING - do not do it many times on the same match */
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " ... Disabling check substring...\n"));
/* XXX Does the destruction order has to change with utf8_target? */
SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
prog->check_substr = prog->check_utf8 = NULL; /* disable */
prog->float_substr = prog->float_utf8 = NULL; /* clear */
check = NULL; /* abort */
/* XXXX This is a remnant of the old implementation. It
looks wasteful, since now INTUIT can use many
other heuristics. */
prog->extflags &= ~RXf_USE_INTUIT;
}
}
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
return rx_origin;
fail_finish: /* Substring not found */
if (prog->check_substr || prog->check_utf8) /* could be removed already */
BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
fail:
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch rejected by optimizer%s\n",
PL_colors[4], PL_colors[5]));
return NULL;
}
#define DECL_TRIE_TYPE(scan) \
const enum { trie_plain, trie_utf8, trie_utf8_fold, \
trie_latin_utf8_fold, trie_utf8_exactfa_fold, \
trie_latin_utf8_exactfa_fold, \
trie_utf8l, trie_flu8, trie_flu8_latin } \
trie_type = ((FLAGS(scan) == EXACT) \
? (utf8_target ? trie_utf8 : trie_plain) \
: (FLAGS(scan) == EXACTL) \
? (utf8_target ? trie_utf8l : trie_plain)\
: (FLAGS(scan) == EXACTFAA) \
? (utf8_target \
? trie_utf8_exactfa_fold \
: trie_latin_utf8_exactfa_fold) \
: (FLAGS(scan) == EXACTFLU8 \
? (utf8_target \
? trie_flu8 \
: trie_flu8_latin) \
: (utf8_target \
? trie_utf8_fold \
: trie_latin_utf8_fold)))
/* 'uscan' is set to foldbuf, and incremented, so below the end of uscan is
* 'foldbuf+sizeof(foldbuf)' */
#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uc_end, \
uscan, len, uvc, charid, foldlen, foldbuf, \
uniflags) \
STMT_START { \
STRLEN skiplen; \
U8 flags = FOLD_FLAGS_FULL; \
switch (trie_type) { \
case trie_flu8: \
CHECK_AND_WARN_PROBLEMATIC_LOCALE_; \
if (UTF8_IS_ABOVE_LATIN1(*uc)) { \
CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG_(uc, uc_end); \
} \
goto do_trie_utf8_fold; \
case trie_utf8_exactfa_fold: \
flags |= FOLD_FLAGS_NOMIX_ASCII; \
/* FALLTHROUGH */ \
case trie_utf8_fold: \
do_trie_utf8_fold: \
if ( foldlen > 0 ) { \
(void) utf8_to_uv_flags( (const U8*) uscan, uscan + foldlen, \
&uvc, &len, \
(uniflags|UTF8_DIE_IF_MALFORMED)); \
foldlen -= len; \
uscan += len; \
len = 0; \
} else { \
uvc = _toFOLD_utf8_flags( (const U8*) uc, uc_end, foldbuf, \
&foldlen, flags); \
len = UTF8_SAFE_SKIP(uc, uc_end); \
skiplen = UVCHR_SKIP( uvc ); \
foldlen -= skiplen; \
uscan = foldbuf + skiplen; \
} \
break; \
case trie_flu8_latin: \
CHECK_AND_WARN_PROBLEMATIC_LOCALE_; \
goto do_trie_latin_utf8_fold; \
case trie_latin_utf8_exactfa_fold: \
flags |= FOLD_FLAGS_NOMIX_ASCII; \
/* FALLTHROUGH */ \
case trie_latin_utf8_fold: \
do_trie_latin_utf8_fold: \
if ( foldlen > 0 ) { \
(void) utf8_to_uv_flags( (const U8*) uscan, uscan + foldlen, \
&uvc, &len, \
(uniflags|UTF8_DIE_IF_MALFORMED)); \
foldlen -= len; \
uscan += len; \
len = 0; \
} else { \
len = 1; \
uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \
skiplen = UVCHR_SKIP( uvc ); \
foldlen -= skiplen; \
uscan = foldbuf + skiplen; \
} \
break; \
case trie_utf8l: \
CHECK_AND_WARN_PROBLEMATIC_LOCALE_; \
if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG_(uc, uc_end); \
} \
/* FALLTHROUGH */ \
case trie_utf8: \
(void) utf8_to_uv_flags( (const U8*) uc, uc_end, &uvc, &len, \
(uniflags|UTF8_DIE_IF_MALFORMED)); \
break; \
case trie_plain: \
uvc = (UV)*uc; \
len = 1; \
} \
if (uvc < 256) { \
charid = trie->charmap[ uvc ]; \
} \
else { \
charid = 0; \
if (widecharmap) { \
SV** const svpp = hv_fetch(widecharmap, \
(char*)&uvc, sizeof(UV), 0); \
if (svpp) \
charid = (U16)SvIV(*svpp); \
} \
} \
} STMT_END
#define DUMP_EXEC_POS(li,s,doutf8,depth) \
dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
startpos, doutf8, depth)
#define GET_ANYOFH_INVLIST(prog, n) \
GET_REGCLASS_AUX_DATA(prog, n, true, 0, NULL, NULL)
#define REXEC_FBC_UTF8_SCAN(CODE) \
STMT_START { \
while (s < strend) { \
CODE \
s += UTF8_SAFE_SKIP(s, reginfo->strend); \
} \
} STMT_END
#define REXEC_FBC_NON_UTF8_SCAN(CODE) \
STMT_START { \
while (s < strend) { \
CODE \
s++; \
} \
} STMT_END
#define REXEC_FBC_UTF8_CLASS_SCAN(COND) \
STMT_START { \
while (s < strend) { \
REXEC_FBC_UTF8_CLASS_SCAN_GUTS(COND) \
} \
} STMT_END
#define REXEC_FBC_NON_UTF8_CLASS_SCAN(COND) \
STMT_START { \
while (s < strend) { \
REXEC_FBC_NON_UTF8_CLASS_SCAN_GUTS(COND) \
} \
} STMT_END
#define REXEC_FBC_UTF8_CLASS_SCAN_GUTS(COND) \
if (COND) { \
FBC_CHECK_AND_TRY \
s += UTF8_SAFE_SKIP(s, reginfo->strend); \
previous_occurrence_end = s; \
} \
else { \
s += UTF8SKIP(s); \
}
#define REXEC_FBC_NON_UTF8_CLASS_SCAN_GUTS(COND) \
if (COND) { \
FBC_CHECK_AND_TRY \
s++; \
previous_occurrence_end = s; \
} \
else { \
s++; \
}
#define LAST_REGTRY_SKIPPED_FORWARD(reginfo) (reginfo->cutpoint)
/* We keep track of where the next character should start after an occurrence
* of the one we're looking for. Knowing that, we can see right away if the
* next occurrence is adjacent to the previous. When 'doevery' is false, we
* don't accept the 2nd and succeeding adjacent occurrences */
#define FBC_CHECK_AND_TRY \
if ( ( doevery \
|| s != previous_occurrence_end \
|| LAST_REGTRY_SKIPPED_FORWARD(reginfo) ) \
&& ( reginfo->intuit \
|| (s <= reginfo->strend && regtry(reginfo, &s)))) \
{ \
goto got_it; \
}
/* These differ from the above macros in that they call a function which
* returns the next occurrence of the thing being looked for in 's'; and
* 'strend' if there is no such occurrence. 'f' is something like fcn(a,b,c)
* */
#define REXEC_FBC_UTF8_FIND_NEXT_SCAN(f) \
while (s < strend) { \
s = (char *) (f); \
if (s >= strend) { \
break; \
} \
\
FBC_CHECK_AND_TRY \
s += UTF8SKIP(s); \
previous_occurrence_end = s; \
}
#define REXEC_FBC_NON_UTF8_FIND_NEXT_SCAN(f) \
while (s < strend) { \
s = (char *) (f); \
if (s >= strend) { \
break; \
} \
\
FBC_CHECK_AND_TRY \
s++; \
previous_occurrence_end = s; \
}
/* This is like the above macro except the function returns NULL if there is no
* occurrence, and there is a further condition that must be matched besides
* the function */
#define REXEC_FBC_FIND_NEXT_UTF8_SCAN_COND(f, COND) \
while (s < strend) { \
s = (char *) (f); \
if (s == NULL) { \
s = (char *) strend; \
break; \
} \
\
if (COND) { \
FBC_CHECK_AND_TRY \
s += UTF8_SAFE_SKIP(s, reginfo->strend); \
previous_occurrence_end = s; \
} \
else { \
s += UTF8SKIP(s); \
} \
}
/* This differs from the above macros in that it is passed a single byte that
* is known to begin the next occurrence of the thing being looked for in 's'.
* It does a memchr to find the next occurrence of 'byte', before trying 'COND'
* at that position. */
#define REXEC_FBC_FIND_NEXT_UTF8_BYTE_SCAN(byte, COND) \
REXEC_FBC_FIND_NEXT_UTF8_SCAN_COND(memchr(s, byte, strend - s), \
COND)
/* This is like the function above, but takes an entire string to look for
* instead of a single byte */
#define REXEC_FBC_FIND_NEXT_UTF8_STRING_SCAN(substr, substr_end, COND) \
REXEC_FBC_FIND_NEXT_UTF8_SCAN_COND( \
ninstr(s, strend, substr, substr_end), \
COND)
/* The four macros below are slightly different versions of the same logic.
*
* The first is for /a and /aa when the target string is UTF-8. This can only
* match ascii, but it must advance based on UTF-8. The other three handle
* the non-UTF-8 and the more generic UTF-8 cases. In all four, we are
* looking for the boundary (or non-boundary) between a word and non-word
* character. The utf8 and non-utf8 cases have the same logic, but the details
* must be different. Find the "wordness" of the character just prior to this
* one, and compare it with the wordness of this one. If they differ, we have
* a boundary. At the beginning of the string, pretend that the previous
* character was a new-line.
*
* All these macros uncleanly have side-effects with each other and outside
* variables. So far it's been too much trouble to clean-up
*
* TEST_NON_UTF8 is the macro or function to call to test if its byte input is
* a word character or not.
* IF_SUCCESS is code to do if it finds that we are at a boundary between
* word/non-word
* IF_FAIL is code to do if we aren't at a boundary between word/non-word
*
* Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
* are looking for a boundary or for a non-boundary. If we are looking for a
* boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
* see if this tentative match actually works, and if so, to quit the loop
* here. And vice-versa if we are looking for a non-boundary.
*
* 'tmp' below in the next four macros in the REXEC_FBC_UTF8_SCAN and
* REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
* TEST_NON_UTF8(s-1). To see this, note that that's what it is defined to be
* at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
* TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
* complement. But in that branch we complement tmp, meaning that at the
* bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
* which means at the top of the loop in the next iteration, it is
* TEST_NON_UTF8(s-1) */
#define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
tmp = TEST_NON_UTF8(tmp); \
REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
tmp = !tmp; \
IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */ \
} \
else { \
IF_FAIL; \
} \
); \
/* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
* TEST_UTF8 is a macro that for the same input code points returns identically
* to TEST_UV, but takes a pointer to a UTF-8 encoded string instead (and an
* end pointer as well) */
#define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL) \
if (s == reginfo->strbeg) { \
tmp = '\n'; \
} \
else { /* Back-up to the start of the previous character */ \
U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \
tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \
0, UTF8_ALLOW_DEFAULT); \
} \
tmp = TEST_UV(tmp); \
REXEC_FBC_UTF8_SCAN(/* advances s while s < strend */ \
if (tmp == ! (TEST_UTF8((U8 *) s, (U8 *) reginfo->strend))) { \
tmp = !tmp; \
IF_SUCCESS; \
} \
else { \
IF_FAIL; \
} \
);
/* Like the above two macros, for a UTF-8 target string. UTF8_CODE is the
* complete code for handling UTF-8. Common to the BOUND and NBOUND cases,
* set-up by the FBC_BOUND, etc macros below */
#define FBC_BOUND_COMMON_UTF8(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL)\
UTF8_CODE; \
/* Here, things have been set up by the previous code so that tmp is the\
* return of TEST_NON_UTF8(s-1). We also have to check if this matches \
* against the EOS, which we treat as a \n */ \
if (tmp == ! TEST_NON_UTF8('\n')) { \
IF_SUCCESS; \
} \
else { \
IF_FAIL; \
}
/* Same as the macro above, but the target isn't UTF-8 */
#define FBC_BOUND_COMMON_NON_UTF8(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
tmp = TEST_NON_UTF8(tmp); \
REXEC_FBC_NON_UTF8_SCAN(/* advances s while s < strend */ \
if (tmp == ! TEST_NON_UTF8(UCHARAT(s))) { \
IF_SUCCESS; \
tmp = !tmp; \
} \
else { \
IF_FAIL; \
} \
); \
/* Here, things have been set up by the previous code so that tmp is \
* the return of TEST_NON_UTF8(s-1). We also have to check if this \
* matches against the EOS, which we treat as a \n */ \
if (tmp == ! TEST_NON_UTF8('\n')) { \
IF_SUCCESS; \
} \
else { \
IF_FAIL; \
}
/* This is the macro to use when we want to see if something that looks like it
* could match, actually does, and if so exits the loop. It needs to be used
* only for bounds checking macros, as it allows for matching beyond the end of
* string (which should be zero length without having to look at the string
* contents) */
#define REXEC_FBC_TRYIT \
if (reginfo->intuit || (s <= reginfo->strend && regtry(reginfo, &s))) \
goto got_it
/* The only difference between the BOUND and NBOUND cases is that
* REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
* NBOUND. This is accomplished by passing it as either the if or else clause,
* with the other one being empty (PLACEHOLDER is defined as empty).
*
* The TEST_FOO parameters are for operating on different forms of input, but
* all should be ones that return identically for the same underlying code
* points */
#define FBC_BOUND_UTF8(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
FBC_BOUND_COMMON_UTF8( \
FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
#define FBC_BOUND_NON_UTF8(TEST_NON_UTF8) \
FBC_BOUND_COMMON_NON_UTF8(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
#define FBC_BOUND_A_UTF8(TEST_NON_UTF8) \
FBC_BOUND_COMMON_UTF8( \
FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER),\
TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
#define FBC_BOUND_A_NON_UTF8(TEST_NON_UTF8) \
FBC_BOUND_COMMON_NON_UTF8(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
#define FBC_NBOUND_UTF8(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
FBC_BOUND_COMMON_UTF8( \
FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
#define FBC_NBOUND_NON_UTF8(TEST_NON_UTF8) \
FBC_BOUND_COMMON_NON_UTF8(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
#define FBC_NBOUND_A_UTF8(TEST_NON_UTF8) \
FBC_BOUND_COMMON_UTF8( \
FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
#define FBC_NBOUND_A_NON_UTF8(TEST_NON_UTF8) \
FBC_BOUND_COMMON_NON_UTF8(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
#ifdef DEBUGGING
static IV
S_get_break_val_cp_checked(SV* const invlist, const UV cp_in) {
IV cp_out = _invlist_search(invlist, cp_in);
assert(cp_out >= 0);
return cp_out;
}
# define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \
invmap[S_get_break_val_cp_checked(invlist, cp)]
#else
# define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \
invmap[_invlist_search(invlist, cp)]
#endif
/* Takes a pointer to an inversion list, a pointer to its corresponding
* inversion map, and a code point, and returns the code point's value
* according to the two arrays. It assumes that all code points have a value.
* This is used as the base macro for macros for particular properties */
#define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp) \
_generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp)
/* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
* of a code point, returning the value for the first code point in the string.
* And it takes the particular macro name that finds the desired value given a
* code point. Merely convert the UTF-8 to code point and call the cp macro */
#define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend) \
(__ASSERT_(pos < strend) \
/* Note assumes is valid UTF-8 */ \
(cp_macro(utf8_to_uv_or_die((pos), (strend), NULL))))
/* Returns the GCB value for the input code point */
#define getGCB_VAL_CP(cp) \
_generic_GET_BREAK_VAL_CP( \
PL_GCB_invlist, \
_Perl_GCB_invmap, \
(cp))
/* Returns the GCB value for the first code point in the UTF-8 encoded string
* bounded by pos and strend */
#define getGCB_VAL_UTF8(pos, strend) \
_generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
/* Returns the LB value for the input code point */
#define getLB_VAL_CP(cp) \
_generic_GET_BREAK_VAL_CP( \
PL_LB_invlist, \
_Perl_LB_invmap, \
(cp))
/* Returns the LB value for the first code point in the UTF-8 encoded string
* bounded by pos and strend */
#define getLB_VAL_UTF8(pos, strend) \
_generic_GET_BREAK_VAL_UTF8(getLB_VAL_CP, pos, strend)
/* Returns the SB value for the input code point */
#define getSB_VAL_CP(cp) \
_generic_GET_BREAK_VAL_CP( \
PL_SB_invlist, \
_Perl_SB_invmap, \
(cp))
/* Returns the SB value for the first code point in the UTF-8 encoded string
* bounded by pos and strend */
#define getSB_VAL_UTF8(pos, strend) \
_generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
/* Returns the WB value for the input code point */
#define getWB_VAL_CP(cp) \
_generic_GET_BREAK_VAL_CP( \
PL_WB_invlist, \
_Perl_WB_invmap, \
(cp))
/* Returns the WB value for the first code point in the UTF-8 encoded string
* bounded by pos and strend */
#define getWB_VAL_UTF8(pos, strend) \
_generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
/* We know what class REx starts with. Try to find this position... */
/* if reginfo->intuit, its a dryrun */
/* annoyingly all the vars in this routine have different names from their counterparts
in regmatch. /grrr */
STATIC char *
S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
const char *strend, regmatch_info *reginfo)
{
/* true if x+ need not match at just the 1st pos of run of x's */
const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
char *pat_string; /* The pattern's exactish string */
char *pat_end; /* ptr to end char of pat_string */
re_fold_t folder; /* Function for computing non-utf8 folds */
const U8 *fold_array; /* array for folding ords < 256 */
STRLEN ln;
STRLEN lnc;
U8 c1;
U8 c2;
char *e = NULL;
/* In some cases we accept only the first occurrence of 'x' in a sequence of
* them. This variable points to just beyond the end of the previous
* occurrence of 'x', hence we can tell if we are in a sequence. (Having
* it point to beyond the 'x' allows us to work for UTF-8 without having to
* hop back.) */
char * previous_occurrence_end = 0;
I32 tmp; /* Scratch variable */
const bool utf8_target = reginfo->is_utf8_target;
UV utf8_fold_flags = 0;
const bool is_utf8_pat = reginfo->is_utf8_pat;
bool to_complement = false; /* Invert the result? Taking the xor of this
with a result inverts that result, as 0^1 =
1 and 1^1 = 0 */
char_class_number_ classnum;
RXi_GET_DECL(prog,progi);
PERL_ARGS_ASSERT_FIND_BYCLASS;
/* We know what class it must start with. The case statements below have
* encoded the OP, and the UTF8ness of the target ('t8' for is UTF-8; 'tb'
* for it isn't; 'b' stands for byte), and the UTF8ness of the pattern
* ('p8' and 'pb'. */
switch (with_tp_UTF8ness(OP(c), utf8_target, is_utf8_pat)) {
SV * anyofh_list;
case ANYOFPOSIXL_t8_pb:
case ANYOFPOSIXL_t8_p8:
case ANYOFL_t8_pb:
case ANYOFL_t8_p8:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_SETS(c);
/* FALLTHROUGH */
case ANYOFD_t8_pb:
case ANYOFD_t8_p8:
case ANYOF_t8_pb:
case ANYOF_t8_p8:
REXEC_FBC_UTF8_CLASS_SCAN(
reginclass(prog, c, (U8*)s, (U8*) strend, 1 /* is utf8 */));
break;
case ANYOFPOSIXL_tb_pb:
case ANYOFPOSIXL_tb_p8:
case ANYOFL_tb_pb:
case ANYOFL_tb_p8:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_SETS(c);
/* FALLTHROUGH */
case ANYOFD_tb_pb:
case ANYOFD_tb_p8:
case ANYOF_tb_pb:
case ANYOF_tb_p8:
if (! ANYOF_FLAGS(c) && ANYOF_MATCHES_NONE_OUTSIDE_BITMAP(c)) {
/* We know that s is in the bitmap range since the target isn't
* UTF-8, so what happens for out-of-range values is not relevant,
* so exclude that from the flags */
REXEC_FBC_NON_UTF8_CLASS_SCAN(ANYOF_BITMAP_TEST(c, *((U8*)s)));
}
else {
REXEC_FBC_NON_UTF8_CLASS_SCAN(reginclass(prog,c, (U8*)s, (U8*)s+1,
0));
}
break;
case ANYOFM_tb_pb: /* ARG1u() is the base byte; FLAGS() the mask byte */
case ANYOFM_tb_p8:
REXEC_FBC_NON_UTF8_FIND_NEXT_SCAN(
find_next_masked((U8 *) s, (U8 *) strend, (U8) ARG1u(c), FLAGS(c)));
break;
case ANYOFM_t8_pb:
case ANYOFM_t8_p8:
/* UTF-8ness doesn't matter because only matches UTF-8 invariants. But
* we do anyway for performance reasons, as otherwise we would have to
* examine all the continuation characters */
REXEC_FBC_UTF8_FIND_NEXT_SCAN(
find_next_masked((U8 *) s, (U8 *) strend, (U8) ARG1u(c), FLAGS(c)));
break;
case NANYOFM_tb_pb:
case NANYOFM_tb_p8:
REXEC_FBC_NON_UTF8_FIND_NEXT_SCAN(
find_span_end_mask((U8 *) s, (U8 *) strend, (U8) ARG1u(c), FLAGS(c)));
break;
case NANYOFM_t8_pb:
case NANYOFM_t8_p8: /* UTF-8ness does matter because can match UTF-8
variants. */
REXEC_FBC_UTF8_FIND_NEXT_SCAN(
(char *) find_span_end_mask((U8 *) s, (U8 *) strend,
(U8) ARG1u(c), FLAGS(c)));
break;
/* These nodes all require at least one code point to be in UTF-8 to
* match */
case ANYOFH_tb_pb:
case ANYOFH_tb_p8:
case ANYOFHb_tb_pb:
case ANYOFHb_tb_p8:
case ANYOFHbbm_tb_pb:
case ANYOFHbbm_tb_p8:
case ANYOFHr_tb_pb:
case ANYOFHr_tb_p8:
case ANYOFHs_tb_pb:
case ANYOFHs_tb_p8:
case EXACTFLU8_tb_pb:
case EXACTFLU8_tb_p8:
case EXACTFU_REQ8_tb_pb:
case EXACTFU_REQ8_tb_p8:
break;
case ANYOFH_t8_pb:
case ANYOFH_t8_p8:
anyofh_list = GET_ANYOFH_INVLIST(prog, c);
REXEC_FBC_UTF8_CLASS_SCAN(
( (U8) NATIVE_UTF8_TO_I8(*s) >= ANYOF_FLAGS(c)
&& _invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) s,
(U8 *) strend,
NULL))));
break;
case ANYOFHb_t8_pb:
case ANYOFHb_t8_p8:
{
/* We know what the first byte of any matched string should be. */
U8 first_byte = FLAGS(c);
anyofh_list = GET_ANYOFH_INVLIST(prog, c);
REXEC_FBC_FIND_NEXT_UTF8_BYTE_SCAN(first_byte,
_invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) s,
(U8 *) strend,
NULL)));
}
break;
case ANYOFHbbm_t8_pb:
case ANYOFHbbm_t8_p8:
{
/* We know what the first byte of any matched string should be. */
U8 first_byte = FLAGS(c);
/* And a bitmap defines all the legal 2nd byte matches */
REXEC_FBC_FIND_NEXT_UTF8_BYTE_SCAN(first_byte,
( s < strend
&& BITMAP_TEST(((struct regnode_bbm *) c)->bitmap,
(U8) s[1] & UTF_CONTINUATION_MASK)));
}
break;
case ANYOFHr_t8_pb:
case ANYOFHr_t8_p8:
anyofh_list = GET_ANYOFH_INVLIST(prog, c);
REXEC_FBC_UTF8_CLASS_SCAN(
( inRANGE(NATIVE_UTF8_TO_I8(*s),
LOWEST_ANYOF_HRx_BYTE(ANYOF_FLAGS(c)),
HIGHEST_ANYOF_HRx_BYTE(ANYOF_FLAGS(c)))
&& _invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) s,
(U8 *) strend,
NULL))));
break;
case ANYOFHs_t8_pb:
case ANYOFHs_t8_p8:
anyofh_list = GET_ANYOFH_INVLIST(prog, c);
REXEC_FBC_FIND_NEXT_UTF8_STRING_SCAN(
((struct regnode_anyofhs *) c)->string,
/* Note FLAGS is the string length in this regnode */
((struct regnode_anyofhs *) c)->string + FLAGS(c),
_invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) s,
(U8 *) strend,
NULL)));
break;
case ANYOFR_tb_pb:
case ANYOFR_tb_p8:
REXEC_FBC_NON_UTF8_CLASS_SCAN(withinCOUNT((U8) *s,
ANYOFRbase(c), ANYOFRdelta(c)));
break;
case ANYOFR_t8_pb:
case ANYOFR_t8_p8:
REXEC_FBC_UTF8_CLASS_SCAN(
( NATIVE_UTF8_TO_I8(*s) >= ANYOF_FLAGS(c)
&& withinCOUNT(utf8_to_uv_or_die((U8 *) s,
(U8 *) strend,
NULL),
ANYOFRbase(c), ANYOFRdelta(c))));
break;
case ANYOFRb_tb_pb:
case ANYOFRb_tb_p8:
REXEC_FBC_NON_UTF8_CLASS_SCAN(withinCOUNT((U8) *s,
ANYOFRbase(c), ANYOFRdelta(c)));
break;
case ANYOFRb_t8_pb:
case ANYOFRb_t8_p8:
{ /* We know what the first byte of any matched string should be */
U8 first_byte = FLAGS(c);
REXEC_FBC_FIND_NEXT_UTF8_BYTE_SCAN(first_byte,
withinCOUNT(utf8_to_uv_or_die((U8 *) s,
(U8 *) strend,
NULL),
ANYOFRbase(c), ANYOFRdelta(c)));
}
break;
case EXACTFAA_tb_pb:
/* Latin1 folds are not affected by /a, except it excludes the sharp s,
* which these functions don't handle anyway */
fold_array = PL_fold_latin1;
folder = S_foldEQ_latin1_s2_folded;
goto do_exactf_non_utf8;
case EXACTF_tb_pb:
fold_array = PL_fold;
folder = Perl_foldEQ;
goto do_exactf_non_utf8;
case EXACTFL_tb_pb:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
if (IN_UTF8_CTYPE_LOCALE) {
utf8_fold_flags = FOLDEQ_LOCALE;
goto do_exactf_utf8;
}
fold_array = PL_fold_locale;
folder = Perl_foldEQ_locale;
goto do_exactf_non_utf8;
case EXACTFU_tb_pb:
/* Any 'ss' in the pattern should have been replaced by regcomp, so we
* don't have to worry here about this single special case in the
* Latin1 range */
fold_array = PL_fold_latin1;
folder = S_foldEQ_latin1_s2_folded;
/* FALLTHROUGH */
do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
are no glitches with fold-length differences
between the target string and pattern */
/* The idea in the non-utf8 EXACTF* cases is to first find the first
* character of the EXACTF* node and then, if necessary,
* case-insensitively compare the full text of the node. c1 is the
* first character. c2 is its fold. This logic will not work for
* Unicode semantics and the german sharp ss, which hence should not be
* compiled into a node that gets here. */
pat_string = STRINGs(c);
ln = STR_LENs(c); /* length to match in octets/bytes */
/* We know that we have to match at least 'ln' bytes (which is the same
* as characters, since not utf8). If we have to match 3 characters,
* and there are only 2 available, we know without trying that it will
* fail; so don't start a match past the required minimum number from
* the far end */
e = HOP3c(strend, -((SSize_t)ln), s);
if (e < s)
break;
c1 = *pat_string;
c2 = fold_array[c1];
if (c1 == c2) { /* If char and fold are the same */
while (s <= e) {
s = (char *) memchr(s, c1, e + 1 - s);
if (s == NULL) {
break;
}
/* Check that the rest of the node matches */
if ( (ln == 1 || folder(aTHX_ s + 1, pat_string + 1, ln - 1))
&& (reginfo->intuit || regtry(reginfo, &s)) )
{
goto got_it;
}
s++;
}
}
else {
U8 bits_differing = c1 ^ c2;
/* If the folds differ in one bit position only, we can mask to
* match either of them, and can use this faster find method. Both
* ASCII and EBCDIC tend to have their case folds differ in only
* one position, so this is very likely */
if (LIKELY(PL_bitcount[bits_differing] == 1)) {
bits_differing = ~ bits_differing;
while (s <= e) {
s = (char *) find_next_masked((U8 *) s, (U8 *) e + 1,
(c1 & bits_differing), bits_differing);
if (s > e) {
break;
}
if ( (ln == 1 || folder(aTHX_ s + 1, pat_string + 1, ln - 1))
&& (reginfo->intuit || regtry(reginfo, &s)) )
{
goto got_it;
}
s++;
}
}
else { /* Otherwise, stuck with looking byte-at-a-time. This
should actually happen only in EXACTFL nodes */
while (s <= e) {
if ( (*(U8*)s == c1 || *(U8*)s == c2)
&& (ln == 1 || folder(aTHX_ s + 1, pat_string + 1, ln - 1))
&& (reginfo->intuit || regtry(reginfo, &s)) )
{
goto got_it;
}
s++;
}
}
}
break;
case EXACTFAA_tb_p8:
case EXACTFAA_t8_p8:
utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII
|FOLDEQ_S2_ALREADY_FOLDED
|FOLDEQ_S2_FOLDS_SANE;
goto do_exactf_utf8;
case EXACTFAA_NO_TRIE_tb_pb:
case EXACTFAA_NO_TRIE_t8_pb:
case EXACTFAA_t8_pb:
/* Here, and elsewhere in this file, the reason we can't consider a
* non-UTF-8 pattern already folded in the presence of a UTF-8 target
* is because any MICRO SIGN in the pattern won't be folded. Since the
* fold of the MICRO SIGN requires UTF-8 to represent, we can consider
* a non-UTF-8 pattern folded when matching a non-UTF-8 target */
utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
goto do_exactf_utf8;
case EXACTFL_tb_p8:
case EXACTFL_t8_pb:
case EXACTFL_t8_p8:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
utf8_fold_flags = FOLDEQ_LOCALE;
goto do_exactf_utf8;
case EXACTFLU8_t8_pb:
case EXACTFLU8_t8_p8:
utf8_fold_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
| FOLDEQ_S2_FOLDS_SANE;
goto do_exactf_utf8;
case EXACTFU_REQ8_t8_p8:
utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
goto do_exactf_utf8;
case EXACTFU_tb_p8:
case EXACTFU_t8_pb:
case EXACTFU_t8_p8:
utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
goto do_exactf_utf8;
/* The following are problematic even though pattern isn't UTF-8. Use
* full functionality normally not done except for UTF-8. */
case EXACTF_t8_pb:
case EXACTFUP_tb_pb:
case EXACTFUP_t8_pb:
do_exactf_utf8:
{
unsigned expansion;
/* If one of the operands is in utf8, we can't use the simpler
* folding above, due to the fact that many different characters
* can have the same fold, or portion of a fold, or different-
* length fold */
pat_string = STRINGs(c);
ln = STR_LENs(c); /* length to match in octets/bytes */
pat_end = pat_string + ln;
lnc = is_utf8_pat /* length to match in characters */
? utf8_length((U8 *) pat_string, (U8 *) pat_end)
: ln;
/* We have 'lnc' characters to match in the pattern, but because of
* multi-character folding, each character in the target can match
* up to 3 characters (Unicode guarantees it will never exceed
* this) if it is utf8-encoded; and up to 2 if not (based on the
* fact that the Latin 1 folds are already determined, and the only
* multi-char fold in that range is the sharp-s folding to 'ss'.
* Thus, a pattern character can match as little as 1/3 of a string
* character. Adjust lnc accordingly, rounding up, so that if we
* need to match at least 4+1/3 chars, that really is 5. */
expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
lnc = (lnc + expansion - 1) / expansion;
/* As in the non-UTF8 case, if we have to match 3 characters, and
* only 2 are left, it's guaranteed to fail, so don't start a match
* that would require us to go beyond the end of the string */
e = HOP3c(strend, -((SSize_t)lnc), s);
/* XXX Note that we could recalculate e to stop the loop earlier,
* as the worst case expansion above will rarely be met, and as we
* go along we would usually find that e moves further to the left.
* This would happen only after we reached the point in the loop
* where if there were no expansion we should fail. Unclear if
* worth the expense */
while (s <= e) {
char *my_strend= (char *)strend;
if ( foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
pat_string, NULL, ln, is_utf8_pat,
utf8_fold_flags)
&& (reginfo->intuit || regtry(reginfo, &s)) )
{
goto got_it;
}
s += (utf8_target) ? UTF8_SAFE_SKIP(s, reginfo->strend) : 1;
}
}
break;
case BOUNDA_tb_pb:
case BOUNDA_tb_p8:
case BOUND_tb_pb: /* /d without utf8 target is /a */
case BOUND_tb_p8:
/* regcomp.c makes sure that these only have the traditional \b
* meaning. */
assert(FLAGS(c) == TRADITIONAL_BOUND);
FBC_BOUND_A_NON_UTF8(isWORDCHAR_A);
break;
case BOUNDA_t8_pb: /* What /a matches is same under UTF-8 */
case BOUNDA_t8_p8:
/* regcomp.c makes sure that these only have the traditional \b
* meaning. */
assert(FLAGS(c) == TRADITIONAL_BOUND);
FBC_BOUND_A_UTF8(isWORDCHAR_A);
break;
case NBOUNDA_tb_pb:
case NBOUNDA_tb_p8:
case NBOUND_tb_pb: /* /d without utf8 target is /a */
case NBOUND_tb_p8:
/* regcomp.c makes sure that these only have the traditional \b
* meaning. */
assert(FLAGS(c) == TRADITIONAL_BOUND);
FBC_NBOUND_A_NON_UTF8(isWORDCHAR_A);
break;
case NBOUNDA_t8_pb: /* What /a matches is same under UTF-8 */
case NBOUNDA_t8_p8:
/* regcomp.c makes sure that these only have the traditional \b
* meaning. */
assert(FLAGS(c) == TRADITIONAL_BOUND);
FBC_NBOUND_A_UTF8(isWORDCHAR_A);
break;
case NBOUNDU_tb_pb:
case NBOUNDU_tb_p8:
if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
FBC_NBOUND_NON_UTF8(isWORDCHAR_L1);
break;
}
to_complement = 1;
goto do_boundu_non_utf8;
case NBOUNDL_tb_pb:
case NBOUNDL_tb_p8:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
if (FLAGS(c) == TRADITIONAL_BOUND) {
FBC_NBOUND_NON_UTF8(isWORDCHAR_LC);
break;
}
CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND;
to_complement = 1;
goto do_boundu_non_utf8;
case BOUNDL_tb_pb:
case BOUNDL_tb_p8:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
if (FLAGS(c) == TRADITIONAL_BOUND) {
FBC_BOUND_NON_UTF8(isWORDCHAR_LC);
break;
}
CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND;
goto do_boundu_non_utf8;
case BOUNDU_tb_pb:
case BOUNDU_tb_p8:
if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
FBC_BOUND_NON_UTF8(isWORDCHAR_L1);
break;
}
do_boundu_non_utf8:
if (s == reginfo->strbeg) {
if (reginfo->intuit || regtry(reginfo, &s))
{
goto got_it;
}
/* Didn't match. Try at the next position (if there is one) */
s++;
if (UNLIKELY(s >= reginfo->strend)) {
break;
}
}
switch((bound_type) FLAGS(c)) {
case TRADITIONAL_BOUND: /* Should have already been handled */
assert(0);
break;
case GCB_BOUND:
/* Not utf8. Everything is a GCB except between CR and LF */
while (s < strend) {
if ((to_complement ^ ( UCHARAT(s - 1) != '\r'
|| UCHARAT(s) != '\n'))
&& (reginfo->intuit || regtry(reginfo, &s)))
{
goto got_it;
}
s++;
}
break;
case LB_BOUND:
{
LB_enum before = getLB_VAL_CP((U8) *(s -1));
while (s < strend) {
LB_enum after = getLB_VAL_CP((U8) *s);
if (to_complement ^ isLB(before,
after,
(U8*) reginfo->strbeg,
(U8*) s,
(U8*) reginfo->strend,
0 /* target not utf8 */ )
&& (reginfo->intuit || regtry(reginfo, &s)))
{
goto got_it;
}
before = after;
s++;
}
}
break;
case SB_BOUND:
{
SB_enum before = getSB_VAL_CP((U8) *(s -1));
while (s < strend) {
SB_enum after = getSB_VAL_CP((U8) *s);
if ((to_complement ^ isSB(before,
after,
(U8*) reginfo->strbeg,
(U8*) s,
(U8*) reginfo->strend,
0 /* target not utf8 */ ))
&& (reginfo->intuit || regtry(reginfo, &s)))
{
goto got_it;
}
before = after;
s++;
}
}
break;
case WB_BOUND:
{
WB_enum previous = WB_UNKNOWN;
WB_enum before = getWB_VAL_CP((U8) *(s -1));
while (s < strend) {
WB_enum after = getWB_VAL_CP((U8) *s);
if ((to_complement ^ isWB(previous,
before,
after,
(U8*) reginfo->strbeg,
(U8*) s,
(U8*) reginfo->strend,
0 /* target not utf8 */ ))
&& (reginfo->intuit || regtry(reginfo, &s)))
{
goto got_it;
}
previous = before;
before = after;
s++;
}
}
}
/* Here are at the final position in the target string, which is a
* boundary by definition, so matches, depending on other constraints.
* */
if ( reginfo->intuit
|| (s <= reginfo->strend && regtry(reginfo, &s)))
{
goto got_it;
}
break;
case BOUNDL_t8_pb:
case BOUNDL_t8_p8:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
if (FLAGS(c) == TRADITIONAL_BOUND) {
FBC_BOUND_UTF8(isWORDCHAR_LC, isWORDCHAR_LC_uvchr,
isWORDCHAR_LC_utf8_safe);
break;
}
CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND;
to_complement = 1;
goto do_boundu_utf8;
case NBOUNDL_t8_pb:
case NBOUNDL_t8_p8:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
if (FLAGS(c) == TRADITIONAL_BOUND) {
FBC_NBOUND_UTF8(isWORDCHAR_LC, isWORDCHAR_LC_uvchr,
isWORDCHAR_LC_utf8_safe);
break;
}
CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND;
to_complement = 1;
goto do_boundu_utf8;
case NBOUND_t8_pb:
case NBOUND_t8_p8:
/* regcomp.c makes sure that these only have the traditional \b
* meaning. */
assert(FLAGS(c) == TRADITIONAL_BOUND);
/* FALLTHROUGH */
case NBOUNDU_t8_pb:
case NBOUNDU_t8_p8:
if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
FBC_NBOUND_UTF8(isWORDCHAR_L1, isWORDCHAR_uni,
isWORDCHAR_utf8_safe);
break;
}
to_complement = 1;
goto do_boundu_utf8;
case BOUND_t8_pb:
case BOUND_t8_p8:
/* regcomp.c makes sure that these only have the traditional \b
* meaning. */
assert(FLAGS(c) == TRADITIONAL_BOUND);
/* FALLTHROUGH */
case BOUNDU_t8_pb:
case BOUNDU_t8_p8:
if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
FBC_BOUND_UTF8(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8_safe);
break;
}
do_boundu_utf8:
if (s == reginfo->strbeg) {
if (reginfo->intuit || regtry(reginfo, &s))
{
goto got_it;
}
/* Didn't match. Try at the next position (if there is one) */
s += UTF8_SAFE_SKIP(s, reginfo->strend);
if (UNLIKELY(s >= reginfo->strend)) {
break;
}
}
switch((bound_type) FLAGS(c)) {
case TRADITIONAL_BOUND: /* Should have already been handled */
assert(0);
break;
case GCB_BOUND:
{
GCB_enum before = getGCB_VAL_UTF8(
reghop3((U8*)s, -1,
(U8*)(reginfo->strbeg)),
(U8*) reginfo->strend);
while (s < strend) {
GCB_enum after = getGCB_VAL_UTF8((U8*) s,
(U8*) reginfo->strend);
if ( (to_complement ^ isGCB(before,
after,
(U8*) reginfo->strbeg,
(U8*) s,
1 /* target is utf8 */ ))
&& (reginfo->intuit || regtry(reginfo, &s)))
{
goto got_it;
}
before = after;
s += UTF8_SAFE_SKIP(s, reginfo->strend);
}
}
break;
case LB_BOUND:
{
LB_enum before = getLB_VAL_UTF8(reghop3((U8*)s,
-1,
(U8*)(reginfo->strbeg)),
(U8*) reginfo->strend);
while (s < strend) {
LB_enum after = getLB_VAL_UTF8((U8*) s,
(U8*) reginfo->strend);
if (to_complement ^ isLB(before,
after,
(U8*) reginfo->strbeg,
(U8*) s,
(U8*) reginfo->strend,
1 /* target is utf8 */ )
&& (reginfo->intuit || regtry(reginfo, &s)))
{
goto got_it;
}
before = after;
s += UTF8_SAFE_SKIP(s, reginfo->strend);
}
}
break;
case SB_BOUND:
{
SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
-1,
(U8*)(reginfo->strbeg)),
(U8*) reginfo->strend);
while (s < strend) {
SB_enum after = getSB_VAL_UTF8((U8*) s,
(U8*) reginfo->strend);
if ((to_complement ^ isSB(before,
after,
(U8*) reginfo->strbeg,
(U8*) s,
(U8*) reginfo->strend,
1 /* target is utf8 */ ))
&& (reginfo->intuit || regtry(reginfo, &s)))
{
goto got_it;
}
before = after;
s += UTF8_SAFE_SKIP(s, reginfo->strend);
}
}
break;
case WB_BOUND:
{
/* We are at a boundary between char_sub_0 and char_sub_1.
