1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
|
use v5.16.0;
use strict;
use warnings;
use integer;
BEGIN { unshift @INC, '.' }
require './regen/regen_lib.pl';
require './regen/charset_translations.pl';
# Generates the EBCDIC translation tables that were formerly hard-coded into
# utfebcdic.h
my $out_fh = open_new('ebcdic_tables.h', '>',
{style => '*', by => $0, });
sub get_column_headers ($$;$) {
my ($row_hdr_len, $field_width, $dfa_columns) = @_;
my $format;
my $final_column_format;
my $num_columns;
if (defined $dfa_columns) {
$num_columns = $dfa_columns;
# Trailing blank to correspond with commas in the rows below
$format = "%${field_width}d ";
}
else { # Is a regular table
$num_columns = 16;
# Use blanks to separate the fields
$format = " " x ( $field_width
- 2); # For the '_X'
$format .= "_%X "; # Again, trailing blank over the commas below
}
my $header = "/*" . " " x ($row_hdr_len - length "/*");
# All but the final column
$header .= sprintf($format, $_) for 0 .. $num_columns - 2;
# Get rid of trailing blank, so that the final column takes up one less
# space so that the "*/" doesn't extend past the commas in the rows below
chop $header;
$header .= sprintf $format, $num_columns - 1;
# Again, remove trailing blank
chop $header;
return $header . "*/\n";
}
sub output_table_start($$$;$) {
my ($out_fh, $TYPE, $name, $size) = @_;
$size = "" unless defined $size;
# Anything locale related will be written on
my $const = ($name !~ /locale/i) ? 'CONST' : "";
my $declaration = "EXT$const $TYPE $name\[$size\]";
print $out_fh <<EOF;
# ifndef DOINIT
$declaration;
# else
$declaration = {
EOF
}
sub output_table_end($) {
print $out_fh "};\n# endif\n\n";
}
sub output_table ($$;$) {
my $table_ref = shift;
my $name = shift;
my $size = @$table_ref;
# 0 => print in decimal
# 1 => print in hex (translates code point to code point)
# >= 2 => is a dfa table, like https://bjoern.hoehrmann.de/utf-8/decoder/dfa/
# The number is how many columns in the part after the code point
# portion.
#
# code point tables in hex areasier to debug, but don't fit into 80
# columns
my $type = shift // 1;
my $print_in_hex = $type == 1;
my $is_dfa = ($type >= 2) ? $type : 0;
my $columns_after_256 = 16;
die "Requres 256 entries in table $name, got @$table_ref"
if ! $is_dfa && @$table_ref != 256;
if (! $is_dfa) {
die "Requres 256 entries in table $name, got @$table_ref"
if @$table_ref != 256;
}
else {
$columns_after_256 = $is_dfa;
print $out_fh <<'EOF';
/* The table below is adapted from
* https://bjoern.hoehrmann.de/utf-8/decoder/dfa/
* See copyright notice at the beginning of this file.
*/
EOF
}
# Highest number in the table
my $max_entry = 0;
$max_entry = map { $_ > $max_entry ? $_ : $max_entry } @$table_ref;
# We assume that every table has at least one two digit entry, and none
# are more than three digit.
my $field_width = ($print_in_hex)
? 4
: (($max_entry) > 99 ? 3 : 2);
my $row_hdr_length;
my $node_number_field_width;
my $node_value_field_width;
# dfa tables have a special header for the rows in the transitions part of
# the table. It is longer than the regular one.
if ($is_dfa) {
my $max_node_number = ($max_entry - 256) / $columns_after_256 - 1;
$node_number_field_width = ($max_node_number > 9) ? 2 : 1;
$node_value_field_width = ($max_node_number * $columns_after_256 > 99)
? 3 : 2;
# The header starts with this template, and adds in the number of
# digits needed to represent the maximum node number and its value
$row_hdr_length = length("/*N=*/")
+ $node_number_field_width
+ $node_value_field_width;
