1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
|
package Math::BigFloat;
#
# Mike grinned. 'Two down, infinity to go' - Mike Nostrus in 'Before and After'
#
# The following hash values are internally used:
# _e : exponent (ref to $CALC object)
# _m : mantissa (ref to $CALC object)
# _es : sign of _e
# sign : +,-,+inf,-inf, or "NaN" if not a number
# _a : accuracy
# _p : precision
$VERSION = '1.44';
require 5.005;
require Exporter;
@ISA = qw(Exporter Math::BigInt);
use strict;
# $_trap_inf and $_trap_nan are internal and should never be accessed from the outside
use vars qw/$AUTOLOAD $accuracy $precision $div_scale $round_mode $rnd_mode
$upgrade $downgrade $_trap_nan $_trap_inf/;
my $class = "Math::BigFloat";
use overload
'<=>' => sub { $_[2] ?
ref($_[0])->bcmp($_[1],$_[0]) :
ref($_[0])->bcmp($_[0],$_[1])},
'int' => sub { $_[0]->as_number() }, # 'trunc' to bigint
;
##############################################################################
# global constants, flags and assorted stuff
# the following are public, but their usage is not recommended. Use the
# accessor methods instead.
# class constants, use Class->constant_name() to access
$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
$accuracy = undef;
$precision = undef;
$div_scale = 40;
$upgrade = undef;
$downgrade = undef;
# the package we are using for our private parts, defaults to:
# Math::BigInt->config()->{lib}
my $MBI = 'Math::BigInt::Calc';
# are NaNs ok? (otherwise it dies when encountering an NaN) set w/ config()
$_trap_nan = 0;
# the same for infinity
$_trap_inf = 0;
# constant for easier life
my $nan = 'NaN';
my $IMPORT = 0; # was import() called yet? used to make require work
# some digits of accuracy for blog(undef,10); which we use in blog() for speed
my $LOG_10 =
'2.3025850929940456840179914546843642076011014886287729760333279009675726097';
my $LOG_10_A = length($LOG_10)-1;
# ditto for log(2)
my $LOG_2 =
'0.6931471805599453094172321214581765680755001343602552541206800094933936220';
my $LOG_2_A = length($LOG_2)-1;
my $HALF = '0.5'; # made into an object if necc.
##############################################################################
# the old code had $rnd_mode, so we need to support it, too
sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; }
sub FETCH { return $round_mode; }
sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); }
BEGIN
{
# when someone set's $rnd_mode, we catch this and check the value to see
# whether it is valid or not.
$rnd_mode = 'even'; tie $rnd_mode, 'Math::BigFloat';
}
##############################################################################
{
# valid method aliases for AUTOLOAD
my %methods = map { $_ => 1 }
qw / fadd fsub fmul fdiv fround ffround fsqrt fmod fstr fsstr fpow fnorm
fint facmp fcmp fzero fnan finf finc fdec flog ffac
fceil ffloor frsft flsft fone flog froot
/;
# valid method's that can be hand-ed up (for AUTOLOAD)
my %hand_ups = map { $_ => 1 }
qw / is_nan is_inf is_negative is_positive is_pos is_neg
accuracy precision div_scale round_mode fneg fabs fnot
objectify upgrade downgrade
bone binf bnan bzero
/;
sub method_alias { exists $methods{$_[0]||''}; }
sub method_hand_up { exists $hand_ups{$_[0]||''}; }
}
##############################################################################
# constructors
sub new
{
# create a new BigFloat object from a string or another bigfloat object.
# _e: exponent
# _m: mantissa
# sign => sign (+/-), or "NaN"
my ($class,$wanted,@r) = @_;
# avoid numify-calls by not using || on $wanted!
return $class->bzero() if !defined $wanted; # default to 0
return $wanted->copy() if UNIVERSAL::isa($wanted,'Math::BigFloat');
$class->import() if $IMPORT == 0; # make require work
my $self = {}; bless $self, $class;
# shortcut for bigints and its subclasses
if ((ref($wanted)) && (ref($wanted) ne $class))
{
$self->{_m} = $wanted->as_number()->{value}; # get us a bigint copy
$self->{_e} = $MBI->_zero();
$self->{_es} = '+';
$self->{sign} = $wanted->sign();
return $self->bnorm();
}
# got string
# handle '+inf', '-inf' first
if ($wanted =~ /^[+-]?inf$/)
{
return $downgrade->new($wanted) if $downgrade;
$self->{_e} = $MBI->_zero();
$self->{_es} = '+';
$self->{_m} = $MBI->_zero();
$self->{sign} = $wanted;
$self->{sign} = '+inf' if $self->{sign} eq 'inf';
return $self->bnorm();
}
my ($mis,$miv,$mfv,$es,$ev) = Math::BigInt::_split($wanted);
if (!ref $mis)
{
if ($_trap_nan)
{
require Carp;
Carp::croak ("$wanted is not a number initialized to $class");
}
return $downgrade->bnan() if $downgrade;
$self->{_e} = $MBI->_zero();
$self->{_es} = '+';
$self->{_m} = $MBI->_zero();
$self->{sign} = $nan;
}
else
{
# make integer from mantissa by adjusting exp, then convert to int
$self->{_e} = $MBI->_new($$ev); # exponent
$self->{_es} = $$es || '+';
my $mantissa = "$$miv$$mfv"; # create mant.
$mantissa =~ s/^0+(\d)/$1/; # strip leading zeros
$self->{_m} = $MBI->_new($mantissa); # create mant.