* We also keep track of the value for char_sub_-1 as we
* loop through the line. Context may be needed to make a
* determination, and if so, this can save having to
* recalculate it */
WB_enum previous = WB_UNKNOWN;
WB_enum before = getWB_VAL_UTF8(
reghop3((U8*)s,
-1,
(U8*)(reginfo->strbeg)),
(U8*) reginfo->strend);
while (s < strend) {
WB_enum after = getWB_VAL_UTF8((U8*) s,
(U8*) reginfo->strend);
if ((to_complement ^ isWB(previous,
before,
after,
(U8*) reginfo->strbeg,
(U8*) s,
(U8*) reginfo->strend,
1 /* target is utf8 */ ))
&& (reginfo->intuit || regtry(reginfo, &s)))
{
goto got_it;
}
previous = before;
before = after;
s += UTF8_SAFE_SKIP(s, reginfo->strend);
}
}
}
/* Here are at the final position in the target string, which is a
* boundary by definition, so matches, depending on other constraints.
* */
if ( reginfo->intuit
|| (s <= reginfo->strend && regtry(reginfo, &s)))
{
goto got_it;
}
break;
case LNBREAK_t8_pb:
case LNBREAK_t8_p8:
REXEC_FBC_UTF8_CLASS_SCAN(is_LNBREAK_utf8_safe(s, strend));
break;
case LNBREAK_tb_pb:
case LNBREAK_tb_p8:
REXEC_FBC_NON_UTF8_CLASS_SCAN(is_LNBREAK_latin1_safe(s, strend));
break;
/* The argument to all the POSIX node types is the class number to pass
* to generic_isCC_() to build a mask for searching in PL_charclass[] */
case NPOSIXL_t8_pb:
case NPOSIXL_t8_p8:
to_complement = 1;
/* FALLTHROUGH */
case POSIXL_t8_pb:
case POSIXL_t8_p8:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
REXEC_FBC_UTF8_CLASS_SCAN(
to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s,
(U8 *) strend)));
break;
case NPOSIXL_tb_pb:
case NPOSIXL_tb_p8:
to_complement = 1;
/* FALLTHROUGH */
case POSIXL_tb_pb:
case POSIXL_tb_p8:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
REXEC_FBC_NON_UTF8_CLASS_SCAN(
to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
break;
case NPOSIXA_t8_pb:
case NPOSIXA_t8_p8:
/* The complement of something that matches only ASCII matches all
* non-ASCII, plus everything in ASCII that isn't in the class. */
REXEC_FBC_UTF8_CLASS_SCAN( ! isASCII_utf8_safe(s, strend)
|| ! generic_isCC_A_(*s, FLAGS(c)));
break;
case POSIXA_t8_pb:
case POSIXA_t8_p8:
/* Don't need to worry about utf8, as it can match only a single
* byte invariant character. But we do anyway for performance reasons,
* as otherwise we would have to examine all the continuation
* characters */
REXEC_FBC_UTF8_CLASS_SCAN(generic_isCC_A_(*s, FLAGS(c)));
break;
case NPOSIXD_tb_pb:
case NPOSIXD_tb_p8:
case NPOSIXA_tb_pb:
case NPOSIXA_tb_p8:
to_complement = 1;
/* FALLTHROUGH */
case POSIXD_tb_pb:
case POSIXD_tb_p8:
case POSIXA_tb_pb:
case POSIXA_tb_p8:
REXEC_FBC_NON_UTF8_CLASS_SCAN(
to_complement ^ cBOOL(generic_isCC_A_(*s, FLAGS(c))));
break;
case NPOSIXU_tb_pb:
case NPOSIXU_tb_p8:
to_complement = 1;
/* FALLTHROUGH */
case POSIXU_tb_pb:
case POSIXU_tb_p8:
REXEC_FBC_NON_UTF8_CLASS_SCAN(
to_complement ^ cBOOL(generic_isCC_(*s,
FLAGS(c))));
break;
case NPOSIXD_t8_pb:
case NPOSIXD_t8_p8:
case NPOSIXU_t8_pb:
case NPOSIXU_t8_p8:
to_complement = 1;
/* FALLTHROUGH */
case POSIXD_t8_pb:
case POSIXD_t8_p8:
case POSIXU_t8_pb:
case POSIXU_t8_p8:
classnum = (char_class_number_) FLAGS(c);
switch (classnum) {
default:
REXEC_FBC_UTF8_CLASS_SCAN(
to_complement ^ cBOOL(_invlist_contains_cp(
PL_XPosix_ptrs[classnum],
utf8_to_uv_or_die((U8 *) s,
(U8 *) strend,
NULL))));
break;
case CC_ENUM_SPACE_:
REXEC_FBC_UTF8_CLASS_SCAN(
to_complement ^ cBOOL(isSPACE_utf8_safe(s, strend)));
break;
case CC_ENUM_BLANK_:
REXEC_FBC_UTF8_CLASS_SCAN(
to_complement ^ cBOOL(isBLANK_utf8_safe(s, strend)));
break;
case CC_ENUM_XDIGIT_:
REXEC_FBC_UTF8_CLASS_SCAN(
to_complement ^ cBOOL(isXDIGIT_utf8_safe(s, strend)));
break;
case CC_ENUM_VERTSPACE_:
REXEC_FBC_UTF8_CLASS_SCAN(
to_complement ^ cBOOL(isVERTWS_utf8_safe(s, strend)));
break;
case CC_ENUM_CNTRL_:
REXEC_FBC_UTF8_CLASS_SCAN(
to_complement ^ cBOOL(isCNTRL_utf8_safe(s, strend)));
break;
}
break;
case AHOCORASICKC_tb_pb:
case AHOCORASICKC_tb_p8:
case AHOCORASICKC_t8_pb:
case AHOCORASICKC_t8_p8:
case AHOCORASICK_tb_pb:
case AHOCORASICK_tb_p8:
case AHOCORASICK_t8_pb:
case AHOCORASICK_t8_p8:
{
DECL_TRIE_TYPE(c);
/* what trie are we using right now */
reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG1u( c ) ];
reg_trie_data *trie = (reg_trie_data*)progi->data->data[aho->trie];
HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
const char *last_start = strend - trie->minlen;
#ifdef DEBUGGING
const char *real_start = s;
#endif
STRLEN maxlen = trie->maxlen;
SV *sv_points;
U8 **points; /* map of where we were in the input string
when reading a given char. For ASCII this
is unnecessary overhead as the relationship
is always 1:1, but for Unicode, especially
case folded Unicode this is not true. */
U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
U8 *bitmap = NULL;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
/* We can't just allocate points here. We need to wrap it in
* an SV so it gets freed properly if there is a croak while
* running the match */
ENTER;
SAVETMPS;
sv_points = newSV(maxlen * sizeof(U8 *));
SvCUR_set(sv_points,
maxlen * sizeof(U8 *));
SvPOK_on(sv_points);
sv_2mortal(sv_points);
points = (U8**)SvPV_nolen(sv_points );
if ( trie_type != trie_utf8_fold
&& (trie->bitmap || OP(c)==AHOCORASICKC) )
{
if (trie->bitmap)
bitmap = (U8*)trie->bitmap;
else
bitmap = (U8*)ANYOF_BITMAP(c);
}
/* this is the Aho-Corasick algorithm modified a touch
to include special handling for long "unknown char" sequences.
The basic idea being that we use AC as long as we are dealing
with a possible matching char, when we encounter an unknown char
(and we have not encountered an accepting state) we scan forward
until we find a legal starting char.
AC matching is basically that of trie matching, except that when
we encounter a failing transition, we fall back to the current
states "fail state", and try the current char again, a process
we repeat until we reach the root state, state 1, or a legal
transition. If we fail on the root state then we can either
terminate if we have reached an accepting state previously, or
restart the entire process from the beginning if we have not.
*/
while (s <= last_start) {
const U32 uniflags = UTF8_ALLOW_DEFAULT;
U8 *uc = (U8*)s;
U16 charid = 0;
U32 base = 1;
U32 state = 1;
UV uvc = 0;
STRLEN len = 0;
STRLEN foldlen = 0;
U8 *uscan = (U8*)NULL;
U8 *leftmost = NULL;
#ifdef DEBUGGING
U32 accepted_word = 0;
#endif
U32 pointpos = 0;
while ( state && uc <= (U8*)strend ) {
bool failed = false;
U32 word = aho->states[ state ].wordnum;
if( state == 1 ) {
if ( bitmap ) {
DEBUG_TRIE_EXECUTE_r(
if ( uc <= (U8*)last_start
&& !BITMAP_TEST(bitmap,*uc) )
{
dump_exec_pos( (char *)uc, c, strend,
real_start,
(char *)uc, utf8_target, 0 );
Perl_re_printf( aTHX_
" Scanning for legal start char...\n");
}
);
if (utf8_target) {
while ( uc <= (U8*)last_start
&& !BITMAP_TEST(bitmap,*uc) )
{
uc += UTF8SKIP(uc);
}
} else {
while ( uc <= (U8*)last_start
&& ! BITMAP_TEST(bitmap,*uc) )
{
uc++;
}
}
s = (char *)uc;
}
if (uc >(U8*)last_start) break;
}
if ( word ) {
U8 *lpos= points[ (pointpos - trie->wordinfo[word].len)
% maxlen ];
if (!leftmost || lpos < leftmost) {
DEBUG_r(accepted_word = word);
leftmost = lpos;
}
if (base == 0) break;
}
points[pointpos++ % maxlen]= uc;
if (foldlen || uc < (U8*)strend) {
REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
(U8 *) strend, uscan, len, uvc,
charid, foldlen, foldbuf,
uniflags);
DEBUG_TRIE_EXECUTE_r({
dump_exec_pos( (char *)uc, c, strend,
real_start, s, utf8_target, 0);
Perl_re_printf( aTHX_
"%sAHOC: Chid:0x%-2" UVXf " CP:0x%-4" UVXf " ",
PL_colors[4], (UV)charid, uvc);
if (isPRINT_A(uvc))
Perl_re_printf( aTHX_ "'%c' ", (int)uvc );
else
Perl_re_printf( aTHX_ " " ); /* four spaces to match "'x' " */
});
}
else {
len = 0;
charid = 0;
}
do {
#ifdef DEBUGGING
word = aho->states[ state ].wordnum;
#endif
base = aho->states[ state ].trans.base;
DEBUG_TRIE_EXECUTE_r({
if (failed)
dump_exec_pos((char *)uc, c, strend, real_start,
s, utf8_target, 0 );
Perl_re_printf( aTHX_
"%s%sSt:0x%-4" UVXf " W:0x%-2" UVXf,
PL_colors[4],
failed ? "AHOC: Fail transition to " : "",
(UV)state, (UV)word);
});
if ( base ) {
U32 tmp;
I32 offset;
if (charid &&
( ((offset = base + charid
- 1 - trie->uniquecharcount)) >= 0)
&& ((U32)offset < trie->lasttrans)
&& trie->trans[offset].check == state
&& (tmp = trie->trans[offset].next))
{
failed = false;
state = tmp;
DEBUG_TRIE_EXECUTE_r(
Perl_re_printf( aTHX_ " - good -> St:%#-6" UVxf "%s\n",
(UV)state, PL_colors[5]));
break;
}
else {
failed = true;
state = aho->fail[state];
DEBUG_TRIE_EXECUTE_r(
Perl_re_printf( aTHX_ " - fail -> St:%#-6" UVxf "%s\n",
(UV)state,PL_colors[5]));
}
}
else {
/* we must be accepting here */
DEBUG_TRIE_EXECUTE_r(
Perl_re_printf( aTHX_ " - accepting\n"));
failed = true;
break;
}
} while(state);
uc += len;
if (failed) {
if (leftmost)
break;
if (!state) state = 1;
}
}
if ( aho->states[ state ].wordnum ) {
U8 *lpos = points[ (pointpos
- trie->wordinfo[aho->states[ state ]
.wordnum].len) % maxlen ];
if (!leftmost || lpos < leftmost) {
DEBUG_r(accepted_word = aho->states[ state ].wordnum);
leftmost = lpos;
}
}
if (leftmost) {
s = (char*)leftmost;
DEBUG_TRIE_EXECUTE_r({
Perl_re_printf( aTHX_ "Matches word #%" UVxf
" at position %" IVdf ". Trying full"
" pattern...\n",
(UV)accepted_word, (IV)(s - real_start)
);
});
if (reginfo->intuit || regtry(reginfo, &s)) {
FREETMPS;
LEAVE;
goto got_it;
}
if (s < reginfo->strend) {
s = HOPc(s,1);
}
DEBUG_TRIE_EXECUTE_r({
Perl_re_printf( aTHX_
"Pattern failed. Looking for new start"
" point...\n");
});
} else {
DEBUG_TRIE_EXECUTE_r(
Perl_re_printf( aTHX_ "No match.\n"));
break;
}
}
FREETMPS;
LEAVE;
}
break;
case EXACTFU_REQ8_t8_pb:
case EXACTFUP_tb_p8:
case EXACTFUP_t8_p8:
case EXACTF_tb_p8:
case EXACTF_t8_p8: /* This node only generated for non-utf8 patterns */
case EXACTFAA_NO_TRIE_tb_p8:
case EXACTFAA_NO_TRIE_t8_p8: /* This node only generated for non-utf8
patterns */
assert(0);
default:
croak("panic: unknown regstclass %d", (int)OP(c));
} /* End of switch on node type */
return 0;
got_it:
return s;
}
/* S_reg_set_capture_string():
* Save a pointer (RX_SUBBEG) to the just-matched string, so that $1 etc
* will have retrievable values. Typically it will make a copy rather than
* pointing direct (flags & REXEC_COPY_STR), so that subsequent
* modifications to the string won't affect the value of $1 etc. If so,
* the RXp_MATCH_COPIED flag will be set. It can sometimes avoid copying
* by using COW.
*
* flags have same meanings as with regexec_flags() */
static void
S_reg_set_capture_string(pTHX_ REGEXP * const rx,
char *strbeg,
char *strend,
SV *sv,
U32 flags,
bool utf8_target)
{
struct regexp *const prog = ReANY(rx);
if (flags & REXEC_COPY_STR) {
#ifdef PERL_ANY_COW
if (SvCANCOW(sv)) {
DEBUG_C(Perl_re_printf( aTHX_
"Copy on write: regexp capture, type %d\n",
(int) SvTYPE(sv)));
/* Create a new COW SV to share the match string and store
* in saved_copy, unless the current COW SV in saved_copy
* is valid and suitable for our purpose */
if (( RXp_SAVED_COPY(prog)
&& SvIsCOW(RXp_SAVED_COPY(prog))
&& SvPOKp(RXp_SAVED_COPY(prog))
&& SvIsCOW(sv)
&& SvPOKp(sv)
&& SvPVX(sv) == SvPVX(RXp_SAVED_COPY(prog))))
{
/* just reuse saved_copy SV */
if (RXp_MATCH_COPIED(prog)) {
Safefree(RXp_SUBBEG(prog));
RXp_MATCH_COPIED_off(prog);
}
}
else {
/* create new COW SV to share string */
RXp_MATCH_COPY_FREE(prog);
RXp_SAVED_COPY(prog) = sv_setsv_cow(RXp_SAVED_COPY(prog), sv);
}
RXp_SUBBEG(prog) = (char *)SvPVX_const(RXp_SAVED_COPY(prog));
assert (SvPOKp(RXp_SAVED_COPY(prog)));
RXp_SUBLEN(prog) = strend - strbeg;
RXp_SUBOFFSET(prog) = 0;
RXp_SUBCOFFSET(prog) = 0;
} else
#endif
{
SSize_t min = 0;
SSize_t max = strend - strbeg;
SSize_t sublen;
/* NOTE: the following if block is not used or tested
* in standard builds. It is only used when PERL_SAWAMPERSAND is
* defined */
if ( (flags & REXEC_COPY_SKIP_POST)
&& !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
&& !(PL_sawampersand & SAWAMPERSAND_RIGHT)
) { /* don't copy $' part of string */
SSize_t offs_end;
U32 n = 0;
max = -1;
/* calculate the right-most part of the string covered
* by a capture. Due to lookahead, this may be to
* the right of $&, so we have to scan all captures */
while (n <= RXp_LASTPAREN(prog)) {
if ((offs_end = RXp_OFFS_END(prog,n)) > max)
max = offs_end;
n++;
}
if (max == -1)
max = (PL_sawampersand & SAWAMPERSAND_LEFT)
? RXp_OFFS_START(prog,0)
: 0;
assert(max >= 0 && max <= strend - strbeg);
}
/* NOTE: the following if block is not used or tested
* in standard builds. It is only used when PERL_SAWAMPERSAND is
* defined */
if ( (flags & REXEC_COPY_SKIP_PRE)
&& !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
&& !(PL_sawampersand & SAWAMPERSAND_LEFT)
) { /* don't copy $` part of string */
U32 n = 0;
min = max;
/* calculate the left-most part of the string covered
* by a capture. Due to lookbehind, this may be to
* the left of $&, so we have to scan all captures */
while (min && n <= RXp_LASTPAREN(prog)) {
SSize_t start = RXp_OFFS_START(prog,n);
if ( start != -1
&& start < min)
{
min = start;
}
n++;
}
if (PL_sawampersand & SAWAMPERSAND_RIGHT) {
SSize_t end = RXp_OFFS_END(prog,0);
if ( min > end )
min = end;
}
}
assert(min >= 0 && min <= max && min <= strend - strbeg);
sublen = max - min;
if (RXp_MATCH_COPIED(prog)) {
if (sublen > RXp_SUBLEN(prog))
RXp_SUBBEG(prog) =
(char*)saferealloc(RXp_SUBBEG(prog), sublen+1);
}
else
RXp_SUBBEG(prog) = (char*)safemalloc(sublen+1);
Copy(strbeg + min, RXp_SUBBEG(prog), sublen, char);
RXp_SUBBEG(prog)[sublen] = '\0';
RXp_SUBOFFSET(prog) = min;
RXp_SUBLEN(prog) = sublen;
RXp_MATCH_COPIED_on(prog);
}
RXp_SUBCOFFSET(prog) = RXp_SUBOFFSET(prog);
if (RXp_SUBOFFSET(prog) && utf8_target) {
/* Convert byte offset to chars.
* XXX ideally should only compute this if @-/@+
* has been seen, a la PL_sawampersand ??? */
/* If there's a direct correspondence between the
* string which we're matching and the original SV,
* then we can use the utf8 len cache associated with
* the SV. In particular, it means that under //g,
* sv_pos_b2u() will use the previously cached
* position to speed up working out the new length of
* subcoffset, rather than counting from the start of
* the string each time. This stops
* $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
* from going quadratic */
if (SvPOKp(sv) && SvPVX(sv) == strbeg)
RXp_SUBCOFFSET(prog) = sv_pos_b2u_flags(sv, RXp_SUBCOFFSET(prog),
SV_GMAGIC|SV_CONST_RETURN);
else
RXp_SUBCOFFSET(prog) = utf8_length((U8*)strbeg,
(U8*)(strbeg+RXp_SUBOFFSET(prog)));
}
}
else {
RXp_MATCH_COPY_FREE(prog);
RXp_SUBBEG(prog) = strbeg;
RXp_SUBOFFSET(prog) = 0;
RXp_SUBCOFFSET(prog) = 0;
RXp_SUBLEN(prog) = strend - strbeg;
}
}
/*
- regexec_flags - match a regexp against a string
*/
I32
Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
/* stringarg: the point in the string at which to begin matching */
/* strend: pointer to null at end of string */
/* strbeg: real beginning of string */
/* minend: end of match must be >= minend bytes after stringarg. */
/* sv: SV being matched: only used for utf8 flag, pos() etc; string
* itself is accessed via the pointers above */
/* data: May be used for some additional optimizations.
Currently unused. */
/* flags: For optimizations. See REXEC_* in regexp.h */
{
struct regexp *const prog = ReANY(rx);
char *s;
regnode *c;
char *startpos;
SSize_t minlen; /* must match at least this many chars */
SSize_t dontbother = 0; /* how many characters not to try at end */
const bool utf8_target = cBOOL(DO_UTF8(sv));
I32 multiline;
RXi_GET_DECL(prog,progi);
regmatch_info reginfo_buf; /* create some info to pass to regtry etc */
regmatch_info *const reginfo = ®info_buf;
regexp_paren_pair *swap = NULL;
I32 oldsave;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGEXEC_FLAGS;
PERL_UNUSED_ARG(data);
/* Be paranoid... */
if (prog == NULL) {
croak("NULL regexp parameter");
}
DEBUG_EXECUTE_r(
debug_start_match(rx, utf8_target, stringarg, strend,
"Matching");
);
startpos = stringarg;
/* set these early as they may be used by the HOP macros below */
reginfo->strbeg = strbeg;
reginfo->strend = strend;
reginfo->is_utf8_target = cBOOL(utf8_target);
if (prog->intflags & PREGf_GPOS_SEEN) {
MAGIC *mg;
/* set reginfo->ganch, the position where \G can match */
reginfo->ganch =
(flags & REXEC_IGNOREPOS)
? stringarg /* use start pos rather than pos() */
: ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
/* Defined pos(): */
? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
: strbeg; /* pos() not defined; use start of string */
DEBUG_GPOS_r(Perl_re_printf( aTHX_
"GPOS ganch set to strbeg[%" IVdf "]\n", (IV)(reginfo->ganch - strbeg)));
/* in the presence of \G, we may need to start looking earlier in
* the string than the suggested start point of stringarg:
* if prog->gofs is set, then that's a known, fixed minimum
* offset, such as
* /..\G/: gofs = 2
* /ab|c\G/: gofs = 1
* or if the minimum offset isn't known, then we have to go back
* to the start of the string, e.g. /w+\G/
*/
if (prog->intflags & PREGf_ANCH_GPOS) {
if (prog->gofs) {
startpos = HOPBACKc(reginfo->ganch, prog->gofs);
if (!startpos ||
((flags & REXEC_FAIL_ON_UNDERFLOW) && startpos < stringarg))
{
DEBUG_GPOS_r(Perl_re_printf( aTHX_
"fail: ganch-gofs before earliest possible start\n"));
return 0;
}
}
else
startpos = reginfo->ganch;
}
else if (prog->gofs) {
startpos = HOPBACKc(startpos, prog->gofs);
if (!startpos)
startpos = strbeg;
}
else if (prog->intflags & PREGf_GPOS_FLOAT)
startpos = strbeg;
}
minlen = prog->minlen;
if ((startpos + minlen) > strend || startpos < strbeg) {
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"Regex match can't succeed, so not even tried\n"));
return 0;
}
/* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
* which will call destuctors to reset PL_regmatch_state, free higher
* PL_regmatch_slabs, and clean up regmatch_info_aux and
* regmatch_info_aux_eval */
oldsave = PL_savestack_ix;
s = startpos;
if ((prog->extflags & RXf_USE_INTUIT)
&& !(flags & REXEC_CHECKED))
{
s = re_intuit_start(rx, sv, strbeg, startpos, strend,
flags, NULL);
if (!s)
return 0;
if (prog->extflags & RXf_CHECK_ALL) {
/* we can match based purely on the result of INTUIT.
* Set up captures etc just for $& and $-[0]
* (an intuit-only match wont have $1,$2,..) */
assert(!prog->nparens);
/* s/// doesn't like it if $& is earlier than where we asked it to
* start searching (which can happen on something like /.\G/) */
if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
&& (s < stringarg))
{
/* this should only be possible under \G */
assert(prog->intflags & PREGf_GPOS_SEEN);
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
goto phooey;
}
/* match via INTUIT shouldn't have any captures.
* Let @-, @+, $^N know */
RXp_LASTPAREN(prog) = RXp_LASTCLOSEPAREN(prog) = 0;
RXp_MATCH_UTF8_set(prog, utf8_target);
SSize_t match_start = s - strbeg;
SSize_t match_end = utf8_target
? (char*)utf8_hop_forward((U8*)s, prog->minlenret, (U8 *) strend) - strbeg
: s - strbeg + prog->minlenret;
CLOSE_ANY_CAPTURE(prog, 0, match_start, match_end);
if ( !(flags & REXEC_NOT_FIRST) )
S_reg_set_capture_string(aTHX_ rx,
strbeg, strend,
sv, flags, utf8_target);
return 1;
}
}
multiline = prog->extflags & RXf_PMf_MULTILINE;
if (strend - s < (minlen + ((prog->check_offset_min < 0) ? prog->check_offset_min : 0))) {
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"String too short [regexec_flags]...\n"));
goto phooey;
}
/* Check validity of program. */
if (UCHARAT(progi->program) != REG_MAGIC) {
croak("corrupted regexp program");
}
RXp_MATCH_TAINTED_off(prog);
RXp_MATCH_UTF8_set(prog, utf8_target);
reginfo->prog = rx; /* Yes, sorry that this is confusing. */
reginfo->intuit = 0;
reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
reginfo->warned = false;
reginfo->sv = sv;
reginfo->poscache_maxiter = 0; /* not yet started a countdown */
/* see how far we have to get to not match where we matched before */
reginfo->till = stringarg + minend;
if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
/* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
S_cleanup_regmatch_info_aux has executed (registered by
SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies
magic belonging to this SV.
Not newSVsv, either, as it does not COW.
*/
reginfo->sv = newSV_type(SVt_NULL);
SvSetSV_nosteal(reginfo->sv, sv);
SAVEFREESV(reginfo->sv);
}
/* reserve next 2 or 3 slots in PL_regmatch_state:
* slot N+0: may currently be in use: skip it
* slot N+1: use for regmatch_info_aux struct
* slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
* slot N+3: ready for use by regmatch()
*/
{
regmatch_state *old_regmatch_state;
regmatch_slab *old_regmatch_slab;
int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
/* on first ever match, allocate first slab */
if (!PL_regmatch_slab) {
Newx(PL_regmatch_slab, 1, regmatch_slab);
PL_regmatch_slab->prev = NULL;
PL_regmatch_slab->next = NULL;
PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
}
old_regmatch_state = PL_regmatch_state;
old_regmatch_slab = PL_regmatch_slab;
for (i = 0; i <= max; i++) {
if (i == 1)
reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
else if (i ==2)
reginfo->info_aux_eval =
reginfo->info_aux->info_aux_eval =
&(PL_regmatch_state->u.info_aux_eval);
if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab))
PL_regmatch_state = S_push_slab(aTHX);
}
/* note initial PL_regmatch_state position; at end of match we'll
* pop back to there and free any higher slabs */
reginfo->info_aux->old_regmatch_state = old_regmatch_state;
reginfo->info_aux->old_regmatch_slab = old_regmatch_slab;
reginfo->info_aux->poscache = NULL;
SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
if ((prog->extflags & RXf_EVAL_SEEN))
S_setup_eval_state(aTHX_ reginfo);
else
reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
}
if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
/* We have to be careful. If the previous successful match
was from this regex we don't want a subsequent partially
successful match to clobber the old results.
So when we detect this possibility we add a swap buffer
to the re, and switch the buffer each match. If we fail,
we switch it back; otherwise we leave it swapped.
*/
swap = RXp_OFFSp(prog);
/* avoid leak if we die, or clean up anyway if match completes */
SAVEFREEPV(swap);
Newxz(RXp_OFFSp(prog), (prog->nparens + 1), regexp_paren_pair);
DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
"rex = 0x%" UVxf " saving offs: orig = 0x%" UVxf " new = 0x%" UVxf "\n",
0,
PTR2UV(prog),
PTR2UV(swap),
PTR2UV(RXp_OFFSp(prog))
));
}
if (prog->recurse_locinput)
Zero(prog->recurse_locinput,prog->nparens + 1, char *);
/* Simplest case: anchored match (but not \G) need be tried only once,
* or with MBOL, only at the beginning of each line.
*
* Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
* PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
* match at the start of the string then it won't match anywhere else
* either; while with /.*.../, if it doesn't match at the beginning,
* the earliest it could match is at the start of the next line */
if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
char *end;
if (regtry(reginfo, &s))
goto got_it;
if (!(prog->intflags & PREGf_ANCH_MBOL))
goto phooey;
/* didn't match at start, try at other newline positions */
if (minlen)
dontbother = minlen - 1;
end = HOP3c(strend, -dontbother, strbeg) - 1;
/* skip to next newline */
while (s <= end) { /* note it could be possible to match at the end of the string */
/* NB: newlines are the same in unicode as they are in latin */
if (*s++ != '\n')
continue;
if (prog->check_substr || prog->check_utf8) {
/* note that with PREGf_IMPLICIT, intuit can only fail
* or return the start position, so it's of limited utility.
* Nevertheless, I made the decision that the potential for
* quick fail was still worth it - DAPM */
s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
if (!s)
goto phooey;
}
if (regtry(reginfo, &s))
goto got_it;
}
goto phooey;
} /* end anchored search */
/* anchored \G match */
if (prog->intflags & PREGf_ANCH_GPOS)
{
/* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
assert(prog->intflags & PREGf_GPOS_SEEN);
/* For anchored \G, the only position it can match from is
* (ganch-gofs); we already set startpos to this above; if intuit
* moved us on from there, we can't possibly succeed */
assert(startpos == HOPBACKc(reginfo->ganch, prog->gofs));
if (s == startpos && regtry(reginfo, &s))
goto got_it;
goto phooey;
}
/* Messy cases: unanchored match. */
if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
/* we have /x+whatever/ */
/* it must be a one character string (XXXX Except is_utf8_pat?) */
char ch;
#ifdef DEBUGGING
int did_match = 0;
#endif
if (utf8_target) {
if (! prog->anchored_utf8) {
to_utf8_substr(prog);
}
ch = SvPVX_const(prog->anchored_utf8)[0];
REXEC_FBC_UTF8_SCAN(
if (*s == ch) {
DEBUG_EXECUTE_r( did_match = 1 );
if (regtry(reginfo, &s)) goto got_it;
s += UTF8_SAFE_SKIP(s, strend);
while (s < strend && *s == ch)
s += UTF8SKIP(s);
}
);
}
else {
if (! prog->anchored_substr) {
if (! to_byte_substr(prog)) {
NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
}
}
ch = SvPVX_const(prog->anchored_substr)[0];
REXEC_FBC_NON_UTF8_SCAN(
if (*s == ch) {
DEBUG_EXECUTE_r( did_match = 1 );
if (regtry(reginfo, &s)) goto got_it;
s++;
while (s < strend && *s == ch)
s++;
}
);
}
DEBUG_EXECUTE_r(if (!did_match)
Perl_re_printf( aTHX_
"Did not find anchored character...\n")
);
}
else if (prog->anchored_substr != NULL
|| prog->anchored_utf8 != NULL
|| ((prog->float_substr != NULL || prog->float_utf8 != NULL)
&& prog->float_max_offset < strend - s)) {
SV *must;
SSize_t back_max;
SSize_t back_min;
char *last;
char *last1; /* Last position checked before */
#ifdef DEBUGGING
int did_match = 0;
#endif
if (prog->anchored_substr || prog->anchored_utf8) {
if (utf8_target) {
if (! prog->anchored_utf8) {
to_utf8_substr(prog);
}
must = prog->anchored_utf8;
}
else {
if (! prog->anchored_substr) {
if (! to_byte_substr(prog)) {
NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
}
}
must = prog->anchored_substr;
}
back_max = back_min = prog->anchored_offset;
} else {
if (utf8_target) {
if (! prog->float_utf8) {
to_utf8_substr(prog);
}
must = prog->float_utf8;
}
else {
if (! prog->float_substr) {
if (! to_byte_substr(prog)) {
NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
}
}
must = prog->float_substr;
}
back_max = prog->float_max_offset;
back_min = prog->float_min_offset;
}
if (back_min < 0) {
last = strend;
} else {
last = HOP3c(strend, /* Cannot start after this */
-(SSize_t)(CHR_SVLEN(must)
- (SvTAIL(must) != 0) + back_min), strbeg);
}
if (s > reginfo->strbeg)
last1 = HOPc(s, -1);
else
last1 = s - 1; /* bogus */
/* XXXX check_substr already used to find "s", can optimize if
check_substr == must. */
dontbother = 0;
while ( (s <= last) &&
(s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg, strend),
(unsigned char*)strend, must,
multiline ? FBMrf_MULTILINE : 0)) ) {
DEBUG_EXECUTE_r( did_match = 1 );
if (HOPc(s, -back_max) > last1) {
last1 = HOPc(s, -back_min);
s = HOPc(s, -back_max);
}
else {
char * const t = (last1 >= reginfo->strbeg)
? HOPc(last1, 1) : last1 + 1;
last1 = HOPc(s, -back_min);
s = t;
}
if (utf8_target) {
while (s <= last1) {
if (regtry(reginfo, &s))
goto got_it;
if (s >= last1) {
s++; /* to break out of outer loop */
break;
}
s += UTF8SKIP(s);
}
}
else {
while (s <= last1) {
if (regtry(reginfo, &s))
goto got_it;
s++;
}
}
}
DEBUG_EXECUTE_r(if (!did_match) {
RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
Perl_re_printf( aTHX_ "Did not find %s substr %s%s...\n",
((must == prog->anchored_substr || must == prog->anchored_utf8)
? "anchored" : "floating"),
quoted, RE_SV_TAIL(must));
});
goto phooey;
}
else if ( (c = progi->regstclass) ) {
if (minlen) {
const OPCODE op = OP(progi->regstclass);
/* don't bother with what can't match */
if (REGNODE_TYPE(op) != EXACT && REGNODE_TYPE(op) != TRIE)
strend = HOPc(strend, -(minlen - 1));
}
DEBUG_EXECUTE_r({
SV * const prop = sv_newmortal();
regprop(prog, prop, c, reginfo, NULL);
{
RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
s,strend-s,PL_dump_re_max_len);
Perl_re_printf( aTHX_
"Matching stclass %.*s against %s (%d bytes)\n",
(int)SvCUR(prop), SvPVX_const(prop),
quoted, (int)(strend - s));
}
});
if (find_byclass(prog, c, s, strend, reginfo))
goto got_it;
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "Contradicts stclass... [regexec_flags]\n"));
}
else {
dontbother = 0;
if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
/* Trim the end. */
char *last= NULL;
SV* float_real;
STRLEN len;
const char *little;
if (utf8_target) {
if (! prog->float_utf8) {
to_utf8_substr(prog);
}
float_real = prog->float_utf8;
}
else {
if (! prog->float_substr) {
if (! to_byte_substr(prog)) {
NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
}
}
float_real = prog->float_substr;
}
little = SvPV_const(float_real, len);
if (SvTAIL(float_real)) {
/* This means that float_real contains an artificial \n on
* the end due to the presence of something like this:
* /foo$/ where we can match both "foo" and "foo\n" at the
* end of the string. So we have to compare the end of the
* string first against the float_real without the \n and
* then against the full float_real with the string. We
* have to watch out for cases where the string might be
* smaller than the float_real or the float_real without
* the \n. */
char *checkpos= strend - len;
DEBUG_OPTIMISE_r(
Perl_re_printf( aTHX_
"%sChecking for float_real.%s\n",
PL_colors[4], PL_colors[5]));
if (checkpos + 1 < strbeg) {
/* can't match, even if we remove the trailing \n
* string is too short to match */
DEBUG_EXECUTE_r(
Perl_re_printf( aTHX_
"%sString shorter than required trailing substring, cannot match.%s\n",
PL_colors[4], PL_colors[5]));
goto phooey;
} else if (memEQ(checkpos + 1, little, len - 1)) {
/* can match, the end of the string matches without the
* "\n" */
last = checkpos + 1;
} else if (checkpos < strbeg) {
/* cant match, string is too short when the "\n" is
* included */
DEBUG_EXECUTE_r(
Perl_re_printf( aTHX_
"%sString does not contain required trailing substring, cannot match.%s\n",
PL_colors[4], PL_colors[5]));
goto phooey;
} else if (!multiline) {
/* non multiline match, so compare with the "\n" at the
* end of the string */
if (memEQ(checkpos, little, len)) {
last = checkpos;
} else {
DEBUG_EXECUTE_r(
Perl_re_printf( aTHX_
"%sString does not contain required trailing substring, cannot match.%s\n",
PL_colors[4], PL_colors[5]));
goto phooey;
}
} else {
/* multiline match, so we have to search for a place
* where the full string is located */
goto find_last;
}
} else {
find_last:
if (len)
last = rninstr(s, strend, little, little + len);
else
last = strend; /* matching "$" */
}
if (!last) {
/* at one point this block contained a comment which was
* probably incorrect, which said that this was a "should not
* happen" case. Even if it was true when it was written I am
* pretty sure it is not anymore, so I have removed the comment
* and replaced it with this one. Yves */
DEBUG_EXECUTE_r(
Perl_re_printf( aTHX_
"%sString does not contain required substring, cannot match.%s\n",
PL_colors[4], PL_colors[5]
));
goto phooey;
}
dontbother = strend - last + prog->float_min_offset;
}
if (minlen && (dontbother < minlen))
dontbother = minlen - 1;
strend -= dontbother; /* this one's always in bytes! */
/* We don't know much -- general case. */
if (utf8_target) {
for (;;) {
if (regtry(reginfo, &s))
goto got_it;
if (s >= strend)
break;
s += UTF8SKIP(s);
};
}
else {
do {
if (regtry(reginfo, &s))
goto got_it;
} while (s++ < strend);
}
}
/* Failure. */
goto phooey;
got_it:
/* s/// doesn't like it if $& is earlier than where we asked it to
* start searching (which can happen on something like /.\G/) */
if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
&& (RXp_OFFS_START(prog,0) < stringarg - strbeg))
{
/* this should only be possible under \G */
assert(prog->intflags & PREGf_GPOS_SEEN);
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
goto phooey;
}
/* clean up; this will trigger destructors that will free all slabs
* above the current one, and cleanup the regmatch_info_aux
* and regmatch_info_aux_eval sructs */
LEAVE_SCOPE(oldsave);
if (RXp_PAREN_NAMES(prog))
(void)hv_iterinit(RXp_PAREN_NAMES(prog));
/* make sure $`, $&, $', and $digit will work later */
if ( !(flags & REXEC_NOT_FIRST) )
S_reg_set_capture_string(aTHX_ rx,
strbeg, reginfo->strend,
sv, flags, utf8_target);
return 1;
phooey:
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch failed%s\n",
PL_colors[4], PL_colors[5]));
if (swap) {
/* we failed :-( roll it back.
* Since the swap buffer will be freed on scope exit which follows
* shortly, restore the old captures by copying 'swap's original
* data to the new offs buffer
*/
DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
"rex = 0x%" UVxf " rolling back offs: 0x%" UVxf " will be freed; restoring data to =0x%" UVxf "\n",
0,
PTR2UV(prog),
PTR2UV(RXp_OFFSp(prog)),
PTR2UV(swap)
));
Copy(swap, RXp_OFFSp(prog), prog->nparens + 1, regexp_paren_pair);
}
/* clean up; this will trigger destructors that will free all slabs
* above the current one, and cleanup the regmatch_info_aux
* and regmatch_info_aux_eval sructs */
LEAVE_SCOPE(oldsave);
return 0;
}
/* Set which rex is pointed to by PL_reg_curpm (which is the fake global
* PMOP used to make $1 etc available while executing (?{...}) code).
* Handles ref counting.