}
else {
$row_hdr_length = length "/*_X*/"; # Template for what the header
# looks like
}
# The table may not be representable in 8 bits.
my $TYPE = 'U8';
$TYPE = 'U16' if grep { $_ > 255 } @$table_ref;
output_table_start $out_fh, $TYPE, $name, $size;
# First the headers for the columns
print $out_fh get_column_headers($row_hdr_length, $field_width);
# Now the table body
my $count = @$table_ref;
my $last_was_nl = 1;
# Print each element individually, arranged in rows of columns
for my $i (0 .. $count - 1) {
# Node number for here is -1 until get into the dfa state transitions
my $node = ($i < 256) ? -1 : ($i - 256) / $columns_after_256;
# Print row header at beginning of each row
if ($last_was_nl) {
if ($node >= 0) {
printf $out_fh "/*N%-*d=%*d*/", $node_number_field_width, $node,
$node_value_field_width, $i - 256;
}
else { # Otherwise is regular row; print its number
printf $out_fh "/*%X_", $i / 16;
# These rows in a dfa table require extra space so columns
# will align vertically (because the Ndd=ddd requires extra
# space)
if ($is_dfa) {
print $out_fh " " x ( $node_number_field_width
+ $node_value_field_width);
}
print $out_fh "*/";
}
}
if ($print_in_hex) {
printf $out_fh "0x%02X", $table_ref->[$i];
}
else {
printf $out_fh "%${field_width}d", $table_ref->[$i];
}
print $out_fh ",", if $i < $count -1; # No comma on final entry
# Add \n if at end of row, which is 16 columns until we get to the
# transitions part
if ( ($node < 0 && $i % 16 == 15)
|| ($node >= 0 && ($i -256) % $columns_after_256
== $columns_after_256 - 1))
{
print $out_fh "\n";
$last_was_nl = 1;
}
else {
$last_was_nl = 0;
}
}
# Print column footer
print $out_fh get_column_headers($row_hdr_length, $field_width,
($is_dfa) ? $columns_after_256 : undef);
output_table_end($out_fh);
}
print $out_fh <<'END';
#ifndef PERL_EBCDIC_TABLES_H_ /* Guard against nested #includes */
#define PERL_EBCDIC_TABLES_H_ 1
/* This file contains definitions for various tables used in EBCDIC handling.
* More info is in utfebcdic.h
*
* Some of the tables are adapted from
* https://bjoern.hoehrmann.de/utf-8/decoder/dfa/
* which requires this copyright notice:
Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
END
my @charsets = get_supported_code_pages();
shift @charsets; # ASCII is the 0th, and we don't deal with that here.
foreach my $charset (@charsets) {
# we process the whole array several times, make a copy
my @a2e = @{get_a2n($charset)};
my @e2a;
print $out_fh "\n" . get_conditional_compile_line_start($charset);
print $out_fh "\n";
print $out_fh "/* Index is ASCII platform code point; value is $charset equivalent */\n";
output_table(\@a2e, "PL_a2e");
{ # Construct the inverse
for my $i (0 .. 255) {
$e2a[$a2e[$i]] = $i;
}
print $out_fh "/* Index is $charset code point; value is ASCII platform equivalent */\n";
output_table(\@e2a, "PL_e2a");
}
my @i82utf = @{get_I8_2_utf($charset)};
print $out_fh <<END;
/* (Confusingly named) Index is $charset I8 byte; value is
* $charset UTF-EBCDIC equivalent */
END
output_table(\@i82utf, "PL_utf2e");
{ #Construct the inverse
my @utf2i8;
for my $i (0 .. 255) {
$utf2i8[$i82utf[$i]] = $i;
}
print $out_fh <<END;
/* (Confusingly named) Index is $charset UTF-EBCDIC byte; value is
* $charset I8 equivalent */
END
output_table(\@utf2i8, "PL_e2utf");
}
{
my @utf8skip;