# 3.123E0 = 3123E-3, and 3.123E-2 => 3123E-5
if (CORE::length($$mfv) != 0)
{
my $len = $MBI->_new( CORE::length($$mfv));
($self->{_e}, $self->{_es}) =
_e_sub ($self->{_e}, $len, $self->{_es}, '+');
}
$self->{sign} = $$mis;
# we can only have trailing zeros on the mantissa of $$mfv eq ''
if (CORE::length($$mfv) == 0)
{
my $zeros = $MBI->_zeros($self->{_m}); # correct for trailing zeros
if ($zeros != 0)
{
my $z = $MBI->_new($zeros);
$MBI->_rsft ( $self->{_m}, $z, 10);
_e_add ( $self->{_e}, $z, $self->{_es}, '+');
}
}
# for something like 0Ey, set y to 1, and -0 => +0
$self->{sign} = '+', $self->{_e} = $MBI->_one()
if $MBI->_is_zero($self->{_m});
return $self->round(@r) if !$downgrade;
}
# if downgrade, inf, NaN or integers go down
if ($downgrade && $self->{_es} eq '+')
{
if ($MBI->_is_zero( $self->{_e} ))
{
return $downgrade->new($$mis . $MBI->_str( $self->{_m} ));
}
return $downgrade->new($self->bsstr());
}
$self->bnorm()->round(@r); # first normalize, then round
}
sub copy
{
my ($c,$x);
if (@_ > 1)
{
# if two arguments, the first one is the class to "swallow" subclasses
($c,$x) = @_;
}
else
{
$x = shift;
$c = ref($x);
}
return unless ref($x); # only for objects
my $self = {}; bless $self,$c;
$self->{sign} = $x->{sign};
$self->{_es} = $x->{_es};
$self->{_m} = $MBI->_copy($x->{_m});
$self->{_e} = $MBI->_copy($x->{_e});
$self->{_a} = $x->{_a} if defined $x->{_a};
$self->{_p} = $x->{_p} if defined $x->{_p};
$self;
}
sub _bnan
{
# used by parent class bone() to initialize number to NaN
my $self = shift;
if ($_trap_nan)
{
require Carp;
my $class = ref($self);
Carp::croak ("Tried to set $self to NaN in $class\::_bnan()");
}
$IMPORT=1; # call our import only once
$self->{_m} = $MBI->_zero();
$self->{_e} = $MBI->_zero();
$self->{_es} = '+';
}
sub _binf
{
# used by parent class bone() to initialize number to +-inf
my $self = shift;
if ($_trap_inf)
{
require Carp;
my $class = ref($self);
Carp::croak ("Tried to set $self to +-inf in $class\::_binf()");
}
$IMPORT=1; # call our import only once
$self->{_m} = $MBI->_zero();
$self->{_e} = $MBI->_zero();
$self->{_es} = '+';
}
sub _bone
{
# used by parent class bone() to initialize number to 1
my $self = shift;
$IMPORT=1; # call our import only once
$self->{_m} = $MBI->_one();
$self->{_e} = $MBI->_zero();
$self->{_es} = '+';
}
sub _bzero
{
# used by parent class bone() to initialize number to 0
my $self = shift;
$IMPORT=1; # call our import only once
$self->{_m} = $MBI->_zero();
$self->{_e} = $MBI->_one();
$self->{_es} = '+';
}
sub isa
{
my ($self,$class) = @_;
return if $class =~ /^Math::BigInt/; # we aren't one of these
UNIVERSAL::isa($self,$class);
}
sub config
{
# return (later set?) configuration data as hash ref
my $class = shift || 'Math::BigFloat';
my $cfg = $class->SUPER::config(@_);
# now we need only to override the ones that are different from our parent
$cfg->{class} = $class;
$cfg->{with} = $MBI;
$cfg;
}
##############################################################################
# string conversation
sub bstr
{
# (ref to BFLOAT or num_str ) return num_str
# Convert number from internal format to (non-scientific) string format.
# internal format is always normalized (no leading zeros, "-0" => "+0")
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my $es = '0'; my $len = 1; my $cad = 0; my $dot = '.';
# $x is zero?
my $not_zero = !($x->{sign} eq '+' && $MBI->_is_zero($x->{_m}));
if ($not_zero)
{
$es = $MBI->_str($x->{_m});
$len = CORE::length($es);
my $e = $MBI->_num($x->{_e});
$e = -$e if $x->{_es} eq '-';
if ($e < 0)
{
$dot = '';
# if _e is bigger than a scalar, the following will blow your memory
if ($e <= -$len)
{
my $r = abs($e) - $len;
$es = '0.'. ('0' x $r) . $es; $cad = -($len+$r);
}
else
{
substr($es,$e,0) = '.'; $cad = $MBI->_num($x->{_e});
$cad = -$cad if $x->{_es} eq '-';
}
}
elsif ($e > 0)
{
# expand with zeros
$es .= '0' x $e; $len += $e; $cad = 0;
}
} # if not zero
$es = '-'.$es if $x->{sign} eq '-';
# if set accuracy or precision, pad with zeros on the right side
if ((defined $x->{_a}) && ($not_zero))
{
# 123400 => 6, 0.1234 => 4, 0.001234 => 4
my $zeros = $x->{_a} - $cad; # cad == 0 => 12340
$zeros = $x->{_a} - $len if $cad != $len;
$es .= $dot.'0' x $zeros if $zeros > 0;
}
elsif ((($x->{_p} || 0) < 0))
{
# 123400 => 6, 0.1234 => 4, 0.001234 => 6
my $zeros = -$x->{_p} + $cad;
$es .= $dot.'0' x $zeros if $zeros > 0;
}
$es;