*/
static void
S_set_reg_curpm(pTHX_ REGEXP *rx, regmatch_info *reginfo)
{
if (!reginfo->info_aux_eval)
return;
REGEXP *old_rx = PM_GETRE(PL_reg_curpm);
/* Do inc before dec, in case old and new rex are the same. */
SvREFCNT_inc(rx);
PM_SETRE(PL_reg_curpm, rx);
SvREFCNT_dec(old_rx);
}
/*
- regtry - try match at specific point
NOTE: *startpos may be modifed by regtry() to signal to the caller
that the next match should start at a specific position in the
string. The macro LAST_REGTRY_SKIPPED_FORWARD(reginfo) can be
used to detect when this has happened.
*/
STATIC bool /* 0 failure, 1 success */
S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
{
CHECKPOINT lastcp;
REGEXP *const rx = reginfo->prog;
regexp *const prog = ReANY(rx);
SSize_t result;
#ifdef DEBUGGING
U32 depth = 0; /* used by REGCP_SET */
#endif
RXi_GET_DECL(prog,progi);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REGTRY;
reginfo->cutpoint = NULL;
RXp_OFFSp(prog)[0].start = *startposp - reginfo->strbeg;
RXp_LASTPAREN(prog) = 0;
RXp_LASTCLOSEPAREN(prog) = 0;
/* XXXX What this code is doing here?!!! There should be no need
to do this again and again, RXp_LASTPAREN(prog) should take care of
this! --ilya*/
/* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
* Actually, the code in regcppop() (which Ilya may be meaning by
* RXp_LASTPAREN(prog)), is not needed at all by the test suite
* (op/regexp, op/pat, op/split), but that code is needed otherwise
* this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
* Meanwhile, this code *is* needed for the
* above-mentioned test suite tests to succeed. The common theme
* on those tests seems to be returning null fields from matches.
* --jhi updated by dapm */
/* After encountering a variant of the issue mentioned above I think
* the point Ilya was making is that if we properly unwind whenever
* we set lastparen to a smaller value then we should not need to do
* this every time, only when needed. So if we have tests that fail if
* we remove this, then it suggests somewhere else we are improperly
* unwinding the lastparen/paren buffers. See UNWIND_PARENS() and
* places it is called, and related regcp() routines. - Yves */
#if 1
if (prog->nparens) {
regexp_paren_pair *pp = RXp_OFFSp(prog);
I32 i;
for (i = prog->nparens; i > (I32)RXp_LASTPAREN(prog); i--) {
++pp;
pp->start = -1;
pp->end = -1;
}
}
#endif
REGCP_SET(lastcp);
result = regmatch(reginfo, *startposp, progi->program + 1);
if (result != -1) {
RXp_OFFSp(prog)[0].end = result;
return 1;
}
if (reginfo->cutpoint)
*startposp= reginfo->cutpoint;
REGCP_UNWIND(lastcp);
return 0;
}
/* this is used to determine how far from the left messages like
'failed...' are printed in regexec.c. It should be set such that
messages are inline with the regop output that created them.
*/
#define REPORT_CODE_OFF 29
#define INDENT_CHARS(depth) ((int)(depth) % 20)
#ifdef PERL_RE_BUILD_DEBUG
int
Perl_re_exec_indentf(pTHX_ const char *fmt, U32 depth, ...)
{
va_list ap;
int result;
PerlIO *f= Perl_debug_log;
PERL_ARGS_ASSERT_RE_EXEC_INDENTF;
va_start(ap, depth);
PerlIO_printf(f, "%*s|%4" UVuf "| %*s", REPORT_CODE_OFF, "", (UV)depth, INDENT_CHARS(depth), "" );
result = PerlIO_vprintf(f, fmt, ap);
va_end(ap);
return result;
}
#endif /* DEBUGGING */
/* grab a new slab and return the first slot in it */
STATIC regmatch_state *
S_push_slab(pTHX)
{
regmatch_slab *s = PL_regmatch_slab->next;
if (!s) {
Newx(s, 1, regmatch_slab);
s->prev = PL_regmatch_slab;
s->next = NULL;
PL_regmatch_slab->next = s;
}
PL_regmatch_slab = s;
return SLAB_FIRST(s);
}
#ifdef DEBUGGING
STATIC void
S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
const char *start, const char *end, const char *blurb)
{
const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
PERL_ARGS_ASSERT_DEBUG_START_MATCH;
if (!PL_colorset)
reginitcolors();
{
RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
RX_PRECOMP_const(prog), RX_PRELEN(prog), PL_dump_re_max_len);
RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
start, end - start, PL_dump_re_max_len);
Perl_re_printf( aTHX_
"%s%s REx%s %s against %s\n",
PL_colors[4], blurb, PL_colors[5], s0, s1);
if (utf8_target || utf8_pat)
Perl_re_printf( aTHX_ "UTF-8 %s%s%s...\n",
utf8_pat ? "pattern" : "",
utf8_pat && utf8_target ? " and " : "",
utf8_target ? "string" : ""
);
}
}
STATIC void
S_dump_exec_pos(pTHX_ const char *locinput,
const regnode *scan,
const char *loc_regeol,
const char *loc_bostr,
const char *loc_reg_starttry,
const bool utf8_target,
const U32 depth
)
{
const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
/* The part of the string before starttry has one color
(pref0_len chars), between starttry and current
position another one (pref_len - pref0_len chars),
after the current position the third one.
We assume that pref0_len <= pref_len, otherwise we
decrease pref0_len. */
int pref_len = (locinput - loc_bostr) > (5 + taill) - l
? (5 + taill) - l : locinput - loc_bostr;
int pref0_len;
PERL_ARGS_ASSERT_DUMP_EXEC_POS;
if (utf8_target) {
while (UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len))) {
pref_len++;
}
}
pref0_len = pref_len - (locinput - loc_reg_starttry);
if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
l = ( loc_regeol - locinput > (5 + taill) - pref_len
? (5 + taill) - pref_len : loc_regeol - locinput);
if (utf8_target) {
while (UTF8_IS_CONTINUATION(*(U8*)(locinput + l))) {
l--;
}
}
if (pref0_len < 0)
pref0_len = 0;
if (pref0_len > pref_len)
pref0_len = pref_len;
{
const int is_uni = utf8_target ? 1 : 0;
RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
(locinput - pref_len),pref0_len, PL_dump_re_max_len, 4, 5);
RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
(locinput - pref_len + pref0_len),
pref_len - pref0_len, PL_dump_re_max_len, 2, 3);
RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
locinput, loc_regeol - locinput, 10, 0, 1);
const STRLEN tlen = len0 + len1 + len2;
Perl_re_printf( aTHX_
"%4" IVdf " <%.*s%.*s%s%.*s>%*s|%4" UVuf "| ",
(IV)(locinput - loc_bostr),
len0, s0,
len1, s1,
(docolor ? "" : "> <"),
len2, s2,
(int)(tlen > 19 ? 0 : 19 - tlen),
"",
(UV)depth);
}
}
#endif
/* reg_check_named_buff_matched()
* Checks to see if a named buffer has matched. The data array of
* buffer numbers corresponding to the buffer is expected to reside
* in the regexp->data->data array in the slot stored in the ARG1u() of
* node involved. Note that this routine doesn't actually care about the
* name, that information is not preserved from compilation to execution.
* Returns the index of the leftmost defined buffer with the given name
* or 0 if non of the buffers matched.
*/
STATIC I32
S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan)
{
I32 n;
RXi_GET_DECL(rex,rexi);
SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG1u( scan ) ]);
I32 *nums = (I32*)SvPVX(sv_dat);
PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
for ( n = 0; n < SvIVX(sv_dat); n++ ) {
if ((I32)RXp_LASTPAREN(rex) >= nums[n] &&
RXp_OFFS_END(rex,nums[n]) != -1)
{
return nums[n];
}
}
return 0;
}
static bool
S_setup_EXACTISH_ST(pTHX_ const regnode * const text_node,
struct next_matchable_info * m,
regmatch_info *reginfo)
{
/* This function determines various characteristics about every possible
* initial match of the passed-in EXACTish <text_node>, and stores them in
* <*m>.
*
* That includes a match string and a parallel mask, such that if you AND
* the target string with the mask and compare with the match string,
* you'll have a pretty good idea, perhaps even perfect, if that portion of
* the target matches or not.
*
* The motivation behind this function is to allow the caller to set up
* tight loops for matching. Consider patterns like '.*B' or '.*?B' where
* B is an arbitrary EXACTish node. To find the end of .*, we look for the
* beginning oF B, which is the passed in <text_node> That's where this
* function comes in. The values it returns can quickly be used to rule
* out many, or all, cases of possible matches not actually being the
* beginning of B, <text_node>. It is also used in regrepeat() where we
* have 'A*', for arbitrary 'A'. This sets up criteria to more efficiently
* determine where the span of 'A's stop.
*
* If <text_node> is of type EXACT, there is only one possible character
* that can match its first character, and so the situation is quite
* simple. But things can get much more complicated if folding is
* involved. It may be that the first character of an EXACTFish node
* doesn't participate in any possible fold, e.g., punctuation, so it can
* be matched only by itself. The vast majority of characters that are in
* folds match just two things, their lower and upper-case equivalents.
* But not all are like that; some have multiple possible matches, or match
* sequences of more than one character. This function sorts all that out.
*
* It returns information about all possibilities of what the first
* character(s) of <text_node> could look like. Again, if <text_node> is a
* plain EXACT node, that's just the actual first bytes of the first
* character; but otherwise it is the bytes, that when masked, match all
* possible combinations of all the initial bytes of all the characters
* that could match, folded. (Actually, this is a slight over promise. It
* handles only up to the initial 5 bytes, which is enough for all Unicode
* characters, but not for all non-Unicode ones.)
*
* Here's an example to clarify. Suppose the first character of
* <text_node> is the letter 'C', and we are under /i matching. That means
* 'c' also matches. The representations of these two characters differ in
* just one bit, so the mask would be a zero in that position and ones in
* the other 7. And the returned string would be the AND of these two
* characters, and would be one byte long, since these characters are each
* a single byte. ANDing the target <text_node> with this mask will yield
* the returned string if and only if <text_node> begins with one of these
* two characters. So, the function would also return that the definitive
* length matched is 1 byte.
*
* Now, suppose instead of the letter 'C', <text_node> begins with the
* letter 'F'. The situation is much more complicated because there are
* various ligatures such as LATIN SMALL LIGATURE FF, whose fold also
* begins with 'f', and hence could match. We add these into the returned
* string and mask, but the result isn't definitive; the caller has to
* check further if its AND and compare pass. But the failure of that
* compare will quickly rule out most possible inputs.
*
* Much of this could be done in regcomp.c at compile time, except for
* locale-dependent, and UTF-8 target dependent data. Extra data fields
* could be used for one or the other eventualities.
*
* If this function determines that no possible character in the target
* string can match, it returns false; otherwise true. (The false
* situation occurs if the first character in <text_node> requires UTF-8 to
* represent, and the target string isn't in UTF-8.)
*
* Some analysis is in GH #18414, located at the time of this writing at:
* https://github.com/Perl/perl5/issues/18414
*/
const bool utf8_target = reginfo->is_utf8_target;
bool utf8_pat = reginfo->is_utf8_pat;
PERL_UINT_FAST8_T i;
/* Here and below, '15' is the value of UTF8_MAXBYTES_CASE, which requires at least :e
*/
U8 matches[MAX_MATCHES][UTF8_MAXBYTES_CASE + 1] = { { 0 } };
U8 lengths[MAX_MATCHES] = { 0 };
U8 index_of_longest = 0;
U8 *pat = (U8*)STRING(text_node);
Size_t pat_len = STR_LEN(text_node);
U8 op = OP(text_node);
U8 byte_mask[5] = {0};
U8 byte_anded[5] = {0};
/* There are some folds in Unicode to multiple characters. This will hold
* such characters that could fold to the beginning of 'text_node' */
UV multi_fold_from = 0;
/* We may have to create a modified copy of the pattern */
U8 mod_pat[UTF8_MAXBYTES_CASE + 1] = { '\0' };
m->max_length = 0;
m->min_length = 255;
m->count = 0;
/* Even if the first character in the node can match something in Latin1,
* if there is anything in the node that can't, the match must fail */
if (! utf8_target && isEXACT_REQ8(op)) {
return false;
}
/* Define a temporary op for use in this function, using an existing one that
* should never be a real op during execution */
#define TURKISH PSEUDO
/* What to do about these two nodes had to be deferred to runtime (which is
* now). If the extra information we now have so indicates, turn them into
* EXACTFU nodes */
if ( (op == EXACTF && utf8_target)
|| (op == EXACTFL && IN_UTF8_CTYPE_LOCALE))
{
if (op == EXACTFL && IN_UTF8_TURKIC_LOCALE) {
op = TURKISH;
}
else {
op = EXACTFU;
}
/* And certain situations are better handled if we create a modified
* version of the pattern */
if (utf8_pat) { /* Here, must have been EXACTFL, so look at the
specific problematic characters */
if (is_PROBLEMATIC_LOCALE_FOLD_utf8(pat)) {
/* The node could start with characters that are the first ones
* of a multi-character fold. */
multi_fold_from
= what_MULTI_CHAR_FOLD_utf8_safe(pat, pat + pat_len);
if (multi_fold_from) {
/* Here, they do form a sequence that matches the fold of a
* single character. That single character then is a
* possible match. Below we will look again at this, but
* the code below is expecting every character in the
* pattern to be folded, which the input isn't required to
* be in this case. So, just fold the single character,
* and the result will be in the expected form. */
_to_uni_fold_flags(multi_fold_from, mod_pat, &pat_len,
FOLD_FLAGS_FULL);
pat = mod_pat;
}
/* Turkish has a couple extra possibilities. */
else if ( UNLIKELY(op == TURKISH)
&& pat_len >= 3
&& isALPHA_FOLD_EQ(pat[0], 'f')
&& ( memBEGINs(pat + 1, pat_len - 1,
LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8)
|| ( pat_len >= 4
&& isALPHA_FOLD_EQ(pat[1], 'f')
&& memBEGINs(pat + 2, pat_len - 2,
LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8)
))) {
/* The macros for finding a multi-char fold don't include
* the Turkish possibilities, in which U+130 folds to 'i'.
* Hard-code these. It's very unlikely that Unicode will
* ever add any others. */
if (pat[1] == 'f') {
pat_len = 3;
Copy("ffi", mod_pat, pat_len, U8);
}
else {
pat_len = 2;
Copy("fi", mod_pat, pat_len, U8);
}
pat = mod_pat;
}
else if ( UTF8_IS_DOWNGRADEABLE_START(*pat)
&& LIKELY(memNEs(pat, pat_len, MICRO_SIGN_UTF8))
&& LIKELY(memNEs(pat, pat_len,
LATIN_SMALL_LETTER_SHARP_S_UTF8))
&& (LIKELY(op != TURKISH || *pat != 'I')))
{
/* For all cases of things between 0-255, except the ones
* in the conditional above, the fold is just the lower
* case, which is faster than the more general case. */
mod_pat[0] = toLOWER_L1(EIGHT_BIT_UTF8_TO_NATIVE(pat[0],
pat[1]));
pat_len = 1;
pat = mod_pat;
utf8_pat = false;
}
else { /* Code point above 255, or needs special handling */
_to_utf8_fold_flags(pat, pat + pat_len,
mod_pat, &pat_len,
FOLD_FLAGS_FULL|FOLD_FLAGS_LOCALE);
pat = mod_pat;
}
}
}
else if /* Below is not a UTF-8 pattern; there's a somewhat different
set of problematic characters */
((multi_fold_from
= what_MULTI_CHAR_FOLD_latin1_safe(pat, pat + pat_len)))
{
/* We may have to canonicalize a multi-char fold, as in the UTF-8
* case */
_to_uni_fold_flags(multi_fold_from, mod_pat, &pat_len,
FOLD_FLAGS_FULL);
pat = mod_pat;
}
else if (UNLIKELY(*pat == LATIN_SMALL_LETTER_SHARP_S)) {
mod_pat[0] = mod_pat[1] = 's';
pat_len = 2;
utf8_pat = utf8_target; /* UTF-8ness immaterial for invariant
chars, and speeds copying */
pat = mod_pat;
}
else if (LIKELY(op != TURKISH || *pat != 'I')) {
mod_pat[0] = toLOWER_L1(*pat);
pat_len = 1;
pat = mod_pat;
}
}
else if /* Below isn't a node that we convert to UTF-8 */
( utf8_target
&& ! utf8_pat
&& op == EXACTFAA_NO_TRIE
&& *pat == LATIN_SMALL_LETTER_SHARP_S)
{
/* A very special case. Folding U+DF goes to U+17F under /iaa. We
* did this at compile time when the pattern was UTF-8 , but otherwise
* we couldn't do it earlier, because it requires a UTF-8 target for
* this match to be legal. */
pat_len = 2 * (sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 1);
Copy(LATIN_SMALL_LETTER_LONG_S_UTF8
LATIN_SMALL_LETTER_LONG_S_UTF8, mod_pat, pat_len, U8);
pat = mod_pat;
utf8_pat = true;
}
/* Here, we have taken care of the initial work for a few very problematic
* situations, possibly creating a modified pattern.
*
* Now ready for the general case. We build up all the possible things
* that could match the first character of the pattern into the elements of
* 'matches[]'
*
* Everything generally matches at least itself. But if there is a
* UTF8ness mismatch, we have to convert to that of the target string. */
if (UTF8_IS_INVARIANT(*pat)) { /* Immaterial if either is in UTF-8 */
matches[0][0] = pat[0];
lengths[0] = 1;
m->count++;
}
else if (utf8_target) {
if (utf8_pat) {
lengths[0] = UTF8SKIP(pat);
Copy(pat, matches[0], lengths[0], U8);
m->count++;
}
else { /* target is UTF-8, pattern isn't */
matches[0][0] = UTF8_EIGHT_BIT_HI(pat[0]);
matches[0][1] = UTF8_EIGHT_BIT_LO(pat[0]);
lengths[0] = 2;
m->count++;
}
}
else if (! utf8_pat) { /* Neither is UTF-8 */
matches[0][0] = pat[0];
lengths[0] = 1;
m->count++;
}
else /* target isn't UTF-8; pattern is. No match possible unless the
pattern's first character can fit in a byte */
if (UTF8_IS_DOWNGRADEABLE_START(*pat))
{
matches[0][0] = EIGHT_BIT_UTF8_TO_NATIVE(pat[0], pat[1]);
lengths[0] = 1;
m->count++;
}
/* Here we have taken care of any necessary node-type changes */
if (m->count) {
m->max_length = lengths[0];
m->min_length = lengths[0];
}
/* For non-folding nodes, there are no other possible candidate matches,
* but for foldable ones, we have to look further. */
if (UNLIKELY(op == TURKISH) || isEXACTFish(op)) { /* A folding node */
UV folded; /* The first character in the pattern, folded */
U32 first_fold_from; /* A character that folds to it */
const U32 * remaining_fold_froms; /* The remaining characters that
fold to it, if any */
Size_t folds_to_count; /* The total number of characters that fold to
'folded' */
/* If the node begins with a sequence of more than one character that
* together form the fold of a single character, it is called a
* 'multi-character fold', and the normal functions don't handle this
* case. We set 'multi_fold_from' to the single folded-from character,
* which is handled in an extra iteration below */
if (utf8_pat) {
folded = valid_utf8_to_uvchr(pat, NULL);
multi_fold_from
= what_MULTI_CHAR_FOLD_utf8_safe(pat, pat + pat_len);
}
else {
folded = *pat;
/* This may generate illegal combinations for things like EXACTF,
* but rather than repeat the logic and exclude them here, all such
* illegalities are checked for and skipped below in the loop */
multi_fold_from
= what_MULTI_CHAR_FOLD_latin1_safe(pat, pat + pat_len);
}
/* Everything matches at least itself; initialize to that because the
* only the branches below that set it are the ones where the number
* isn't 1. */
folds_to_count = 1;
/* There are a few special cases for locale-dependent nodes, where the
* run-time context was needed before we could know what matched */
if (UNLIKELY(op == EXACTFL) && folded < 256) {
first_fold_from = PL_fold_locale[folded];
}
else if ( op == EXACTFL && utf8_target && utf8_pat
&& memBEGINs(pat, pat_len, LATIN_SMALL_LETTER_LONG_S_UTF8
LATIN_SMALL_LETTER_LONG_S_UTF8))
{
first_fold_from = LATIN_CAPITAL_LETTER_SHARP_S;
}
else if (UNLIKELY( op == TURKISH
&& ( isALPHA_FOLD_EQ(folded, 'i')
|| inRANGE(folded,
LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE,
LATIN_SMALL_LETTER_DOTLESS_I))))
{ /* Turkish folding requires special handling */
if (folded == 'i')
first_fold_from = LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE;
else if (folded == 'I')
first_fold_from = LATIN_SMALL_LETTER_DOTLESS_I;
else if (folded == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE)
first_fold_from = 'i';
else first_fold_from = 'I';
}
else {
/* Here, isn't a special case: use the generic function to
* calculate what folds to this */
redo_multi:
/* Look up what code points (besides itself) fold to 'folded';
* e.g., [ 'K', KELVIN_SIGN ] both fold to 'k'. */
folds_to_count = _inverse_folds(folded, &first_fold_from,
&remaining_fold_froms);
}
/* Add each character that folds to 'folded' to the list of them,
* subject to limitations based on the node type and target UTF8ness.
* If there was a character that folded to multiple characters, do an
* extra iteration for it. (Note the extra iteration if there is a
* multi-character fold) */
for (i = 0; i < folds_to_count
+ UNLIKELY(multi_fold_from != 0); i++)
{
UV fold_from = 0;
if (i >= folds_to_count) { /* Final iteration: handle the
multi-char */
fold_from = multi_fold_from;
}
else if (i == 0) {
fold_from = first_fold_from;
}
else if (i < folds_to_count) {
fold_from = remaining_fold_froms[i-1];
}
if (folded == fold_from) { /* We already added the character
itself */
continue;
}
/* EXACTF doesn't have any non-ascii folds */
if (op == EXACTF && (! isASCII(folded) || ! isASCII(fold_from))) {
continue;
}
/* In /iaa nodes, neither or both must be ASCII to be a legal fold
* */
if ( isASCII(folded) != isASCII(fold_from)
&& inRANGE(op, EXACTFAA, EXACTFAA_NO_TRIE))
{
continue;
}
/* In /il nodes, can't cross 255/256 boundary (unless in a UTF-8
* locale, but those have been converted to EXACTFU above) */
if ( op == EXACTFL
&& (folded < 256) != (fold_from < 256))
{
continue;
}
/* If this triggers, it likely is because of the unlikely case
* where a new Unicode standard has changed what MAX_MATCHES should
* be set to */
assert(m->count < MAX_MATCHES);
/* Add this character to the list of possible matches */
if (utf8_target) {
uv_to_utf8(matches[(U8) m->count], fold_from);
lengths[m->count] = UVCHR_SKIP(fold_from);
m->count++;
}
else { /* Non-UTF8 target: no code point above 255 can appear in it
*/
if (fold_from > 255) {
continue;
}
matches[m->count][0] = fold_from;
lengths[m->count] = 1;
m->count++;
}
/* Update min and mlengths */
if (m->min_length > lengths[m->count-1]) {
m->min_length = lengths[m->count-1];
}
if (m->max_length < lengths[m->count-1]) {
index_of_longest = m->count - 1;
m->max_length = lengths[index_of_longest];
}
} /* looped through each potential fold */
/* If there is something that folded to an initial multi-character
* fold, repeat, using it. This catches some edge cases. An example
* of one is /ss/i when UTF-8 encoded. The function
* what_MULTI_CHAR_FOLD_utf8_safe('ss') gets called and returns U+DF
* (LATIN SMALL SHARP S). If it returned a list of characters, this
* code wouldn't be needed. But since it doesn't, we have to look what
* folds to the U+DF. In this case, U+1E9E does, and has to be added.
* */
if (multi_fold_from) {
folded = multi_fold_from;
multi_fold_from = 0;
goto redo_multi;
}
} /* End of finding things that participate in this fold */
if (m->count == 0) { /* If nothing found, can't match */
m->min_length = 0;
return false;
}
/* Have calculated all possible matches. Now calculate the mask and AND
* values */
m->initial_exact = 0;
m->initial_definitive = 0;
{
unsigned int mask_ones = 0;
unsigned int possible_ones = 0;
U8 j;
/* For each byte that is in all possible matches ... */
for (j = 0; j < MIN(m->min_length, 5); j++) {
/* Initialize the accumulator for this byte */
byte_mask[j] = 0xFF;
byte_anded[j] = matches[0][j];
/* Then the rest of the rows (folds). The mask is based on, like,
* ~('A' ^ 'a') is a 1 in all bits where these are the same, and 0
* where they differ. */
for (i = 1; i < (PERL_UINT_FAST8_T) m->count; i++) {
byte_mask[j] &= ~ (byte_anded[j] ^ matches[i][j]);
byte_anded[j] &= matches[i][j];
}
/* Keep track of the number of initial mask bytes that are all one
* bits. The code calling this can use this number to know that
* a string that matches this number of bytes in the pattern is an
* exact match of that pattern for this number of bytes. But also
* counted are the number of initial bytes that in total have a
* single zero bit. If a string matches those, masked, it must be
* one of two possibilites, both of which this function has
* determined are legal. (But if that single 0 is one of the
* initial bits for masking a UTF-8 start byte, that could
* incorrectly lead to different length strings appearing to be
* equivalent, so only do this optimization when the matchables are
* all the same length. This was uncovered by testing
* /\x{029E}/i.) */
if (m->min_length == m->max_length) {
mask_ones += PL_bitcount[byte_mask[j]];
possible_ones += 8;
if (mask_ones + 1 >= possible_ones) {
m->initial_definitive++;
if (mask_ones >= possible_ones) {
m->initial_exact++;
}
}
}
}
}
/* The first byte is separate for speed */
m->first_byte_mask = byte_mask[0];
m->first_byte_anded = byte_anded[0];
/* Then pack up to the next 4 bytes into a word */
m->mask32 = m->anded32 = 0;
for (i = 1; i < MIN(m->min_length, 5); i++) {
U8 which = i;
U8 shift = (which - 1) * 8;
m->mask32 |= (U32) byte_mask[i] << shift;
m->anded32 |= (U32) byte_anded[i] << shift;
}
/* Finally, take the match strings and place them sequentially into a
* one-dimensional array. (This is done to save significant space in the
* structure.) Sort so the longest (presumably the least likely) is last.
* XXX When this gets moved to regcomp, may want to fully sort shortest
* first, but above we generally used the folded code point first, and
* those tend to be no longer than their upper case values, so this is
* already pretty well sorted by size.
*
* If the asserts fail, it's most likely because a new version of the
* Unicode standard requires more space; simply increase the declaration
* size. */
{
U8 cur_pos = 0;
U8 output_index = 0;
if (m->count > 1) { /* No need to sort a single entry */
for (i = 0; i < (PERL_UINT_FAST8_T) m->count; i++) {
/* Keep the same order for all but the longest. (If the
* asserts fail, it could be because m->matches is declared too
* short, either because of a new Unicode release, or an
* overlooked test case, or it could be a bug.) */
if (i != index_of_longest) {
assert(cur_pos + lengths[i] <= C_ARRAY_LENGTH(m->matches));
Copy(matches[i], m->matches + cur_pos, lengths[i], U8);
cur_pos += lengths[i];
m->lengths[output_index++] = lengths[i];
}
}
}
assert(cur_pos + lengths[index_of_longest] <= C_ARRAY_LENGTH(m->matches));
Copy(matches[index_of_longest], m->matches + cur_pos,
lengths[index_of_longest], U8);
/* Place the longest match last */
m->lengths[output_index] = lengths[index_of_longest];
}
return true;
}
PERL_STATIC_FORCE_INLINE /* We want speed at the expense of size */
bool
S_test_EXACTISH_ST(const char * loc,
struct next_matchable_info info)
{
/* This function uses the data set up in setup_EXACTISH_ST() to see if the
* bytes starting at 'loc' can match based on 'next_matchable_info' */
U32 input32 = 0;
/* Check the first byte */
if (((U8) loc[0] & info.first_byte_mask) != info.first_byte_anded)
return false;
/* Pack the next up-to-4 bytes into a 32 bit word */
switch (info.min_length) {
default:
input32 |= (U32) ((U8) loc[4]) << 3 * 8;
/* FALLTHROUGH */
case 4:
input32 |= (U8) loc[3] << 2 * 8;
/* FALLTHROUGH */
case 3:
input32 |= (U8) loc[2] << 1 * 8;
/* FALLTHROUGH */
case 2:
input32 |= (U8) loc[1];
break;
case 1:
return true; /* We already tested and passed the 0th byte */
case 0:
ASSUME(0);
}
/* And AND that with the mask and compare that with the assembled ANDED
* values */
return (input32 & info.mask32) == info.anded32;
}
STATIC bool
S_isGCB(pTHX_ const GCB_enum before, const GCB_enum after, const U8 * const strbeg, const U8 * const curpos, const bool utf8_target)
{
PERL_ARGS_ASSERT_ISGCB;
/* returns a boolean indicating if there is a Grapheme Cluster Boundary
* between the inputs. See https://www.unicode.org/reports/tr29/. */
GCB_enum isGCB_scratch; /* Used by the macros generated by mk_invlists */
U8 index = GCB_table[before][after];
do {
U8 * prev_pos = (U8 *) curpos;
GCB_enum prev = before;
bool matched = true; /* Assume will match unless overridden */
switch (GCB_dfa_table[index]) {
case GCB_BREAKABLE:
return true;
case GCB_NOBREAK:
return false;
/* The other cases are for DFAs which execute and set 'matched' as to
* if the input matches what the DFA expects and then 'break's out of
* the switch. */
case GCB_InCB_Consonant_then_InCB_Extend_or_InCB_Linker_v_InCB_Consonant: ;
/* GB9c \p{InCB=Consonant} [ \p{InCB=Extend} \p{InCB=Linker} ]*
* \p{InCB=Linker} [ \p{InCB=Extend} \p{InCB=Linker} ]*
* × \p{InCB=Consonant}
*
* This translates to, we can have any number of Linker and
* Extend characters in a row, immediately preceded by a
* Consonant, as long as there is at least one Linker. */
Size_t linker_count;
linker_count = isGCB_InCB_Linker(prev);
do {
prev = backup_one_GCB(strbeg, &prev_pos, utf8_target);
if (isGCB_InCB_Linker(prev)) {
linker_count++;
}
} while (isGCB_InCB_Linker(prev) || isGCB_InCB_Extend(prev));
matched = linker_count > 0 && isGCB_InCB_Consonant(prev);
break;
case GCB_various_then_RI_v_RI: ;
int RI_count;
/* Do not break within emoji flag sequences. That is, do not break
* between regional indicator (RI) symbols if there is an odd
* number of RI characters before the break point.
* GB12 sot (RI RI)* RI × RI
* GB13 [^RI] (RI RI)* RI × RI */
RI_count = 1;
while (isGCB_RI(backup_one_GCB(strbeg, &prev_pos, utf8_target))) {
RI_count++;
}
matched = RI_count % 2 == 1;
break;
#if defined(isGCB_E_Base) && defined(isGCB_E_Base_GAZ)
/* Obsolete in later Unicode versions */
case GCB_EB_or_EBG_then_Extend_v_EM:
/* GB10 ( E_Base | E_Base_GAZ ) Extend* × E_Modifier */
do {
prev = backup_one_GCB(strbeg, &prev_pos, utf8_target);
} while (isGCB_Extend(prev));
matched = isGCB_E_Base(prev) || isGCB_E_Base_GAZ(prev);
break;
#endif
case GCB_ExtPict_then_Extend_then_ZWJ_v_ExtPict:
/* Do not break within emoji modifier sequences or emoji zwj
* sequences.
* GB11 \p{Extended_Pictographic} Extend* ZWJ
* × \p{Extended_Pictographic} */
do {
prev = backup_one_GCB(strbeg, &prev_pos, utf8_target);
}
while (isGCB_Extend(prev));
matched = isGCB_ExtPict_XX(prev);
break;
default:
/* Here, it's a bug, in which mk_invlists created a DFA which
* regexec.c doesn't know about. But not getting the breaking just
* right isn't that big an issue, so we keep going. We set to
* false in the hopes that there is a lower priority DFA that is
* known about, which the next loop iteration will use. */
matched = false;
#ifdef DEBUGGING
Perl_re_printf( aTHX_
"\nUnhandled GCB pair: GCB_table[%d, %d] = %d\n",
before, after, GCB_table[before][after]);
//assert(0);
#endif
break;
} /* End of switch() */
/* Here 'matched' is true if the DFA matched the input. If so,
* [index+1] contains the value to return */
if (matched) {
return GCB_dfa_table[index+1];
}
/* Here, it didn't match. In [index+2] is stored the index into the
* DFA table of the next thing to try, which the next loop iteration
* does */
index += 2;
} while (index < C_ARRAY_LENGTH(GCB_dfa_table));
return true; /* Shouldn't get here, fail-safe keep going, assuming a
break */
}
STATIC GCB_enum
S_backup_one_GCB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
{
GCB_enum gcb;
PERL_ARGS_ASSERT_BACKUP_ONE_GCB;
if (*curpos < strbeg) {
return GCB_EDGE;
}
if (utf8_target) {
U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
U8 * prev_prev_char_pos;
if (! prev_char_pos) {
return GCB_EDGE;
}
if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1, strbeg))) {
gcb = getGCB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
*curpos = prev_char_pos;
prev_char_pos = prev_prev_char_pos;
}
else {
*curpos = (U8 *) strbeg;
return GCB_EDGE;
}
}
else {
if (*curpos - 2 < strbeg) {
*curpos = (U8 *) strbeg;
return GCB_EDGE;
}
(*curpos)--;
gcb = getGCB_VAL_CP(*(*curpos - 1));
}
return gcb;
}
/* Combining marks attach to most classes that precede them, but this defines
* the exceptions (from TR14) */
#define LB_CM_ATTACHES_TO(prev) ( ! ( isLB_EDGE(prev) \
|| isLB_Mandatory_Break(prev) \
|| isLB_Carriage_Return(prev) \
|| isLB_Line_Feed(prev) \
|| isLB_Next_Line(prev) \
|| isLB_Space(prev) \
|| isLB_ZWSpace(prev)))
#define backup_one_LB(begin, cur, utf8) \
backup_one_LB_(begin, cur, utf8, false)
#define backup_one_LB_but_over_CM_ZWJ(begin, cur, utf8) \
backup_one_LB_(begin, cur, utf8, true)
STATIC bool
S_isLB(pTHX_ LB_enum before,
LB_enum after,
const U8 * const strbeg,
const U8 * const curpos,
const U8 * const strend,
const bool utf8_target)
{
PERL_ARGS_ASSERT_ISLB;
/* Is the boundary between 'before' and 'after' line-breakable?
* Most of this is just a table lookup of a generated table from Unicode
* rules. But some rules require context to decide, and so have to be
* implemented in code */
/* Rule numbers in the comments below are as of Unicode 9.0 */
LB_enum isLB_scratch; /* Used by generated isLB_foo() macros */
U8 index = LB_table[before][after];
do {
U8 * prev_pos = (U8 *) curpos;
U8 * next_pos = (U8 *) curpos;
redo: ;
LB_enum prev = before;
LB_enum next = after;
bool matched = true; /* Assume will match unless overridden */
switch (LB_dfa_table[index]) {
case LB_BREAKABLE:
return true;
case LB_NOBREAK:
return false;
//case 255:
assert(0);
matched = false;
break;
/* The other cases are for DFAs which execute and set 'matched' as to
* if the input matches what the DFA expects and then 'break's out of
* the switch. */
case LB_ZW_then_SP_v_any:
/* LB8 ZW SP ÷ */
while (isLB_Space(prev)) {
prev = backup_one_LB(strbeg, &prev_pos, utf8_target);
}
matched = isLB_ZW(prev);
break;
case LB_CM_ZWJ_v_any:
/* These two classes break with the character following them iff
* the base character of the combining sequence they are part of
* breaks with that character. Backup to find that that base
* character */
prev = backup_one_LB_but_over_CM_ZWJ(strbeg, &prev_pos,
utf8_target);
/* Here, 'prev' is the base character. If the CM/ZWJ attaches to
* it, then it inherits the behavior of 'prev'. If it
* doesn't attach, LB4 says to use what would happen if the input
* was instead an AL class character with the character given by
* 'after'. */
if (! LB_CM_ATTACHES_TO(prev)) {
prev = LB_Alphabetic;
}
index = LB_table[prev][after];
goto redo;
case LB_OP_then_SP_v_any:
/* LB14 Do not break after ‘[’, even after spaces.
* OP SP* × */
while ( isLB_SP(prev)
|| isLB_CM(prev)
|| isLB_ZWJ(prev))
{
prev = backup_one_LB_but_over_CM_ZWJ(strbeg,
&prev_pos, utf8_target);
}
matched = isLB_OP(prev);
break;
case LB_QU_then_SP_v_OP:
/* LB15 Do not break within ‘”[’, even with intervening spaces.
* QU SP* × OP */
while ( isLB_SP(prev)
|| isLB_CM(prev)
|| isLB_ZWJ(prev))
{
prev = backup_one_LB_but_over_CM_ZWJ(strbeg,
&prev_pos, utf8_target);
}
matched = isLB_QU(prev);
break;
case LB_various_then_PiQ_then_SP_v_any:
/* LB15a Do not break after an unresolved initial punctuation that
* lies at the start of the line, after a space, after opening
* punctuation, or after an unresolved quotation mark, even after
* spaces.
* (sot | BK | CR | LF | NL | OP | QU | GL | SP | ZW)
* [\p{Pi}&QU] SP*
* × */
prev = backup_one_LB_but_over_CM_ZWJ(strbeg, &prev_pos,
utf8_target);
if (! isLB_Pi_QU(prev)) {
matched = false;
}
else {
prev = backup_one_LB_but_over_CM_ZWJ(strbeg, &prev_pos,
utf8_target);
matched = ( isLB_EDGE(prev)
|| isLB_BK(prev)
|| isLB_CR(prev)
|| isLB_LF(prev)
|| isLB_NL(prev)
|| isLB_OP(prev)
|| isLB_QU(prev)
|| isLB_GL(prev)
|| isLB_SP(prev)
|| isLB_ZW(prev)
);
}
break;
case LB_any_v_PfQ_then_various:
/* LB15b Do not break before an unresolved final punctuation that
* lies at the end of the line, before a space, before a prohibited
* break, or before an unresolved quotation mark, even after
* spaces.
* × [\p{Pf}&QU]
* ( SP | GL | WJ | CL | QU | CP | EX | IS | SY | BK | CR | LF
* | NL | ZW | eot) */
next = advance_one_LB(&next_pos, strend, utf8_target);
matched = ( isLB_SP(next)
|| isLB_GL(next)
|| isLB_WJ(next)
|| isLB_CL(next)
|| isLB_QU(next)
|| isLB_CP(next)
|| isLB_EX(next)
|| isLB_IS(next)
|| isLB_SY(next)
|| isLB_BK(next)
|| isLB_CR(next)
|| isLB_LF(next)
|| isLB_NL(next)
|| isLB_ZW(next)
|| isLB_EDGE(next)
);
break;
case LB_SP_v_IS_then_NU:
/* LB15c Break before a decimal mark that follows a space, for
* instance, in ‘subtract .5’.
* SP ÷ IS NU */
matched = isLB_NU(advance_one_LB(&next_pos, strend, utf8_target));
break;
case LB_CL_or_CP_then_SP_v_NS:
/* LB16 Do not break between closing punctuation and a nonstarter
* even with intervening spaces.
* (CL | CP) SP* × NS */
while ( isLB_SP(prev)
|| isLB_CM(prev)
|| isLB_ZWJ(prev))
{
prev = backup_one_LB_but_over_CM_ZWJ(strbeg,
&prev_pos, utf8_target);
}
matched = isLB_CL(prev)
|| isLB_CP(prev);
break;
case LB_various_then_HY_or_U2010_v_AL:
/* LB20a Do not break after a word-initial hyphen.
* ( sot | BK | CR | LF | NL | SP | ZW | CB | GL )
* ( HY | [\x{2010} ] )
* × AL */
prev = backup_one_LB_but_over_CM_ZWJ(strbeg, &prev_pos,
utf8_target);
matched = ( isLB_EDGE(prev)
|| isLB_BK(prev)
|| isLB_CR(prev)
|| isLB_LF(prev)
|| isLB_NL(prev)
|| isLB_SP(prev)
|| isLB_ZW(prev)
|| isLB_CB(prev)
|| isLB_GL(prev)
);
break;
case LB_B2_then_SP_v_B2:
/* LB17 Do not break within ‘——’, even with intervening spaces.