# These are invariants or continuation bytes.
for my $i (0 .. 0xBF) {
$utf8skip[$i82utf[$i]] = 1;
}
# These are start bytes; The skip is the number of consecutive highest
# order 1-bits (up to 7)
for my $i (0xC0 .. 255) {
my $count;
if ($i == 0b11111111) {
no warnings 'once';
$count = $CHARSET_TRANSLATIONS::UTF_EBCDIC_MAXBYTES;
}
elsif (($i & 0b11111110) == 0b11111110) {
$count= 7;
}
elsif (($i & 0b11111100) == 0b11111100) {
$count= 6;
}
elsif (($i & 0b11111000) == 0b11111000) {
$count= 5;
}
elsif (($i & 0b11110000) == 0b11110000) {
$count= 4;
}
elsif (($i & 0b11100000) == 0b11100000) {
$count= 3;
}
elsif (($i & 0b11000000) == 0b11000000) {
$count= 2;
}
else {
die "Something wrong for UTF8SKIP calculation for $i";
}
$utf8skip[$i82utf[$i]] = $count;
}
print $out_fh <<END;
/* Index is $charset UTF-EBCDIC byte; value is UTF8SKIP for start bytes
* (including for overlongs); 1 for continuation. Adapted from the shadow
* flags table in tr16. The entries marked 9 in tr16 are continuation bytes
* and are marked as length 1 here so that we can recover. */
END
output_table(\@utf8skip, "PL_utf8skip", 0); # The 0 means don't print
# in hex
}
use feature 'unicode_strings';
{
my @lc;
for my $i (0 .. 255) {
$lc[$a2e[$i]] = $a2e[ord lc chr $i];
}
print $out_fh
"/* Index is $charset code point; value is its lowercase equivalent */\n";
output_table(\@lc, "PL_latin1_lc");
}
{
my @uc;
for my $i (0 .. 255) {
my $uc = uc chr $i;
if (length $uc > 1 || ord $uc > 255) {
$uc = "\N{LATIN SMALL LETTER Y WITH DIAERESIS}";
}
$uc[$a2e[$i]] = $a2e[ord $uc];
}
print $out_fh <<END;
/* Index is $charset code point; value is its uppercase equivalent.
* The 'mod' in the name means that codepoints whose uppercase is above 255 or
* longer than 1 character map to LATIN SMALL LETTER Y WITH DIARESIS */
END
output_table(\@uc, "PL_mod_latin1_uc");
}
{ # PL_fold
my @ascii_fold;
for my $i (0 .. 255) { # Initialise to identity map
$ascii_fold[$i] = $i;
}
# Overwrite the entries that aren't identity
for my $chr ('A' .. 'Z') {
$ascii_fold[$a2e[ord $chr]] = $a2e[ord lc $chr];
}
for my $chr ('a' .. 'z') {
$ascii_fold[$a2e[ord $chr]] = $a2e[ord uc $chr];
}
print $out_fh <<END;
/* Index is $charset code point; For A-Z, value is a-z; for a-z, value
* is A-Z; all other code points map to themselves */
END
output_table(\@ascii_fold, "PL_fold");
}
{
my @latin1_fold;
for my $i (0 .. 255) {
my $char = chr $i;
my $lc = lc $char;
# lc and uc adequately proxy for fold-case pairs in this 0-255
# range
my $uc = uc $char;
$uc = $char if length $uc > 1 || ord $uc > 255;
if ($lc ne $char) {
$latin1_fold[$a2e[$i]] = $a2e[ord $lc];
}
elsif ($uc ne $char) {
$latin1_fold[$a2e[$i]] = $a2e[ord $uc];
}
else {
$latin1_fold[$a2e[$i]] = $a2e[$i];
}
}
print $out_fh <<END;
/* Index is $charset code point; value is its other fold-pair equivalent
* (A => a; a => A, etc) in the 0-255 range. If no such equivalent, value is
* the code point itself */
END
output_table(\@latin1_fold, "PL_fold_latin1");