}
sub bsstr
{
# (ref to BFLOAT or num_str ) return num_str
# Convert number from internal format to scientific string format.
# internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my $sep = 'e'.$x->{_es};
my $sign = $x->{sign}; $sign = '' if $sign eq '+';
$sign . $MBI->_str($x->{_m}) . $sep . $MBI->_str($x->{_e});
}
sub numify
{
# Make a number from a BigFloat object
# simple return a string and let Perl's atoi()/atof() handle the rest
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->bsstr();
}
##############################################################################
# public stuff (usually prefixed with "b")
# tels 2001-08-04
# XXX TODO this must be overwritten and return NaN for non-integer values
# band(), bior(), bxor(), too
#sub bnot
# {
# $class->SUPER::bnot($class,@_);
# }
sub bcmp
{
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
# set up parameters
my ($self,$x,$y) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y) = objectify(2,@_);
}
return $upgrade->bcmp($x,$y) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if ($x->{sign} eq $y->{sign}) && ($x->{sign} =~ /^[+-]inf$/);
return +1 if $x->{sign} eq '+inf';
return -1 if $x->{sign} eq '-inf';
return -1 if $y->{sign} eq '+inf';
return +1;
}
# check sign for speed first
return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
# shortcut
my $xz = $x->is_zero();
my $yz = $y->is_zero();
return 0 if $xz && $yz; # 0 <=> 0
return -1 if $xz && $y->{sign} eq '+'; # 0 <=> +y
return 1 if $yz && $x->{sign} eq '+'; # +x <=> 0
# adjust so that exponents are equal
my $lxm = $MBI->_len($x->{_m});
my $lym = $MBI->_len($y->{_m});
# the numify somewhat limits our length, but makes it much faster
my ($xes,$yes) = (1,1);
$xes = -1 if $x->{_es} ne '+';
$yes = -1 if $y->{_es} ne '+';
my $lx = $lxm + $xes * $MBI->_num($x->{_e});
my $ly = $lym + $yes * $MBI->_num($y->{_e});
my $l = $lx - $ly; $l = -$l if $x->{sign} eq '-';
return $l <=> 0 if $l != 0;
# lengths (corrected by exponent) are equal
# so make mantissa equal length by padding with zero (shift left)
my $diff = $lxm - $lym;
my $xm = $x->{_m}; # not yet copy it
my $ym = $y->{_m};
if ($diff > 0)
{
$ym = $MBI->_copy($y->{_m});
$ym = $MBI->_lsft($ym, $MBI->_new($diff), 10);
}
elsif ($diff < 0)
{
$xm = $MBI->_copy($x->{_m});
$xm = $MBI->_lsft($xm, $MBI->_new(-$diff), 10);
}
my $rc = $MBI->_acmp($xm,$ym);
$rc = -$rc if $x->{sign} eq '-'; # -124 < -123
$rc <=> 0;
}
sub bacmp
{
# Compares 2 values, ignoring their signs.
# Returns one of undef, <0, =0, >0. (suitable for sort)
# set up parameters
my ($self,$x,$y) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y) = objectify(2,@_);
}
return $upgrade->bacmp($x,$y) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
# handle +-inf and NaN's
if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/)
{
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if ($x->is_inf() && $y->is_inf());
return 1 if ($x->is_inf() && !$y->is_inf());
return -1;
}
# shortcut
my $xz = $x->is_zero();
my $yz = $y->is_zero();
return 0 if $xz && $yz; # 0 <=> 0
return -1 if $xz && !$yz; # 0 <=> +y
return 1 if $yz && !$xz; # +x <=> 0
# adjust so that exponents are equal
my $lxm = $MBI->_len($x->{_m});
my $lym = $MBI->_len($y->{_m});
my ($xes,$yes) = (1,1);
$xes = -1 if $x->{_es} ne '+';
$yes = -1 if $y->{_es} ne '+';
# the numify somewhat limits our length, but makes it much faster
my $lx = $lxm + $xes * $MBI->_num($x->{_e});
my $ly = $lym + $yes * $MBI->_num($y->{_e});
my $l = $lx - $ly;
return $l <=> 0 if $l != 0;
# lengths (corrected by exponent) are equal
# so make mantissa equal-length by padding with zero (shift left)
my $diff = $lxm - $lym;
my $xm = $x->{_m}; # not yet copy it
my $ym = $y->{_m};
if ($diff > 0)
{
$ym = $MBI->_copy($y->{_m});
$ym = $MBI->_lsft($ym, $MBI->_new($diff), 10);
}
elsif ($diff < 0)
{
$xm = $MBI->_copy($x->{_m});
$xm = $MBI->_lsft($xm, $MBI->_new(-$diff), 10);
}
$MBI->_acmp($xm,$ym);
}
sub badd
{
# add second arg (BFLOAT or string) to first (BFLOAT) (modifies first)
# return result as BFLOAT
# set up parameters
my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$a,$p,$r) = objectify(2,@_);
}
# inf and NaN handling
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# NaN first
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
# +inf++inf or -inf+-inf => same, rest is NaN
return $x if $x->{sign} eq $y->{sign};
return $x->bnan();
}
# +-inf + something => +inf; something +-inf => +-inf
$x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
return $x;
}
return $upgrade->badd($x,$y,$a,$p,$r) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
# speed: no add for 0+y or x+0
return $x->bround($a,$p,$r) if $y->is_zero(); # x+0
if ($x->is_zero()) # 0+y
{
# make copy, clobbering up x (modify in place!)
$x->{_e} = $MBI->_copy($y->{_e});
$x->{_es} = $y->{_es};
$x->{_m} = $MBI->_copy($y->{_m});
$x->{sign} = $y->{sign} || $nan;
return $x->round($a,$p,$r,$y);
}
# take lower of the two e's and adapt m1 to it to match m2
my $e = $y->{_e};
$e = $MBI->_zero() if !defined $e; # if no BFLOAT?