* B2 SP* × B2 */
while ( isLB_SP(prev)
|| isLB_CM(prev)
|| isLB_ZWJ(prev))
{
prev = backup_one_LB_but_over_CM_ZWJ(strbeg,
&prev_pos, utf8_target);
}
matched = isLB_B2(prev);
break;
case LB_HL_then_HY_or_BA_sans_EA_v_nonHL:
/* LB21a Don't break after Hebrew + HY.
* HL (HY | [ BA - $EastAsian ]) × [^HL] */
matched = isLB_HL(backup_one_LB_but_over_CM_ZWJ(strbeg, &prev_pos,
utf8_target));
break;
case LB_any_v_QU_then_nonEA_or_eot:
/* LB19a × QU ( [^$EastAsian] | eot ) */
next = advance_one_LB(&next_pos, strend, utf8_target);
matched = isLB_EDGE(next) || ! isLB_EA(next);
break;
case LB_nonEA_or_sot_then_QU_v_any:
prev = backup_one_LB_but_over_CM_ZWJ(strbeg, &prev_pos,
utf8_target);
matched = isLB_EDGE(prev) || ! isLB_EA(prev);
break;
case LB_NU_then_SY_or_IS_v_NU:
case LB_NU_then_SY_or_IS_then_CL_or_CP_v_PO_or_PR:
/* LB25 NU ( SY | IS )* × NU */
do {
prev = backup_one_LB_but_over_CM_ZWJ(strbeg, &prev_pos,
utf8_target);
}
while (isLB_SY(prev) || isLB_IS(prev));
matched = isLB_NU(prev);
break;
case LB_PO_or_PR_v_OP_then_IS_then_NU:
/* LB25 PR × OP IS? NU */
next = advance_one_LB(&next_pos, strend, utf8_target);
if (isLB_IS(next)) {
next = advance_one_LB(&next_pos, strend, utf8_target);
}
matched = isLB_NU(next);
break;
case LB_AKish_v_AKish_then_VF:
matched = isLB_VF(advance_one_LB(&next_pos, strend, utf8_target));
break;
case LB_AKish_then_VI_v_AK_or_DOTTED:
matched = isLB_AKish(backup_one_LB_but_over_CM_ZWJ(strbeg,
&prev_pos, utf8_target));
break;
case LB_various_then_RI_v_RI: ;
int RI_count;
/* LB30a Break between two regional indicator symbols if and only
* if there are an even number of regional indicators preceding the
* position of the break.
* sot (RI RI)* RI × RI
* [^RI] (RI RI)* RI × RI */
RI_count = 1;
while (isLB_RI(backup_one_LB_but_over_CM_ZWJ(strbeg, &prev_pos,
utf8_target)))
{
RI_count++;
}
matched = RI_count % 2 == 1;
break;
default:
/* Here, it's a bug, in which mk_invlists created a DFA which
* regexec.c doesn't know about. But not getting the breaking just
* right isn't that big an issue, so we keep going. We set to
* false in the hopes that there is a lower priority DFA that is
* known about, which the next loop iteration will use. */
matched = false;
#ifdef DEBUGGING
Perl_re_printf(aTHX_
"\nUnhandled LB pair: LB_table[%d, %d] = %d\n",
before, after, LB_table[before][after]);
//assert(0);
#endif
break;
} /* End of switch() */
/* Here 'matched' is true if the DFA matched the input. If so,
* [index+1] contains the value to return */
if (matched) {
return LB_dfa_table[index+1];
}
/* Here, it didn't match. In [index+2] is stored the index into the
* DFA table of the next thing to try, which the next loop iteration
* does */
index += 2;
} while (index < C_ARRAY_LENGTH(LB_dfa_table));
return true; /* Shouldn't get here, fail-safe to keep going, assuming a
break */
}
STATIC LB_enum
S_advance_one_LB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
{
LB_enum lb;
PERL_ARGS_ASSERT_ADVANCE_ONE_LB;
if (*curpos >= strend) {
return LB_EDGE;
}
if (utf8_target) {
*curpos += UTF8SKIP(*curpos);
if (*curpos >= strend) {
return LB_EDGE;
}
lb = getLB_VAL_UTF8(*curpos, strend);
}
else {
(*curpos)++;
if (*curpos >= strend) {
return LB_EDGE;
}
lb = getLB_VAL_CP(**curpos);
}
return lb;
}
STATIC LB_enum
S_backup_one_LB_(pTHX_ const U8 * const strbeg,
U8 ** curpos,
const bool utf8_target,
bool skip_CM_ZWJ)
{
PERL_ARGS_ASSERT_BACKUP_ONE_LB_;
LB_enum isLB_scratch; /* Used by generated isLB_foo() macros */
if (*curpos < strbeg) {
return LB_EDGE;
}
LB_enum lb;
if (utf8_target) {
U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
if (! prev_char_pos) {
return LB_EDGE;
}
/* Back up one. Keep going if result is CM or ZWJ and caller wants
* those skipped. curpos is always just to the right of the character
* whose value we are getting */
do {
U8 * prev_prev_char_pos;
if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
-1,
strbeg)))
{
lb = getLB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
*curpos = prev_char_pos;
prev_char_pos = prev_prev_char_pos;
}
else {
*curpos = (U8 *) strbeg;
return LB_EDGE;
}
} while (skip_CM_ZWJ && (isLB_CM(lb) || isLB_ZWJ(lb)));
}
else {
do {
if (*curpos - 2 < strbeg) {
*curpos = (U8 *) strbeg;
return LB_EDGE;
}
(*curpos)--;
lb = getLB_VAL_CP(*(*curpos - 1));
} while (skip_CM_ZWJ && (isLB_CM(lb) || isLB_ZWJ(lb)));
}
return lb;
}
STATIC bool
S_isSB(pTHX_ SB_enum before,
SB_enum after,
const U8 * const strbeg,
const U8 * const curpos,
const U8 * const strend,
const bool utf8_target)
{
/* returns a boolean indicating if there is a Sentence Boundary Break
* between the inputs. See https://www.unicode.org/reports/tr29/ */
U8 * lpos = (U8 *) curpos;
bool has_para_sep = false;
bool has_sp = false;
PERL_ARGS_ASSERT_ISSB;
/* Break at the start and end of text.
SB1. sot ÷
SB2. ÷ eot
But unstated in Unicode is don't break if the text is empty */
if (before == SB_EDGE || after == SB_EDGE) {
return before != after;
}
/* SB 3: Do not break within CRLF. */
if (before == SB_CR && after == SB_LF) {
return false;
}
/* Break after paragraph separators. CR and LF are considered
* so because Unicode views text as like word processing text where there
* are no newlines except between paragraphs, and the word processor takes
* care of wrapping without there being hard line-breaks in the text *./
SB4. Sep | CR | LF ÷ */
if (before == SB_Sep || before == SB_CR || before == SB_LF) {
return true;
}
/* Ignore Format and Extend characters, except after sot, Sep, CR, or LF.
* (See Section 6.2, Replacing Ignore Rules.)
SB5. X (Extend | Format)* → X */
if (after == SB_Extend || after == SB_Format) {
/* Implied is that these characters attach to everything
* immediately prior to them except for those separator-type
* characters. And the rules earlier have already handled the case
* when one of those immediately precedes the extend char */
return false;
}
if (before == SB_Extend || before == SB_Format) {
U8 * temp_pos = lpos;
const SB_enum backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
if ( backup != SB_EDGE
&& backup != SB_Sep
&& backup != SB_CR
&& backup != SB_LF)
{
before = backup;
lpos = temp_pos;
}
/* Here, both 'before' and 'backup' are these types; implied is that we
* don't break between them */
if (backup == SB_Extend || backup == SB_Format) {
return false;
}
}
/* Do not break after ambiguous terminators like period, if they are
* immediately followed by a number or lowercase letter, if they are
* between uppercase letters, if the first following letter (optionally
* after certain punctuation) is lowercase, or if they are followed by
* "continuation" punctuation such as comma, colon, or semicolon. For
* example, a period may be an abbreviation or numeric period, and thus may
* not mark the end of a sentence.
* SB6. ATerm × Numeric */
if (before == SB_ATerm && after == SB_Numeric) {
return false;
}
/* SB7. (Upper | Lower) ATerm × Upper */
if (before == SB_ATerm && after == SB_Upper) {
U8 * temp_pos = lpos;
SB_enum backup = backup_one_SB(strbeg, &temp_pos, utf8_target);
if (backup == SB_Upper || backup == SB_Lower) {
return false;
}
}
/* The remaining rules that aren't the final one, all require an STerm or
* an ATerm after having backed up over some Close* Sp*, and in one case an
* optional Paragraph separator, although one rule doesn't have any Sp's in it.
* So do that backup now, setting flags if either Sp or a paragraph
* separator are found */
if (before == SB_Sep || before == SB_CR || before == SB_LF) {
has_para_sep = true;
before = backup_one_SB(strbeg, &lpos, utf8_target);
}
if (before == SB_Sp) {
has_sp = true;
do {
before = backup_one_SB(strbeg, &lpos, utf8_target);
}
while (before == SB_Sp);
}
while (before == SB_Close) {
before = backup_one_SB(strbeg, &lpos, utf8_target);
}
/* The next few rules apply only when the backed-up-to is an ATerm, and in
* most cases an STerm */
if (before == SB_STerm || before == SB_ATerm) {
/* So, here the lhs matches
* (STerm | ATerm) Close* Sp* (Sep | CR | LF)?
* and we have set flags if we found an Sp, or the optional Sep,CR,LF.
* The rules that apply here are:
*
* SB8 ATerm Close* Sp* × ( ¬(OLetter | Upper | Lower | Sep | CR
| LF | STerm | ATerm) )* Lower
SB8a (STerm | ATerm) Close* Sp* × (SContinue | STerm | ATerm)
SB9 (STerm | ATerm) Close* × (Close | Sp | Sep | CR | LF)
SB10 (STerm | ATerm) Close* Sp* × (Sp | Sep | CR | LF)
SB11 (STerm | ATerm) Close* Sp* (Sep | CR | LF)? ÷
*/
/* And all but SB11 forbid having seen a paragraph separator */
if (! has_para_sep) {
if (before == SB_ATerm) { /* SB8 */
U8 * rpos = (U8 *) curpos;
SB_enum later = after;
while ( later != SB_OLetter
&& later != SB_Upper
&& later != SB_Lower
&& later != SB_Sep
&& later != SB_CR
&& later != SB_LF
&& later != SB_STerm
&& later != SB_ATerm
&& later != SB_EDGE)
{
later = advance_one_SB(&rpos, strend, utf8_target);
}
if (later == SB_Lower) {
return false;
}
}
if ( after == SB_SContinue /* SB8a */
|| after == SB_STerm
|| after == SB_ATerm)
{
return false;
}
if (! has_sp) { /* SB9 applies only if there was no Sp* */
if ( after == SB_Close
|| after == SB_Sp
|| after == SB_Sep
|| after == SB_CR
|| after == SB_LF)
{
return false;
}
}
/* SB10. This and SB9 could probably be combined some way, but khw
* has decided to follow the Unicode rule book precisely for
* simplified maintenance */
if ( after == SB_Sp
|| after == SB_Sep
|| after == SB_CR
|| after == SB_LF)
{
return false;
}
}
/* SB11. */
return true;
}
/* Otherwise, do not break.
SB12. Any × Any */
return false;
}
STATIC SB_enum
S_advance_one_SB(pTHX_ U8 ** curpos, const U8 * const strend, const bool utf8_target)
{
SB_enum sb;
PERL_ARGS_ASSERT_ADVANCE_ONE_SB;
if (*curpos >= strend) {
return SB_EDGE;
}
if (utf8_target) {
do {
*curpos += UTF8SKIP(*curpos);
if (*curpos >= strend) {
return SB_EDGE;
}
sb = getSB_VAL_UTF8(*curpos, strend);
} while (sb == SB_Extend || sb == SB_Format);
}
else {
do {
(*curpos)++;
if (*curpos >= strend) {
return SB_EDGE;
}
sb = getSB_VAL_CP(**curpos);
} while (sb == SB_Extend || sb == SB_Format);
}
return sb;
}
STATIC SB_enum
S_backup_one_SB(pTHX_ const U8 * const strbeg, U8 ** curpos, const bool utf8_target)
{
SB_enum sb;
PERL_ARGS_ASSERT_BACKUP_ONE_SB;
if (*curpos < strbeg) {
return SB_EDGE;
}
if (utf8_target) {
U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
if (! prev_char_pos) {
return SB_EDGE;
}
/* Back up over Extend and Format. curpos is always just to the right
* of the character whose value we are getting */
do {
U8 * prev_prev_char_pos;
if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos, -1,
strbeg)))
{
sb = getSB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
*curpos = prev_char_pos;
prev_char_pos = prev_prev_char_pos;
}
else {
*curpos = (U8 *) strbeg;
return SB_EDGE;
}
} while (sb == SB_Extend || sb == SB_Format);
}
else {
do {
if (*curpos - 2 < strbeg) {
*curpos = (U8 *) strbeg;
return SB_EDGE;
}
(*curpos)--;
sb = getSB_VAL_CP(*(*curpos - 1));
} while (sb == SB_Extend || sb == SB_Format);
}
return sb;
}
#define advance_one_WB(cur, end, utf8) \
advance_one_WB_(cur, end, utf8, false)
#define advance_one_WB_but_over_Extend_FO(cur, end, utf8) \
advance_one_WB_(cur, end, utf8, true)
STATIC bool
S_isWB(pTHX_ WB_enum previous,
WB_enum before,
WB_enum after,
const U8 * const strbeg,
const U8 * const curpos,
const U8 * const strend,
const bool utf8_target)
{
PERL_ARGS_ASSERT_ISWB;
/* Return a boolean as to if the boundary between 'before' and 'after' is
* a Unicode word break, using their published algorithm, but tailored for
* Perl by treating spans of white space as one unit. Context may be
* needed to make this determination. If the value for the character
* before 'before' is known, it is passed as 'previous'; otherwise that
* should be set to WB_UNKNOWN. The other input parameters give the
* boundaries and current position in the matching of the string. That
* is, 'curpos' marks the position where the character whose wb value is
* 'after' begins. See https://www.unicode.org/reports/tr29/ */
/* Rule numbers in the comments below are as of Unicode 9.0 */
WB_enum isWB_scratch; /* Used by generated isWB_foo() macros */
U8 index = WB_table[before][after];
do {
/* Otherwise the results come from a chain of dfas to execute,
* returning what the first successful one says; and returning a
* fallback if none succeed. The chain starts at 'index' into
* WB_dfa_table[] */
U8 * prev_pos = (U8 *) curpos;
U8 * next_pos = (U8 *) curpos;
redo: ;
WB_enum prev;
WB_enum next;
bool matched = true; /* Assume will match unless overridden */
switch (WB_dfa_table[index]) {
case WB_BREAKABLE:
return true;
case WB_NOBREAK:
return false;
/* The other cases are for DFAs which execute and set 'matched' as to
* if the input matches what the DFA expects and then 'break's out of
* the switch. */
case WB_hs_v_hs_then_Extend_or_FO_or_ZWJ: /* 2 horizontal spaces in a
row */
next = advance_one_WB(&next_pos, strend, utf8_target);
/* A space immediately preceding an Extend or Format is attached
* to by them, and hence gets separated from previous spaces.
* Otherwise don't break between horizontal white space */
matched = isWB_Extend(next) || isWB_FO(next) || isWB_ZWJ(next);
break;
case WB_Extend_or_FO_or_ZWJ_then_foo:
/* WB4 Ignore Format and Extend characters, except when they appear
* at the beginning of a region of text. */
prev = backup_one_WB_but_over_Extend_FO(&previous, strbeg,
&prev_pos, utf8_target);
index = WB_table[prev][after];
goto redo;
case WB_AHL_then_ML_or_MNLQ_v_AHL:
/* WB7 AHLetter (MidLetter | MidNumLetQ) × AHLetter */
matched = isWB_AHLetter(
backup_one_WB_but_over_Extend_FO(&previous, strbeg,
&prev_pos,
utf8_target));
break;
case WB_AHL_v_ML_or_MNLQ_then_AHL:
/* WB8 AHLetter × (MidLetter | MidNumLetQ) AHLetter */
matched = isWB_AHLetter(
advance_one_WB_but_over_Extend_FO(&next_pos, strend,
utf8_target));
break;
case WB_HL_v_DQ_then_HL:
/* WB7b Hebrew_Letter × Double_Quote Hebrew_Letter */
matched = isWB_Hebrew_Letter(
advance_one_WB_but_over_Extend_FO(&next_pos, strend,
utf8_target));
break;
case WB_HL_then_DQ_v_HL:
/* WB7c Hebrew_Letter Double_Quote × Hebrew_Letter */
matched = isWB_Hebrew_Letter(
backup_one_WB_but_over_Extend_FO(&previous, strbeg,
&prev_pos,
utf8_target));
break;
case WB_NU_then_MN_or_MNLQ_v_NU:
/* WB11 Numeric (MidNum | (MidNumLetQ)) × Numeric */
matched = isWB_Numeric(
backup_one_WB_but_over_Extend_FO(&previous, strbeg,
&prev_pos,
utf8_target));
break;
case WB_NU_v_MN_or_MNLQ_then_NU:
/* WB12 Numeric × (MidNum | MidNumLetQ) Numeric */
matched = isWB_Numeric(
advance_one_WB_but_over_Extend_FO(&next_pos, strend,
utf8_target));
break;
case WB_various_then_RI_v_RI: ;
int RI_count;
/* Do not break within emoji flag sequences. That is, do not break
* between regional indicator (RI) symbols if there is an odd
* number of RI characters before the break point.
* WB15 sot (RI RI)* RI × RI
* WB16 [^RI] (RI RI)* RI × RI */
RI_count = 1;
while (isWB_RI(backup_one_WB_but_over_Extend_FO(&previous, strbeg,
&prev_pos,
utf8_target)))
{
RI_count++;
}
matched = RI_count % 2 == 1;
break;
default:
/* Here, it's a bug, in which mk_invlists created a DFA which
* regexec.c doesn't know about. But not getting the breaking just
* right isn't that big an issue, so we keep going. We set to
* false in the hopes that there is a lower priority DFA that is
* known about, which the next loop iteration will use. */
matched = false;
#ifdef DEBUGGING
Perl_re_printf(aTHX_
"\nUnhandled WB pair: WB_table[%d, %d] = %d\n",
before, after, WB_table[before][after]);
//assert(0);
#endif
break;
} /* End of switch() */
/* Here 'matched' is true if the DFA matched the input. If so,
* [index+1] contains the value to return */
if (matched) {
return WB_dfa_table[index+1];
}
/* Here, it didn't match. In [index+2] is stored the index into the
* DFA table of the next thing to try, which the next loop iteration
* does */
index += 2;
} while (index < C_ARRAY_LENGTH(WB_dfa_table));
return true; /* Shouldn't get here, fail-safe keep going, assuming a
break */
}
STATIC WB_enum
S_advance_one_WB_(pTHX_ U8 ** curpos,
const U8 * const strend,
const bool utf8_target,
const bool skip_Extend_Format)
{
PERL_ARGS_ASSERT_ADVANCE_ONE_WB_;
if (*curpos >= strend) {
return WB_EDGE;
}
WB_enum wb;
if (utf8_target) {
/* Advance over Extend and Format */
do {
*curpos += UTF8SKIP(*curpos);
if (*curpos >= strend) {
return WB_EDGE;
}
wb = getWB_VAL_UTF8(*curpos, strend);
} while ( skip_Extend_Format
&& (isWB_Extend(wb) || isWB_Format(wb)));
}
else {
do {
(*curpos)++;
if (*curpos >= strend) {
return WB_EDGE;
}
wb = getWB_VAL_CP(**curpos);
} while ( skip_Extend_Format
&& (isWB_Extend(wb) || isWB_Format(wb)));
}
return wb;
}
STATIC WB_enum
S_backup_one_WB_but_over_Extend_FO(pTHX_ WB_enum * previous,
const U8 * const strbeg,
U8 ** curpos,
const bool utf8_target)
{
PERL_ARGS_ASSERT_BACKUP_ONE_WB_BUT_OVER_EXTEND_FO;
/* This always skips Extend and Format characters because Unicode rules WB4
* and up call for this behavior. Rules WB1-3 don't require any backup, so
* no current need to make this optional. This is unlikely to change */
WB_enum wb;
/* If we know what the previous character's break value is, don't have
* to look it up */
if (*previous != WB_UNKNOWN) {
wb = *previous;
/* But we need to move backwards by one */
if (utf8_target) {
*curpos = reghopmaybe3(*curpos, -1, strbeg);
if (! *curpos) {
*previous = WB_EDGE;
*curpos = (U8 *) strbeg;
}
else {
*previous = WB_UNKNOWN;
}
}
else {
(*curpos)--;
*previous = (*curpos <= strbeg) ? WB_EDGE : WB_UNKNOWN;
}
/* And we always back up over these three types */
if (! isWB_Extend(wb) && ! isWB_Format(wb) && ! isWB_ZWJ(wb)) {
return wb;
}
}
if (*curpos < strbeg) {
return WB_EDGE;
}
if (utf8_target) {
U8 * prev_char_pos = reghopmaybe3(*curpos, -1, strbeg);
if (! prev_char_pos) {
return WB_EDGE;
}
/* Back up over Extend and Format. curpos is always just to the right
* of the character whose value we are getting */
do {
U8 * prev_prev_char_pos;
if ((prev_prev_char_pos = reghopmaybe3((U8 *) prev_char_pos,
-1,
strbeg)))
{
wb = getWB_VAL_UTF8(prev_prev_char_pos, prev_char_pos);
*curpos = prev_char_pos;
prev_char_pos = prev_prev_char_pos;
}
else {
*curpos = (U8 *) strbeg;
return WB_EDGE;
}
} while (isWB_Extend(wb) || isWB_Format(wb) || isWB_ZWJ(wb));
}
else {
do {
if (*curpos - 2 < strbeg) {
*curpos = (U8 *) strbeg;
return WB_EDGE;
}
(*curpos)--;
wb = getWB_VAL_CP(*(*curpos - 1));
} while (isWB_Extend(wb) || isWB_Format(wb));
}
return wb;
}
/* Macros for regmatch(), using its internal variables */
#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
#define NEXTCHR_IS_EOS (nextbyte < 0)
#define SET_nextchr \
nextbyte = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
#define SET_locinput(p) \
locinput = (p); \
SET_nextchr
#define sayYES goto yes
#define sayNO goto no
#define sayNO_SILENT goto no_silent
/* we don't use STMT_START/END here because it leads to
"unreachable code" warnings, which are bogus, but distracting. */
#define CACHEsayNO \
if (ST.cache_mask) \
reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
sayNO
#define EVAL_CLOSE_PAREN_IS(st,expr) \
( \
( ( st ) ) && \
( ( st )->u.eval.close_paren ) && \
( ( ( st )->u.eval.close_paren ) == ( (expr) + 1 ) ) \
)
#define EVAL_CLOSE_PAREN_IS_TRUE(st,expr) \
( \
( ( st ) ) && \
( ( st )->u.eval.close_paren ) && \
( ( expr ) ) && \
( ( ( st )->u.eval.close_paren ) == ( (expr) + 1 ) ) \
)
#define EVAL_CLOSE_PAREN_SET(st,expr) \
(st)->u.eval.close_paren = ( (expr) + 1 )
#define EVAL_CLOSE_PAREN_CLEAR(st) \
(st)->u.eval.close_paren = 0
/* push a new state then goto it */
#define PUSH_STATE_GOTO(state, node, input, eol, sr0) \
pushinput = input; \
pusheol = eol; \
pushsr0 = sr0; \
scan = node; \
st->resume_state = state; \
goto push_state;
/* push a new state with success backtracking, then goto it */
#define PUSH_YES_STATE_GOTO(state, node, input, eol, sr0) \
pushinput = input; \
pusheol = eol; \
pushsr0 = sr0; \
scan = node; \
st->resume_state = state; \
goto push_yes_state;
#define DEBUG_STATE_pp(pp) \
DEBUG_STATE_r({ \
DUMP_EXEC_POS(locinput, scan, utf8_target,depth); \
Perl_re_printf( aTHX_ \
"%*s" pp " %s%s%s%s%s\n", \
INDENT_CHARS(depth), "", \
REGNODE_NAME(st->resume_state), \
((st == yes_state || st == mark_state) ? "[" : ""), \
((st == yes_state) ? "Y" : ""), \
((st == mark_state) ? "M" : ""), \
((st == yes_state || st == mark_state) ? "]" : "") \
); \
});
/*
regmatch() - main matching routine
This is basically one big switch statement in a loop. We execute an op,
set 'next' to point the next op, and continue. If we come to a point which
we may need to backtrack to on failure such as (A|B|C), we push a
backtrack state onto the backtrack stack. On failure, we pop the top
state, and re-enter the loop at the state indicated. If there are no more
states to pop, we return failure.
Sometimes we also need to backtrack on success; for example /A+/, where
after successfully matching one A, we need to go back and try to
match another one; similarly for lookahead assertions: if the assertion
completes successfully, we backtrack to the state just before the assertion
and then carry on. In these cases, the pushed state is marked as
'backtrack on success too'. This marking is in fact done by a chain of
pointers, each pointing to the previous 'yes' state. On success, we pop to
the nearest yes state, discarding any intermediate failure-only states.
Sometimes a yes state is pushed just to force some cleanup code to be
called at the end of a successful match or submatch; e.g. (??{$re}) uses
it to free the inner regex.
Note that failure backtracking rewinds the cursor position, while
success backtracking leaves it alone.
A pattern is complete when the END op is executed, while a subpattern
such as (?=foo) is complete when the SUCCESS op is executed. Both of these
ops trigger the "pop to last yes state if any, otherwise return true"
behaviour.
A common convention in this function is to use A and B to refer to the two
subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
the subpattern to be matched possibly multiple times, while B is the entire
rest of the pattern. Variable and state names reflect this convention.
The states in the main switch are the union of ops and failure/success of
substates associated with that op. For example, IFMATCH is the op
that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
successfully matched A and IFMATCH_A_fail is a state saying that we have
just failed to match A. Resume states always come in pairs. The backtrack
state we push is marked as 'IFMATCH_A', but when that is popped, we resume
at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
on success or failure.
The struct that holds a backtracking state is actually a big union, with
one variant for each major type of op. The variable st points to the
top-most backtrack struct. To make the code clearer, within each
block of code we #define ST to alias the relevant union.
Here's a concrete example of a (vastly oversimplified) IFMATCH
implementation:
switch (state) {
....
#define ST st->u.ifmatch
case IFMATCH: // we are executing the IFMATCH op, (?=A)B
ST.foo = ...; // some state we wish to save
...
// push a yes backtrack state with a resume value of
// IFMATCH_A/IFMATCH_A_fail, then continue execution at the
// first node of A:
PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
// NOTREACHED
case IFMATCH_A: // we have successfully executed A; now continue with B
next = B;
bar = ST.foo; // do something with the preserved value
break;
case IFMATCH_A_fail: // A failed, so the assertion failed
...; // do some housekeeping, then ...
sayNO; // propagate the failure
#undef ST
...
}
For any old-timers reading this who are familiar with the old recursive
approach, the code above is equivalent to:
case IFMATCH: // we are executing the IFMATCH op, (?=A)B
{
int foo = ...
...
if (regmatch(A)) {
next = B;
bar = foo;
break;
}
...; // do some housekeeping, then ...
sayNO; // propagate the failure
}
The topmost backtrack state, pointed to by st, is usually free. If you
want to claim it, populate any ST.foo fields in it with values you wish to
save, then do one of
PUSH_STATE_GOTO(resume_state, node, newinput, new_eol);
PUSH_YES_STATE_GOTO(resume_state, node, newinput, new_eol);
which sets that backtrack state's resume value to 'resume_state', pushes a
new free entry to the top of the backtrack stack, then goes to 'node'.
On backtracking, the free slot is popped, and the saved state becomes the
new free state. An ST.foo field in this new top state can be temporarily
accessed to retrieve values, but once the main loop is re-entered, it
becomes available for reuse.
Note that the depth of the backtrack stack constantly increases during the
left-to-right execution of the pattern, rather than going up and down with
the pattern nesting. For example the stack is at its maximum at Z at the
end of the pattern, rather than at X in the following:
/(((X)+)+)+....(Y)+....Z/
The only exceptions to this are lookahead/behind assertions and the cut,
(?>A), which pop all the backtrack states associated with A before
continuing.
Backtrack state structs are allocated in slabs of about 4K in size.
PL_regmatch_state and st always point to the currently active state,
and PL_regmatch_slab points to the slab currently containing
PL_regmatch_state. The first time regmatch() is called, the first slab is
allocated, and is never freed until interpreter destruction. When the slab
is full, a new one is allocated and chained to the end. At exit from
regmatch(), slabs allocated since entry are freed.
In order to work with variable length lookbehinds, an upper limit is placed on
lookbehinds which is set to where the match position is at the end of where the
lookbehind would get to. Nothing in the lookbehind should match above that,
except we should be able to look beyond if for things like \b, which need the
next character in the string to be able to determine if this is a boundary or
not. We also can't match the end of string/line unless we are also at the end
of the entire string, so NEXTCHR_IS_EOS remains the same, and for those OPs
that match a width, we have to add a condition that they are within the legal
bounds of our window into the string.
*/
/* returns -1 on failure, $+[0] on success */
STATIC SSize_t
S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog)
{
const bool utf8_target = reginfo->is_utf8_target;
const U32 uniflags = UTF8_ALLOW_DEFAULT;
REGEXP *rex_sv = reginfo->prog;
regexp *rex = ReANY(rex_sv);
RXi_GET_DECL(rex,rexi);
/* the current state. This is a cached copy of PL_regmatch_state */
regmatch_state *st;
/* cache heavy used fields of st in registers */
regnode *scan;
regnode *next;
U32 n = 0; /* general value; init to avoid compiler warning */
U32 utmp = 0; /* tmp variable - valid for at most one opcode */
SSize_t ln = 0; /* len or last; init to avoid compiler warning */
SSize_t endref = 0; /* offset of end of backref when ln is start */
char *locinput = startpos;
char *loceol = reginfo->strend;
char *pushinput; /* where to continue after a PUSH */
char *pusheol; /* where to stop matching (loceol) after a PUSH */
U8 *pushsr0; /* save starting pos of script run */
PERL_INT_FAST16_T nextbyte; /* is always set to UCHARAT(locinput), or -1
at EOS */
bool result = 0; /* return value of S_regmatch */
U32 depth = 0; /* depth of backtrack stack */
U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
const U32 max_nochange_depth =
(3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
regmatch_state *yes_state = NULL; /* state to pop to on success of
subpattern */
/* mark_state piggy backs on the yes_state logic so that when we unwind
the stack on success we can update the mark_state as we go */
regmatch_state *mark_state = NULL; /* last mark state we have seen */
regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */
U32 state_num;
bool no_final = 0; /* prevent failure from backtracking? */
bool do_cutgroup = 0; /* no_final only until next branch/trie entry */
char *startpoint = locinput;
SV *popmark = NULL; /* are we looking for a mark? */
SV *sv_commit = NULL; /* last mark name seen in failure */
SV *sv_yes_mark = NULL; /* last mark name we have seen
during a successful match */
U32 lastopen = 0; /* last open we saw */
bool has_cutgroup = RXp_HAS_CUTGROUP(rex) ? 1 : 0;
SV* const oreplsv = GvSVn(PL_replgv);
/* these three flags are set by various ops to signal information to
* the very next op. They have a useful lifetime of exactly one loop
* iteration, and are not preserved or restored by state pushes/pops
*/
bool sw = 0; /* the condition value in (?(cond)a|b) */
bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */
int logical = 0; /* the following EVAL is:
0: (?{...})
1: (?(?{...})X|Y)
2: (??{...})
or the following IFMATCH/UNLESSM is:
false: plain (?=foo)
true: used as a condition: (?(?=foo))
*/
PAD* last_pad = NULL;
dMULTICALL;
U8 gimme = G_SCALAR;
CV *caller_cv = NULL; /* who called us */
CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */
U32 maxopenparen = 0; /* max '(' index seen so far */
int to_complement; /* Invert the result? */
char_class_number_ classnum;
bool is_utf8_pat = reginfo->is_utf8_pat;
bool match = false;
I32 orig_savestack_ix = PL_savestack_ix;
U8 * script_run_begin = NULL;
char *match_end= NULL; /* where a match MUST end to be considered successful */
bool is_accepted = false; /* have we hit an ACCEPT opcode? */
re_fold_t folder = NULL; /* used by various EXACTish regops */
const U8 * fold_array = NULL; /* used by various EXACTish regops */
/* Solaris Studio 12.3 messes up fetching PL_charclass['\n'] */
#if (defined(__SUNPRO_C) && (__SUNPRO_C == 0x5120) && defined(__x86_64) && defined(USE_64_BIT_ALL))
# define SOLARIS_BAD_OPTIMIZER
const U32 *pl_charclass_dup = PL_charclass;
# define PL_charclass pl_charclass_dup
#endif
#ifdef DEBUGGING
DECLARE_AND_GET_RE_DEBUG_FLAGS;
#endif
/* protect against undef(*^R) */
SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv));
/* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */
multicall_oldcatch = 0;
PERL_UNUSED_VAR(multicall_cop);
PERL_ARGS_ASSERT_REGMATCH;
st = PL_regmatch_state;
/* Note that nextbyte is a byte even in UTF */
SET_nextchr;
scan = prog;
DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
DUMP_EXEC_POS( locinput, scan, utf8_target, depth );
Perl_re_printf( aTHX_ "regmatch start\n" );
}));
while (scan != NULL) {
next = scan + NEXT_OFF(scan);
if (next == scan)
next = NULL;
state_num = OP(scan);
reenter_switch:
DEBUG_EXECUTE_r(
if (state_num <= REGNODE_MAX) {
SV * const prop = sv_newmortal();
regnode *rnext = regnext(scan);
DUMP_EXEC_POS( locinput, scan, utf8_target, depth );
regprop(rex, prop, scan, reginfo, NULL);
Perl_re_printf( aTHX_
"%*s%" IVdf ":%s(%" IVdf ")\n",
INDENT_CHARS(depth), "",
(IV)(scan - rexi->program),
SvPVX_const(prop),
(REGNODE_TYPE(OP(scan)) == END || !rnext) ?
0 : (IV)(rnext - rexi->program));
}
);
to_complement = 0;
SET_nextchr;
assert(nextbyte < 256 && (nextbyte >= 0 || nextbyte == NEXTCHR_EOS));
switch (state_num) {
SV * anyofh_list;
case SBOL: /* /^../ and /\A../ */
if (locinput == reginfo->strbeg)
break;
sayNO;
case MBOL: /* /^../m */
if (locinput == reginfo->strbeg ||
(!NEXTCHR_IS_EOS && locinput[-1] == '\n'))
{
break;
}
sayNO;
case GPOS: /* \G */
if (locinput == reginfo->ganch)
break;
sayNO;
case KEEPS: /* \K */
/* update the startpoint */
st->u.keeper.val = RXp_OFFS_START(rex,0);
RXp_OFFSp(rex)[0].start = locinput - reginfo->strbeg;
PUSH_STATE_GOTO(KEEPS_next, next, locinput, loceol,
script_run_begin);
NOT_REACHED; /* NOTREACHED */
case KEEPS_next_fail:
/* rollback the start point change */
RXp_OFFSp(rex)[0].start = st->u.keeper.val;
sayNO_SILENT;
NOT_REACHED; /* NOTREACHED */
case MEOL: /* /..$/m */
if (!NEXTCHR_IS_EOS && nextbyte != '\n')
sayNO;
break;
case SEOL: /* /..$/ */
if (!NEXTCHR_IS_EOS && nextbyte != '\n')
sayNO;
if (reginfo->strend - locinput > 1)
sayNO;
break;
case EOS: /* \z */
if (!NEXTCHR_IS_EOS)
sayNO;
break;
case SANY: /* /./s */
if (NEXTCHR_IS_EOS || locinput >= loceol)
sayNO;
goto increment_locinput;
case REG_ANY: /* /./ */
if ( NEXTCHR_IS_EOS
|| locinput >= loceol
|| nextbyte == '\n')
{
sayNO;
}
goto increment_locinput;
#undef ST
#define ST st->u.trie
case TRIEC: /* (ab|cd) with known charclass */
/* In this case the charclass data is available inline so
we can fail fast without a lot of extra overhead.
*/
if ( ! NEXTCHR_IS_EOS
&& locinput < loceol
&& ! ANYOF_BITMAP_TEST(scan, nextbyte))
{
DEBUG_EXECUTE_r(
Perl_re_exec_indentf( aTHX_ "%sTRIE: failed to match trie start class...%s\n",
depth, PL_colors[4], PL_colors[5])
);
sayNO_SILENT;
NOT_REACHED; /* NOTREACHED */
}
/* FALLTHROUGH */
case TRIE: /* (ab|cd) */
/* the basic plan of execution of the trie is:
* At the beginning, run though all the states, and
* find the longest-matching word. Also remember the position
* of the shortest matching word. For example, this pattern:
* 1 2 3 4 5
* ab|a|x|abcd|abc
* when matched against the string "abcde", will generate
* accept states for all words except 3, with the longest
* matching word being 4, and the shortest being 2 (with
* the position being after char 1 of the string).
*
* Then for each matching word, in word order (i.e. 1,2,4,5),
* we run the remainder of the pattern; on each try setting
* the current position to the character following the word,
* returning to try the next word on failure.
*
* We avoid having to build a list of words at runtime by
* using a compile-time structure, wordinfo[].prev, which
* gives, for each word, the previous accepting word (if any).
* In the case above it would contain the mappings 1->2, 2->0,
* 3->0, 4->5, 5->1. We can use this table to generate, from
* the longest word (4 above), a list of all words, by
* following the list of prev pointers; this gives us the
* unordered list 4,5,1,2. Then given the current word we have
* just tried, we can go through the list and find the
* next-biggest word to try (so if we just failed on word 2,
* the next in the list is 4).
*
* Since at runtime we don't record the matching position in
* the string for each word, we have to work that out for
* each word we're about to process. The wordinfo table holds
* the character length of each word; given that we recorded
* at the start: the position of the shortest word and its
* length in chars, we just need to move the pointer the
* difference between the two char lengths. Depending on
* Unicode status and folding, that's cheap or expensive.
*
* This algorithm is optimised for the case where are only a
* small number of accept states, i.e. 0,1, or maybe 2.
* With lots of accepts states, and having to try all of them,
* it becomes quadratic on number of accept states to find all
* the next words.