}
{
# This generates the dfa table for perl extended UTF-8, which accepts
# surrogates, non-characters, and accepts start bytes up through FE
# (start byte FF has to be handled outside this dfa). The class numbers
# for start bytes are constrained so that they can be used as a shift
# count for masking off the leading one bits
#
# The classes are
# 00-9F 0
# A0-A1 7 Not legal immediately after start bytes F0 F8 FC
# FE
# A2-A3 8 Not legal immediately after start bytes F0 F8 FC
# A4-A7 9 Not legal immediately after start bytes F0 F8
# A8-AF 10 Not legal immediately after start bytes F0
# B0-BF 11
# C0-C4 1
# C5-DF 2
# E0 1
# E1-EF 3
# F0 12
# F1-F7 4
# F8 13
# F9-FB 5
# FC 14
# FD 6
# FE 15
# FF 1
#
# Here's the I8 for the code points before which overlongs occur:
# U+4000: \xF0\xB0\xA0\xA0
# U+40000: \xF8\xA8\xA0\xA0\xA0
# U+400000: \xFC\xA4\xA0\xA0\xA0\xA0
# U+4000000: \xFE\xA2\xA0\xA0\xA0\xA0\xA0
#
# The first part of the table maps bytes to character classes to reduce
# the size of the transition table and create bitmasks.
#
# The second part is a transition table that maps a combination of a
# state of the automaton and a character class to a new state. The
# numbering of the original nodes is retained, but some have been split
# so that there are new nodes. They mean:
# N0 The initial state, and final accepting one.
# N1 One continuation byte (A0-BF) left. This is transitioned to
# immediately when the start byte indicates a two-byte sequence
# N2 Two continuation bytes left.
# N3 Three continuation bytes left.
# N4 Four continuation bytes left.
# N5 Five continuation bytes left.
# N6 Start byte is F0. Continuation bytes A[0-F] are illegal
# (overlong); the other continuations transition to N2
# N7 Start byte is F8. Continuation bytes A[0-7] are illegal
# (overlong); the other continuations transition to N3
# N8 Start byte is FC. Continuation bytes A[0-3] are illegal
# (overlong); the other continuations transition to N4
# N9 Start byte is FE. Continuation bytes A[01] are illegal
# (overlong); the other continuations transition to N5
# 1 Reject. All transitions not mentioned above (except the single
# byte ones (as they are always legal) are to this state.
my $NUM_CLASSES = 16;
my $N0 = 0;
my $N1 = $N0 + $NUM_CLASSES;
my $N2 = $N1 + $NUM_CLASSES;
my $N3 = $N2 + $NUM_CLASSES;
my $N4 = $N3 + $NUM_CLASSES;
my $N5 = $N4 + $NUM_CLASSES;
my $N6 = $N5 + $NUM_CLASSES;
my $N7 = $N6 + $NUM_CLASSES;
my $N8 = $N7 + $NUM_CLASSES;
my $N9 = $N8 + $NUM_CLASSES;
my $N10 = $N9 + $NUM_CLASSES;
my @perl_extended_utf8_dfa;
my @i8 = (
# 0 1 2 3 4 5 6 7 8 9 A B C D E F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 00-0F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 10-1F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 20-2F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 30-3F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 40-4F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 50-5F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 60-6F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 70-7F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 80-8F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 90-9F
7, 7, 8, 8, 9, 9, 9, 9,10,10,10,10,10,10,10,10, # A0-AF
11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, # B0-BF
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, # C0-CF
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, # D0-DF
1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, # E0-EF
12, 4, 4, 4, 4, 4, 4, 4,13, 5, 5, 5,14, 6,15, 1, # F0-FF
);
$perl_extended_utf8_dfa[$i82utf[$_]] = $i8[$_] for (0 .. 255);
push @perl_extended_utf8_dfa, (
# Class:
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0, 1,$N1,$N2,$N3,$N4,$N5, 1, 1, 1, 1, 1,$N6,$N7,$N8,$N9, # N0
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, # N1
1, 1, 1, 1, 1, 1, 1,$N1,$N1,$N1,$N1,$N1, 1, 1, 1, 1, # N2
1, 1, 1, 1, 1, 1, 1,$N2,$N2,$N2,$N2,$N2, 1, 1, 1, 1, # N3
1, 1, 1, 1, 1, 1, 1,$N3,$N3,$N3,$N3,$N3, 1, 1, 1, 1, # N4
1, 1, 1, 1, 1, 1, 1,$N4,$N4,$N4,$N4,$N4, 1, 1, 1, 1, # N5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$N2, 1, 1, 1, 1, # N6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$N3,$N3, 1, 1, 1, 1, # N7
1, 1, 1, 1, 1, 1, 1, 1, 1,$N4,$N4,$N4, 1, 1, 1, 1, # N8
1, 1, 1, 1, 1, 1, 1, 1,$N5,$N5,$N5,$N5, 1, 1, 1, 1, # N9
);
output_table(\@perl_extended_utf8_dfa, "PL_extended_utf8_dfa_tab",
$NUM_CLASSES);