$e = $MBI->_copy($e); # make copy (didn't do it yet)
my $es;
($e,$es) = _e_sub($e, $x->{_e}, $y->{_es} || '+', $x->{_es});
my $add = $MBI->_copy($y->{_m});
if ($es eq '-') # < 0
{
$MBI->_lsft( $x->{_m}, $e, 10);
($x->{_e},$x->{_es}) = _e_add($x->{_e}, $e, $x->{_es}, $es);
}
elsif (!$MBI->_is_zero($e)) # > 0
{
$MBI->_lsft($add, $e, 10);
}
# else: both e are the same, so just leave them
if ($x->{sign} eq $y->{sign})
{
# add
$x->{_m} = $MBI->_add($x->{_m}, $add);
}
else
{
($x->{_m}, $x->{sign}) =
_e_add($x->{_m}, $add, $x->{sign}, $y->{sign});
}
# delete trailing zeros, then round
$x->bnorm()->round($a,$p,$r,$y);
}
sub bsub
{
# (BigFloat or num_str, BigFloat or num_str) return BigFloat
# subtract second arg from first, modify first
# set up parameters
my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$a,$p,$r) = objectify(2,@_);
}
if ($y->is_zero()) # still round for not adding zero
{
return $x->round($a,$p,$r);
}
# $x - $y = -$x + $y
$y->{sign} =~ tr/+-/-+/; # does nothing for NaN
$x->badd($y,$a,$p,$r); # badd does not leave internal zeros
$y->{sign} =~ tr/+-/-+/; # refix $y (does nothing for NaN)
$x; # already rounded by badd()
}
sub binc
{
# increment arg by one
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
if ($x->{_es} eq '-')
{
return $x->badd($self->bone(),@r); # digits after dot
}
if (!$MBI->_is_zero($x->{_e})) # _e == 0 for NaN, inf, -inf
{
# 1e2 => 100, so after the shift below _m has a '0' as last digit
$x->{_m} = $MBI->_lsft($x->{_m}, $x->{_e},10); # 1e2 => 100
$x->{_e} = $MBI->_zero(); # normalize
$x->{_es} = '+';
# we know that the last digit of $x will be '1' or '9', depending on the
# sign
}
# now $x->{_e} == 0
if ($x->{sign} eq '+')
{
$MBI->_inc($x->{_m});
return $x->bnorm()->bround(@r);
}
elsif ($x->{sign} eq '-')
{
$MBI->_dec($x->{_m});
$x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # -1 +1 => -0 => +0
return $x->bnorm()->bround(@r);
}
# inf, nan handling etc
$x->badd($self->bone(),@r); # badd() does round
}
sub bdec
{
# decrement arg by one
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
if ($x->{_es} eq '-')
{
return $x->badd($self->bone('-'),@r); # digits after dot
}
if (!$MBI->_is_zero($x->{_e}))
{
$x->{_m} = $MBI->_lsft($x->{_m}, $x->{_e},10); # 1e2 => 100
$x->{_e} = $MBI->_zero(); # normalize
$x->{_es} = '+';
}
# now $x->{_e} == 0
my $zero = $x->is_zero();
# <= 0
if (($x->{sign} eq '-') || $zero)
{
$MBI->_inc($x->{_m});
$x->{sign} = '-' if $zero; # 0 => 1 => -1
$x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # -1 +1 => -0 => +0
return $x->bnorm()->round(@r);
}
# > 0
elsif ($x->{sign} eq '+')
{
$MBI->_dec($x->{_m});
return $x->bnorm()->round(@r);
}
# inf, nan handling etc
$x->badd($self->bone('-'),@r); # does round
}
sub DEBUG () { 0; }
sub blog
{
my ($self,$x,$base,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
# $base > 0, $base != 1; if $base == undef default to $base == e
# $x >= 0
# we need to limit the accuracy to protect against overflow
my $fallback = 0;
my ($scale,@params);
($x,@params) = $x->_find_round_parameters($a,$p,$r);
# also takes care of the "error in _find_round_parameters?" case
return $x->bnan() if $x->{sign} ne '+' || $x->is_zero();
# no rounding at all, so must use fallback
if (scalar @params == 0)
{
# simulate old behaviour
$params[0] = $self->div_scale(); # and round to it as accuracy
$params[1] = undef; # P = undef
$scale = $params[0]+4; # at least four more for proper round
$params[2] = $r; # round mode by caller or undef
$fallback = 1; # to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it is not