*/
{
/* what type of TRIE am I? (utf8 makes this contextual) */
DECL_TRIE_TYPE(scan);
/* what trie are we using right now */
reg_trie_data * const trie
= (reg_trie_data*)rexi->data->data[ ARG1u( scan ) ];
ST.before_paren = trie->before_paren;
ST.after_paren = trie->after_paren;
assert(ST.before_paren <= rex->nparens);
assert(ST.after_paren <= rex->nparens);
HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG1u( scan ) + 1 ]);
U32 state = trie->startstate;
if (FLAGS(scan) == EXACTL || FLAGS(scan) == EXACTFLU8) {
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
if (utf8_target
&& ! NEXTCHR_IS_EOS
&& UTF8_IS_ABOVE_LATIN1(nextbyte)
&& FLAGS(scan) == EXACTL)
{
/* We only output for EXACTL, as we let the folder
* output this message for EXACTFLU8 to avoid
* duplication */
CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG_(locinput,
reginfo->strend);
}
}
if ( trie->bitmap
&& ( NEXTCHR_IS_EOS
|| locinput >= loceol
|| ! TRIE_BITMAP_TEST(trie, nextbyte)))
{
if (trie->states[ state ].wordnum) {
DEBUG_EXECUTE_r(
Perl_re_exec_indentf( aTHX_ "%sTRIE: matched empty string...%s\n",
depth, PL_colors[4], PL_colors[5])
);
if (!trie->jump)
break;
} else {
DEBUG_EXECUTE_r(
Perl_re_exec_indentf( aTHX_ "%sTRIE: failed to match trie start class...%s\n",
depth, PL_colors[4], PL_colors[5])
);
sayNO_SILENT;
}
}
{
U8 *uc = ( U8* )locinput;
STRLEN len = 0;
STRLEN foldlen = 0;
U8 *uscan = (U8*)NULL;
U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
U32 charcount = 0; /* how many input chars we have matched */
U32 accepted = 0; /* how many accepting states have we seen? */
ST.jump = trie->jump;
ST.j_before_paren = trie->j_before_paren;
ST.j_after_paren= trie->j_after_paren;
ST.me = scan;
ST.firstpos = NULL;
ST.longfold = false; /* char longer if folded => it's harder */
ST.nextword = 0;
/* fully traverse the TRIE; note the position of the
shortest accept state and the wordnum of the longest
accept state */
while ( state && uc <= (U8*)(loceol) ) {
UV uvc = 0;
U16 charid = 0;
U32 base = trie->states[ state ].trans.base;
U16 wordnum = trie->states[ state ].wordnum;
PERL_DEB(U32 old_state = state);
if (wordnum) { /* it's an accept state */
if (!accepted) {
accepted = 1;
/* record first match position */
if (ST.longfold) {
ST.firstpos = (U8*)locinput;
ST.firstchars = 0;
}
else {
ST.firstpos = uc;
ST.firstchars = charcount;
}
}
if (!ST.nextword || wordnum < ST.nextword)
ST.nextword = wordnum;
ST.topword = wordnum;
}
/* read a char and goto next state */
if ( base && (foldlen || uc < (U8*)(loceol))) {
I32 offset;
REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
(U8 *) loceol, uscan,
len, uvc, charid, foldlen,
foldbuf, uniflags);
charcount++;
if (foldlen > 0)
ST.longfold = true;
if (charid &&
( ((offset =
base + charid - 1 - trie->uniquecharcount)) >= 0)
&& ((U32)offset < trie->lasttrans)
&& trie->trans[offset].check == state)
{
state = trie->trans[offset].next;
}
else {
state = 0;
}
uc += len;
}
else {
state = 0;
}
DEBUG_TRIE_EXECUTE_r(
DUMP_EXEC_POS( (char *)uc, scan, utf8_target, depth );
Perl_re_printf( aTHX_
"%sTRIE: Chid:0x%-2" UVXf " CP:0x%-4" UVXf " ",
PL_colors[4], (UV)charid, uvc);
if (isPRINT_A(uvc))
Perl_re_printf( aTHX_ "'%c' ", (int)uvc );
else
Perl_re_printf( aTHX_ " " ); /* four spaces to match "'x' " */
Perl_re_printf( aTHX_
"St:0x%-4" UVXf " W:0x%-2" UVXf " - %s -> St: 0x%-4" UVXf "%s\n",
(UV)old_state, (UV)wordnum,
state ? "good" : charid ? "fail" : "last",
(UV)state, PL_colors[5]
);
);
}
if (!accepted)
sayNO;
/* calculate total number of accept states */
{
U16 w = ST.topword;
accepted = 0;
while (w) {
w = trie->wordinfo[w].prev;
accepted++;
}
ST.accepted = accepted;
}
DEBUG_EXECUTE_r(
Perl_re_exec_indentf( aTHX_ "%sTRIE: got %" IVdf " possible matches%s\n",
depth,
PL_colors[4], (IV)ST.accepted, PL_colors[5] );
);
goto trie_first_try; /* jump into the fail handler */
}}
NOT_REACHED; /* NOTREACHED */
case TRIE_next_fail: /* we failed - try next alternative */
{
U8 *uc;
if (RE_PESSIMISTIC_PARENS) {
REGCP_UNWIND(ST.lastcp);
regcppop(rex,&maxopenparen);
}
if ( ST.jump ) {
/* undo any captures done in the tail part of a branch,
* e.g.
* /(?:X(.)(.)|Y(.)).../
* where the trie just matches X then calls out to do the
* rest of the branch */
REGCP_UNWIND(ST.cp);
UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
if (ST.after_paren) {
assert(ST.before_paren <= rex->nparens && ST.after_paren <= rex->nparens);
CAPTURE_CLEAR(ST.before_paren+1, ST.after_paren, "TRIE_next_fail");
}
}
if (!--ST.accepted) {
DEBUG_EXECUTE_r({
Perl_re_exec_indentf( aTHX_ "%sTRIE failed...%s\n",
depth,
PL_colors[4],
PL_colors[5] );
});
sayNO_SILENT;
}
{
/* Find next-highest word to process. Note that this code
* is O(N^2) per trie run (O(N) per branch), so keep tight */
U16 min = 0;
U16 word;
U16 const nextword = ST.nextword;
reg_trie_wordinfo * const wordinfo
= ((reg_trie_data*)rexi->data->data[ARG1u(ST.me)])->wordinfo;
for (word = ST.topword; word; word = wordinfo[word].prev) {
if (word > nextword && (!min || word < min))
min = word;
}
ST.nextword = min;
}
trie_first_try:
if (do_cutgroup) {
do_cutgroup = 0;
no_final = 0;
}
if ( ST.jump ) {
ST.lastparen = RXp_LASTPAREN(rex);
ST.lastcloseparen = RXp_LASTCLOSEPAREN(rex);
REGCP_SET(ST.cp);
}
/* find start char of end of current word */
{
U32 chars; /* how many chars to skip */
reg_trie_data * const trie
= (reg_trie_data*)rexi->data->data[ARG1u(ST.me)];
assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
>= ST.firstchars);
chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
- ST.firstchars;
uc = ST.firstpos;
if (ST.longfold) {
/* the hard option - fold each char in turn and find
* its folded length (which may be different */
U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
STRLEN foldlen;
STRLEN len;
UV uvc;
U8 *uscan;
while (chars) {
if (utf8_target) {
/* XXX This assumes the length is well-formed, as
* does the UTF8SKIP below */
uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len,
uniflags);
uc += len;
}
else {
uvc = *uc;
uc++;
}
uvc = to_uni_fold(uvc, foldbuf, &foldlen);
uscan = foldbuf;
while (foldlen) {
if (!--chars)
break;
uvc = utf8n_to_uvchr(uscan, foldlen, &len,
uniflags);
uscan += len;
foldlen -= len;
}
}
}
else {
if (utf8_target)
uc = utf8_hop(uc, chars);
else
uc += chars;
}
}
if (ST.jump && ST.jump[ST.nextword]) {
scan = ST.me + ST.jump[ST.nextword];
ST.before_paren = ST.j_before_paren[ST.nextword];
assert(ST.before_paren <= rex->nparens);
ST.after_paren = ST.j_after_paren[ST.nextword];
assert(ST.after_paren <= rex->nparens);
} else {
scan = ST.me + NEXT_OFF(ST.me);
}
DEBUG_EXECUTE_r({
Perl_re_exec_indentf( aTHX_ "%sTRIE: matched word #%d, continuing%s\n",
depth,
PL_colors[4],
ST.nextword,
PL_colors[5]
);
});
if ( ST.accepted > 1 || has_cutgroup || ST.jump ) {
if (RE_PESSIMISTIC_PARENS) {
(void)regcppush(rex, 0, maxopenparen);
REGCP_SET(ST.lastcp);
}
PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc, loceol,
script_run_begin);
NOT_REACHED; /* NOTREACHED */
}
/* only one choice left - just continue */
DEBUG_EXECUTE_r({
AV *const trie_words
= MUTABLE_AV(rexi->data->data[ARG1u(ST.me)+TRIE_WORDS_OFFSET]);
SV ** const tmp = trie_words
? av_fetch(trie_words, ST.nextword - 1, 0) : NULL;
SV *sv= tmp ? sv_newmortal() : NULL;
Perl_re_exec_indentf( aTHX_ "%sTRIE: only one match left, short-circuiting: #%d <%s>%s\n",
depth, PL_colors[4],
ST.nextword,
tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
PL_colors[0], PL_colors[1],
(SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
)
: "not compiled under -Dr",
PL_colors[5] );
});
locinput = (char*)uc;
continue; /* execute rest of RE */
/* NOTREACHED */
}
#undef ST
case LEXACT_REQ8:
if (! utf8_target) {
sayNO;
}
/* FALLTHROUGH */
case LEXACT:
{
char *s;
s = STRINGl(scan);
ln = STR_LENl(scan);
goto join_short_long_exact;
case EXACTL: /* /abc/l */
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
/* Complete checking would involve going through every character
* matched by the string to see if any is above latin1. But the
* comparison otherwise might very well be a fast assembly
* language routine, and I (khw) don't think slowing things down
* just to check for this warning is worth it. So this just checks
* the first character */
if (utf8_target && UTF8_IS_ABOVE_LATIN1(*locinput)) {
CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG_(locinput, reginfo->strend);
}
goto do_exact;
case EXACT_REQ8:
if (! utf8_target) {
sayNO;
}
/* FALLTHROUGH */
case EXACT: /* /abc/ */
do_exact:
s = STRINGs(scan);
ln = STR_LENs(scan);
join_short_long_exact:
if (utf8_target != is_utf8_pat) {
/* The target and the pattern have differing utf8ness. */
char *l = locinput;
const char * const e = s + ln;
if (utf8_target) {
/* The target is utf8, the pattern is not utf8.
* Above-Latin1 code points can't match the pattern;
* invariants match exactly, and the other Latin1 ones need
* to be downgraded to a single byte in order to do the
* comparison. (If we could be confident that the target
* is not malformed, this could be refactored to have fewer
* tests by just assuming that if the first bytes match, it
* is an invariant, but there are tests in the test suite
* dealing with (??{...}) which violate this) */
while (s < e) {
if ( l >= loceol
|| UTF8_IS_ABOVE_LATIN1(* (U8*) l))
{
sayNO;
}
if (UTF8_IS_INVARIANT(*(U8*)l)) {
if (*l != *s) {
sayNO;
}
l++;
}
else {
if (EIGHT_BIT_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s)
{
sayNO;
}
l += 2;
}
s++;
}
}
else {
/* The target is not utf8, the pattern is utf8. */
while (s < e) {
if ( l >= loceol
|| UTF8_IS_ABOVE_LATIN1(* (U8*) s))
{
sayNO;
}
if (UTF8_IS_INVARIANT(*(U8*)s)) {
if (*s != *l) {
sayNO;
}
s++;
}
else {
if (EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l)
{
sayNO;
}
s += 2;
}
l++;
}
}
locinput = l;
}
else {
/* The target and the pattern have the same utf8ness. */
/* Inline the first character, for speed. */
if ( loceol - locinput < ln
|| UCHARAT(s) != nextbyte
|| (ln > 1 && memNE(s, locinput, ln)))
{
sayNO;
}
locinput += ln;
}
break;
}
case EXACTFL: /* /abc/il */
{
const char * s;
U32 fold_utf8_flags;
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
folder = Perl_foldEQ_locale;
fold_array = PL_fold_locale;
fold_utf8_flags = FOLDEQ_LOCALE;
goto do_exactf;
case EXACTFLU8: /* /abc/il; but all 'abc' are above 255, so
is effectively /u; hence to match, target
must be UTF-8. */
if (! utf8_target) {
sayNO;
}
fold_utf8_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
| FOLDEQ_S2_FOLDS_SANE;
folder = S_foldEQ_latin1_s2_folded;
fold_array = PL_fold_latin1;
goto do_exactf;
case EXACTFU_REQ8: /* /abc/iu with something in /abc/ > 255 */
if (! utf8_target) {
sayNO;
}
assert(is_utf8_pat);
fold_utf8_flags = FOLDEQ_S2_ALREADY_FOLDED;
#ifdef DEBUGGING
/* this is only used in an assert check, so we restrict it to DEBUGGING mode.
* In theory neither of these variables should be used in this mode. */
folder = NULL;
fold_array = NULL;
#endif
goto do_exactf;
case EXACTFUP: /* /foo/iu, and something is problematic in
'foo' so can't take shortcuts. */
assert(! is_utf8_pat);
folder = Perl_foldEQ_latin1;
fold_array = PL_fold_latin1;
fold_utf8_flags = 0;
goto do_exactf;
case EXACTFU: /* /abc/iu */
folder = S_foldEQ_latin1_s2_folded;
fold_array = PL_fold_latin1;
fold_utf8_flags = FOLDEQ_S2_ALREADY_FOLDED;
goto do_exactf;
case EXACTFAA_NO_TRIE: /* This node only generated for non-utf8
patterns */
assert(! is_utf8_pat);
/* FALLTHROUGH */
case EXACTFAA: /* /abc/iaa */
folder = S_foldEQ_latin1_s2_folded;
fold_array = PL_fold_latin1;
fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
if (is_utf8_pat || ! utf8_target) {
/* The possible presence of a MICRO SIGN in the pattern forbids
* us to view a non-UTF-8 pattern as folded when there is a
* UTF-8 target */
fold_utf8_flags |= FOLDEQ_S2_ALREADY_FOLDED
|FOLDEQ_S2_FOLDS_SANE;
}
goto do_exactf;
case EXACTF: /* /abc/i This node only generated for
non-utf8 patterns */
assert(! is_utf8_pat);
folder = Perl_foldEQ;
fold_array = PL_fold;
fold_utf8_flags = 0;
do_exactf:
s = STRINGs(scan);
ln = STR_LENs(scan);
if ( utf8_target
|| is_utf8_pat
|| state_num == EXACTFUP
|| (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE))
{
/* Either target or the pattern are utf8, or has the issue where
* the fold lengths may differ. */
const char * const l = locinput;
char *e = loceol;
if (! foldEQ_utf8_flags(l, &e, 0, utf8_target,
s, 0, ln, is_utf8_pat,fold_utf8_flags))
{
sayNO;
}
locinput = e;
break;
}
/* Neither the target nor the pattern are utf8 */
assert(fold_array);
if (UCHARAT(s) != nextbyte
&& !NEXTCHR_IS_EOS
&& UCHARAT(s) != fold_array[nextbyte])
{
sayNO;
}
if (loceol - locinput < ln)
sayNO;
assert(folder);
if (ln > 1 && ! folder(aTHX_ locinput, s, ln))
sayNO;
locinput += ln;
break;
}
case NBOUNDL: /* /\B/l */
to_complement = 1;
/* FALLTHROUGH */
case BOUNDL: /* /\b/l */
{
bool b1, b2;
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
if (FLAGS(scan) != TRADITIONAL_BOUND) {
CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND;
goto boundu;
}
if (utf8_target) {
if (locinput == reginfo->strbeg)
b1 = isWORDCHAR_LC('\n');
else {
U8 *p = reghop3((U8*)locinput, -1,
(U8*)(reginfo->strbeg));
b1 = isWORDCHAR_LC_utf8_safe(p, (U8*)(reginfo->strend));
}
b2 = (NEXTCHR_IS_EOS)
? isWORDCHAR_LC('\n')
: isWORDCHAR_LC_utf8_safe((U8*) locinput,
(U8*) reginfo->strend);
}
else { /* Here the string isn't utf8 */
b1 = (locinput == reginfo->strbeg)
? isWORDCHAR_LC('\n')
: isWORDCHAR_LC(UCHARAT(locinput - 1));
b2 = (NEXTCHR_IS_EOS)
? isWORDCHAR_LC('\n')
: isWORDCHAR_LC(nextbyte);
}
if (to_complement ^ (b1 == b2)) {
sayNO;
}
break;
}
case NBOUND: /* /\B/ */
to_complement = 1;
/* FALLTHROUGH */
case BOUND: /* /\b/ */
if (utf8_target) {
goto bound_utf8;
}
goto bound_ascii_match_only;
case NBOUNDA: /* /\B/a */
to_complement = 1;
/* FALLTHROUGH */
case BOUNDA: /* /\b/a */
{
bool b1, b2;
bound_ascii_match_only:
/* Here the string isn't utf8, or is utf8 and only ascii characters
* are to match \w. In the latter case looking at the byte just
* prior to the current one may be just the final byte of a
* multi-byte character. This is ok. There are two cases:
* 1) it is a single byte character, and then the test is doing
* just what it's supposed to.
* 2) it is a multi-byte character, in which case the final byte is
* never mistakable for ASCII, and so the test will say it is
* not a word character, which is the correct answer. */
b1 = (locinput == reginfo->strbeg)
? isWORDCHAR_A('\n')
: isWORDCHAR_A(UCHARAT(locinput - 1));
b2 = (NEXTCHR_IS_EOS)
? isWORDCHAR_A('\n')
: isWORDCHAR_A(nextbyte);
if (to_complement ^ (b1 == b2)) {
sayNO;
}
break;
}
case NBOUNDU: /* /\B/u */
to_complement = 1;
/* FALLTHROUGH */
case BOUNDU: /* /\b/u */
boundu:
if (UNLIKELY(reginfo->strbeg >= reginfo->strend)) {
match = false;
}
else if (utf8_target) {
bound_utf8:
switch((bound_type) FLAGS(scan)) {
case TRADITIONAL_BOUND:
{
bool b1, b2;
if (locinput == reginfo->strbeg) {
b1 = 0 /* isWORDCHAR_L1('\n') */;
}
else {
U8 *p = reghop3((U8*)locinput, -1,
(U8*)(reginfo->strbeg));
b1 = isWORDCHAR_utf8_safe(p, (U8*) reginfo->strend);
}
b2 = (NEXTCHR_IS_EOS)
? 0 /* isWORDCHAR_L1('\n') */
: isWORDCHAR_utf8_safe((U8*)locinput,
(U8*) reginfo->strend);
match = cBOOL(b1 != b2);
break;
}
case GCB_BOUND:
if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
match = true; /* GCB always matches at begin and
end */
}
else {
/* Find the gcb values of previous and current
* chars, then see if is a break point */
match = isGCB(getGCB_VAL_UTF8(
reghop3((U8*)locinput,
-1,
(U8*)(reginfo->strbeg)),
(U8*) reginfo->strend),
getGCB_VAL_UTF8((U8*) locinput,
(U8*) reginfo->strend),
(U8*) reginfo->strbeg,
(U8*) locinput,
utf8_target);
}
break;
case LB_BOUND:
if (locinput == reginfo->strbeg) {
match = false;
}
else if (NEXTCHR_IS_EOS) {
match = true;
}
else {
match = isLB(getLB_VAL_UTF8(
reghop3((U8*)locinput,
-1,
(U8*)(reginfo->strbeg)),
(U8*) reginfo->strend),
getLB_VAL_UTF8((U8*) locinput,
(U8*) reginfo->strend),
(U8*) reginfo->strbeg,
(U8*) locinput,
(U8*) reginfo->strend,
utf8_target);
}
break;
case SB_BOUND: /* Always matches at begin and end */
if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
match = true;
}
else {
match = isSB(getSB_VAL_UTF8(
reghop3((U8*)locinput,
-1,
(U8*)(reginfo->strbeg)),
(U8*) reginfo->strend),
getSB_VAL_UTF8((U8*) locinput,
(U8*) reginfo->strend),
(U8*) reginfo->strbeg,
(U8*) locinput,
(U8*) reginfo->strend,
utf8_target);
}
break;
case WB_BOUND:
if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
match = true;
}
else {
match = isWB(WB_UNKNOWN,
getWB_VAL_UTF8(
reghop3((U8*)locinput,
-1,
(U8*)(reginfo->strbeg)),
(U8*) reginfo->strend),
getWB_VAL_UTF8((U8*) locinput,
(U8*) reginfo->strend),
(U8*) reginfo->strbeg,
(U8*) locinput,
(U8*) reginfo->strend,
utf8_target);
}
break;
}
}
else { /* Not utf8 target */
switch((bound_type) FLAGS(scan)) {
case TRADITIONAL_BOUND:
{
bool b1, b2;
b1 = (locinput == reginfo->strbeg)
? 0 /* isWORDCHAR_L1('\n') */
: isWORDCHAR_L1(UCHARAT(locinput - 1));
b2 = (NEXTCHR_IS_EOS)
? 0 /* isWORDCHAR_L1('\n') */
: isWORDCHAR_L1(nextbyte);
match = cBOOL(b1 != b2);
break;
}
case GCB_BOUND:
if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
match = true; /* GCB always matches at begin and
end */
}
else { /* Only CR-LF combo isn't a GCB in 0-255
range */
match = UCHARAT(locinput - 1) != '\r'
|| UCHARAT(locinput) != '\n';
}
break;
case LB_BOUND:
if (locinput == reginfo->strbeg) {
match = false;
}
else if (NEXTCHR_IS_EOS) {
match = true;
}
else {
match = isLB(getLB_VAL_CP(UCHARAT(locinput -1)),
getLB_VAL_CP(UCHARAT(locinput)),
(U8*) reginfo->strbeg,
(U8*) locinput,
(U8*) reginfo->strend,
utf8_target);
}
break;
case SB_BOUND: /* Always matches at begin and end */
if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
match = true;
}
else {
match = isSB(getSB_VAL_CP(UCHARAT(locinput -1)),
getSB_VAL_CP(UCHARAT(locinput)),
(U8*) reginfo->strbeg,
(U8*) locinput,
(U8*) reginfo->strend,
utf8_target);
}
break;
case WB_BOUND:
if (locinput == reginfo->strbeg || NEXTCHR_IS_EOS) {
match = true;
}
else {
match = isWB(WB_UNKNOWN,
getWB_VAL_CP(UCHARAT(locinput -1)),
getWB_VAL_CP(UCHARAT(locinput)),
(U8*) reginfo->strbeg,
(U8*) locinput,
(U8*) reginfo->strend,
utf8_target);
}
break;
}
}
if (to_complement ^ ! match) {
sayNO;
}
break;
case ANYOFPOSIXL:
case ANYOFL: /* /[abc]/l */
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_SETS(scan);
/* FALLTHROUGH */
case ANYOFD: /* /[abc]/d */
case ANYOF: /* /[abc]/ */
if (NEXTCHR_IS_EOS || locinput >= loceol)
sayNO;
if ( (! utf8_target || UTF8_IS_INVARIANT(*locinput))
&& ! ANYOF_FLAGS(scan)
&& ANYOF_MATCHES_NONE_OUTSIDE_BITMAP(scan))
{
if (! ANYOF_BITMAP_TEST(scan, * (U8 *) (locinput))) {
sayNO;
}
locinput++;
}
else {
if (!reginclass(rex, scan, (U8*)locinput, (U8*) loceol,
utf8_target))
{
sayNO;
}
goto increment_locinput;
}
break;
case ANYOFM:
if ( NEXTCHR_IS_EOS
|| (UCHARAT(locinput) & FLAGS(scan)) != ARG1u(scan)
|| locinput >= loceol)
{
sayNO;
}
locinput++; /* ANYOFM is always single byte */
break;
case NANYOFM:
if ( NEXTCHR_IS_EOS
|| (UCHARAT(locinput) & FLAGS(scan)) == ARG1u(scan)
|| locinput >= loceol)
{
sayNO;
}
goto increment_locinput;
break;
case ANYOFH:
if ( ! utf8_target
|| NEXTCHR_IS_EOS
|| ANYOF_FLAGS(scan) > NATIVE_UTF8_TO_I8(*locinput)
|| ! (anyofh_list = GET_ANYOFH_INVLIST(rex, scan))
|| ! _invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) locinput,
(U8 *) loceol,
NULL)))
{
sayNO;
}
goto increment_locinput;
break;
case ANYOFHb:
if ( ! utf8_target
|| NEXTCHR_IS_EOS
|| ANYOF_FLAGS(scan) != (U8) *locinput
|| ! (anyofh_list = GET_ANYOFH_INVLIST(rex, scan))
|| ! _invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) locinput,
(U8 *) loceol,
NULL)))
{
sayNO;
}
goto increment_locinput;
break;
case ANYOFHbbm:
if ( ! utf8_target
|| NEXTCHR_IS_EOS
|| ANYOF_FLAGS(scan) != (U8) locinput[0]
|| locinput >= reginfo->strend
|| ! BITMAP_TEST(( (struct regnode_bbm *) scan)->bitmap,
(U8) locinput[1] & UTF_CONTINUATION_MASK))
{
sayNO;
}
goto increment_locinput;
break;
case ANYOFHr:
if ( ! utf8_target
|| NEXTCHR_IS_EOS
|| ! inRANGE((U8) NATIVE_UTF8_TO_I8(*locinput),
LOWEST_ANYOF_HRx_BYTE(ANYOF_FLAGS(scan)),
HIGHEST_ANYOF_HRx_BYTE(ANYOF_FLAGS(scan)))
|| ! (anyofh_list = GET_ANYOFH_INVLIST(rex, scan))
|| ! _invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) locinput,
(U8 *) loceol,
NULL)))
{
sayNO;
}
goto increment_locinput;
break;
case ANYOFHs:
if ( ! utf8_target
|| NEXTCHR_IS_EOS
|| loceol - locinput < FLAGS(scan)
|| memNE(locinput, ((struct regnode_anyofhs *) scan)->string, FLAGS(scan))
|| ! (anyofh_list = GET_ANYOFH_INVLIST(rex, scan))
|| ! _invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) locinput,
(U8 *) loceol,
NULL)))
{
sayNO;
}
goto increment_locinput;
break;
case ANYOFR:
if (NEXTCHR_IS_EOS) {
sayNO;
}
if (utf8_target) {
if ( ANYOF_FLAGS(scan) > NATIVE_UTF8_TO_I8(*locinput)
|| ! withinCOUNT(utf8_to_uv_or_die((U8 *) locinput,
(U8 *) reginfo->strend,
NULL),
ANYOFRbase(scan), ANYOFRdelta(scan)))
{
sayNO;
}
}
else {
if (! withinCOUNT((U8) *locinput,
ANYOFRbase(scan), ANYOFRdelta(scan)))
{
sayNO;
}
}
goto increment_locinput;
break;
case ANYOFRb:
if (NEXTCHR_IS_EOS) {
sayNO;
}
if (utf8_target) {
if ( ANYOF_FLAGS(scan) != (U8) *locinput
|| ! withinCOUNT(utf8_to_uv_or_die((U8 *) locinput,
(U8 *) reginfo->strend,
NULL),
ANYOFRbase(scan), ANYOFRdelta(scan)))
{
sayNO;
}
}
else {
if (! withinCOUNT((U8) *locinput,
ANYOFRbase(scan), ANYOFRdelta(scan)))
{
sayNO;
}
}
goto increment_locinput;
break;
/* The argument (FLAGS) to all the POSIX node types is the class number
* */
case NPOSIXL: /* \W or [:^punct:] etc. under /l */
to_complement = 1;
/* FALLTHROUGH */
case POSIXL: /* \w or [:punct:] etc. under /l */
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
if (NEXTCHR_IS_EOS || locinput >= loceol)
sayNO;
/* Use isFOO_lc() for characters within Latin1. (Note that
* UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
* wouldn't be invariant) */
if (UTF8_IS_INVARIANT(nextbyte) || ! utf8_target) {
if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextbyte)))) {
sayNO;
}
locinput++;
break;
}
if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(locinput, reginfo->strend)) {
/* An above Latin-1 code point, or malformed */
CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG_(locinput,
reginfo->strend);
goto utf8_posix_above_latin1;
}
/* Here is a UTF-8 variant code point below 256 and the target is
* UTF-8 */
if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan),
EIGHT_BIT_UTF8_TO_NATIVE(nextbyte,
*(locinput + 1))))))
{
sayNO;
}
goto increment_locinput;
case NPOSIXD: /* \W or [:^punct:] etc. under /d */
to_complement = 1;
/* FALLTHROUGH */
case POSIXD: /* \w or [:punct:] etc. under /d */
if (utf8_target) {
goto utf8_posix;
}
goto posixa;
case NPOSIXA: /* \W or [:^punct:] etc. under /a */
if (NEXTCHR_IS_EOS || locinput >= loceol) {
sayNO;
}
/* All UTF-8 variants match */
if (! UTF8_IS_INVARIANT(nextbyte)) {
goto increment_locinput;
}
to_complement = 1;
goto join_nposixa;
case POSIXA: /* \w or [:punct:] etc. under /a */
posixa:
/* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in
* UTF-8, and also from NPOSIXA even in UTF-8 when the current
* character is a single byte */
if (NEXTCHR_IS_EOS || locinput >= loceol) {
sayNO;
}
join_nposixa:
if (! (to_complement ^ cBOOL(generic_isCC_A_(nextbyte,
FLAGS(scan)))))
{
sayNO;
}
/* Here we are either not in utf8, or we matched a utf8-invariant,
* so the next char is the next byte */
locinput++;
break;
case NPOSIXU: /* \W or [:^punct:] etc. under /u */
to_complement = 1;
/* FALLTHROUGH */
case POSIXU: /* \w or [:punct:] etc. under /u */
utf8_posix:
if (NEXTCHR_IS_EOS || locinput >= loceol) {
sayNO;
}
/* Use generic_isCC_() for characters within Latin1. (Note that
* UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else
* wouldn't be invariant) */
if (UTF8_IS_INVARIANT(nextbyte) || ! utf8_target) {
if (! (to_complement ^ cBOOL(generic_isCC_(nextbyte,
FLAGS(scan)))))
{
sayNO;
}
locinput++;
}
else if (UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(locinput, reginfo->strend)) {
if (! (to_complement
^ cBOOL(generic_isCC_(EIGHT_BIT_UTF8_TO_NATIVE(nextbyte,
*(locinput + 1)),
FLAGS(scan)))))
{
sayNO;
}
locinput += 2;
}
else { /* Handle above Latin-1 code points */
utf8_posix_above_latin1:
classnum = (char_class_number_) FLAGS(scan);
switch (classnum) {
default:
if (! (to_complement
^ cBOOL(_invlist_contains_cp(
PL_XPosix_ptrs[classnum],
utf8_to_uv_or_die((U8 *) locinput,
(U8 *) reginfo->strend,
NULL)))))
{
sayNO;
}
break;
case CC_ENUM_SPACE_:
if (! (to_complement
^ cBOOL(is_XPERLSPACE_high(locinput))))
{
sayNO;
}
break;
case CC_ENUM_BLANK_:
if (! (to_complement
^ cBOOL(is_HORIZWS_high(locinput))))
{
sayNO;
}
break;
case CC_ENUM_XDIGIT_:
if (! (to_complement
^ cBOOL(is_XDIGIT_high(locinput))))
{
sayNO;
}
break;
case CC_ENUM_VERTSPACE_:
if (! (to_complement
^ cBOOL(is_VERTWS_high(locinput))))
{
sayNO;
}
break;
case CC_ENUM_CNTRL_: /* These can't match above Latin1 */
case CC_ENUM_ASCII_:
if (! to_complement) {
sayNO;
}
break;
}
locinput += UTF8_SAFE_SKIP(locinput, reginfo->strend);
}
break;
case CLUMP: /* Match \X: logical Unicode character. This is defined as
a Unicode extended Grapheme Cluster */
if (NEXTCHR_IS_EOS || locinput >= loceol)
sayNO;
if (! utf8_target) {
/* Match either CR LF or '.', as all the other possibilities
* require utf8 */
locinput++; /* Match the . or CR */
if (nextbyte == '\r' /* And if it was CR, and the next is LF,
match the LF */
&& locinput < loceol
&& UCHARAT(locinput) == '\n')
{
locinput++;
}
}
else {
/* Get the gcb type for the current character */
GCB_enum prev_gcb = getGCB_VAL_UTF8((U8*) locinput,
(U8*) reginfo->strend);
/* Then scan through the input until we get to the first
* character whose type is supposed to be a gcb with the
* current character. (There is always a break at the
* end-of-input) */
locinput += UTF8SKIP(locinput);
while (locinput < loceol) {
GCB_enum cur_gcb = getGCB_VAL_UTF8((U8*) locinput,
(U8*) reginfo->strend);
if (isGCB(prev_gcb, cur_gcb,
(U8*) reginfo->strbeg, (U8*) locinput,
utf8_target))
{
break;
}
prev_gcb = cur_gcb;
locinput += UTF8SKIP(locinput);
}
}
break;
case REFFLN: /* /\g{name}/il */
{ /* The capture buffer cases. The ones beginning with N for the
named buffers just convert to the equivalent numbered and
pretend they were called as the corresponding numbered buffer
op. */
/* don't initialize these in the declaration, it makes C++
unhappy */
const char *s;
char type;
re_fold_t folder;
const U8 *fold_array;
UV utf8_fold_flags;
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
folder = Perl_foldEQ_locale;
fold_array = PL_fold_locale;
type = REFFL;
utf8_fold_flags = FOLDEQ_LOCALE;
goto do_nref;
case REFFAN: /* /\g{name}/iaa */
folder = Perl_foldEQ_latin1;
fold_array = PL_fold_latin1;
type = REFFA;
utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
goto do_nref;
case REFFUN: /* /\g{name}/iu */
folder = Perl_foldEQ_latin1;
fold_array = PL_fold_latin1;
type = REFFU;
utf8_fold_flags = 0;
goto do_nref;
case REFFN: /* /\g{name}/i */
folder = Perl_foldEQ;
fold_array = PL_fold;
type = REFF;
utf8_fold_flags = 0;
goto do_nref;
case REFN: /* /\g{name}/ */
type = REF;
folder = NULL;
fold_array = NULL;
utf8_fold_flags = 0;
do_nref:
/* For the named back references, find the corresponding buffer
* number */
n = reg_check_named_buff_matched(rex,scan);
if ( ! n ) {
sayNO;
}
goto do_nref_ref_common;
case REFFL: /* /\1/il */
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
folder = Perl_foldEQ_locale;
fold_array = PL_fold_locale;
utf8_fold_flags = FOLDEQ_LOCALE;
goto do_ref;
case REFFA: /* /\1/iaa */
folder = Perl_foldEQ_latin1;
fold_array = PL_fold_latin1;
utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
goto do_ref;
case REFFU: /* /\1/iu */
folder = Perl_foldEQ_latin1;
fold_array = PL_fold_latin1;
utf8_fold_flags = 0;
goto do_ref;
case REFF: /* /\1/i */
folder = Perl_foldEQ;
fold_array = PL_fold;
utf8_fold_flags = 0;
goto do_ref;
#undef ST
#define ST st->u.backref
case REF: /* /\1/ */
folder = NULL;
fold_array = NULL;
utf8_fold_flags = 0;
do_ref:
type = OP(scan);
n = ARG1u(scan); /* which paren pair */
if (rex->logical_to_parno) {
n = rex->logical_to_parno[n];
do {
if ( RXp_LASTPAREN(rex) < n ||
RXp_OFFS_START(rex,n) == -1 ||
RXp_OFFS_END(rex,n) == -1
) {
n = rex->parno_to_logical_next[n];
}
else {
break;
}
} while(n);
if (!n) /* this means there is nothing that matched */
sayNO;
}
do_nref_ref_common:
reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
if (RXp_LASTPAREN(rex) < n)
sayNO;
ln = RXp_OFFSp(rex)[n].start;
endref = RXp_OFFSp(rex)[n].end;
if (ln == -1 || endref == -1)
sayNO; /* Do not match unless seen CLOSEn. */
if (ln == endref)
goto ref_yes;
s = reginfo->strbeg + ln;
if (type != REF /* REF can do byte comparison */
&& (utf8_target || type == REFFU || type == REFFL))
{
char * limit = loceol;
/* This call case insensitively compares the entire buffer
* at s, with the current input starting at locinput, but
* not going off the end given by loceol, and
* returns in <limit> upon success, how much of the
* current input was matched */
if (! foldEQ_utf8_flags(s, NULL, endref - ln, utf8_target,
locinput, &limit, 0, utf8_target, utf8_fold_flags))
{
sayNO;
}
locinput = limit;
goto ref_yes;
}
/* Not utf8: Inline the first character, for speed. */
if ( ! NEXTCHR_IS_EOS
&& locinput < loceol
&& UCHARAT(s) != nextbyte
&& ( type == REF
|| UCHARAT(s) != fold_array[nextbyte]))
{
sayNO;
}
ln = endref - ln;
if (locinput + ln > loceol)
sayNO;
if (ln > 1 && (type == REF
? memNE(s, locinput, ln)
: ! folder(aTHX_ locinput, s, ln)))
sayNO;
locinput += ln;
}
ref_yes:
if (FLAGS(scan)) { /* == VOLATILE_REF but only other value is 0 */
ST.cp = regcppush(rex, ARG2u(scan) - 1, maxopenparen);
REGCP_SET(ST.lastcp);
PUSH_STATE_GOTO(REF_next, next, locinput, loceol,
script_run_begin);
}
break;
NOT_REACHED; /* NOTREACHED */
case REF_next:
sayYES;
break;
case REF_next_fail:
REGCP_UNWIND(ST.lastcp);
regcppop(rex, &maxopenparen);
sayNO;
break;
case NOTHING: /* null op; e.g. the 'nothing' following
* the '*' in m{(a+|b)*}' */
break;
case TAIL: /* placeholder while compiling (A|B|C) */
break;
#undef ST
#define ST st->u.eval
#define CUR_EVAL cur_eval->u.eval
{
SV *ret;
REGEXP *re_sv;
regexp *re;
regexp_internal *rei;
regnode *startpoint;
U32 arg;
case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */
arg = ARG1u(scan);
if (cur_eval && cur_eval->locinput == locinput) {
if ( ++nochange_depth > max_nochange_depth )
croak(
"Pattern subroutine nesting without pos change"
" exceeded limit in regex");
} else {
nochange_depth = 0;
}
re_sv = rex_sv;
re = rex;
rei = rexi;
startpoint = scan + ARG2i(scan);
EVAL_CLOSE_PAREN_SET( st, arg );
/* Detect infinite recursion
*
* A pattern like /(?R)foo/ or /(?<x>(?&y)foo)(?<y>(?&x)bar)/
* or "a"=~/(.(?2))((?<=(?=(?1)).))/ could recurse forever.
* So we track the position in the string we are at each time
* we recurse and if we try to enter the same routine twice from
* the same position we throw an error.
*/
if ( rex->recurse_locinput[arg] == locinput ) {
/* FIXME: we should show the regop that is failing as part
* of the error message. */
croak("Infinite recursion in regex");
} else {
ST.prev_recurse_locinput= rex->recurse_locinput[arg];
rex->recurse_locinput[arg]= locinput;
DEBUG_r({
DECLARE_AND_GET_RE_DEBUG_FLAGS;
DEBUG_STACK_r({
Perl_re_exec_indentf( aTHX_
"entering GOSUB, prev_recurse_locinput = %p recurse_locinput[%d]=%p\n",
depth, ST.prev_recurse_locinput, arg, rex->recurse_locinput[arg]
);
});
});
}
/* Save all the positions seen so far. */
ST.cp = regcppush(rex, 0, maxopenparen);
REGCP_SET(ST.lastcp);
/* and then jump to the code we share with EVAL */
goto eval_recurse_doit;
/* NOTREACHED */
case EVAL: /* /(?{...})B/ /(??{A})B/ and /(?(?{...})X|Y)B/ */
if (logical == 2 && cur_eval && cur_eval->locinput == locinput) {
if ( ++nochange_depth > max_nochange_depth )
croak("EVAL without pos change exceeded limit in regex");
} else {
nochange_depth = 0;
}
{
/* execute the code in the {...} */
dSP;
IV before;
OP * const oop = PL_op;
COP * const ocurcop = PL_curcop;
OP *nop;
CV *newcv;
/* save *all* paren positions */
ST.cp = regcppush(rex, 0, maxopenparen);
REGCP_SET(ST.lastcp);
if (!caller_cv)
caller_cv = find_runcv(NULL);
n = ARG1u(scan);
if (rexi->data->what[n] == 'r') { /* code from an external qr */
newcv = (ReANY(
(REGEXP*)(rexi->data->data[n])
))->qr_anoncv;
nop = (OP*)rexi->data->data[n+1];
}
else if (rexi->data->what[n] == 'l') { /* literal code */
newcv = caller_cv;
nop = (OP*)rexi->data->data[n];
assert(CvDEPTH(newcv));
}
else {
/* literal with own CV */
assert(rexi->data->what[n] == 'L');
newcv = rex->qr_anoncv;
nop = (OP*)rexi->data->data[n];
}
/* Some notes about MULTICALL and the context and save stacks.
*
* In something like
* /...(?{ my $x)}...(?{ my $y)}...(?{ my $z)}.../
* since codeblocks don't introduce a new scope (so that
* local() etc accumulate), at the end of a successful
* match there will be a SAVEt_CLEARSV on the savestack
* for each of $x, $y, $z. If the three code blocks above
* happen to have come from different CVs (e.g. via
* embedded qr//s), then we must ensure that during any
* savestack unwinding, PL_comppad always points to the
* right pad at each moment. We achieve this by
* interleaving SAVEt_COMPPAD's on the savestack whenever
* there is a change of pad.
* In theory whenever we call a code block, we should
* push a CXt_SUB context, then pop it on return from
* that code block. This causes a bit of an issue in that
* normally popping a context also clears the savestack
* back to cx->blk_oldsaveix, but here we specifically
* don't want to clear the save stack on exit from the
* code block.
* Also for efficiency we don't want to keep pushing and
* popping the single SUB context as we backtrack etc.
* So instead, we push a single context the first time
* we need, it, then hang onto it until the end of this
* function. Whenever we encounter a new code block, we
* update the CV etc if that's changed. During the times
* in this function where we're not executing a code
* block, having the SUB context still there is a bit
* naughty - but we hope that no-one notices.