}
{
# This generates the dfa table for strict UTF-8, which rejects
# surrogates, non-characters, and above Unicode.
#
# The classes are
# 00-9F 0 Always legal at start
# A0 10 Not legal immediately after start bytes F0 F8
# A1 11 Not legal immediately after start bytes F0 F8,
# A2-A7 12 Not legal immediately after start bytes F0 F8 F9
# A8,AA,AC 13 Not legal immediately after start bytes F0 F9
# A9,AB,AD 14 Not legal immediately after start byte F0
# AE 15 Not legal immediately after start byte F0
# AF 16 Not legal immediately after start bytes F0
# B[0248AC] 17 Not legal immediately after start byte F9
# B[1359D] 18 Not legal immediately after start byte F9
# B6 19 Not legal immediately after start byte F9
# B7 20 Not legal immediately after start byte F9
# BE 21 Not legal immediately after start byte F9
# BF 22 Not legal immediately after start byte F9
# C0-C4 1 (reject, all are overlong)
# C5-DF 2 Accepts any legal continuation
# E0 1 (reject, all are overlong)
# E1-EF 3 Accepts any legal continuation
# F0 8 (has overlongs)
# F1 6 (has surrogates, non-chars)
# F2,F4,F6 4 Accepts any legal continuation
# F3,F5,F7 5 (has non-chars)
# F8 9 (has overlongs, non-chars)
# F9 7 (has non-chars, non-Unicode)
# FA-FF 1 (reject, all are non-Unicode)
#
# Here's the I8 for enough code points so that you can figure out what's
# going on:
#
# U+D800: \xF1\xB6\xA0\xA0
# U+DFFF: \xF1\xB7\xBF\xBF
# U+FDD0: \xF1\xBF\xAE\xB0
# U+FDEF: \xF1\xBF\xAF\xAF
# U+FFFE: \xF1\xBF\xBF\xBE
# U+1FFFE: \xF3\xBF\xBF\xBE
# U+2FFFE: \xF5\xBF\xBF\xBE
# U+3FFFE: \xF7\xBF\xBF\xBE
# U+4FFFE: \xF8\xA9\xBF\xBF\xBE
# U+5FFFE: \xF8\xAB\xBF\xBF\xBE
# U+6FFFE: \xF8\xAD\xBF\xBF\xBE
# U+7FFFE: \xF8\xAF\xBF\xBF\xBE
# U+8FFFE: \xF8\xB1\xBF\xBF\xBE
# U+9FFFE: \xF8\xB3\xBF\xBF\xBE
# U+AFFFE: \xF8\xB5\xBF\xBF\xBE
# U+BFFFE: \xF8\xB7\xBF\xBF\xBE
# U+CFFFE: \xF8\xB9\xBF\xBF\xBE
# U+DFFFE: \xF8\xBB\xBF\xBF\xBE
# U+EFFFE: \xF8\xBD\xBF\xBF\xBE
# U+FFFFE: \xF8\xBF\xBF\xBF\xBE
# U+10FFFE: \xF9\xA1\xBF\xBF\xBE
#
# The first part of the table maps bytes to character classes to reduce
# the size of the transition table and create bitmasks.
#
# The second part is a transition table that maps a combination of a
# state of the automaton and a character class to a new state. The
# numbering of the original nodes is retained, but some have been split
# so that there are new nodes. They mean:
# N0 The initial state, and final accepting one.
# N1 One continuation byte (A0-BF) left. This is transitioned to
# immediately when the start byte indicates a two-byte sequence
# N2 Two continuation bytes left.
# N3 Three continuation bytes left.
# N4 Start byte is F0. Continuation bytes A[0-F] are illegal
# (overlong); the other continuations transition to N2
# N5 Start byte is F1. Continuation bytes B6 and B7 are illegal
# (surrogates); BF transitions to N9; the other continuations to
# N2
# N6 Start byte is F[357]. Continuation byte BF transitions to N12;
# other continuations to N2
# N7 Start byte is F8. Continuation bytes A[0-7] are illegal
# (overlong); continuations A[9BDF] and B[13579BDF] transition to
# N14; the other continuations to N3
# N8 Start byte is F9. Continuation byte A0 transitions to N3; A1
# to N14; the other continuation bytes are illegal.
# N9 Initial sequence is F1 BF. Continuation byte AE transitions to
# state N10; AF to N11; BF to N13; the other continuations to N1.
# N10 Initial sequence is F1 BF AE. Continuation bytes B0-BF are
# illegal (non-chars); the other continuations are legal
# N11 Initial sequence is F1 BF AF. Continuation bytes A0-AF are
# illegal (non-chars); the other continuations are legal
# N12 Initial sequence is F[357] BF. Continuation bytes BF
# transitions to N13; the other continuations to N1
# N13 Initial sequence is F[1357] BF BF or F8 x y BF (where x and y
# are something that can lead to a non-char. Continuation bytes
# BE and BF are illegal (non-chars); the other continuations are
# legal
# N14 Initial sequence is F8 A[9BDF]; or F8 B[13579BDF]; or F9 A1.