# enough...
$scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
}
return $x->bzero(@params) if $x->is_one();
# base not defined => base == Euler's constant e
if (defined $base)
{
# make object, since we don't feed it through objectify() to still get the
# case of $base == undef
$base = $self->new($base) unless ref($base);
# $base > 0; $base != 1
return $x->bnan() if $base->is_zero() || $base->is_one() ||
$base->{sign} ne '+';
# if $x == $base, we know the result must be 1.0
return $x->bone('+',@params) if $x->bcmp($base) == 0;
}
# when user set globals, they would interfere with our calculation, so
# disable them and later re-enable them
no strict 'refs';
my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
# we also need to disable any set A or P on $x (_find_round_parameters took
# them already into account), since these would interfere, too
delete $x->{_a}; delete $x->{_p};
# need to disable $upgrade in BigInt, to avoid deep recursion
local $Math::BigInt::upgrade = undef;
local $Math::BigFloat::downgrade = undef;
# upgrade $x if $x is not a BigFloat (handle BigInt input)
if (!$x->isa('Math::BigFloat'))
{
$x = Math::BigFloat->new($x);
$self = ref($x);
}
my $done = 0;
# If the base is defined and an integer, try to calculate integer result
# first. This is very fast, and in case the real result was found, we can
# stop right here.
if (defined $base && $base->is_int() && $x->is_int())
{
my $i = $MBI->_copy( $x->{_m} );
$MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
my $int = Math::BigInt->bzero();
$int->{value} = $i;
$int->blog($base->as_number());
# if ($exact)
if ($base->as_number()->bpow($int) == $x)
{
# found result, return it
$x->{_m} = $int->{value};
$x->{_e} = $MBI->_zero();
$x->{_es} = '+';
$x->bnorm();
$done = 1;
}
}
if ($done == 0)
{
# first calculate the log to base e (using reduction by 10 (and probably 2))
$self->_log_10($x,$scale);
# and if a different base was requested, convert it
if (defined $base)
{
$base = Math::BigFloat->new($base) unless $base->isa('Math::BigFloat');
# not ln, but some other base (don't modify $base)
$x->bdiv( $base->copy()->blog(undef,$scale), $scale );
}
}
# shortcut to not run through _find_round_parameters again
if (defined $params[0])
{
$x->bround($params[0],$params[2]); # then round accordingly
}
else
{
$x->bfround($params[1],$params[2]); # then round accordingly
}
if ($fallback)
{
# clear a/p after round, since user did not request it
delete $x->{_a}; delete $x->{_p};
}
# restore globals
$$abr = $ab; $$pbr = $pb;
$x;
}
sub _log
{
# internal log function to calculate ln() based on Taylor series.
# Modifies $x in place.
my ($self,$x,$scale) = @_;
# in case of $x == 1, result is 0
return $x->bzero() if $x->is_one();
# http://www.efunda.com/math/taylor_series/logarithmic.cfm?search_string=log
# u = x-1, v = x+1
# _ _
# Taylor: | u 1 u^3 1 u^5 |
# ln (x) = 2 | --- + - * --- + - * --- + ... | x > 0
# |_ v 3 v^3 5 v^5 _|
# This takes much more steps to calculate the result and is thus not used
# u = x-1
# _ _
# Taylor: | u 1 u^2 1 u^3 |
# ln (x) = 2 | --- + - * --- + - * --- + ... | x > 1/2
# |_ x 2 x^2 3 x^3 _|
my ($limit,$v,$u,$below,$factor,$two,$next,$over,$f);
$v = $x->copy(); $v->binc(); # v = x+1
$x->bdec(); $u = $x->copy(); # u = x-1; x = x-1
$x->bdiv($v,$scale); # first term: u/v
$below = $v->copy();
$over = $u->copy();
$u *= $u; $v *= $v; # u^2, v^2
$below->bmul($v); # u^3, v^3
$over->bmul($u);
$factor = $self->new(3); $f = $self->new(2);
my $steps = 0 if DEBUG;
$limit = $self->new("1E-". ($scale-1));
while (3 < 5)
{
# we calculate the next term, and add it to the last
# when the next term is below our limit, it won't affect the outcome
# anymore, so we stop
# calculating the next term simple from over/below will result in quite
# a time hog if the input has many digits, since over and below will
# accumulate more and more digits, and the result will also have many
# digits, but in the end it is rounded to $scale digits anyway. So if we
# round $over and $below first, we save a lot of time for the division
# (not with log(1.2345), but try log (123**123) to see what I mean. This
# can introduce a rounding error if the division result would be f.i.
# 0.1234500000001 and we round it to 5 digits it would become 0.12346, but
# if we truncated $over and $below we might get 0.12345. Does this matter
# for the end result? So we give $over and $below 4 more digits to be
# on the safe side (unscientific error handling as usual... :+D
$next = $over->copy->bround($scale+4)->bdiv(
$below->copy->bmul($factor)->bround($scale+4),
$scale);
## old version:
## $next = $over->copy()->bdiv($below->copy()->bmul($factor),$scale);
last if $next->bacmp($limit) <= 0;
delete $next->{_a}; delete $next->{_p};
$x->badd($next);
# calculate things for the next term
$over *= $u; $below *= $v; $factor->badd($f);
if (DEBUG)
{
$steps++; print "step $steps = $x\n" if $steps % 10 == 0;
}
}
$x->bmul($f); # $x *= 2
print "took $steps steps\n" if DEBUG;
}
sub _log_10
{
# Internal log function based on reducing input to the range of 0.1 .. 9.99
# and then "correcting" the result to the proper one. Modifies $x in place.
my ($self,$x,$scale) = @_;
# taking blog() from numbers greater than 10 takes a *very long* time, so we
# break the computation down into parts based on the observation that:
# blog(x*y) = blog(x) + blog(y)
# We set $y here to multiples of 10 so that $x is below 1 (the smaller $x is
# the faster it get's, especially because 2*$x takes about 10 times as long,
# so by dividing $x by 10 we make it at least factor 100 faster...)
# The same observation is valid for numbers smaller than 0.1 (e.g. computing
# log(1) is fastest, and the farther away we get from 1, the longer it takes)
# so we also 'break' this down by multiplying $x with 10 and subtract the
# log(10) afterwards to get the correct result.
# calculate nr of digits before dot
my $dbd = $MBI->_num($x->{_e});
$dbd = -$dbd if $x->{_es} eq '-';
$dbd += $MBI->_len($x->{_m});
# more than one digit (e.g. at least 10), but *not* exactly 10 to avoid
# infinite recursion
my $calc = 1; # do some calculation?