* When the SUB context is initially pushed, we fake up
* cx->blk_oldsaveix to be as if we'd pushed this context
* on first entry to S_regmatch rather than at some random
* point during the regexe execution. That way if we
* croak, popping the context stack will ensure that
* *everything* SAVEd by this function is undone and then
* the context popped, rather than e.g., popping the
* context (and restoring the original PL_comppad) then
* popping more of the savestack and restoring a bad
* PL_comppad.
*/
/* If this is the first EVAL, push a MULTICALL. On
* subsequent calls, if we're executing a different CV, or
* if PL_comppad has got messed up from backtracking
* through SAVECOMPPADs, then refresh the context.
*/
if (newcv != last_pushed_cv || PL_comppad != last_pad)
{
U8 flags = (CXp_SUB_RE |
((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0));
SAVECOMPPAD();
if (last_pushed_cv) {
CHANGE_MULTICALL_FLAGS(newcv, flags);
}
else {
PUSH_MULTICALL_FLAGS(newcv, flags);
}
/* see notes above */
CX_CUR()->blk_oldsaveix = orig_savestack_ix;
last_pushed_cv = newcv;
}
else {
/* these assignments are just to silence compiler
* warnings */
multicall_cop = NULL;
}
last_pad = PL_comppad;
/* the initial nextstate you would normally execute
* at the start of an eval (which would cause error
* messages to come from the eval), may be optimised
* away from the execution path in the regex code blocks;
* so manually set PL_curcop to it initially */
{
OP *o = cUNOPx(nop)->op_first;
assert(o->op_type == OP_NULL);
if (o->op_targ == OP_SCOPE) {
o = cUNOPo->op_first;
}
else {
assert(o->op_targ == OP_LEAVE);
o = cUNOPo->op_first;
assert(o->op_type == OP_ENTER);
o = OpSIBLING(o);
}
if (o->op_type != OP_STUB) {
assert(OP_TYPE_IS_COP_NN(o)
|| (o->op_type == OP_NULL
&& ( o->op_targ == OP_NEXTSTATE
|| o->op_targ == OP_DBSTATE
)
)
);
PL_curcop = (COP*)o;
}
}
nop = nop->op_next;
DEBUG_STATE_r( Perl_re_printf( aTHX_
" re EVAL PL_op = 0x%" UVxf "\n", PTR2UV(nop)) );
RXp_OFFSp(rex)[0].end = locinput - reginfo->strbeg;
if (reginfo->info_aux_eval->pos_magic)
MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic,
reginfo->sv, reginfo->strbeg,
locinput - reginfo->strbeg);
if (sv_yes_mark) {
SV *sv_mrk = get_sv("REGMARK", 1);
sv_setsv(sv_mrk, sv_yes_mark);
}
/* we don't use MULTICALL here as we want to call the
* first op of the block of interest, rather than the
* first op of the sub. Also, we don't want to free
* the savestack frame */
before = (IV)(SP-PL_stack_base);
PL_op = nop;
CALLRUNOPS(aTHX); /* Scalar context. */
SPAGAIN;
if ((IV)(SP-PL_stack_base) == before)
ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */
else {
ret = POPs;
PUTBACK;
}
/* before restoring everything, evaluate the returned
* value, so that 'uninit' warnings don't use the wrong
* PL_op or pad. Also need to process any magic vars
* (e.g. $1) *before* parentheses are restored */
PL_op = NULL;
re_sv = NULL;
if (logical == 0) { /* /(?{ ... })/ and /(*{ ... })/ */
SV *replsv = save_scalar(PL_replgv);
sv_setsv(replsv, ret); /* $^R */
SvSETMAGIC(replsv);
}
else if (logical == 1) { /* /(?(?{...})X|Y)/ */
sw = cBOOL(SvTRUE_NN(ret));
logical = 0;
}
else { /* /(??{ ... }) */
/* if its overloaded, let the regex compiler handle
* it; otherwise extract regex, or stringify */
if (SvGMAGICAL(ret))
ret = sv_mortalcopy(ret);
if (!SvAMAGIC(ret)) {
SV *sv = ret;
if (SvROK(sv))
sv = SvRV(sv);
if (SvTYPE(sv) == SVt_REGEXP)
re_sv = (REGEXP*) sv;
else if (SvSMAGICAL(ret)) {
MAGIC *mg = mg_find(ret, PERL_MAGIC_qr);
if (mg)
re_sv = (REGEXP *) mg->mg_obj;
}
/* force any undef warnings here */
if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) {
ret = sv_mortalcopy(ret);
(void) SvPV_force_nolen(ret);
}
}
}
/* *** Note that at this point we don't restore
* PL_comppad, (or pop the CxSUB) on the assumption it may
* be used again soon. This is safe as long as nothing
* in the regexp code uses the pad ! */
PL_op = oop;
PL_curcop = ocurcop;
regcp_restore(rex, ST.lastcp, &maxopenparen);
PL_curpm_under = PL_curpm;
PL_curpm = PL_reg_curpm;
if (logical != 2) {
PUSH_STATE_GOTO(EVAL_B, next, locinput, loceol,
script_run_begin);
/* NOTREACHED */
}
}
/* only /(??{ ... })/ from now on */
logical = 0;
{
/* extract RE object from returned value; compiling if
* necessary */
if (re_sv) {
re_sv = reg_temp_copy(NULL, re_sv);
}
else {
U32 pm_flags = 0;
if (SvUTF8(ret) && IN_BYTES) {
/* In use 'bytes': make a copy of the octet
* sequence, but without the flag on */
STRLEN len;
const char *const p = SvPV(ret, len);
ret = newSVpvn_flags(p, len, SVs_TEMP);
}
if (rex->intflags & PREGf_USE_RE_EVAL)
pm_flags |= PMf_USE_RE_EVAL;
/* if we got here, it should be an engine which
* supports compiling code blocks and stuff */
assert(rex->engine && rex->engine->op_comp);
assert(!(FLAGS(scan) & ~RXf_PMf_COMPILETIME));
re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL,
rex->engine, NULL, NULL,
/* copy /msixn etc to inner pattern */
ARG2i(scan),
pm_flags);
if (!(SvFLAGS(ret)
& (SVs_TEMP | SVs_GMG | SVf_ROK))
&& (!SvPADTMP(ret) || SvREADONLY(ret))) {
/* This isn't a first class regexp. Instead, it's
caching a regexp onto an existing, Perl visible
scalar. */
sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0);
}
}
SAVEFREESV(re_sv);
re = ReANY(re_sv);
}
RXp_MATCH_COPIED_off(re);
RXp_SUBBEG(re) = RXp_SUBBEG(rex);
RXp_SUBLEN(re) = RXp_SUBLEN(rex);
RXp_SUBOFFSET(re) = RXp_SUBOFFSET(rex);
RXp_SUBCOFFSET(re) = RXp_SUBCOFFSET(rex);
RXp_LASTPAREN(re) = 0;
RXp_LASTCLOSEPAREN(re) = 0;
rei = RXi_GET(re);
DEBUG_EXECUTE_r(
debug_start_match(re_sv, utf8_target, locinput,
reginfo->strend, "EVAL/GOSUB: Matching embedded");
);
startpoint = rei->program + 1;
EVAL_CLOSE_PAREN_CLEAR(st); /* ST.close_paren = 0;
* close_paren only for GOSUB */
ST.prev_recurse_locinput= NULL; /* only used for GOSUB */
/* note we saved the paren state earlier:
ST.cp = regcppush(rex, 0, maxopenparen);
REGCP_SET(ST.lastcp);
*/
/* and set maxopenparen to 0, since we are starting a "fresh" match */
maxopenparen = 0;
/* run the pattern returned from (??{...}) */
eval_recurse_doit: /* Share code with GOSUB below this line
* At this point we expect the stack context to be
* set up correctly */
/* invalidate the S-L poscache. We're now executing a
* different set of WHILEM ops (and their associated
* indexes) against the same string, so the bits in the
* cache are meaningless. Setting maxiter to zero forces
* the cache to be invalidated and zeroed before reuse.
* XXX This is too dramatic a measure. Ideally we should
* save the old cache and restore when running the outer
* pattern again */
reginfo->poscache_maxiter = 0;
/* the new regexp might have a different is_utf8_pat than we do */
is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv));
ST.prev_rex = rex_sv;
ST.prev_curlyx = cur_curlyx;
rex_sv = re_sv;
S_set_reg_curpm(aTHX_ rex_sv, reginfo);
rex = re;
rexi = rei;
cur_curlyx = NULL;
ST.B = next;
ST.prev_eval = cur_eval;
cur_eval = st;
/* now continue from first node in postoned RE */
PUSH_YES_STATE_GOTO(EVAL_postponed_AB, startpoint, locinput,
loceol, script_run_begin);
NOT_REACHED; /* NOTREACHED */
}
case EVAL_postponed_AB: /* cleanup after a successful (??{A})B */
/* note: this is called twice; first after popping B, then A */
DEBUG_STACK_r({
Perl_re_exec_indentf( aTHX_ "EVAL_AB cur_eval = %p prev_eval = %p\n",
depth, cur_eval, ST.prev_eval);
});
#define SET_RECURSE_LOCINPUT(STR,VAL) \
if ( cur_eval && CUR_EVAL.close_paren ) { \
DEBUG_STACK_r({ \
Perl_re_exec_indentf( aTHX_ STR " \
GOSUB%d ce = %p recurse_locinput = %p\n", \
depth, \
CUR_EVAL.close_paren - 1, \
cur_eval, \
VAL); \
}); \
rex->recurse_locinput[CUR_EVAL.close_paren - 1] = VAL; \
}
SET_RECURSE_LOCINPUT("EVAL_AB[before]", CUR_EVAL.prev_recurse_locinput);
rex_sv = ST.prev_rex;
is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
S_set_reg_curpm(aTHX_ rex_sv, reginfo);
rex = ReANY(rex_sv);
rexi = RXi_GET(rex);
{
/* preserve $^R across LEAVE's. See Bug 121070. */
SV *save_sv= GvSV(PL_replgv);
SV *replsv;
SvREFCNT_inc(save_sv);
regcpblow(ST.cp); /* LEAVE in disguise */
/* don't move this initialization up */
replsv = GvSV(PL_replgv);
sv_setsv(replsv, save_sv);
SvSETMAGIC(replsv);
SvREFCNT_dec(save_sv);
}
cur_eval = ST.prev_eval;
cur_curlyx = ST.prev_curlyx;
/* Invalidate cache. See "invalidate" comment above. */
reginfo->poscache_maxiter = 0;
if ( nochange_depth )
nochange_depth--;
SET_RECURSE_LOCINPUT("EVAL_AB[after]", cur_eval->locinput);
sayYES;
case EVAL_B_fail: /* unsuccessful B in (?{...})B */
REGCP_UNWIND(ST.lastcp);
regcppop(rex, &maxopenparen);
sayNO;
case EVAL_postponed_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
/* note: this is called twice; first after popping B, then A */
DEBUG_STACK_r({
Perl_re_exec_indentf( aTHX_ "EVAL_AB_fail cur_eval = %p prev_eval = %p\n",
depth, cur_eval, ST.prev_eval);
});
SET_RECURSE_LOCINPUT("EVAL_AB_fail[before]", CUR_EVAL.prev_recurse_locinput);
rex_sv = ST.prev_rex;
is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
S_set_reg_curpm(aTHX_ rex_sv, reginfo);
rex = ReANY(rex_sv);
rexi = RXi_GET(rex);
REGCP_UNWIND(ST.lastcp);
regcppop(rex, &maxopenparen);
cur_eval = ST.prev_eval;
cur_curlyx = ST.prev_curlyx;
/* Invalidate cache. See "invalidate" comment above. */
reginfo->poscache_maxiter = 0;
if ( nochange_depth )
nochange_depth--;
SET_RECURSE_LOCINPUT("EVAL_AB_fail[after]", cur_eval->locinput);
sayNO_SILENT;
#undef ST
case OPEN: /* ( */
n = PARNO(scan); /* which paren pair */
RXp_OFFSp(rex)[n].start_tmp = locinput - reginfo->strbeg;
if (n > maxopenparen)
maxopenparen = n;
DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
"OPEN: rex = 0x%" UVxf " offs = 0x%" UVxf ": \\%" UVuf ": set %" IVdf " tmp; maxopenparen = %" UVuf "\n",
depth,
PTR2UV(rex),
PTR2UV(RXp_OFFSp(rex)),
(UV)n,
(IV)RXp_OFFSp(rex)[n].start_tmp,
(UV)maxopenparen
));
lastopen = n;
break;
case SROPEN: /* (*SCRIPT_RUN: */
script_run_begin = (U8 *) locinput;
break;
case CLOSE: /* ) */
n = PARNO(scan); /* which paren pair */
CLOSE_CAPTURE(rex, n, RXp_OFFSp(rex)[n].start_tmp,
locinput - reginfo->strbeg);
if ( EVAL_CLOSE_PAREN_IS( cur_eval, n ) )
goto fake_end;
break;
case SRCLOSE: /* (*SCRIPT_RUN: ... ) */
if (! isSCRIPT_RUN(script_run_begin, (U8 *) locinput, utf8_target))
{
sayNO;
}
break;
case ACCEPT: /* (*ACCEPT) */
is_accepted = true;
if (FLAGS(scan))
sv_yes_mark = MUTABLE_SV(rexi->data->data[ ARG1u( scan ) ]);
utmp = ARG2u(scan);
if ( utmp ) {
regnode *cursor;
for (
cursor = scan;
cursor && ( OP(cursor) != END );
cursor = (
REGNODE_TYPE( OP(cursor) ) == END
|| REGNODE_TYPE( OP(cursor) ) == WHILEM
)
? REGNODE_AFTER(cursor)
: regnext(cursor)
){
if ( OP(cursor) != CLOSE )
continue;
n = PARNO(cursor);
if ( n > lastopen ) /* might be OPEN/CLOSE in the way */
continue; /* so skip this one */
CLOSE_CAPTURE(rex, n, RXp_OFFSp(rex)[n].start_tmp,
locinput - reginfo->strbeg);
if ( n == utmp || EVAL_CLOSE_PAREN_IS(cur_eval, n) )
break;
}
}
goto fake_end;
/* NOTREACHED */
case GROUPP: /* (?(1)) */
n = ARG1u(scan); /* which paren pair */
sw = cBOOL(RXp_LASTPAREN(rex) >= n && RXp_OFFS_END(rex,n) != -1);
break;
case GROUPPN: /* (?(<name>)) */
/* reg_check_named_buff_matched returns 0 for no match */
sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
break;
case INSUBP: /* (?(R)) */
n = ARG1u(scan);
/* this does not need to use EVAL_CLOSE_PAREN macros, as the arg
* of SCAN is already set up as matches a eval.close_paren */
sw = cur_eval && (n == 0 || CUR_EVAL.close_paren == n);
break;
case DEFINEP: /* (?(DEFINE)) */
sw = 0;
break;
case IFTHEN: /* (?(cond)A|B) */
reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */
if (sw)
next = REGNODE_AFTER_type(scan,tregnode_IFTHEN);
else {
next = scan + ARG1u(scan);
if (OP(next) == IFTHEN) /* Fake one. */
next = REGNODE_AFTER_type(next,tregnode_IFTHEN);
}
break;
case LOGICAL: /* modifier for EVAL and IFMATCH */
logical = FLAGS(scan) & EVAL_FLAGS_MASK; /* reserve a bit for optimistic eval */
break;
/*******************************************************************
The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
pattern, where A and B are subpatterns. (For simple A, CURLYM or
STAR/PLUS/CURLY/CURLYN are used instead.)
A*B is compiled as <CURLYX><A><WHILEM><B>
On entry to the subpattern, CURLYX is called. This pushes a CURLYX
state, which contains the current count, initialised to -1. It also sets
cur_curlyx to point to this state, with any previous value saved in the
state block.
CURLYX then jumps straight to the WHILEM op, rather than executing A,
since the pattern may possibly match zero times (i.e. it's a while {} loop
rather than a do {} while loop).
Each entry to WHILEM represents a successful match of A. The count in the
CURLYX block is incremented, another WHILEM state is pushed, and execution
passes to A or B depending on greediness and the current count.
For example, if matching against the string a1a2a3b (where the aN are
substrings that match /A/), then the match progresses as follows: (the
pushed states are interspersed with the bits of strings matched so far):
<CURLYX cnt = -1>
<CURLYX cnt = 0><WHILEM>
<CURLYX cnt = 1><WHILEM> a1 <WHILEM>
<CURLYX cnt = 2><WHILEM> a1 <WHILEM> a2 <WHILEM>
<CURLYX cnt = 3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
<CURLYX cnt = 3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
(Contrast this with something like CURLYM, which maintains only a single
backtrack state:
<CURLYM cnt = 0> a1
a1 <CURLYM cnt = 1> a2
a1 a2 <CURLYM cnt = 2> a3
a1 a2 a3 <CURLYM cnt = 3> b
)
Each WHILEM state block marks a point to backtrack to upon partial failure
of A or B, and also contains some minor state data related to that
iteration. The CURLYX block, pointed to by cur_curlyx, contains the
overall state, such as the count, and pointers to the A and B ops.
This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
must always point to the *current* CURLYX block, the rules are:
When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
and set cur_curlyx to point the new block.
When popping the CURLYX block after a successful or unsuccessful match,
restore the previous cur_curlyx.
When WHILEM is about to execute B, save the current cur_curlyx, and set it
to the outer one saved in the CURLYX block.
When popping the WHILEM block after a successful or unsuccessful B match,
restore the previous cur_curlyx.
Here's an example for the pattern (AI* BI)*BO
I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
cur_
curlyx backtrack stack
------ ---------------
NULL
CO <CO prev = NULL> <WO>
CI <CO prev = NULL> <WO> <CI prev = CO> <WI> ai
CO <CO prev = NULL> <WO> <CI prev = CO> <WI> ai <WI prev = CI> bi
NULL <CO prev = NULL> <WO> <CI prev = CO> <WI> ai <WI prev = CI> bi <WO prev = CO> bo
At this point the pattern succeeds, and we work back down the stack to
clean up, restoring as we go:
CO <CO prev = NULL> <WO> <CI prev = CO> <WI> ai <WI prev = CI> bi
CI <CO prev = NULL> <WO> <CI prev = CO> <WI> ai
CO <CO prev = NULL> <WO>
NULL
*******************************************************************/
#define ST st->u.curlyx
case CURLYX: /* start of /A*B/ (for complex A) */
{
/* No need to save/restore up to this paren */
I32 parenfloor = FLAGS(scan);
assert(next); /* keep Coverity happy */
if (OP(REGNODE_BEFORE(next)) == NOTHING) /* LONGJMP */
next += ARG1u(next);
/* XXXX Probably it is better to teach regpush to support
parenfloor > maxopenparen ... */
if (parenfloor > (I32)RXp_LASTPAREN(rex))
parenfloor = RXp_LASTPAREN(rex); /* Pessimization... */
ST.prev_curlyx= cur_curlyx;
cur_curlyx = st;
ST.cp = PL_savestack_ix;
/* these fields contain the state of the current curly.
* they are accessed by subsequent WHILEMs */
ST.parenfloor = parenfloor;
ST.me = scan;
ST.B = next;
ST.minmod = minmod;
minmod = 0;
ST.count = -1; /* this will be updated by WHILEM */
ST.lastloc = NULL; /* this will be updated by WHILEM */
PUSH_YES_STATE_GOTO(CURLYX_end, REGNODE_BEFORE(next), locinput, loceol,
script_run_begin);
NOT_REACHED; /* NOTREACHED */
}
case CURLYX_end: /* just finished matching all of A*B */
cur_curlyx = ST.prev_curlyx;
sayYES;
NOT_REACHED; /* NOTREACHED */
case CURLYX_end_fail: /* just failed to match all of A*B */
regcpblow(ST.cp);
cur_curlyx = ST.prev_curlyx;
sayNO;
NOT_REACHED; /* NOTREACHED */
#undef ST
#define ST st->u.whilem
case WHILEM: /* just matched an A in /A*B/ (for complex A) */
{
/* see the discussion above about CURLYX/WHILEM */
I32 n;
int min, max;
/* U16 first_paren, last_paren; */
regnode *A;
assert(cur_curlyx); /* keep Coverity happy */
min = ARG1i(cur_curlyx->u.curlyx.me);
max = ARG2i(cur_curlyx->u.curlyx.me);
/* first_paren = ARG3a(cur_curlyx->u.curlyx.me); */
/* last_paren = ARG3b(cur_curlyx->u.curlyx.me); */
A = REGNODE_AFTER(cur_curlyx->u.curlyx.me);
n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
ST.cache_offset = 0;
ST.cache_mask = 0;
DEBUG_EXECUTE_r( Perl_re_exec_indentf( aTHX_ "WHILEM: matched %ld out of %d..%d\n",
depth, (long)n, min, max)
);
/* First just match a string of min A's. */
if (n < min) {
ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor, maxopenparen);
cur_curlyx->u.curlyx.lastloc = locinput;
REGCP_SET(ST.lastcp);
PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput, loceol,
script_run_begin);
NOT_REACHED; /* NOTREACHED */
}
/* If degenerate A matches "", assume A done. */
if (locinput == cur_curlyx->u.curlyx.lastloc) {
DEBUG_EXECUTE_r( Perl_re_exec_indentf( aTHX_ "WHILEM: empty match detected, trying continuation...\n",
depth)
);
goto do_whilem_B_max;
}
/* super-linear cache processing.
*
* The idea here is that for certain types of CURLYX/WHILEM -
* principally those whose upper bound is infinity (and
* excluding regexes that have things like \1 and other very
* non-regular expressiony things), then if a pattern like
* /....A*.../ fails and we backtrack to the WHILEM, then we
* make a note that this particular WHILEM op was at string
* position 47 (say) when the rest of pattern failed. Then, if
* we ever find ourselves back at that WHILEM, and at string
* position 47 again, we can just fail immediately rather than
* running the rest of the pattern again.
*
* This is very handy when patterns start to go
* 'super-linear', like in (a+)*(a+)*(a+)*, where you end up
* with a combinatorial explosion of backtracking.
*
* The cache is implemented as a bit array, with one bit per
* string byte position per WHILEM op (up to 16) - so its
* between 0.25 and 2x the string size.
*
* To avoid allocating a poscache buffer every time, we do an
* initially countdown; only after we have executed a WHILEM
* op (string-length x #WHILEMs) times do we allocate the
* cache.
*
* The top 4 bits of FLAGS(scan) byte say how many different
* relevant CURLLYX/WHILEM op pairs there are, while the
* bottom 4-bits is the identifying index number of this
* WHILEM.
*/
if (FLAGS(scan)) {
if (!reginfo->poscache_maxiter) {
/* start the countdown: Postpone detection until we
* know the match is not *that* much linear. */
reginfo->poscache_maxiter
= (reginfo->strend - reginfo->strbeg + 1)
* (FLAGS(scan)>>4);
/* possible overflow for long strings and many CURLYX's */
if (reginfo->poscache_maxiter < 0)
reginfo->poscache_maxiter = I32_MAX;
reginfo->poscache_iter = reginfo->poscache_maxiter;
}
if (reginfo->poscache_iter-- == 0) {
/* initialise cache */
const SSize_t size = (reginfo->poscache_maxiter + 7)/8;
regmatch_info_aux *const aux = reginfo->info_aux;
if (aux->poscache) {
if ((SSize_t)reginfo->poscache_size < size) {
Renew(aux->poscache, size, char);
reginfo->poscache_size = size;
}
Zero(aux->poscache, size, char);
}
else {
reginfo->poscache_size = size;
Newxz(aux->poscache, size, char);
}
DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
"%sWHILEM: Detected a super-linear match, switching on caching%s...\n",
PL_colors[4], PL_colors[5])
);
}
if (reginfo->poscache_iter < 0) {
/* have we already failed at this position? */
SSize_t offset, mask;
reginfo->poscache_iter = -1; /* stop eventual underflow */
offset = (FLAGS(scan) & 0xf) - 1
+ (locinput - reginfo->strbeg)
* (FLAGS(scan)>>4);
mask = 1 << (offset % 8);
offset /= 8;
if (reginfo->info_aux->poscache[offset] & mask) {
DEBUG_EXECUTE_r( Perl_re_exec_indentf( aTHX_ "WHILEM: (cache) already tried at this position...\n",
depth)
);
cur_curlyx->u.curlyx.count--;
sayNO; /* cache records failure */
}
ST.cache_offset = offset;
ST.cache_mask = mask;
}
}
/* Prefer B over A for minimal matching. */
if (cur_curlyx->u.curlyx.minmod) {
ST.save_curlyx = cur_curlyx;
cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B,
locinput, loceol, script_run_begin);
NOT_REACHED; /* NOTREACHED */
}
/* Prefer A over B for maximal matching. */
if (n < max) { /* More greed allowed? */
ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor,
maxopenparen);
cur_curlyx->u.curlyx.lastloc = locinput;
REGCP_SET(ST.lastcp);
PUSH_STATE_GOTO(WHILEM_A_max, A, locinput, loceol,
script_run_begin);
NOT_REACHED; /* NOTREACHED */
}
goto do_whilem_B_max;
}
NOT_REACHED; /* NOTREACHED */
case WHILEM_B_min: /* just matched B in a minimal match */
case WHILEM_B_max: /* just matched B in a maximal match */
cur_curlyx = ST.save_curlyx;
sayYES;
NOT_REACHED; /* NOTREACHED */
case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
cur_curlyx = ST.save_curlyx;
cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
cur_curlyx->u.curlyx.count--;
CACHEsayNO;
NOT_REACHED; /* NOTREACHED */
case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
/* FALLTHROUGH */
case WHILEM_A_pre_fail: /* just failed to match even minimal A */
REGCP_UNWIND(ST.lastcp);
regcppop(rex, &maxopenparen);
cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
cur_curlyx->u.curlyx.count--;
CACHEsayNO;
NOT_REACHED; /* NOTREACHED */
case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
REGCP_UNWIND(ST.lastcp);
regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
DEBUG_EXECUTE_r(Perl_re_exec_indentf( aTHX_ "WHILEM: failed, trying continuation...\n",
depth)
);
do_whilem_B_max:
/* now try B */
ST.save_curlyx = cur_curlyx;
cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B,
locinput, loceol, script_run_begin);
NOT_REACHED; /* NOTREACHED */
case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
cur_curlyx = ST.save_curlyx;
if (cur_curlyx->u.curlyx.count >= /*max*/ARG2i(cur_curlyx->u.curlyx.me)) {
/* Maximum greed exceeded */
cur_curlyx->u.curlyx.count--;
CACHEsayNO;
}
DEBUG_EXECUTE_r(Perl_re_exec_indentf( aTHX_ "WHILEM: B min fail: trying longer...\n", depth)
);
/* Try grabbing another A and see if it helps. */
cur_curlyx->u.curlyx.lastloc = locinput;
ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor, maxopenparen);
REGCP_SET(ST.lastcp);
PUSH_STATE_GOTO(WHILEM_A_min,
/*A*/ REGNODE_AFTER(ST.save_curlyx->u.curlyx.me),
locinput, loceol, script_run_begin);
NOT_REACHED; /* NOTREACHED */
#undef ST
#define ST st->u.branch
case BRANCHJ: /* /(...|A|...)/ with long next pointer */
next = scan + ARG1u(scan);
if (next == scan)
next = NULL;
ST.before_paren = ARG2a(scan);
ST.after_paren = ARG2b(scan);
goto branch_logic;
NOT_REACHED; /* NOTREACHED */
case BRANCH: /* /(...|A|...)/ */
ST.before_paren = ARG1a(scan);
ST.after_paren = ARG1b(scan);
branch_logic:
scan = REGNODE_AFTER_opcode(scan,state_num); /* scan now points to inner node */
assert(scan);
ST.lastparen = RXp_LASTPAREN(rex);
ST.lastcloseparen = RXp_LASTCLOSEPAREN(rex);
ST.next_branch = next;
REGCP_SET(ST.cp);
if (RE_PESSIMISTIC_PARENS) {
regcppush(rex, 0, maxopenparen);
REGCP_SET(ST.lastcp);
}
/* Now go into the branch */
if (has_cutgroup) {
PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput, loceol,
script_run_begin);
} else {
PUSH_STATE_GOTO(BRANCH_next, scan, locinput, loceol,
script_run_begin);
}
NOT_REACHED; /* NOTREACHED */
case CUTGROUP: /* /(*THEN)/ */
sv_yes_mark = st->u.mark.mark_name = FLAGS(scan)
? MUTABLE_SV(rexi->data->data[ ARG1u( scan ) ])
: NULL;
PUSH_STATE_GOTO(CUTGROUP_next, next, locinput, loceol,
script_run_begin);
NOT_REACHED; /* NOTREACHED */
case CUTGROUP_next_fail:
do_cutgroup = 1;
no_final = 1;
if (st->u.mark.mark_name)
sv_commit = st->u.mark.mark_name;
sayNO;
NOT_REACHED; /* NOTREACHED */
case BRANCH_next:
sayYES;
NOT_REACHED; /* NOTREACHED */
case BRANCH_next_fail: /* that branch failed; try the next, if any */
if (do_cutgroup) {
do_cutgroup = 0;
no_final = 0;
}
if (RE_PESSIMISTIC_PARENS) {
REGCP_UNWIND(ST.lastcp);
regcppop(rex,&maxopenparen);
}
REGCP_UNWIND(ST.cp);
UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
CAPTURE_CLEAR(ST.before_paren+1, ST.after_paren, "BRANCH_next_fail");
scan = ST.next_branch;
/* no more branches? */
if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
DEBUG_EXECUTE_r({
Perl_re_exec_indentf( aTHX_ "%sBRANCH failed...%s\n",
depth,
PL_colors[4],
PL_colors[5] );
});
sayNO_SILENT;
}
continue; /* execute next BRANCH[J] op */
/* NOTREACHED */
case MINMOD: /* next op will be non-greedy, e.g. A*? */
minmod = 1;
break;
#undef ST
#define ST st->u.curlym
case CURLYM: /* /A{m,n}B/ where A is fixed-length */
/* This is an optimisation of CURLYX that enables us to push
* only a single backtracking state, no matter how many matches
* there are in {m,n}. It relies on the pattern being constant
* length, with no parens to influence future backrefs
*/
ST.me = scan;
scan = REGNODE_AFTER_type(scan, tregnode_CURLYM);
ST.lastparen = RXp_LASTPAREN(rex);
ST.lastcloseparen = RXp_LASTCLOSEPAREN(rex);
/* if paren positive, emulate an OPEN/CLOSE around A */
if (FLAGS(ST.me)) {
U32 paren = FLAGS(ST.me);
lastopen = paren;
if (paren > maxopenparen)
maxopenparen = paren;
scan += NEXT_OFF(scan); /* Skip former OPEN. */
}
ST.A = scan;
ST.B = next;
ST.alen = 0;
ST.count = 0;
ST.minmod = minmod;
minmod = 0;
ST.Binfo.count = -1;
REGCP_SET(ST.cp);
if (!(ST.minmod ? ARG1i(ST.me) : ARG2i(ST.me))) /* min/max */
goto curlym_do_B;
curlym_do_A: /* execute the A in /A{m,n}B/ */
PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput, loceol, /* match A */
script_run_begin);
NOT_REACHED; /* NOTREACHED */
case CURLYM_A: /* we've just matched an A */
ST.count++;
/* after first match, determine A's length: u.curlym.alen */
if (ST.count == 1) {
if (reginfo->is_utf8_target) {
char *s = st->locinput;
while (s < locinput) {
ST.alen++;
s += UTF8SKIP(s);
}
}
else {
ST.alen = locinput - st->locinput;
}
if (ST.alen == 0)
ST.count = ST.minmod ? ARG1i(ST.me) : ARG2i(ST.me);
}
DEBUG_EXECUTE_r(
Perl_re_exec_indentf( aTHX_ "CURLYM now matched %" IVdf " times, len = %" IVdf "...\n",
depth, (IV) ST.count, (IV)ST.alen)
);
if (FLAGS(ST.me)) {
/* emulate CLOSE: mark current A as captured */
U32 paren = (U32)FLAGS(ST.me);
CLOSE_CAPTURE(rex, paren,
HOPc(locinput, -ST.alen) - reginfo->strbeg,
locinput - reginfo->strbeg);
}
if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)FLAGS(ST.me)))
goto fake_end;
if (!is_accepted) {
I32 max = (ST.minmod ? ARG1i(ST.me) : ARG2i(ST.me));
if ( max == REG_INFTY || ST.count < max )
goto curlym_do_A; /* try to match another A */
}
goto curlym_do_B; /* try to match B */
case CURLYM_A_fail: /* just failed to match an A */
REGCP_UNWIND(ST.cp);
if (ST.minmod || ST.count < ARG1i(ST.me) /* min*/
|| EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)FLAGS(ST.me)))
sayNO;
curlym_do_B: /* execute the B in /A{m,n}B/ */
if (is_accepted)
goto curlym_close_B;
if (ST.Binfo.count < 0) {
/* calculate possible match of 1st char following curly */
assert(ST.B);
if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
regnode *text_node = ST.B;
if (! HAS_TEXT(text_node))
FIND_NEXT_IMPT(text_node);
if (REGNODE_TYPE(OP(text_node)) == EXACT) {
if (! S_setup_EXACTISH_ST(aTHX_ text_node,
&ST.Binfo, reginfo))
{
sayNO;
}
}
}
}
DEBUG_EXECUTE_r(
Perl_re_exec_indentf( aTHX_ "CURLYM trying tail with matches = %" IVdf "...\n",
depth, (IV)ST.count)
);
if (! NEXTCHR_IS_EOS && ST.Binfo.count >= 0) {
assert(ST.Binfo.count > 0);
/* Do a quick test to hopefully rule out most non-matches */
if ( locinput + ST.Binfo.min_length > loceol
|| ! S_test_EXACTISH_ST(locinput, ST.Binfo))
{
DEBUG_OPTIMISE_r(
Perl_re_exec_indentf( aTHX_
"CURLYM Fast bail next target = 0x%X anded == 0x%X"
" mask = 0x%X\n",
depth,
(int) nextbyte, ST.Binfo.first_byte_anded,
ST.Binfo.first_byte_mask)
);
state_num = CURLYM_B_fail;
goto reenter_switch;
}
}
curlym_close_B:
if (FLAGS(ST.me)) {
/* emulate CLOSE: mark current A as captured */
U32 paren = (U32)FLAGS(ST.me);
if (ST.count || is_accepted) {
CLOSE_CAPTURE(rex, paren,
HOPc(locinput, -ST.alen) - reginfo->strbeg,
locinput - reginfo->strbeg);
}
else
RXp_OFFSp(rex)[paren].end = -1;
if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)FLAGS(ST.me)))
{
if (ST.count || is_accepted)
goto fake_end;
else
sayNO;
}
}
if (is_accepted)
goto fake_end;
PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput, loceol, /* match B */
script_run_begin);
NOT_REACHED; /* NOTREACHED */
case CURLYM_B_fail: /* just failed to match a B */
REGCP_UNWIND(ST.cp);
UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
if (ST.minmod) {
I32 max = ARG2i(ST.me);
if (max != REG_INFTY && ST.count == max)
sayNO;
goto curlym_do_A; /* try to match a further A */
}
/* backtrack one A */
if (ST.count == ARG1i(ST.me) /* min */)
sayNO;
ST.count--;
SET_locinput(HOPc(locinput, -ST.alen));
goto curlym_do_B; /* try to match B */
#undef ST
#define ST st->u.curly
#define CURLY_SETPAREN(paren, success) \
if (paren) { \
if (success) { \
CLOSE_CAPTURE(rex, paren, HOPc(locinput, -1) - reginfo->strbeg, \
locinput - reginfo->strbeg); \
} \
else { \
RXp_OFFSp(rex)[paren].end = -1; \
RXp_LASTPAREN(rex) = ST.lastparen; \
RXp_LASTCLOSEPAREN(rex) = ST.lastcloseparen; \
} \
}
case STAR: /* /A*B/ where A is width 1 char */
ST.paren = 0;
ST.min = 0;
ST.max = REG_INFTY;
scan = REGNODE_AFTER_type(scan,tregnode_STAR);
goto repeat;
case PLUS: /* /A+B/ where A is width 1 char */
ST.paren = 0;
ST.min = 1;
ST.max = REG_INFTY;
scan = REGNODE_AFTER_type(scan,tregnode_PLUS);
goto repeat;
case CURLYN: /* /(A){m,n}B/ where A is width 1 char */
ST.paren = FLAGS(scan); /* Which paren to set */
ST.lastparen = RXp_LASTPAREN(rex);
ST.lastcloseparen = RXp_LASTCLOSEPAREN(rex);
if (ST.paren > maxopenparen)
maxopenparen = ST.paren;
ST.min = ARG1i(scan); /* min to match */
ST.max = ARG2i(scan); /* max to match */
scan = regnext(REGNODE_AFTER_type(scan, tregnode_CURLYN));
/* handle the single-char capture called as a GOSUB etc */
if (EVAL_CLOSE_PAREN_IS_TRUE(cur_eval,(U32)ST.paren))
{
char *li = locinput;
if (!regrepeat(rex, &li, scan, loceol, reginfo, 1))
sayNO;
SET_locinput(li);
goto fake_end;
}
goto repeat;
case CURLY: /* /A{m,n}B/ where A is width 1 char */
ST.paren = 0;
ST.min = ARG1i(scan); /* min to match */
ST.max = ARG2i(scan); /* max to match */
scan = REGNODE_AFTER_type(scan, tregnode_CURLY);
repeat:
/*
* Lookahead to avoid useless match attempts
* when we know what character comes next.
*
* Used to only do .*x and .*?x, but now it allows
* for )'s, ('s and (?{ ... })'s to be in the way
* of the quantifier and the EXACT-like node. -- japhy
*/
assert(ST.min <= ST.max);
if (! HAS_TEXT(next) && ! JUMPABLE(next)) {
ST.Binfo.count = 0;
}
else {
regnode *text_node = next;
if (! HAS_TEXT(text_node))
FIND_NEXT_IMPT(text_node);
if (! HAS_TEXT(text_node))
ST.Binfo.count = 0;
else {
if ( REGNODE_TYPE(OP(text_node)) != EXACT ) {
ST.Binfo.count = 0;
}
else {
if (! S_setup_EXACTISH_ST(aTHX_ text_node,
&ST.Binfo, reginfo))
{
sayNO;
}
}
}
}
ST.A = scan;
ST.B = next;
if (minmod) {
char *li = locinput;
minmod = 0;
if (ST.min &&
regrepeat(rex, &li, ST.A, loceol, reginfo, ST.min)
< ST.min)
sayNO;
SET_locinput(li);
ST.count = ST.min;
REGCP_SET(ST.cp);
if (ST.Binfo.count <= 0)
goto curly_try_B_min;
ST.oldloc = locinput;
/* set ST.maxpos to the furthest point along the
* string that could possibly match, i.e., that a match could
* start at. */
if (ST.max == REG_INFTY) {
ST.maxpos = loceol - 1;
if (utf8_target)
while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
ST.maxpos--;
}
else if (utf8_target) {
int m = ST.max - ST.min;
for (ST.maxpos = locinput;
m >0 && ST.maxpos < loceol; m--)
ST.maxpos += UTF8SKIP(ST.maxpos);
}
else {
ST.maxpos = locinput + ST.max - ST.min;
if (ST.maxpos >= loceol)
ST.maxpos = loceol - 1;
}
goto curly_try_B_min_known;
}
else {
/* avoid taking address of locinput, so it can remain
* a register var */
char *li = locinput;
if (ST.max)
ST.count = regrepeat(rex, &li, ST.A, loceol, reginfo, ST.max);
else
ST.count = 0;
if (ST.count < ST.min)
sayNO;
SET_locinput(li);
if ((ST.count > ST.min)
&& (REGNODE_TYPE(OP(ST.B)) == EOL) && (OP(ST.B) != MEOL))
{
/* A{m,n} must come at the end of the string, there's
* no point in backing off ... */
ST.min = ST.count;
/* ...except that $ and \Z can match before *and* after
newline at the end. Consider "\n\n" =~ /\n+\Z\n/.