# Continuation byte BF transitions to N15; the other
# continuations to N2
# N15 Initial sequence is F8 A[9BDF] BF; or F8 B[13579BDF] BF; or
# F9 A1 BF. Continuation byte BF transitions to N16; the other
# continuations to N2
# N16 Initial sequence is F8 A[9BDF] BF BF; or F8 B[13579BDF] BF BF;
# or F9 A1 BF BF. Continuation bytes BE and BF are illegal
# (non-chars); the other continuations are legal
# 1 Reject. All transitions not mentioned above (except the single
# byte ones (as they are always legal) are to this state.
my $NUM_CLASSES = 23;
my $N0 = 0;
my $N1 = $N0 + $NUM_CLASSES;
my $N2 = $N1 + $NUM_CLASSES;
my $N3 = $N2 + $NUM_CLASSES;
my $N4 = $N3 + $NUM_CLASSES;
my $N5 = $N4 + $NUM_CLASSES;
my $N6 = $N5 + $NUM_CLASSES;
my $N7 = $N6 + $NUM_CLASSES;
my $N8 = $N7 + $NUM_CLASSES;
my $N9 = $N8 + $NUM_CLASSES;
my $N10 = $N9 + $NUM_CLASSES;
my $N11 = $N10 + $NUM_CLASSES;
my $N12 = $N11 + $NUM_CLASSES;
my $N13 = $N12 + $NUM_CLASSES;
my $N14 = $N13 + $NUM_CLASSES;
my $N15 = $N14 + $NUM_CLASSES;
my @strict_utf8_dfa;
my @i8 = (
# 0 1 2 3 4 5 6 7 8 9 A B C D E F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 00-0F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 10-1F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 20-2F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 30-3F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 40-4F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 50-5F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 60-6F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 70-7F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 80-8F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 90-9F
10,11,12,12,12,12,12,12,13,14,13,14,13,14,15,16, # A0-AF
17,18,17,18,17,18,19,20,17,18,17,18,17,18,21,22, # B0-BF
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, # C0-CF
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, # D0-DF
1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, # E0-EF
8, 6, 4, 5, 4, 5, 4, 5, 9, 7, 1, 1, 1, 1, 1, 1, # F0-FF
);
$strict_utf8_dfa[$i82utf[$_]] = $i8[$_] for (0 .. 255);
push @strict_utf8_dfa, (
# Class:
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0,1,$N1,$N2,$N3,$N6,$N5,$N8,$N4,$N7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # N0
1,1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # N1
1,1, 1, 1, 1, 1, 1, 1, 1, 1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, # N2
1,1, 1, 1, 1, 1, 1, 1, 1, 1, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, # N3
1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, $N2, $N2, $N2, $N2, $N2, $N2, # N4
1,1, 1, 1, 1, 1, 1, 1, 1, 1, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, 1, 1, $N2, $N9, # N5
1,1, 1, 1, 1, 1, 1, 1, 1, 1, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2,$N12, # N6
1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, $N3,$N14, $N3,$N14, $N3,$N14, $N3,$N14, $N3,$N14, # N7
1,1, 1, 1, 1, 1, 1, 1, 1, 1, $N3,$N14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # N8
1,1, 1, 1, 1, 1, 1, 1, 1, 1, $N1, $N1, $N1, $N1, $N1,$N10,$N11, $N1, $N1, $N1, $N1, $N1,$N13, # N9
1,1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, # N10
1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, # N11
1,1, 1, 1, 1, 1, 1, 1, 1, 1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1,$N13, # N12
1,1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, # N13
1,1, 1, 1, 1, 1, 1, 1, 1, 1, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2, $N2,$N15, # N14
1,1, 1, 1, 1, 1, 1, 1, 1, 1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1, $N1,$N13, # N15
);
output_table(\@strict_utf8_dfa, "PL_strict_utf8_dfa_tab", $NUM_CLASSES);