# disable the shortcut for 10, since we need log(10) and this would recurse
# infinitely deep
if ($x->{_es} eq '+' && $MBI->_is_one($x->{_e}) && $MBI->_is_one($x->{_m}))
{
$dbd = 0; # disable shortcut
# we can use the cached value in these cases
if ($scale <= $LOG_10_A)
{
$x->bzero(); $x->badd($LOG_10);
$calc = 0; # no need to calc, but round
}
}
else
{
# disable the shortcut for 2, since we maybe have it cached
if (($MBI->_is_zero($x->{_e}) && $MBI->_is_two($x->{_m})))
{
$dbd = 0; # disable shortcut
# we can use the cached value in these cases
if ($scale <= $LOG_2_A)
{
$x->bzero(); $x->badd($LOG_2);
$calc = 0; # no need to calc, but round
}
}
}
# if $x = 0.1, we know the result must be 0-log(10)
if ($calc != 0 && $x->{_es} eq '-' && $MBI->_is_one($x->{_e}) &&
$MBI->_is_one($x->{_m}))
{
$dbd = 0; # disable shortcut
# we can use the cached value in these cases
if ($scale <= $LOG_10_A)
{
$x->bzero(); $x->bsub($LOG_10);
$calc = 0; # no need to calc, but round
}
}
return if $calc == 0; # already have the result
# default: these correction factors are undef and thus not used
my $l_10; # value of ln(10) to A of $scale
my $l_2; # value of ln(2) to A of $scale
# $x == 2 => 1, $x == 13 => 2, $x == 0.1 => 0, $x == 0.01 => -1
# so don't do this shortcut for 1 or 0
if (($dbd > 1) || ($dbd < 0))
{
# convert our cached value to an object if not already (avoid doing this
# at import() time, since not everybody needs this)
$LOG_10 = $self->new($LOG_10,undef,undef) unless ref $LOG_10;
#print "x = $x, dbd = $dbd, calc = $calc\n";
# got more than one digit before the dot, or more than one zero after the
# dot, so do:
# log(123) == log(1.23) + log(10) * 2
# log(0.0123) == log(1.23) - log(10) * 2
if ($scale <= $LOG_10_A)
{
# use cached value
$l_10 = $LOG_10->copy(); # copy for mul
}
else
{
# else: slower, compute it (but don't cache it, because it could be big)
# also disable downgrade for this code path
local $Math::BigFloat::downgrade = undef;
$l_10 = $self->new(10)->blog(undef,$scale); # scale+4, actually
}
$dbd-- if ($dbd > 1); # 20 => dbd=2, so make it dbd=1
$l_10->bmul( $self->new($dbd)); # log(10) * (digits_before_dot-1)
my $dbd_sign = '+';
if ($dbd < 0)
{
$dbd = -$dbd;
$dbd_sign = '-';
}
($x->{_e}, $x->{_es}) =
_e_sub( $x->{_e}, $MBI->_new($dbd), $x->{_es}, $dbd_sign); # 123 => 1.23
}
# Now: 0.1 <= $x < 10 (and possible correction in l_10)
### Since $x in the range 0.5 .. 1.5 is MUCH faster, we do a repeated div
### or mul by 2 (maximum times 3, since x < 10 and x > 0.1)
$HALF = $self->new($HALF) unless ref($HALF);
my $twos = 0; # default: none (0 times)
my $two = $self->new(2);
while ($x->bacmp($HALF) <= 0)
{
$twos--; $x->bmul($two);
}
while ($x->bacmp($two) >= 0)
{
$twos++; $x->bdiv($two,$scale+4); # keep all digits
}
# $twos > 0 => did mul 2, < 0 => did div 2 (never both)
# calculate correction factor based on ln(2)
if ($twos != 0)
{
$LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2;
if ($scale <= $LOG_2_A)
{
# use cached value
$l_2 = $LOG_2->copy(); # copy for mul
}
else
{
# else: slower, compute it (but don't cache it, because it could be big)
# also disable downgrade for this code path
local $Math::BigFloat::downgrade = undef;
$l_2 = $two->blog(undef,$scale); # scale+4, actually
}
$l_2->bmul($twos); # * -2 => subtract, * 2 => add
}
$self->_log($x,$scale); # need to do the "normal" way
$x->badd($l_10) if defined $l_10; # correct it by ln(10)
$x->badd($l_2) if defined $l_2; # and maybe by ln(2)
# all done, $x contains now the result
}
sub blcm
{
# (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
# does not modify arguments, but returns new object
# Lowest Common Multiplicator
my ($self,@arg) = objectify(0,@_);
my $x = $self->new(shift @arg);
while (@arg) { $x = _lcm($x,shift @arg); }
$x;
}
sub bgcd
{
# (BFLOAT or num_str, BFLOAT or num_str) return BINT
# does not modify arguments, but returns new object
# GCD -- Euclids algorithm Knuth Vol 2 pg 296
my ($self,@arg) = objectify(0,@_);
my $x = $self->new(shift @arg);
while (@arg) { $x = _gcd($x,shift @arg); }
$x;
}
##############################################################################