We may back off by one in this case. */
if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS)
ST.min--;
}
REGCP_SET(ST.cp);
goto curly_try_B_max;
}
NOT_REACHED; /* NOTREACHED */
case CURLY_B_min_fail:
/* failed to find B in a non-greedy match. */
if (RE_PESSIMISTIC_PARENS) {
REGCP_UNWIND(ST.lastcp);
regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
}
REGCP_UNWIND(ST.cp);
if (ST.paren) {
UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
}
if (ST.Binfo.count == 0) {
/* failed -- move forward one */
char *li = locinput;
if (!regrepeat(rex, &li, ST.A, loceol, reginfo, 1)) {
sayNO;
}
locinput = li;
ST.count++;
if (!( ST.count <= ST.max
/* count overflow ? */
|| (ST.max == REG_INFTY && ST.count > 0))
)
sayNO;
}
else {
int n;
/* Couldn't or didn't -- move forward. */
ST.oldloc = locinput;
if (utf8_target)
locinput += UTF8SKIP(locinput);
else
locinput++;
ST.count++;
curly_try_B_min_known:
/* find the next place where 'B' could work, then call B */
if (locinput + ST.Binfo.initial_exact < loceol) {
if (ST.Binfo.initial_exact >= ST.Binfo.max_length) {
/* Here, the mask is all 1's for the entire length of
* any possible match. (That actually means that there
* is only one possible match.) Look for the next
* occurrence */
locinput = ninstr(locinput, loceol,
(char *) ST.Binfo.matches,
(char *) ST.Binfo.matches
+ ST.Binfo.initial_exact);
if (locinput == NULL) {
sayNO;
}
}
else do {
/* If the first byte(s) of the mask are all ones, it
* means those bytes must match identically, so can use
* ninstr() to find the next possible matchpoint */
if (ST.Binfo.initial_exact > 0) {
locinput = ninstr(locinput, loceol,
(char *) ST.Binfo.matches,
(char *) ST.Binfo.matches
+ ST.Binfo.initial_exact);
}
else { /* Otherwise find the next byte that matches,
masked */
locinput = (char *) find_next_masked(
(U8 *) locinput, (U8 *) loceol,
ST.Binfo.first_byte_anded,
ST.Binfo.first_byte_mask);
/* Advance to the end of a multi-byte character */
if (utf8_target) {
while ( locinput < loceol
&& UTF8_IS_CONTINUATION(*locinput))
{
locinput++;
}
}
}
if ( locinput == NULL
|| locinput + ST.Binfo.min_length > loceol)
{
sayNO;
}
/* Here, we have found a possible match point; if can't
* rule it out, quit the loop so can check fully */
if (S_test_EXACTISH_ST(locinput, ST.Binfo)) {
break;
}
locinput += (utf8_target) ? UTF8SKIP(locinput) : 1;
} while (locinput <= ST.maxpos);
}
if (locinput > ST.maxpos)
sayNO;
n = (utf8_target)
? utf8_length((U8 *) ST.oldloc, (U8 *) locinput)
: (STRLEN) (locinput - ST.oldloc);
/* Here is at the beginning of a character that meets the mask
* criteria. Need to make sure that some real possibility */
if (n) {
/* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is
* at what may be the beginning of b; check that everything
* between oldloc and locinput matches */
char *li = ST.oldloc;
ST.count += n;
if (regrepeat(rex, &li, ST.A, loceol, reginfo, n) < n)
sayNO;
assert(n == REG_INFTY || locinput == li);
}
}
curly_try_B_min:
if (RE_PESSIMISTIC_PARENS) {
(void)regcppush(rex, 0, maxopenparen);
REGCP_SET(ST.lastcp);
}
CURLY_SETPAREN(ST.paren, ST.count);
PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput, loceol,
script_run_begin);
NOT_REACHED; /* NOTREACHED */
curly_try_B_max:
/* a successful greedy match: now try to match B */
if ( ST.Binfo.count <= 0
|| ( ST.Binfo.count > 0
&& locinput + ST.Binfo.min_length <= loceol
&& S_test_EXACTISH_ST(locinput, ST.Binfo)))
{
if (RE_PESSIMISTIC_PARENS) {
(void)regcppush(rex, 0, maxopenparen);
REGCP_SET(ST.lastcp);
}
CURLY_SETPAREN(ST.paren, ST.count);
PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput, loceol,
script_run_begin);
NOT_REACHED; /* NOTREACHED */
}
goto CURLY_B_all_failed;
NOT_REACHED; /* NOTREACHED */
case CURLY_B_max_fail:
/* failed to find B in a greedy match */
if (RE_PESSIMISTIC_PARENS) {
REGCP_UNWIND(ST.lastcp);
regcppop(rex, &maxopenparen); /* Restore some previous $<digit>s? */
}
CURLY_B_all_failed:
REGCP_UNWIND(ST.cp);
if (ST.paren) {
UNWIND_PAREN(ST.lastparen, ST.lastcloseparen);
}
/* back up. */
if (--ST.count < ST.min)
sayNO;
locinput = HOPc(locinput, -1);
goto curly_try_B_max;
#undef ST
case END: /* last op of main pattern */
fake_end:
if (cur_eval) {
/* we've just finished A in /(??{A})B/; now continue with B */
is_accepted = false;
SET_RECURSE_LOCINPUT("FAKE-END[before]", CUR_EVAL.prev_recurse_locinput);
st->u.eval.prev_rex = rex_sv; /* inner */
/* Save *all* the positions. */
st->u.eval.cp = regcppush(rex, 0, maxopenparen);
rex_sv = CUR_EVAL.prev_rex;
is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv));
S_set_reg_curpm(aTHX_ rex_sv, reginfo);
rex = ReANY(rex_sv);
rexi = RXi_GET(rex);
st->u.eval.prev_curlyx = cur_curlyx;
cur_curlyx = CUR_EVAL.prev_curlyx;
REGCP_SET(st->u.eval.lastcp);
/* Restore parens of the outer rex without popping the
* savestack */
regcp_restore(rex, CUR_EVAL.lastcp, &maxopenparen);
st->u.eval.prev_eval = cur_eval;
cur_eval = CUR_EVAL.prev_eval;
DEBUG_EXECUTE_r(
Perl_re_exec_indentf( aTHX_ "END: EVAL trying tail ... (cur_eval = %p)\n",
depth, cur_eval););
if ( nochange_depth )
nochange_depth--;
SET_RECURSE_LOCINPUT("FAKE-END[after]", cur_eval->locinput);
PUSH_YES_STATE_GOTO(EVAL_postponed_AB, /* match B */
st->u.eval.prev_eval->u.eval.B,
locinput, loceol, script_run_begin);
}
if (locinput < reginfo->till) {
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
"%sEND: Match possible, but length = %ld is smaller than requested = %ld, failing!%s\n",
PL_colors[4],
(long)(locinput - startpos),
(long)(reginfo->till - startpos),
PL_colors[5]));
sayNO_SILENT; /* Cannot match: too short. */
}
sayYES; /* Success! */
case LOOKBEHIND_END: /* validate that *lookbehind* UNLESSM/IFMATCH
matches end at the right spot, required for
variable length matches. */
if (match_end && locinput != match_end)
{
DEBUG_EXECUTE_r(
Perl_re_exec_indentf( aTHX_
"%sLOOKBEHIND_END: subpattern failed...%s\n",
depth, PL_colors[4], PL_colors[5]));
sayNO; /* Variable length match didn't line up */
}
/* FALLTHROUGH */
case SUCCEED: /* successful SUSPEND/CURLYM and
*lookahead* IFMATCH/UNLESSM*/
DEBUG_EXECUTE_r(
Perl_re_exec_indentf( aTHX_
"%sSUCCEED: subpattern success...%s\n",
depth, PL_colors[4], PL_colors[5]));
sayYES; /* Success! */
#undef ST
#define ST st->u.ifmatch
case SUSPEND: /* (?>A) */
ST.wanted = 1;
ST.start = locinput;
ST.end = loceol;
ST.count = 1;
goto do_ifmatch;
case UNLESSM: /* -ve lookaround: (?!A), or with 'flags', (?<!A) */
ST.wanted = 0;
goto ifmatch_trivial_fail_test;
case IFMATCH: /* +ve lookaround: (?=A), or with 'flags', (?<=A) */
ST.wanted = 1;
ifmatch_trivial_fail_test:
ST.prev_match_end= match_end;
ST.count = NEXT_OFF(scan) + 1; /* next_off repurposed to be
lookbehind count, requires
non-zero flags */
if (! FLAGS(scan)) { /* 'flags' zero means lookahed */
/* Lookahead starts here and ends at the normal place */
ST.start = locinput;
ST.end = loceol;
match_end = NULL;
}
else {
PERL_UINT_FAST8_T back_count = FLAGS(scan);
char * s;
match_end = locinput;
/* Lookbehind can look beyond the current position */
ST.end = loceol;
/* ... and starts at the first place in the input that is in
* the range of the possible start positions */
for (; ST.count > 0; ST.count--, back_count--) {
s = HOPBACKc(locinput, back_count);
if (s) {
ST.start = s;
goto do_ifmatch;
}
}
/* If the lookbehind doesn't start in the actual string, is a
* trivial match failure */
match_end = ST.prev_match_end;
if (logical) {
logical = 0;
sw = 1 - cBOOL(ST.wanted);
}
else if (ST.wanted)
sayNO;
/* Here, we didn't want it to match, so is actually success */
next = scan + ARG1u(scan);
if (next == scan)
next = NULL;
break;
}
do_ifmatch:
ST.me = scan;
ST.logical = logical;
logical = 0; /* XXX: reset state of logical once it has been saved into ST */
/* execute body of (?...A) */
PUSH_YES_STATE_GOTO(IFMATCH_A, REGNODE_AFTER(scan), ST.start,
ST.end, script_run_begin);
NOT_REACHED; /* NOTREACHED */
{
bool matched;
case IFMATCH_A_fail: /* body of (?...A) failed */
if (! ST.logical && ST.count > 1) {
/* It isn't a real failure until we've tried all starting
* positions. Move to the next starting position and retry */
ST.count--;
ST.start = HOPc(ST.start, 1);
scan = ST.me;
logical = ST.logical;
goto do_ifmatch;
}
/* Here, all starting positions have been tried. */
matched = false;
goto ifmatch_done;
case IFMATCH_A: /* body of (?...A) succeeded */
matched = true;
ifmatch_done:
sw = matched == ST.wanted;
match_end = ST.prev_match_end;
if (! ST.logical && !sw) {
sayNO;
}
if (OP(ST.me) != SUSPEND) {
/* restore old position except for (?>...) */
locinput = st->locinput;
loceol = st->loceol;
script_run_begin = st->sr0;
}
scan = ST.me + ARG1u(ST.me);
if (scan == ST.me)
scan = NULL;
continue; /* execute B */
}
#undef ST
case LONGJMP: /* alternative with many branches compiles to
* (BRANCHJ; EXACT ...; LONGJMP ) x N */
next = scan + ARG1u(scan);
if (next == scan)
next = NULL;
break;
case COMMIT: /* (*COMMIT) */
reginfo->cutpoint = loceol;
/* FALLTHROUGH */
case PRUNE: /* (*PRUNE) */
if (FLAGS(scan))
sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG1u( scan ) ]);
PUSH_STATE_GOTO(COMMIT_next, next, locinput, loceol,
script_run_begin);
NOT_REACHED; /* NOTREACHED */
case COMMIT_next_fail:
no_final = 1;
/* FALLTHROUGH */
sayNO;
NOT_REACHED; /* NOTREACHED */
case OPFAIL: /* (*FAIL) */
if (FLAGS(scan))
sv_commit = MUTABLE_SV(rexi->data->data[ ARG1u( scan ) ]);
if (logical) {
/* deal with (?(?!)X|Y) properly,
* make sure we trigger the no branch
* of the trailing IFTHEN structure*/
sw = 0;
break;
} else {
sayNO;
}
NOT_REACHED; /* NOTREACHED */
#define ST st->u.mark
case MARKPOINT: /* (*MARK:foo) */
ST.prev_mark = mark_state;
ST.mark_name = sv_commit = sv_yes_mark
= MUTABLE_SV(rexi->data->data[ ARG1u( scan ) ]);
mark_state = st;
ST.mark_loc = locinput;
PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput, loceol,
script_run_begin);
NOT_REACHED; /* NOTREACHED */
case MARKPOINT_next:
mark_state = ST.prev_mark;
sayYES;
NOT_REACHED; /* NOTREACHED */
case MARKPOINT_next_fail:
if (popmark && sv_eq(ST.mark_name,popmark))
{
if (ST.mark_loc > startpoint)
reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
popmark = NULL; /* we found our mark */
sv_commit = ST.mark_name;
DEBUG_EXECUTE_r({
Perl_re_exec_indentf( aTHX_ "%sMARKPOINT: next fail: setting cutpoint to mark:%" SVf "...%s\n",
depth,
PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
});
}
mark_state = ST.prev_mark;
sv_yes_mark = mark_state ?
mark_state->u.mark.mark_name : NULL;
sayNO;
NOT_REACHED; /* NOTREACHED */
case SKIP: /* (*SKIP) */
if (!FLAGS(scan)) {
/* (*SKIP) : if we fail we cut here*/
ST.mark_name = NULL;
ST.mark_loc = locinput;
PUSH_STATE_GOTO(SKIP_next,next, locinput, loceol,
script_run_begin);
} else {
/* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
otherwise do nothing. Meaning we need to scan
*/
regmatch_state *cur = mark_state;
SV *find = MUTABLE_SV(rexi->data->data[ ARG1u( scan ) ]);
while (cur) {
if ( sv_eq( cur->u.mark.mark_name,
find ) )
{
ST.mark_name = find;
PUSH_STATE_GOTO( SKIP_next, next, locinput, loceol,
script_run_begin);
}
cur = cur->u.mark.prev_mark;
}
}
/* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
break;
case SKIP_next_fail:
if (ST.mark_name) {
/* (*CUT:NAME) - Set up to search for the name as we
collapse the stack*/
popmark = ST.mark_name;
} else {
/* (*CUT) - No name, we cut here.*/
if (ST.mark_loc > startpoint)
reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
/* but we set sv_commit to latest mark_name if there
is one so they can test to see how things lead to this
cut */
if (mark_state)
sv_commit = mark_state->u.mark.mark_name;
}
no_final = 1;
sayNO;
NOT_REACHED; /* NOTREACHED */
#undef ST
case LNBREAK: /* \R */
if ((n = is_LNBREAK_safe(locinput, loceol, utf8_target))) {
locinput += n;
} else
sayNO;
break;
default:
PerlIO_printf(Perl_error_log, "%" UVxf " %d\n",
PTR2UV(scan), OP(scan));
croak("regexp memory corruption");
/* this is a point to jump to in order to increment
* locinput by one character */
increment_locinput:
assert(!NEXTCHR_IS_EOS);
if (utf8_target) {
locinput += PL_utf8skip[nextbyte];
/* locinput is allowed to go 1 char off the end (signifying
* EOS), but not 2+ */
if (locinput > loceol)
sayNO;
}
else
locinput++;
break;
} /* end switch */
/* switch break jumps here */
scan = next; /* prepare to execute the next op and ... */
continue; /* ... jump back to the top, reusing st */
/* NOTREACHED */
push_yes_state:
/* push a state that backtracks on success */
st->u.yes.prev_yes_state = yes_state;
yes_state = st;
/* FALLTHROUGH */
push_state:
/* push a new regex state, then continue at scan */
{
regmatch_state *newst;
DECLARE_AND_GET_RE_DEBUG_FLAGS;
DEBUG_r( /* DEBUG_STACK_r */
if (DEBUG_v_TEST || RE_DEBUG_FLAG(RE_DEBUG_EXTRA_STACK)) {
regmatch_state *cur = st;
regmatch_state *curyes = yes_state;
U32 i;
regmatch_slab *slab = PL_regmatch_slab;
for (i = 0; i < 3 && i <= depth; cur--,i++) {
if (cur < SLAB_FIRST(slab)) {
slab = slab->prev;
cur = SLAB_LAST(slab);
}
Perl_re_exec_indentf( aTHX_ "%4s #%-3d %-10s %s\n",
depth,
i ? " " : "push",
depth - i, REGNODE_NAME(cur->resume_state),
(curyes == cur) ? "yes" : ""
);
if (curyes == cur)
curyes = cur->u.yes.prev_yes_state;
}
} else {
DEBUG_STATE_pp("push")
});
depth++;
st->locinput = locinput;
st->loceol = loceol;
st->sr0 = script_run_begin;
newst = st+1;
if (newst > SLAB_LAST(PL_regmatch_slab))
newst = S_push_slab(aTHX);
PL_regmatch_state = newst;
locinput = pushinput;
loceol = pusheol;
script_run_begin = pushsr0;
st = newst;
continue;
/* NOTREACHED */
}
}
#ifdef SOLARIS_BAD_OPTIMIZER
# undef PL_charclass
#endif
/*
* We get here only if there's trouble -- normally "case END" is
* the terminating point.
*/
croak("corrupted regexp pointers");
NOT_REACHED; /* NOTREACHED */
yes:
if (yes_state) {
/* we have successfully completed a subexpression, but we must now
* pop to the state marked by yes_state and continue from there */
assert(st != yes_state);
#ifdef DEBUGGING
while (st != yes_state) {
st--;
if (st < SLAB_FIRST(PL_regmatch_slab)) {
PL_regmatch_slab = PL_regmatch_slab->prev;
st = SLAB_LAST(PL_regmatch_slab);
}
DEBUG_STATE_r({
if (no_final) {
DEBUG_STATE_pp("pop (no final)");
} else {
DEBUG_STATE_pp("pop (yes)");
}
});
depth--;
}
#else
while (yes_state < SLAB_FIRST(PL_regmatch_slab)
|| yes_state > SLAB_LAST(PL_regmatch_slab))
{
/* not in this slab, pop slab */
depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
PL_regmatch_slab = PL_regmatch_slab->prev;
st = SLAB_LAST(PL_regmatch_slab);
}
depth -= (st - yes_state);
#endif
st = yes_state;
yes_state = st->u.yes.prev_yes_state;
PL_regmatch_state = st;
if (no_final) {
locinput = st->locinput;
loceol = st->loceol;
script_run_begin = st->sr0;
}
state_num = st->resume_state + no_final;
goto reenter_switch;
}
DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch successful!%s\n",
PL_colors[4], PL_colors[5]));
if (reginfo->info_aux_eval) {
/* each successfully executed (?{...}) block does the equivalent of
* local $^R = do {...}
* When popping the save stack, all these locals would be undone;
* bypass this by setting the outermost saved $^R to the latest
* value */
/* I don't know if this is needed or works properly now.
* see code related to PL_replgv elsewhere in this file.
* Yves
*/
if (oreplsv != GvSV(PL_replgv)) {
sv_setsv(oreplsv, GvSV(PL_replgv));
SvSETMAGIC(oreplsv);
}
}
result = 1;
goto final_exit;
no:
DEBUG_EXECUTE_r(
Perl_re_exec_indentf( aTHX_ "%sfailed...%s\n",
depth,
PL_colors[4], PL_colors[5])
);
no_silent:
if (no_final) {
if (yes_state) {
goto yes;
} else {
goto final_exit;
}
}
if (depth) {
/* there's a previous state to backtrack to */
st--;
if (st < SLAB_FIRST(PL_regmatch_slab)) {
PL_regmatch_slab = PL_regmatch_slab->prev;
st = SLAB_LAST(PL_regmatch_slab);
}
PL_regmatch_state = st;
locinput = st->locinput;
loceol = st->loceol;
script_run_begin = st->sr0;
DEBUG_STATE_pp("pop");
depth--;
if (yes_state == st)
yes_state = st->u.yes.prev_yes_state;
state_num = st->resume_state + 1; /* failure = success + 1 */
PERL_ASYNC_CHECK();
goto reenter_switch;
}
result = 0;
final_exit:
if (rex->intflags & PREGf_VERBARG_SEEN) {
SV *sv_err = get_sv("REGERROR", 1);
SV *sv_mrk = get_sv("REGMARK", 1);
if (result) {
sv_commit = &PL_sv_no;
if (!sv_yes_mark)
sv_yes_mark = &PL_sv_yes;
} else {
if (!sv_commit)
sv_commit = &PL_sv_yes;
sv_yes_mark = &PL_sv_no;
}
assert(sv_err);
assert(sv_mrk);
sv_setsv(sv_err, sv_commit);
sv_setsv(sv_mrk, sv_yes_mark);
}
if (last_pushed_cv) {
dSP;
/* see "Some notes about MULTICALL" above */
POP_MULTICALL;
PERL_UNUSED_VAR(SP);
}
else
LEAVE_SCOPE(orig_savestack_ix);
assert(!result || locinput - reginfo->strbeg >= 0);
return result ? locinput - reginfo->strbeg : -1;
}
/*
- regrepeat - repeatedly match something simple, report how many
*
* What 'simple' means is a node which can be the operand of a quantifier like
* '+', or {1,3}
*
* startposp - pointer to a pointer to the start position. This is updated
* to point to the byte following the highest successful
* match.
* p - the regnode to be repeatedly matched against.
* loceol - pointer to the end position beyond which we aren't supposed to
* look.
* reginfo - struct holding match state, such as utf8_target
* max - maximum number of things to match.
* depth - (for debugging) backtracking depth.
*/
STATIC I32
S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p,
char * loceol, regmatch_info *const reginfo, I32 max comma_pDEPTH)
{
char *scan; /* Pointer to current position in target string */
I32 c;
char *this_eol = loceol; /* potentially adjusted version. */
I32 hardcount = 0; /* How many matches so far */
bool utf8_target = reginfo->is_utf8_target;
unsigned int to_complement = 0; /* Invert the result? */
char_class_number_ classnum;
PERL_ARGS_ASSERT_REGREPEAT;
/* This routine is structured so that we switch on the input OP. Each OP
* case: statement contains a loop to repeatedly apply the OP, advancing
* the input until it fails, or reaches the end of the input, or until it
* reaches the upper limit of matches. */
scan = *startposp;
if (max == REG_INFTY) /* This is a special marker to go to the platform's
max */
max = I32_MAX;
else if (! utf8_target && this_eol - scan > max)
this_eol = scan + max;
/* Here, for the case of a non-UTF-8 target we have adjusted <this_eol>
* down to the maximum of how far we should go in it (but leaving it set to
* the real end if the maximum permissible would take us beyond that).
* This allows us to make the loop exit condition that we haven't gone past
* <this_eol> to also mean that we haven't exceeded the max permissible
* count, saving a test each time through the loop. But it assumes that
* the OP matches a single byte, which is true for most of the OPs below
* when applied to a non-UTF-8 target. Those relatively few OPs that don't
* have this characteristic have to compensate.
*
* There is no such adjustment for UTF-8 targets, since the number of bytes
* per character can vary. OPs will have to test both that the count is
* less than the max permissible (using <hardcount> to keep track), and
* that we are still within the bounds of the string (using <this_eol>. A
* few OPs match a single byte no matter what the encoding. They can omit
* the max test if, for the UTF-8 case, they do the adjustment that was
* skipped above.
*
* Thus, the code above sets things up for the common case; and exceptional
* cases need extra work; the common case is to make sure <scan> doesn't go
* past <this_eol>, and for UTF-8 to also use <hardcount> to make sure the
* count doesn't exceed the maximum permissible */
switch (with_t_UTF8ness(OP(p), utf8_target)) {
SV * anyofh_list;
case REG_ANY_t8:
while (scan < this_eol && hardcount < max && *scan != '\n') {
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case REG_ANY_tb:
scan = (char *) memchr(scan, '\n', this_eol - scan);
if (! scan) {
scan = this_eol;
}
break;
case SANY_t8:
while (scan < this_eol && hardcount < max) {
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case SANY_tb:
scan = this_eol;
break;
case EXACT_REQ8_tb:
case LEXACT_REQ8_tb:
case EXACTFU_REQ8_tb:
break;
case EXACTL_t8:
if (UTF8_IS_ABOVE_LATIN1(*scan)) {
CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG_(scan, loceol);
}
/* FALLTHROUGH */
case EXACTL_tb:
case EXACTFL_t8:
case EXACTFL_tb:
case EXACTFLU8_t8:
case EXACTFLU8_tb:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
/* FALLTHROUGH */
case EXACT_REQ8_t8:
case LEXACT_REQ8_t8:
case EXACTFU_REQ8_t8:
case LEXACT_t8:
case LEXACT_tb:
case EXACT_t8:
case EXACT_tb:
case EXACTF_t8:
case EXACTF_tb:
case EXACTFAA_NO_TRIE_t8:
case EXACTFAA_NO_TRIE_tb:
case EXACTFAA_t8:
case EXACTFAA_tb:
case EXACTFU_t8:
case EXACTFU_tb:
case EXACTFUP_t8:
case EXACTFUP_tb:
{
struct next_matchable_info Binfo;
PERL_UINT_FAST8_T definitive_len;
assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1);
/* Set up termination info, and quit if we can rule out that we've
* gotten a match of the termination criteria */
if ( ! S_setup_EXACTISH_ST(aTHX_ p, &Binfo, reginfo)
|| scan + Binfo.min_length > this_eol
|| ! S_test_EXACTISH_ST(scan, Binfo))
{
break;
}
definitive_len = Binfo.initial_definitive;
/* Here there are potential matches, and the first byte(s) matched our
* filter
*
* If we got a definitive match of some initial bytes, there is no
* possibility of false positives as far as it got */
if (definitive_len > 0) {
/* If as far as it got is the maximum possible, there were no false
* positives at all. Since we have everything set up, see how many
* repeats there are. */
if (definitive_len >= Binfo.max_length) {
/* We've already found one match */
scan += definitive_len;
hardcount++;
/* If want more than the one match, and there is room for more,
* see if there are any */
if (hardcount < max && scan + definitive_len <= this_eol) {
/* If the character is only a single byte long, just span
* all such bytes. */
if (definitive_len == 1) {
const char * orig_scan = scan;
if (this_eol - (scan - hardcount) > max) {
this_eol = scan - hardcount + max;
}
/* Use different routines depending on whether it's an
* exact match or matches with a mask */
if (Binfo.initial_exact == 1) {
scan = (char *) find_span_end((U8 *) scan,
(U8 *) this_eol,
Binfo.matches[0]);
}
else {
scan = (char *) find_span_end_mask(
(U8 *) scan,
(U8 *) this_eol,
Binfo.first_byte_anded,
Binfo.first_byte_mask);
}
hardcount += scan - orig_scan;
}
else { /* Here, the full character definitive match is more
than one byte */
while ( hardcount < max
&& scan + definitive_len <= this_eol
&& S_test_EXACTISH_ST(scan, Binfo))
{
scan += definitive_len;
hardcount++;
}
}
}
break;
} /* End of a full character is definitively matched */
/* Here, an initial portion of the character matched definitively,
* and the rest matched as well, but could have false positives */
do {
int i;
U8 * matches = Binfo.matches;
/* The first bytes were definitive. Look at the remaining */
for (i = 0; i < Binfo.count; i++) {
if (memEQ(scan + definitive_len,
matches + definitive_len,
Binfo.lengths[i] - definitive_len))
{
goto found_a_completion;
}
matches += Binfo.lengths[i];
}
/* Didn't find anything to complete our initial match. Stop
* here */
break;
found_a_completion:
/* Here, matched a full character, Include it in the result,
* and then look to see if the next char matches */
hardcount++;
scan += Binfo.lengths[i];
} while ( hardcount < max
&& scan + definitive_len < this_eol
&& S_test_EXACTISH_ST(scan, Binfo));
/* Here, have advanced as far as possible */
break;
} /* End of found some initial bytes that definitively matched */
/* Here, we can't rule out that we have found the beginning of 'B', but
* there were no initial bytes that could rule out anything
* definitively. Use brute force to examine all the possibilities */
while (scan < this_eol && hardcount < max) {
int i;
U8 * matches = Binfo.matches;
for (i = 0; i < Binfo.count; i++) {
if (memEQ(scan, matches, Binfo.lengths[i])) {
goto found1;
}
matches += Binfo.lengths[i];
}
break;
found1:
hardcount++;
scan += Binfo.lengths[i];
}
break;
}
case ANYOFPOSIXL_t8:
case ANYOFL_t8:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_SETS(p);
/* FALLTHROUGH */
case ANYOFD_t8:
case ANYOF_t8:
while ( hardcount < max
&& scan < this_eol
&& reginclass(prog, p, (U8*)scan, (U8*) this_eol, true))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case ANYOFPOSIXL_tb:
case ANYOFL_tb:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_SETS(p);
/* FALLTHROUGH */
case ANYOFD_tb:
case ANYOF_tb:
if (ANYOF_FLAGS(p) || ANYOF_HAS_AUX(p)) {
while ( scan < this_eol
&& reginclass(prog, p, (U8*)scan, (U8*)scan+1, 0))
scan++;
}
else {
while (scan < this_eol && ANYOF_BITMAP_TEST(p, *((U8*)scan)))
scan++;
}
break;
case ANYOFM_t8:
if (this_eol - scan > max) {
/* We didn't adjust <this_eol> at the beginning of this routine
* because is UTF-8, but it is actually ok to do so, since here, to
* match, 1 char == 1 byte. */
this_eol = scan + max;
}
/* FALLTHROUGH */
case ANYOFM_tb:
scan = (char *) find_span_end_mask((U8 *) scan, (U8 *) this_eol,
(U8) ARG1u(p), FLAGS(p));
break;
case NANYOFM_t8:
while ( hardcount < max
&& scan < this_eol
&& (*scan & FLAGS(p)) != ARG1u(p))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case NANYOFM_tb:
scan = (char *) find_next_masked((U8 *) scan, (U8 *) this_eol,
(U8) ARG1u(p), FLAGS(p));
break;
case ANYOFH_tb: /* ANYOFH only can match UTF-8 targets */
case ANYOFHb_tb:
case ANYOFHbbm_tb:
case ANYOFHr_tb:
case ANYOFHs_tb:
break;
case ANYOFH_t8:
anyofh_list = GET_ANYOFH_INVLIST(prog, p);
while ( hardcount < max
&& scan < this_eol
&& NATIVE_UTF8_TO_I8(*scan) >= ANYOF_FLAGS(p)
&& _invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) scan,
(U8 *) this_eol,
NULL)))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case ANYOFHb_t8:
/* we know the first byte must be the FLAGS field */
anyofh_list = GET_ANYOFH_INVLIST(prog, p);
while ( hardcount < max
&& scan < this_eol
&& (U8) *scan == ANYOF_FLAGS(p)
&& _invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) scan,
(U8 *) this_eol,
NULL)))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case ANYOFHbbm_t8:
while ( hardcount < max
&& scan + 1 < this_eol
&& (U8) *scan == ANYOF_FLAGS(p)
&& BITMAP_TEST(( (struct regnode_bbm *) p)->bitmap,
(U8) scan[1] & UTF_CONTINUATION_MASK))
{
scan += 2; /* This node only matches 2-byte UTF-8 */
hardcount++;
}
break;
case ANYOFHr_t8:
anyofh_list = GET_ANYOFH_INVLIST(prog, p);
while ( hardcount < max
&& scan < this_eol
&& inRANGE(NATIVE_UTF8_TO_I8(*scan),
LOWEST_ANYOF_HRx_BYTE(ANYOF_FLAGS(p)),
HIGHEST_ANYOF_HRx_BYTE(ANYOF_FLAGS(p)))
&& NATIVE_UTF8_TO_I8(*scan) >= ANYOF_FLAGS(p)
&& _invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) scan,
(U8 *) this_eol,
NULL)))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case ANYOFHs_t8:
anyofh_list = GET_ANYOFH_INVLIST(prog, p);
while ( hardcount < max
&& scan + FLAGS(p) < this_eol
&& memEQ(scan, ((struct regnode_anyofhs *) p)->string, FLAGS(p))
&& _invlist_contains_cp(anyofh_list,
utf8_to_uv_or_die((U8 *) scan,
(U8 *) this_eol,
NULL)))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case ANYOFR_t8:
while ( hardcount < max
&& scan < this_eol
&& NATIVE_UTF8_TO_I8(*scan) >= ANYOF_FLAGS(p)
&& withinCOUNT(utf8_to_uv_or_die((U8 *) scan,
(U8 *) this_eol,
NULL),
ANYOFRbase(p), ANYOFRdelta(p)))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case ANYOFR_tb:
while ( hardcount < max
&& scan < this_eol
&& withinCOUNT((U8) *scan, ANYOFRbase(p), ANYOFRdelta(p)))
{
scan++;
hardcount++;
}
break;
case ANYOFRb_t8:
while ( hardcount < max
&& scan < this_eol
&& (U8) *scan == ANYOF_FLAGS(p)
&& withinCOUNT(utf8_to_uv_or_die((U8 *) scan,
(U8 *) this_eol,
NULL),
ANYOFRbase(p), ANYOFRdelta(p)))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case ANYOFRb_tb:
while ( hardcount < max
&& scan < this_eol
&& withinCOUNT((U8) *scan, ANYOFRbase(p), ANYOFRdelta(p)))
{
scan++;
hardcount++;
}
break;
/* The argument (FLAGS) to all the POSIX node types is the class number */
case NPOSIXL_tb:
to_complement = 1;
/* FALLTHROUGH */
case POSIXL_tb:
CHECK_AND_WARN_PROBLEMATIC_LOCALE_;
while ( scan < this_eol
&& to_complement ^ cBOOL(isFOO_lc(FLAGS(p), *scan)))
{
scan++;
}
break;
case NPOSIXL_t8:
to_complement = 1;
/* FALLTHROUGH */
case POSIXL_t8:
while ( hardcount < max && scan < this_eol
&& to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p),
(U8 *) scan,
(U8 *) this_eol)))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case POSIXD_tb:
/* FALLTHROUGH */
case POSIXA_t8:
if (this_eol - scan > max) {
/* We didn't adjust <this_eol> at the beginning of this routine
* because is UTF-8, but it is actually ok to do so, since here, to
* match, 1 char == 1 byte. */
this_eol = scan + max;
}
/* FALLTHROUGH */
case POSIXA_tb:
while (scan < this_eol && generic_isCC_A_((U8) *scan, FLAGS(p))) {
scan++;
}
break;
case NPOSIXD_tb:
/* FALLTHROUGH */
case NPOSIXA_tb:
while (scan < this_eol && ! generic_isCC_A_((U8) *scan, FLAGS(p))) {
scan++;
}
break;
case NPOSIXA_t8:
/* The complement of something that matches only ASCII matches all
* non-ASCII, plus everything in ASCII that isn't in the class. */
while ( hardcount < max && scan < this_eol
&& ( ! isASCII_utf8_safe(scan, loceol)
|| ! generic_isCC_A_((U8) *scan, FLAGS(p))))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case NPOSIXU_tb:
to_complement = 1;
/* FALLTHROUGH */
case POSIXU_tb:
while ( scan < this_eol
&& to_complement ^ cBOOL(generic_isCC_((U8) *scan, FLAGS(p))))
{
scan++;
}
break;
case NPOSIXU_t8:
case NPOSIXD_t8:
to_complement = 1;
/* FALLTHROUGH */
case POSIXD_t8:
case POSIXU_t8:
classnum = (char_class_number_) FLAGS(p);
switch (classnum) {
default:
while ( hardcount < max && scan < this_eol
&& to_complement
^ cBOOL(_invlist_contains_cp(PL_XPosix_ptrs[classnum],
utf8_to_uv_or_die((U8 *) scan, (U8 *) this_eol, NULL))))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
/* For the classes below, the knowledge of how to handle every code
* point is compiled into Perl via a macro. This code is written
* for making the loops as tight as possible. It could be
* refactored to save space instead. */
case CC_ENUM_SPACE_:
while ( hardcount < max
&& scan < this_eol
&& (to_complement
^ cBOOL(isSPACE_utf8_safe(scan, this_eol))))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case CC_ENUM_BLANK_:
while ( hardcount < max
&& scan < this_eol
&& (to_complement
^ cBOOL(isBLANK_utf8_safe(scan, this_eol))))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case CC_ENUM_XDIGIT_:
while ( hardcount < max
&& scan < this_eol
&& (to_complement
^ cBOOL(isXDIGIT_utf8_safe(scan, this_eol))))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case CC_ENUM_VERTSPACE_:
while ( hardcount < max
&& scan < this_eol
&& (to_complement
^ cBOOL(isVERTWS_utf8_safe(scan, this_eol))))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
case CC_ENUM_CNTRL_:
while ( hardcount < max
&& scan < this_eol
&& (to_complement
^ cBOOL(isCNTRL_utf8_safe(scan, this_eol))))
{
scan += UTF8SKIP(scan);
hardcount++;
}
break;
}
break;
case LNBREAK_t8:
while ( hardcount < max && scan < this_eol
&& (c = is_LNBREAK_utf8_safe(scan, this_eol)))
{
scan += c;
hardcount++;
}
break;
case LNBREAK_tb:
/* LNBREAK can match one or two latin chars, which is ok, but we have
* to use hardcount in this situation, and throw away the adjustment to
* <this_eol> done before the switch statement */
while (
hardcount < max && scan < loceol
&& (c = is_LNBREAK_latin1_safe(scan, loceol))
) {
scan += c;
hardcount++;
}
break;
default:
croak("panic: regrepeat() called with unrecognized"
" node type %d='%s'", OP(p), REGNODE_NAME(OP(p)));
NOT_REACHED; /* NOTREACHED */
}
if (hardcount)
c = hardcount;
else
c = scan - *startposp;
*startposp = scan;
DEBUG_r({
DECLARE_AND_GET_RE_DEBUG_FLAGS;
DEBUG_EXECUTE_r({
SV * const prop = sv_newmortal();
regprop(prog, prop, p, reginfo, NULL);
Perl_re_exec_indentf( aTHX_
"%s can match %" IVdf " times out of %" IVdf "...\n",
depth, SvPVX_const(prop),(IV)c,(IV)max);
});
});
return(c);
}
/*
- reginclass - determine if a character falls into a character class
n is the ANYOF-type regnode
p is the target string
p_end points to one byte beyond the end of the target string
utf8_target tells whether p is in UTF-8.
Returns true if matched; false otherwise.
Note that this can be a synthetic start class, a combination of various
nodes, so things you think might be mutually exclusive, such as locale,
aren't. It can match both locale and non-locale
*/
STATIC bool
S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target)
{
const char flags = (inRANGE(OP(n), ANYOFH, ANYOFHs))
? 0
: ANYOF_FLAGS(n);
bool match = false;
UV c = *p;
PERL_ARGS_ASSERT_REGINCLASS;
/* If c is not already the code point, get it. Note that
* UTF8_IS_INVARIANT() works even if not in UTF-8 */
if (! UTF8_IS_INVARIANT(c) && utf8_target) {
STRLEN c_len = 0;
c = utf8_to_uv_or_die(p, p_end, &c_len);
if ( c > 255
&& (OP(n) == ANYOFL || OP(n) == ANYOFPOSIXL)
&& ! (flags & ANYOFL_UTF8_LOCALE_REQD))
{
CHECK_AND_OUTPUT_WIDE_LOCALE_CP_MSG_(c);
}
}
/* If this character is potentially in the bitmap, check it */
if (c < NUM_ANYOF_CODE_POINTS && ! inRANGE(OP(n), ANYOFH, ANYOFHb)) {
if (ANYOF_BITMAP_TEST(n, c))
match = true;
else if ( (flags & ANYOFD_NON_UTF8_MATCHES_ALL_NON_ASCII__shared)
&& OP(n) == ANYOFD
&& ! utf8_target
&& ! isASCII(c))
{
match = true;
}
else if (flags & ANYOF_LOCALE_FLAGS) {
if ( (flags & ANYOFL_FOLD)
&& c < 256
&& ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
{
match = true;
}
else if ( ANYOF_POSIXL_TEST_ANY_SET(n)
&& c <= U8_MAX /* param to isFOO_lc() */
) {
/* The data structure is arranged so bits 0, 2, 4, ... are set
* if the class includes the Posix character class given by
* bit/2; and 1, 3, 5, ... are set if the class includes the
* complemented Posix class given by int(bit/2), so the
* remainder modulo 2 tells us if to complement or not.
*
* Note that this code assumes that all the classes are closed
* under folding. For example, if a character matches \w, then
* its fold does too; and vice versa. This should be true for
* any well-behaved locale for all the currently defined Posix
* classes, except for :lower: and :upper:, which are handled
* by the pseudo-class :cased: which matches if either of the
* other two does. To get rid of this assumption, an outer
* loop could be used below to iterate over both the source
* character, and its fold (if different) */
U32 posixl_bits = ANYOF_POSIXL_BITMAP(n);
do {
/* Find the next set bit indicating a class to try matching
* against */
U8 bit_pos = lsbit_pos32(posixl_bits);
if (bit_pos % 2 ^ cBOOL(isFOO_lc(bit_pos/2, (U8) c))) {
match = true;
break;
}
/* Remove this class from consideration; repeat */
POSIXL_CLEAR(posixl_bits, bit_pos);
} while(posixl_bits != 0);
}
}
}
/* If the bitmap didn't (or couldn't) match, and something outside the
* bitmap could match, try that. */
if (!match) {
if ( c >= NUM_ANYOF_CODE_POINTS
&& ANYOF_ONLY_HAS_BITMAP(n)
&& ! (flags & ANYOF_HAS_EXTRA_RUNTIME_MATCHES))
{
/* In this case, the ARG is set up so that the final bit indicates
* whether it matches or not */
match = ARG1u(n) & 1;
}
else
/* Here, the main way it could match is if the code point is
* outside the bitmap and an inversion list exists to handle such
* things. The other ways all occur when a flag is set to indicate
* we need special handling. That handling doesn't come in to
* effect for ANYOFD nodes unless the target string is UTF-8 and
* that matters to code point being matched. */
if ( c >= NUM_ANYOF_CODE_POINTS
|| ( (flags & ANYOF_HAS_EXTRA_RUNTIME_MATCHES)
&& ( UNLIKELY(OP(n) != ANYOFD)
|| (utf8_target && ! isASCII_uvchr(c)
# if NUM_ANYOF_CODE_POINTS > 256
&& c < 256
# endif
))))
{
/* Here, we have an inversion list for outside-the-bitmap code
* points and/or the flag is set indicating special handling is
* needed. The flag is set when there is auxiliary data beyond the
* normal inversion list, or if there is the possibility of a
* special Turkic locale match, even without auxiliary data.