}
{
# This generates the dfa table for C9 strict UTF-8, which rejects
# surrogates and above Unicode, but allows non-characters,.
#
# The classes are
# 00-9F 0 Always legal at start
# A0-A1 9 Not legal immediately after start bytes F0 F8
# A2-A7 10 Not legal immediately after start bytes F0 F8 F9
# A8-AF 11 Not legal immediately after start bytes F0 F9
# B0-B5,B8-BF 12 Not legal immediately after start byte F9
# B6,B7 13
# C0-C4 1 (reject, all are overlong)
# C5-DF 2 Accepts any legal continuation
# E0 1 (reject, all are overlong)
# E1-EF 3 Accepts any legal continuation
# F0 6 (has overlongs)
# F1 5 (has surrogates)
# F2-F7 4 Accepts any legal continuation
# F8 8 (has overlongs)
# F9 7 (has non-Unicode)
# FA-FF 1 (reject, all are non-Unicode)
#
# The first part of the table maps bytes to character classes to reduce
# the size of the transition table and create bitmasks.
#
# The second part is a transition table that maps a combination of a
# state of the automaton and a character class to a new state. The
# numbering of the original nodes is retained, but some have been split
# so that there are new nodes. They mean:
# N0 The initial state, and final accepting one.
# N1 One continuation byte (A0-BF) left. This is transitioned to
# immediately when the start byte indicates a two-byte sequence
# N2 Two continuation bytes left.
# N3 Three continuation bytes left.
# N4 Start byte is F0. Continuation bytes A[0-F] are illegal
# (overlong); the other continuations transition to N2
# N5 Start byte is F1. B6 and B7 are illegal (surrogates); the
# other continuations transition to N2
# N6 Start byte is F8. Continuation bytes A[0-7] are illegal
# (overlong); the other continuations transition to N3
# N7 Start byte is F9. Continuation bytes A0 and A1 transition to
# N3; the other continuation bytes are illegal (non-Unicode)
# 1 Reject. All transitions not mentioned above (except the single
# byte ones (as they are always legal) are to this state.
my $NUM_CLASSES = 14;
my $N0 = 0;
my $N1 = $N0 + $NUM_CLASSES;
my $N2 = $N1 + $NUM_CLASSES;
my $N3 = $N2 + $NUM_CLASSES;
my $N4 = $N3 + $NUM_CLASSES;
my $N5 = $N4 + $NUM_CLASSES;
my $N6 = $N5 + $NUM_CLASSES;
my $N7 = $N6 + $NUM_CLASSES;
my @C9_utf8_dfa;
my @i8 = (
# 0 1 2 3 4 5 6 7 8 9 A B C D E F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 00-0F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 10-1F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 20-2F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 30-3F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 40-4F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 50-5F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 60-6F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 70-7F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 80-8F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 90-9F
9, 9,10,10,10,10,10,10,11,11,11,11,11,11,11,11, # A0-AF
12,12,12,12,12,12,13,13,12,12,12,12,12,12,12,12, # B0-BF
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, # C0-CF
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, # D0-DF
1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, # E0-EF
6, 5, 4, 4, 4, 4, 4, 4, 8, 7, 1, 1, 1, 1, 1, 1, # F0-FF
);
$C9_utf8_dfa[$i82utf[$_]] = $i8[$_] for (0 .. 255);
push @C9_utf8_dfa, (
# Class:
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0,1,$N1,$N2,$N3,$N5,$N4,$N7,$N6, 1, 1, 1, 1, 1, # N0
1,1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, # N1
1,1, 1, 1, 1, 1, 1, 1, 1,$N1, $N1, $N1, $N1, $N1, # N2
1,1, 1, 1, 1, 1, 1, 1, 1,$N2, $N2, $N2, $N2, $N2, # N3
1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, $N2, $N2, # N4
1,1, 1, 1, 1, 1, 1, 1, 1,$N2, $N2, $N2, $N2, 1, # N5
1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, $N3, $N3, $N3, # N6
1,1, 1, 1, 1, 1, 1, 1, 1,$N3, 1, 1, 1, 1, # N7
);
output_table(\@C9_utf8_dfa, "PL_c9_utf8_dfa_tab", $NUM_CLASSES);
}
print $out_fh get_conditional_compile_line_end();
}
print $out_fh "\n#endif /* PERL_EBCDIC_TABLES_H_ */\n";
read_only_bottom_close_and_rename($out_fh);
|