sub _e_add
{
# Internal helper sub to take two positive integers and their signs and
# then add them. Input ($CALC,$CALC,('+'|'-'),('+'|'-')),
# output ($CALC,('+'|'-'))
my ($x,$y,$xs,$ys) = @_;
# if the signs are equal we can add them (-5 + -3 => -(5 + 3) => -8)
if ($xs eq $ys)
{
$x = $MBI->_add ($x, $y ); # a+b
# the sign follows $xs
return ($x, $xs);
}
my $a = $MBI->_acmp($x,$y);
if ($a > 0)
{
$x = $MBI->_sub ($x , $y); # abs sub
}
elsif ($a == 0)
{
$x = $MBI->_zero(); # result is 0
$xs = '+';
}
else # a < 0
{
$x = $MBI->_sub ( $y, $x, 1 ); # abs sub
$xs = $ys;
}
($x,$xs);
}
sub _e_sub
{
# Internal helper sub to take two positive integers and their signs and
# then subtract them. Input ($CALC,$CALC,('+'|'-'),('+'|'-')),
# output ($CALC,('+'|'-'))
my ($x,$y,$xs,$ys) = @_;
# flip sign
$ys =~ tr/+-/-+/;
_e_add($x,$y,$xs,$ys); # call add (does subtract now)
}
###############################################################################
# is_foo methods (is_negative, is_positive are inherited from BigInt)
sub is_int
{
# return true if arg (BFLOAT or num_str) is an integer
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN and +-inf aren't
$x->{_es} eq '+'; # 1e-1 => no integer
0;
}
sub is_zero
{
# return true if arg (BFLOAT or num_str) is zero
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 1 if $x->{sign} eq '+' && $MBI->_is_zero($x->{_m});
0;
}
sub is_one
{
# return true if arg (BFLOAT or num_str) is +1 or -1 if signis given
my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$sign = '+' if !defined $sign || $sign ne '-';
return 1
if ($x->{sign} eq $sign &&
$MBI->_is_zero($x->{_e}) && $MBI->_is_one($x->{_m}));
0;
}
sub is_odd
{
# return true if arg (BFLOAT or num_str) is odd or false if even
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
($MBI->_is_zero($x->{_e}) && $MBI->_is_odd($x->{_m}));
0;
}
sub is_even
{
# return true if arg (BINT or num_str) is even or false if odd
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
return 1 if ($x->{_es} eq '+' # 123.45 is never
&& $MBI->_is_even($x->{_m})); # but 1200 is
0;
}
sub bmul
{
# multiply two numbers -- stolen from Knuth Vol 2 pg 233
# (BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$a,$p,$r) = objectify(2,@_);
}
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
# handle result = 0
return $x->bzero() if $x->is_zero() || $y->is_zero();
return $upgrade->bmul($x,$y,$a,$p,$r) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
# aEb * cEd = (a*c)E(b+d)
$MBI->_mul($x->{_m},$y->{_m});
($x->{_e}, $x->{_es}) = _e_add($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
# adjust sign:
$x->{sign} = $x->{sign} ne $y->{sign} ? '-' : '+';
return $x->bnorm()->round($a,$p,$r,$y);
}
sub bdiv
{
# (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return
# (BFLOAT,BFLOAT) (quo,rem) or BFLOAT (only rem)
# set up parameters
my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$a,$p,$r) = objectify(2,@_);
}
return $self->_div_inf($x,$y)
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
# x== 0 # also: or y == 1 or y == -1
return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
# upgrade ?
return $upgrade->bdiv($upgrade->new($x),$y,$a,$p,$r) if defined $upgrade;
# we need to limit the accuracy to protect against overflow
my $fallback = 0;
my (@params,$scale);
($x,@params) = $x->_find_round_parameters($a,$p,$r,$y);
return $x if $x->is_nan(); # error in _find_round_parameters?
# no rounding at all, so must use fallback
if (scalar @params == 0)
{
# simulate old behaviour
$params[0] = $self->div_scale(); # and round to it as accuracy
$scale = $params[0]+4; # at least four more for proper round
$params[2] = $r; # round mode by caller or undef
$fallback = 1; # to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it is not
# enough...
$scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
}
my $lx = $MBI->_len($x->{_m}); my $ly = $MBI->_len($y->{_m});
$scale = $lx if $lx > $scale;
$scale = $ly if $ly > $scale;
my $diff = $ly - $lx;
$scale += $diff if $diff > 0; # if lx << ly, but not if ly << lx!