*
* First check if there is an inversion list and/or auxiliary data.
* */
if (ANYOF_HAS_AUX(n)) {
SV* only_utf8_locale = NULL;
/* This call will return in 'definition' the union of the base
* non-bitmap inversion list, if any, plus the deferred
* definitions of user-defined properties, if any. It croaks
* if there is such a property but which still has no definition
* available */
SV * const definition = GET_REGCLASS_AUX_DATA(prog, n, true, 0,
&only_utf8_locale, NULL);
if (definition) {
/* Most likely is the outside-the-bitmap inversion list. */
if (_invlist_contains_cp(definition, c)) {
match = true;
}
else /* Failing that, hardcode the two tests for a Turkic
locale */
if ( UNLIKELY(IN_UTF8_TURKIC_LOCALE)
&& isALPHA_FOLD_EQ(*p, 'i'))
{
/* Turkish locales have these hard-coded rules
* overriding normal ones */
if (*p == 'i') {
if (_invlist_contains_cp(definition,
LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE))
{
match = true;
}
}
else if (_invlist_contains_cp(definition,
LATIN_SMALL_LETTER_DOTLESS_I))
{
match = true;
}
}
}
if ( UNLIKELY(only_utf8_locale)
&& UNLIKELY(IN_UTF8_CTYPE_LOCALE)
&& ! match)
{
match = _invlist_contains_cp(only_utf8_locale, c);
}
}
/* In a Turkic locale under folding, hard-code the I i case pair
* matches; these wouldn't have the ANYOF_HAS_EXTRA_RUNTIME_MATCHES
* flag set unless [Ii] were match possibilities */
if (UNLIKELY(IN_UTF8_TURKIC_LOCALE) && ! match) {
if (utf8_target) {
if (c == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
if (ANYOF_BITMAP_TEST(n, 'i')) {
match = true;
}
}
else if (c == LATIN_SMALL_LETTER_DOTLESS_I) {
if (ANYOF_BITMAP_TEST(n, 'I')) {
match = true;
}
}
}
#if NUM_ANYOF_CODE_POINTS > 256
/* Larger bitmap means these special cases aren't handled
* outside the bitmap above. */
if (*p == 'i') {
if (ANYOF_BITMAP_TEST(n,
LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE))
{
match = true;
}
}
else if (*p == 'I') {
if (ANYOF_BITMAP_TEST(n, LATIN_SMALL_LETTER_DOTLESS_I)) {
match = true;
}
}
#endif
}
}
if ( UNICODE_IS_SUPER(c)
&& (flags & ANYOF_WARN_SUPER__shared)
&& OP(n) != ANYOFD
&& ckWARN_d(WARN_NON_UNICODE))
{
Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
"Matched non-Unicode code point 0x%04" UVXf " against Unicode property; may not be portable", c);
}
}
#if ANYOF_INVERT != 1
/* Depending on compiler optimization cBOOL takes time, so if don't have to
* use it, don't */
# error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below,
#endif
/* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */
return (flags & ANYOF_INVERT) ^ match;
}
STATIC U8 *
S_reghop3(U8 *s, SSize_t off, const U8* lim)
{
/* return the position 'off' UTF-8 characters away from 's', forward if
* 'off' >= 0, backwards if negative. But don't go outside of position
* 'lim', which better be < s if off < 0 */
PERL_ARGS_ASSERT_REGHOP3;
if (off >= 0) {
while (off-- && s < lim) {
/* XXX could check well-formedness here */
U8 *new_s = s + UTF8SKIP(s);
if (new_s > lim) /* lim may be in the middle of a long character */
return s;
s = new_s;
}
}
else {
while (off++ && s > lim) {
s--;
if (UTF8_IS_CONTINUED(*s)) {
while (s > lim && UTF8_IS_CONTINUATION(*s))
s--;
if (! UTF8_IS_START(*s)) {
Perl_croak_nocontext("Malformed UTF-8 character (fatal)");
}
}
/* XXX could check well-formedness here */
}
}
return s;
}
/* like reghop3, but returns NULL on overrun, rather than returning last
* char pos */
STATIC U8 *
S_reghopmaybe3(U8* s, SSize_t off, const U8* const lim)
{
PERL_ARGS_ASSERT_REGHOPMAYBE3;
if (off >= 0) {
while (off-- && s < lim) {
/* XXX could check well-formedness here */
s += UTF8SKIP(s);
}
if (off >= 0)
return NULL;
}
else {
while (off++ && s > lim) {
s--;
if (UTF8_IS_CONTINUED(*s)) {
while (s > lim && UTF8_IS_CONTINUATION(*s))
s--;
if (! UTF8_IS_START(*s)) {
Perl_croak_nocontext("Malformed UTF-8 character (fatal)");
}
}
/* XXX could check well-formedness here */
}
if (off <= 0)
return NULL;
}
return s;
}
/* when executing a regex that may have (?{}), extra stuff needs setting
up that will be visible to the called code, even before the current
match has finished. In particular:
* $_ is localised to the SV currently being matched;
* pos($_) is created if necessary, ready to be updated on each call-out
to code;
* a fake PMOP is created that can be set to PL_curpm (normally PL_curpm
isn't set until the current pattern is successfully finished), so that
$1 etc of the match-so-far can be seen;
* save the old values of subbeg etc of the current regex, and set then
to the current string (again, this is normally only done at the end
of execution)
*/
static void
S_setup_eval_state(pTHX_ regmatch_info *const reginfo)
{
MAGIC *mg;
regexp *const rex = ReANY(reginfo->prog);
regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval;
eval_state->rx = reginfo->prog;
SvREFCNT_inc(eval_state->rx);
eval_state->sv = reginfo->sv;
if (reginfo->sv) {
/* Make $_ available to executed code. */
if (reginfo->sv != DEFSV) {
SAVE_DEFSV;
DEFSV_set(reginfo->sv);
}
/* will be dec'd by S_cleanup_regmatch_info_aux */
SvREFCNT_inc_NN(reginfo->sv);
if (!(mg = mg_find_mglob(reginfo->sv))) {
/* prepare for quick setting of pos */
mg = sv_magicext_mglob(reginfo->sv);
mg->mg_len = -1;
}
eval_state->pos_magic = mg;
eval_state->pos = mg->mg_len;
eval_state->pos_flags = mg->mg_flags;
}
else
eval_state->pos_magic = NULL;
if (!PL_reg_curpm) {
/* PL_reg_curpm is a fake PMOP that we can attach the current
* regex to and point PL_curpm at, so that $1 et al are visible
* within a /(?{})/. It's just allocated once per interpreter the
* first time its needed */
Newxz(PL_reg_curpm, 1, PMOP);
#ifdef USE_ITHREADS
{
SV* const repointer = &PL_sv_undef;
/* this regexp is also owned by the new PL_reg_curpm, which
will try to free it. */
av_push(PL_regex_padav, repointer);
PL_reg_curpm->op_pmoffset = av_top_index(PL_regex_padav);
PL_regex_pad = AvARRAY(PL_regex_padav);
}
#endif
}
/* if we're currently executing a MATCHish op, the only ref to the
* current regex might be from that op. If recursive code called from
* (?{...}) recompiles that regex, the old regex will be lost -
* meaning that $1 etc will stuff refer to the value from the inner
* match. So if possible restore the PMOPs regex to the outer value at
* the end of the outer match */
if ( PL_op
&& (PL_opargs[PL_op->op_type] & OA_CLASS_MASK) == OA_PMOP
&& PM_GETRE((PMOP*)PL_op))
{
eval_state->old_op = (PMOP*)PL_op;
eval_state->old_op_val = PM_GETRE((PMOP*)PL_op);
SvREFCNT_inc(eval_state->old_op_val);
}
else
eval_state->old_op = NULL;
eval_state->old_regcurpm_val = PM_GETRE_raw(PL_reg_curpm);
SvREFCNT_inc(eval_state->old_regcurpm_val);
S_set_reg_curpm(aTHX_ reginfo->prog, reginfo);
eval_state->curpm = PL_curpm;
PL_curpm_under = PL_curpm;
PL_curpm = PL_reg_curpm;
/* Temporarily set RXp_SUBBEG to the current string so that $1 etc
* are valid during code execution. If the current subbeg is a copy,
* then restore it at the end so that it gets properly freed when
* subbeg is finally updated after a successful match.
*/
if (RXp_MATCH_COPIED(rex)) {
eval_state->subbeg = RXp_SUBBEG(rex);
eval_state->sublen = RXp_SUBLEN(rex);
eval_state->suboffset = RXp_SUBOFFSET(rex);
eval_state->subcoffset = RXp_SUBCOFFSET(rex);
#ifdef PERL_ANY_COW
eval_state->saved_copy = RXp_SAVED_COPY(rex);
#endif
RXp_MATCH_COPIED_off(rex);
}
else
eval_state->subbeg = NULL;
RXp_SUBBEG(rex) = (char *)reginfo->strbeg;
RXp_SUBOFFSET(rex) = 0;
RXp_SUBCOFFSET(rex) = 0;
RXp_SUBLEN(rex) = reginfo->strend - reginfo->strbeg;
}
/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */
static void
S_cleanup_regmatch_info_aux(pTHX_ void *arg)
{
regmatch_info_aux *aux = (regmatch_info_aux *) arg;
regmatch_info_aux_eval *eval_state = aux->info_aux_eval;
regmatch_slab *s;
Safefree(aux->poscache);
if (eval_state) {
/* undo the effects of S_setup_eval_state() */
if (eval_state->subbeg) {
regexp * const rex = ReANY(eval_state->rx);
RXp_SUBBEG(rex) = eval_state->subbeg;
RXp_SUBLEN(rex) = eval_state->sublen;
RXp_SUBOFFSET(rex) = eval_state->suboffset;
RXp_SUBCOFFSET(rex) = eval_state->subcoffset;
#ifdef PERL_ANY_COW
RXp_SAVED_COPY(rex) = eval_state->saved_copy;
#endif
RXp_MATCH_COPIED_on(rex);
}
if (eval_state->pos_magic)
{
eval_state->pos_magic->mg_len = eval_state->pos;
eval_state->pos_magic->mg_flags =
(eval_state->pos_magic->mg_flags & ~MGf_BYTES)
| (eval_state->pos_flags & MGf_BYTES);
}
PL_curpm = eval_state->curpm;
SvREFCNT_dec(eval_state->sv);
SvREFCNT_dec(eval_state->rx);
REGEXP *old_rx = PM_GETRE(PL_reg_curpm);
PM_SETRE_raw(PL_reg_curpm, eval_state->old_regcurpm_val);
SvREFCNT_dec(old_rx);
if (eval_state->old_op) {
old_rx = PM_GETRE(eval_state->old_op);
PM_SETRE(eval_state->old_op, eval_state->old_op_val);
SvREFCNT_dec(old_rx);
}
}
PL_regmatch_state = aux->old_regmatch_state;
PL_regmatch_slab = aux->old_regmatch_slab;
/* free all slabs above current one - this must be the last action
* of this function, as aux and eval_state are allocated within
* slabs and may be freed here */
s = PL_regmatch_slab->next;
if (s) {
PL_regmatch_slab->next = NULL;
while (s) {
regmatch_slab * const osl = s;
s = s->next;
Safefree(osl);
}
}
}
STATIC void
S_to_utf8_substr(pTHX_ regexp *prog)
{
/* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile
* on the converted value */
int i = 1;
PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
do {
if (prog->substrs->data[i].substr
&& !prog->substrs->data[i].utf8_substr) {
SV* const sv = newSVsv(prog->substrs->data[i].substr);
prog->substrs->data[i].utf8_substr = sv;
sv_utf8_upgrade(sv);
if (SvVALID(prog->substrs->data[i].substr)) {
if (SvTAIL(prog->substrs->data[i].substr)) {
/* Trim the trailing \n that fbm_compile added last
time. */
SvCUR_set(sv, SvCUR(sv) - 1);
/* Whilst this makes the SV technically "invalid" (as its
buffer is no longer followed by "\0") when fbm_compile()
adds the "\n" back, a "\0" is restored. */
fbm_compile(sv, FBMcf_TAIL);
} else
fbm_compile(sv, 0);
}
if (prog->substrs->data[i].substr == prog->check_substr)
prog->check_utf8 = sv;
}
} while (i--);
}
STATIC bool
S_to_byte_substr(pTHX_ regexp *prog)
{
/* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile
* on the converted value; returns false if can't be converted. */
int i = 1;
PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
do {
if (prog->substrs->data[i].utf8_substr
&& !prog->substrs->data[i].substr) {
SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
if (! sv_utf8_downgrade(sv, true)) {
SvREFCNT_dec_NN(sv);
return false;
}
if (SvVALID(prog->substrs->data[i].utf8_substr)) {
if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
/* Trim the trailing \n that fbm_compile added last
time. */
SvCUR_set(sv, SvCUR(sv) - 1);
fbm_compile(sv, FBMcf_TAIL);
} else
fbm_compile(sv, 0);
}
prog->substrs->data[i].substr = sv;
if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
prog->check_substr = sv;
}
} while (i--);
return true;
}
#ifndef PERL_IN_XSUB_RE
bool
Perl_is_grapheme(pTHX_ const U8 * strbeg, const U8 * s, const U8 * strend, const UV cp)
{
/* Temporary helper function for toke.c. Verify that the code point 'cp'
* is a stand-alone grapheme. The UTF-8 for 'cp' begins at position 's' in
* the larger string bounded by 'strbeg' and 'strend'.
*
* 'cp' needs to be assigned (if not, a future version of the Unicode
* Standard could make it something that combines with adjacent characters,
* so code using it would then break), and there has to be a GCB break
* before and after the character. */
GCB_enum cp_gcb_val, prev_cp_gcb_val, next_cp_gcb_val;
const U8 * prev_cp_start;
PERL_ARGS_ASSERT_IS_GRAPHEME;
if ( UNLIKELY(UNICODE_IS_SUPER(cp))
|| UNLIKELY(UNICODE_IS_NONCHAR(cp)))
{
/* These are considered graphemes */
return true;
}
/* Otherwise, unassigned code points are forbidden */
if (UNLIKELY(! ELEMENT_RANGE_MATCHES_INVLIST(
_invlist_search(PL_Assigned_invlist, cp))))
{
return false;
}
cp_gcb_val = getGCB_VAL_CP(cp);
/* Find the GCB value of the previous code point in the input */
prev_cp_start = utf8_hop_back(s, -1, strbeg);
if (UNLIKELY(prev_cp_start == s)) {
prev_cp_gcb_val = GCB_EDGE;
}
else {
prev_cp_gcb_val = getGCB_VAL_UTF8(prev_cp_start, strend);
}
/* And check that is a grapheme boundary */
if (! isGCB(prev_cp_gcb_val, cp_gcb_val, strbeg, s,
true /* is UTF-8 encoded */ ))
{
return false;
}
/* Similarly verify there is a break between the current character and the
* following one */
s += UTF8SKIP(s);
if (s >= strend) {
next_cp_gcb_val = GCB_EDGE;
}
else {
next_cp_gcb_val = getGCB_VAL_UTF8(s, strend);
}
return isGCB(cp_gcb_val, next_cp_gcb_val, strbeg, s, true);
}
/*
=for apidoc_section $unicode
=for apidoc isSCRIPT_RUN
Returns a bool as to whether or not the sequence of bytes from C<s> up to but
not including C<send> form a "script run". C<utf8_target> is true iff the
sequence starting at C<s> is to be treated as UTF-8. To be precise, except for
two degenerate cases given below, this function returns true iff all code
points in it come from any combination of three "scripts" given by the Unicode
"Script Extensions" property: Common, Inherited, and possibly one other.
Additionally all decimal digits must come from the same consecutive sequence of
10.
For example, if all the characters in the sequence are Greek, or Common, or
Inherited, this function will return true, provided any decimal digits in it
are from the same block of digits in Common. (These are the ASCII digits
"0".."9" and additionally a block for full width forms of these, and several
others used in mathematical notation.) For scripts (unlike Greek) that have
their own digits defined this will accept either digits from that set or from
one of the Common digit sets, but not a combination of the two. Some scripts,
such as Arabic, have more than one set of digits. All digits must come from
the same set for this function to return true.
C<*ret_script>, if C<ret_script> is not NULL, will on return of true
contain the script found, using the C<SCX_enum> typedef. Its value will be
C<SCX_INVALID> if the function returns false.
If the sequence is empty, true is returned, but C<*ret_script> (if asked for)
will be C<SCX_INVALID>.
If the sequence contains a single code point which is unassigned to a character
in the version of Unicode being used, the function will return true, and the
script will be C<SCX_Unknown>. Any other combination of unassigned code points
in the input sequence will result in the function treating the input as not
being a script run.
The returned script will be C<SCX_Inherited> iff all the code points in it are
from the Inherited script.
Otherwise, the returned script will be C<SCX_Common> iff all the code points in
it are from the Inherited or Common scripts.
=cut
*/
bool
Perl_isSCRIPT_RUN(pTHX_ const U8 * s, const U8 * send, const bool utf8_target)
{
/* Basically, it looks at each character in the sequence to see if the
* above conditions are met; if not it fails. It uses an inversion map to
* find the enum corresponding to the script of each character. But this
* is complicated by the fact that a few code points can be in any of
* several scripts. The data has been constructed so that there are
* additional enum values (all negative) for these situations. The
* absolute value of those is an index into another table which contains
* pointers to auxiliary tables for each such situation. Each aux array
* lists all the scripts for the given situation. There is another,
* parallel, table that gives the number of entries in each aux table.
* These are all defined in charclass_invlists.inc */
/* XXX Here are the additional things UTS 39 says could be done:
*
* Forbid sequences of the same nonspacing mark
*
* Check to see that all the characters are in the sets of exemplar
* characters for at least one language in the Unicode Common Locale Data
* Repository [CLDR]. */
/* Things that match /\d/u */
SV * decimals_invlist = PL_XPosix_ptrs[CC_DIGIT_];
UV * decimals_array = invlist_array(decimals_invlist);
/* What code point is the digit '0' of the script run? (0 meaning false if
* not currently known) */
UV zero_of_run = 0;
SCX_enum script_of_run = SCX_INVALID; /* Illegal value */
SCX_enum script_of_char = SCX_INVALID;
/* If the script remains not fully determined from iteration to iteration,
* this is the current intersection of the possiblities. */
SCX_enum * intersection = NULL;
PERL_UINT_FAST8_T intersection_len = 0;
bool retval = true;
SCX_enum * ret_script = NULL;
assert(send >= s);
PERL_ARGS_ASSERT_ISSCRIPT_RUN;
/* All code points in 0..255 are either Common or Latin, so must be a
* script run. We can return immediately unless we need to know which
* script it is. */
if (! utf8_target && LIKELY(send > s)) {
if (ret_script == NULL) {
return true;
}
/* If any character is Latin, the run is Latin */
while (s < send) {
if (isALPHA_L1(*s) && LIKELY(*s != MICRO_SIGN_NATIVE)) {
*ret_script = SCX_Latin;
return true;
}
}
/* Here, all are Common */
*ret_script = SCX_Common;
return true;
}
/* Look at each character in the sequence */
while (s < send) {
/* If the current character being examined is a digit, this is the code
* point of the zero for its sequence of 10 */
UV zero_of_char;
UV cp;
/* The code allows all scripts to use the ASCII digits. This is
* because they are in the Common script. Hence any ASCII ones found
* are ok, unless and until a digit from another set has already been
* encountered. digit ranges in Common are not similarly blessed) */
if (UNLIKELY(isDIGIT(*s))) {
if (UNLIKELY(script_of_run == SCX_Unknown)) {
retval = false;
break;
}
if (zero_of_run) {
if (zero_of_run != '0') {
retval = false;
break;
}
}
else {
zero_of_run = '0';
}
s++;
continue;
}
/* Here, isn't an ASCII digit. Find the code point of the character */
if (! UTF8_IS_INVARIANT(*s)) {
Size_t len;
cp = valid_utf8_to_uvchr((U8 *) s, &len);
s += len;
}
else {
cp = *(s++);
}
/* If is within the range [+0 .. +9] of the script's zero, it also is a
* digit in that script. We can skip the rest of this code for this
* character. */
if (UNLIKELY(zero_of_run && withinCOUNT(cp, zero_of_run, 9))) {
continue;
}
/* Find the character's script. The correct values are hard-coded here
* for small-enough code points. */
if (cp < 0x2B9) { /* From inspection of Unicode db; extremely
unlikely to change */
if ( cp > 255
|| ( isALPHA_L1(cp)
&& LIKELY(cp != MICRO_SIGN_NATIVE)))
{
script_of_char = SCX_Latin;
}
else {
script_of_char = SCX_Common;
}
}
else {
script_of_char = _Perl_SCX_invmap[
_invlist_search(PL_SCX_invlist, cp)];
}
/* We arbitrarily accept a single unassigned character, but not in
* combination with anything else, and not a run of them. */
if ( UNLIKELY(script_of_run == SCX_Unknown)
|| UNLIKELY( script_of_run != SCX_INVALID
&& script_of_char == SCX_Unknown))
{
retval = false;
break;
}
/* For the first character, or the run is inherited, the run's script
* is set to the char's */
if ( UNLIKELY(script_of_run == SCX_INVALID)
|| UNLIKELY(script_of_run == SCX_Inherited))
{
script_of_run = script_of_char;
}
/* For the character's script to be Unknown, it must be the first
* character in the sequence (for otherwise a test above would have
* prevented us from reaching here), and we have set the run's script
* to it. Nothing further to be done for this character */
if (UNLIKELY(script_of_char == SCX_Unknown)) {
continue;
}
/* We accept 'inherited' script characters currently even at the
* beginning. (We know that no characters in Inherited are digits, or
* we'd have to check for that) */
if (UNLIKELY(script_of_char == SCX_Inherited)) {
continue;
}
/* If the run so far is Common, and the new character isn't, change the
* run's script to that of this character */
if (script_of_run == SCX_Common && script_of_char != SCX_Common) {
script_of_run = script_of_char;
}
/* Now we can see if the script of the new character is the same as
* that of the run */
if (LIKELY(script_of_char == script_of_run)) {
/* By far the most common case */
goto scripts_match;
}
/* Here, the script of the run isn't Common. But characters in Common
* match any script */
if (script_of_char == SCX_Common) {
goto scripts_match;
}
#ifndef HAS_SCX_AUX_TABLES
/* Too early a Unicode version to have a code point belonging to more
* than one script, so, if the scripts don't exactly match, fail */
PERL_UNUSED_VAR(intersection_len);
retval = false;
break;
#else
/* Here there is no exact match between the character's script and the
* run's. And we've handled the special cases of scripts Unknown,
* Inherited, and Common.
*
* Negative script numbers signify that the value may be any of several
* scripts, and we need to look at auxiliary information to make our
* determination. But if both are non-negative, we can fail now */
if (LIKELY(script_of_char >= 0)) {
const SCX_enum * search_in;
PERL_UINT_FAST8_T search_in_len;
PERL_UINT_FAST8_T i;
if (LIKELY(script_of_run >= 0)) {
retval = false;
break;
}
/* Use the previously constructed set of possible scripts, if any.
* */
if (intersection) {
search_in = intersection;
search_in_len = intersection_len;
}
else {
search_in = SCX_AUX_TABLE_ptrs[-script_of_run];
search_in_len = SCX_AUX_TABLE_lengths[-script_of_run];
}
for (i = 0; i < search_in_len; i++) {
if (search_in[i] == script_of_char) {
script_of_run = script_of_char;
goto scripts_match;
}
}
retval = false;
break;
}
else if (LIKELY(script_of_run >= 0)) {
/* script of character could be one of several, but run is a single
* script */
const SCX_enum * search_in = SCX_AUX_TABLE_ptrs[-script_of_char];
const PERL_UINT_FAST8_T search_in_len
= SCX_AUX_TABLE_lengths[-script_of_char];
PERL_UINT_FAST8_T i;
for (i = 0; i < search_in_len; i++) {
if (search_in[i] == script_of_run) {
script_of_char = script_of_run;
goto scripts_match;
}
}
retval = false;
break;
}
else {
/* Both run and char could be in one of several scripts. If the
* intersection is empty, then this character isn't in this script
* run. Otherwise, we need to calculate the intersection to use
* for future iterations of the loop, unless we are already at the
* final character */
const SCX_enum * search_char = SCX_AUX_TABLE_ptrs[-script_of_char];
const PERL_UINT_FAST8_T char_len
= SCX_AUX_TABLE_lengths[-script_of_char];
const SCX_enum * search_run;
PERL_UINT_FAST8_T run_len;
SCX_enum * new_overlap = NULL;
PERL_UINT_FAST8_T i, j;
if (intersection) {
search_run = intersection;
run_len = intersection_len;
}
else {
search_run = SCX_AUX_TABLE_ptrs[-script_of_run];
run_len = SCX_AUX_TABLE_lengths[-script_of_run];
}
intersection_len = 0;
for (i = 0; i < run_len; i++) {
for (j = 0; j < char_len; j++) {
if (search_run[i] == search_char[j]) {
/* Here, the script at i,j matches. That means this
* character is in the run. But continue on to find
* the complete intersection, for the next loop
* iteration, and for the digit check after it.
*
* On the first found common script, we malloc space
* for the intersection list for the worst case of the
* intersection, which is the minimum of the number of
* scripts remaining in each set. */
if (intersection_len == 0) {
Newx(new_overlap,
MIN(run_len - i, char_len - j),
SCX_enum);
}
new_overlap[intersection_len++] = search_run[i];
}
}
}
/* Here we've looked through everything. If they have no scripts
* in common, not a run */
if (intersection_len == 0) {
retval = false;
break;
}
/* If there is only a single script in common, set to that.
* Otherwise, use the intersection going forward */
Safefree(intersection);
intersection = NULL;
if (intersection_len == 1) {
script_of_run = script_of_char = new_overlap[0];
Safefree(new_overlap);
new_overlap = NULL;
}
else {
intersection = new_overlap;
}
}
#endif
scripts_match:
/* Here, the script of the character is compatible with that of the
* run. That means that in most cases, it continues the script run.
* Either it and the run match exactly, or one or both can be in any of
* several scripts, and the intersection is not empty. However, if the
* character is a decimal digit, it could still mean failure if it is
* from the wrong sequence of 10. So, we need to look at if it's a
* digit. We've already handled the 10 digits [0-9], and the next
* lowest one is this one: */
if (cp < FIRST_NON_ASCII_DECIMAL_DIGIT) {
continue; /* Not a digit; this character is part of the run */
}
/* If we have a definitive '0' for the script of this character, we
* know that for this to be a digit, it must be in the range of +0..+9
* of that zero. */
if ( script_of_char >= 0
&& (zero_of_char = script_zeros[script_of_char]))
{
if (! withinCOUNT(cp, zero_of_char, 9)) {
continue; /* Not a digit; this character is part of the run
*/
}
}
else { /* Need to look up if this character is a digit or not */
SSize_t index_of_zero_of_char;
index_of_zero_of_char = _invlist_search(decimals_invlist, cp);
if ( UNLIKELY(index_of_zero_of_char < 0)
|| ! ELEMENT_RANGE_MATCHES_INVLIST(index_of_zero_of_char))
{
continue; /* Not a digit; this character is part of the run.
*/
}
/* Here, is a digit. Unicode guarantees that the range that
* contains it will include all 10 consecutive digits. It also
* guarantees that the numeric value of the first digit in the
* range will be 0. But, be careful, that first digit need not be
* the zero of this run! This happens if Unicode has allocated
* several adjacent 10-digit runs. 'decimals_invlist' groups them
* all into a single range, and the first character is indeed a
* DIGIT 0, but is the zero of only the first run. U+1D7CE, for
* example, starts a single range of 50 \d characters. These
* actually form 5 adjacent runs of 10 digits each, all in the
* Common script.
* (cp - U+1D7CE) % 10
* yields a value 0..9 which is the offset from cp's zero digit
* code point. */
zero_of_char = cp
- ((cp - decimals_array[index_of_zero_of_char]) % 10);
}
/* Here, the character is a decimal digit, and the zero of its sequence
* of 10 is in 'zero_of_char'. If we already have a zero for this run,
* they better be the same. */
if (zero_of_run) {
if (zero_of_run != zero_of_char) {
retval = false;
break;
}
}
else { /* Otherwise we now have a zero for this run */
zero_of_run = zero_of_char;
}
} /* end of looping through CLOSESR text */
Safefree(intersection);
if (ret_script != NULL) {
if (retval) {
*ret_script = script_of_run;
}
else {
*ret_script = SCX_INVALID;
}
}
return retval;
}
#endif /* ifndef PERL_IN_XSUB_RE */
/* Buffer logic. */
SV*
Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
const U32 flags)
{
PERL_ARGS_ASSERT_REG_NAMED_BUFF;
PERL_UNUSED_ARG(value);
if (flags & RXapif_FETCH) {
return reg_named_buff_fetch(rx, key, flags);
} else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
croak_no_modify();
return NULL;
} else if (flags & RXapif_EXISTS) {
return reg_named_buff_exists(rx, key, flags)
? &PL_sv_yes
: &PL_sv_no;
} else if (flags & RXapif_REGNAMES) {
return reg_named_buff_all(rx, flags);
} else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
return reg_named_buff_scalar(rx, flags);
} else {
croak("panic: Unknown flags %d in named_buff", (int)flags);
return NULL;
}
}
SV*
Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
const U32 flags)
{
PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
PERL_UNUSED_ARG(lastkey);
if (flags & RXapif_FIRSTKEY)
return reg_named_buff_firstkey(rx, flags);
else if (flags & RXapif_NEXTKEY)
return reg_named_buff_nextkey(rx, flags);
else {
croak("panic: Unknown flags %d in named_buff_iter",
(int)flags);
return NULL;
}
}
SV*
Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
const U32 flags)
{
SV *ret;
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
if (rx && RXp_PAREN_NAMES(rx)) {
HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
if (he_str) {
IV i;
SV* sv_dat = HeVAL(he_str);
I32 *nums = (I32*)SvPVX(sv_dat);
AV * const retarray = (flags & RXapif_ALL) ? newAV_alloc_x(SvIVX(sv_dat)) : NULL;
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
if ((I32)(rx->nparens) >= nums[i]
&& RXp_OFFS_VALID(rx,nums[i]))
{
ret = newSVpvs("");
Perl_reg_numbered_buff_fetch_flags(aTHX_ r, nums[i], ret, REG_FETCH_ABSOLUTE);
if (!retarray)
return ret;
} else {
if (retarray)
ret = newSV_type(SVt_NULL);
}
if (retarray)
av_push_simple(retarray, ret);
}
if (retarray)
return newRV_noinc(MUTABLE_SV(retarray));
}
}
return NULL;
}
bool
Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
const U32 flags)
{
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
if (rx && RXp_PAREN_NAMES(rx)) {
if (flags & RXapif_ALL) {
return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
} else {
SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
if (sv) {
SvREFCNT_dec_NN(sv);
return true;
} else {
return false;
}
}
} else {
return false;
}
}
SV*
Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
if ( rx && RXp_PAREN_NAMES(rx) ) {
(void)hv_iterinit(RXp_PAREN_NAMES(rx));
return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
} else {
return NULL;
}
}
SV*
Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = ReANY(r);
DECLARE_AND_GET_RE_DEBUG_FLAGS;
PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
if (rx && RXp_PAREN_NAMES(rx)) {
HV *hv = RXp_PAREN_NAMES(rx);
HE *temphe;
while ( (temphe = hv_iternext_flags(hv, 0)) ) {
IV i;
IV parno = 0;
SV* sv_dat = HeVAL(temphe);
I32 *nums = (I32*)SvPVX(sv_dat);
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
if ((I32)(RXp_LASTPAREN(rx)) >= nums[i] &&
RXp_OFFS_VALID(rx,nums[i]))
{
parno = nums[i];
break;
}
}
if (parno || flags & RXapif_ALL) {
return newSVhek(HeKEY_hek(temphe));
}
}
}
return NULL;
}
SV*
Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
{
SV *ret;
AV *av;
SSize_t length;
struct regexp *const rx = ReANY(r);
PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
if (rx && RXp_PAREN_NAMES(rx)) {
if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
} else if (flags & RXapif_ONE) {
ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
av = AV_FROM_REF(ret);
length = av_count(av);
SvREFCNT_dec_NN(ret);
return newSViv(length);
} else {
croak("panic: Unknown flags %d in named_buff_scalar",
(int)flags);
return NULL;
}
}
return &PL_sv_undef;
}
SV*
Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
{
struct regexp *const rx = ReANY(r);
AV *av = newAV();
PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
if (rx && RXp_PAREN_NAMES(rx)) {
HV *hv= RXp_PAREN_NAMES(rx);
HE *temphe;
(void)hv_iterinit(hv);
while ( (temphe = hv_iternext_flags(hv, 0)) ) {
IV i;
IV parno = 0;
SV* sv_dat = HeVAL(temphe);
I32 *nums = (I32*)SvPVX(sv_dat);
for ( i = 0; i < SvIVX(sv_dat); i++ ) {
if ((I32)(RXp_LASTPAREN(rx)) >= nums[i] &&
RXp_OFFS_VALID(rx,nums[i]))
{
parno = nums[i];
break;
}
}
if (parno || flags & RXapif_ALL) {
av_push_simple(av, newSVhek(HeKEY_hek(temphe)));
}
}
}
return newRV_noinc(MUTABLE_SV(av));
}
void
Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const re, const I32 paren,
SV * const sv)
{
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
Perl_reg_numbered_buff_fetch_flags(aTHX_ re, paren, sv, 0);
}
#ifndef PERL_IN_XSUB_RE
void
Perl_reg_numbered_buff_fetch_flags(pTHX_ REGEXP * const re, const I32 paren,
SV * const sv, U32 flags)
{
struct regexp *const rx = ReANY(re);
char *s = NULL;
SSize_t i,t = 0;
SSize_t s1, t1;
I32 n = paren;
I32 logical_nparens = rx->logical_nparens ? rx->logical_nparens : rx->nparens;
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH_FLAGS;
if ( n == RX_BUFF_IDX_CARET_PREMATCH
|| n == RX_BUFF_IDX_CARET_FULLMATCH
|| n == RX_BUFF_IDX_CARET_POSTMATCH
)
{
bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
if (!keepcopy) {
/* on something like
* $r = qr/.../;
* /$qr/p;
* the KEEPCOPY is set on the PMOP rather than the regex */
if (PL_curpm && re == PM_GETRE(PL_curpm))
keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
}
if (!keepcopy)
goto ret_undef;
}
if (!RXp_SUBBEG(rx))
goto ret_undef;
if (n == RX_BUFF_IDX_CARET_FULLMATCH)
/* no need to distinguish between them any more */
n = RX_BUFF_IDX_FULLMATCH;
if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
&& (i = RXp_OFFS_START(rx,0)) != -1)
{
/* $`, ${^PREMATCH} */
s = RXp_SUBBEG(rx);
}
else
if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
&& (t = RXp_OFFS_END(rx,0)) != -1)
{
/* $', ${^POSTMATCH} */
s = RXp_SUBBEG(rx) - RXp_SUBOFFSET(rx) + t;
i = RXp_SUBLEN(rx) + RXp_SUBOFFSET(rx) - t;
}
else /* when flags is true we do an absolute lookup, and compare against rx->nparens */
if (inRANGE(n, 0, flags ? (I32)rx->nparens : logical_nparens)) {
I32 *map = (!flags && n) ? rx->logical_to_parno : NULL;
I32 true_parno = map ? map[n] : n;
do {
if (((s1 = RXp_OFFS_START(rx,true_parno)) != -1) &&
((t1 = RXp_OFFS_END(rx,true_parno)) != -1))
{
/* $&, ${^MATCH}, $1 ... */
i = t1 - s1;
s = RXp_SUBBEG(rx) + s1 - RXp_SUBOFFSET(rx);
goto found_it;
}
else if (map) {
true_parno = rx->parno_to_logical_next[true_parno];
}
else {
break;
}
} while (true_parno);
goto ret_undef;
} else {
goto ret_undef;
}
found_it:
assert(s >= RXp_SUBBEG(rx));
assert((STRLEN)RXp_SUBLEN(rx) >= (STRLEN)((s - RXp_SUBBEG(rx)) + i) );
if (i >= 0) {
#ifdef NO_TAINT_SUPPORT
sv_setpvn(sv, s, i);
#else
const int oldtainted = TAINT_get;
TAINT_NOT;
sv_setpvn(sv, s, i);
TAINT_set(oldtainted);
#endif
if (RXp_MATCH_UTF8(rx))
SvUTF8_on(sv);
else
SvUTF8_off(sv);
if (TAINTING_get) {
if (RXp_MATCH_TAINTED(rx)) {
if (SvTYPE(sv) >= SVt_PVMG) {
MAGIC* const mg = SvMAGIC(sv);
MAGIC* mgt;
TAINT;
SvMAGIC_set(sv, mg->mg_moremagic);
SvTAINT(sv);
if ((mgt = SvMAGIC(sv))) {
mg->mg_moremagic = mgt;
SvMAGIC_set(sv, mg);
}
} else {
TAINT;
SvTAINT(sv);
}
} else
SvTAINTED_off(sv);
}
} else {
ret_undef:
sv_set_undef(sv);
return;
}
}
#endif
void
Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
SV const * const value)
{
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
PERL_UNUSED_ARG(rx);
PERL_UNUSED_ARG(paren);
PERL_UNUSED_ARG(value);
if (!PL_localizing)
croak_no_modify();
}
I32
Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
const I32 paren)
{
struct regexp *const rx = ReANY(r);
I32 i,j;
I32 s1, t1;
I32 logical_nparens = rx->logical_nparens ? rx->logical_nparens : rx->nparens;
PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
if ( paren == RX_BUFF_IDX_CARET_PREMATCH
|| paren == RX_BUFF_IDX_CARET_FULLMATCH
|| paren == RX_BUFF_IDX_CARET_POSTMATCH
)
{
bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
if (!keepcopy) {
/* on something like
* $r = qr/.../;
* /$qr/p;
* the KEEPCOPY is set on the PMOP rather than the regex */
if (PL_curpm && r == PM_GETRE(PL_curpm))
keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
}
if (!keepcopy)
goto warn_undef;
}
/* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
switch (paren) {
case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
case RX_BUFF_IDX_PREMATCH: /* $` */
if ( (i = RXp_OFFS_START(rx,0)) != -1) {
if (i > 0) {
s1 = 0;
t1 = i;
goto getlen;
}
}
return 0;
case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
case RX_BUFF_IDX_POSTMATCH: /* $' */
if ( (j = RXp_OFFS_END(rx,0)) != -1 ) {
i = RXp_SUBLEN(rx) - j;
if (i > 0) {
s1 = j;
t1 = RXp_SUBLEN(rx);
goto getlen;
}
}
return 0;
default: /* $& / ${^MATCH}, $1, $2, ... */
if (paren <= logical_nparens) {
I32 true_paren = rx->logical_to_parno
? rx->logical_to_parno[paren]
: paren;
do {
if (((s1 = RXp_OFFS_START(rx,true_paren)) != -1) &&
((t1 = RXp_OFFS_END(rx,true_paren)) != -1))
{
i = t1 - s1;
goto getlen;
} else if (rx->parno_to_logical_next) {
true_paren = rx->parno_to_logical_next[true_paren];
} else {
break;
}
} while(true_paren);
}
warn_undef:
if (ckWARN(WARN_UNINITIALIZED))
report_uninit((const SV *)sv);
return 0;
}
getlen:
if (i > 0 && RXp_MATCH_UTF8(rx)) {
const char * const s = RXp_SUBBEG(rx) - RXp_SUBOFFSET(rx) + s1;
const U8 *ep;
STRLEN el;
i = t1 - s1;
if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
i = el;
}
return i;
}
/*
* ex: set ts=8 sts=4 sw=4 et:
*/
|