# make copy of $x in case of list context for later reminder calculation
my $rem;
if (wantarray && !$y->is_one())
{
$rem = $x->copy();
}
$x->{sign} = $x->{sign} ne $y->sign() ? '-' : '+';
# check for / +-1 ( +/- 1E0)
if (!$y->is_one())
{
# promote BigInts and it's subclasses (except when already a BigFloat)
$y = $self->new($y) unless $y->isa('Math::BigFloat');
# calculate the result to $scale digits and then round it
# a * 10 ** b / c * 10 ** d => a/c * 10 ** (b-d)
$MBI->_lsft($x->{_m},$MBI->_new($scale),10);
$MBI->_div ($x->{_m},$y->{_m} ); # a/c
($x->{_e},$x->{_es}) =
_e_sub($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
# correct for 10**scale
($x->{_e},$x->{_es}) =
_e_sub($x->{_e}, $MBI->_new($scale), $x->{_es}, '+');
$x->bnorm(); # remove trailing 0's
}
# shortcut to not run through _find_round_parameters again
if (defined $params[0])
{
delete $x->{_a}; # clear before round
$x->bround($params[0],$params[2]); # then round accordingly
}
else
{
delete $x->{_p}; # clear before round
$x->bfround($params[1],$params[2]); # then round accordingly
}
if ($fallback)
{
# clear a/p after round, since user did not request it
delete $x->{_a}; delete $x->{_p};
}
if (wantarray)
{
if (!$y->is_one())
{
$rem->bmod($y,@params); # copy already done
}
else
{
$rem = $self->bzero();
}
if ($fallback)
{
# clear a/p after round, since user did not request it
delete $rem->{_a}; delete $rem->{_p};
}
return ($x,$rem);
}
$x;
}
sub bmod
{
# (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return reminder
# set up parameters
my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$a,$p,$r) = objectify(2,@_);
}
# handle NaN, inf, -inf
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
my ($d,$re) = $self->SUPER::_div_inf($x,$y);
$x->{sign} = $re->{sign};
$x->{_e} = $re->{_e};
$x->{_m} = $re->{_m};
return $x->round($a,$p,$r,$y);
}
if ($y->is_zero())
{
return $x->bnan() if $x->is_zero();
return $x;
}
return $x->bzero() if $y->is_one() || $x->is_zero();
my $cmp = $x->bacmp($y); # equal or $x < $y?
return $x->bzero($a,$p) if $cmp == 0; # $x == $y => result 0
# only $y of the operands negative?
my $neg = 0; $neg = 1 if $x->{sign} ne $y->{sign};
$x->{sign} = $y->{sign}; # calc sign first
return $x->round($a,$p,$r) if $cmp < 0 && $neg == 0; # $x < $y => result $x
my $ym = $MBI->_copy($y->{_m});
# 2e1 => 20
$MBI->_lsft( $ym, $y->{_e}, 10)
if $y->{_es} eq '+' && !$MBI->_is_zero($y->{_e});
# if $y has digits after dot
my $shifty = 0; # correct _e of $x by this
if ($y->{_es} eq '-') # has digits after dot
{
# 123 % 2.5 => 1230 % 25 => 5 => 0.5
$shifty = $MBI->_num($y->{_e}); # no more digits after dot
$MBI->_lsft($x->{_m}, $y->{_e}, 10);# 123 => 1230, $y->{_m} is already 25
}
# $ym is now mantissa of $y based on exponent 0
my $shiftx = 0; # correct _e of $x by this
if ($x->{_es} eq '-') # has digits after dot
{
# 123.4 % 20 => 1234 % 200
$shiftx = $MBI->_num($x->{_e}); # no more digits after dot
$MBI->_lsft($ym, $x->{_e}, 10); # 123 => 1230
}
# 123e1 % 20 => 1230 % 20
if ($x->{_es} eq '+' && !$MBI->_is_zero($x->{_e}))
{
$MBI->_lsft( $x->{_m}, $x->{_e},10); # es => '+' here
}
$x->{_e} = $MBI->_new($shiftx);
$x->{_es} = '+';
$x->{_es} = '-' if $shiftx != 0 || $shifty != 0;
$MBI->_add( $x->{_e}, $MBI->_new($shifty)) if $shifty != 0;
# now mantissas are equalized, exponent of $x is adjusted, so calc result
$x->{_m} = $MBI->_mod( $x->{_m}, $ym);
$x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # fix sign for -0
$x->bnorm();
if ($neg != 0) # one of them negative => correct in place
{
my $r = $y - $x;
$x->{_m} = $r->{_m};
$x->{_e} = $r->{_e};
$x->{_es} = $r->{_es};
$x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # fix sign for -0
$x->bnorm();
}
$x->round($a,$p,$r,$y); # round and return
}
sub broot
{
# calculate $y'th root of $x
# set up parameters
my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$a,$p,$r) = objectify(2,@_);
}
# NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
$y->{sign} !~ /^\+$/;
return $x if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
# we need to limit the accuracy to protect against overflow
my $fallback = 0;
my (@params,$scale);
($x,@params) = $x->_find_round_parameters($a,$p,$r);
return $x if $x->is_nan(); # error in _find_round_parameters?
# no rounding at all, so must use fallback
if (scalar @params == 0)
{
# simulate old behaviour
$params[0] = $self->div_scale(); # and round to it as accuracy
$scale = $params[0]+4; # at least four more for proper round
$params[2] = $r; # iound mode by caller or undef
$fallback = 1; # to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it is not
# enough...
$scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
}
# when user set globals, they would interfere with our calculation, so
# disable them and later re-enable them
no strict 'refs';
my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
# we also need to disable any set A or P on $x (_find_round_parameters took
# them already into account), since these would interfere, too
delete $x->{_a}; delete $x->{_p};
# need to disable $upgrade in BigInt, to avoid deep recursion
local $Math::BigInt::upgrade = undef; # should be really parent class vs MBI
# remember sign and make $x positive, since -4 ** (1/2) => -2
my $sign = 0; $sign = 1 if $x->{sign} eq '-'; $x->{sign} = '+';
my $is_two = 0;
if ($y->isa('Math::BigFloat'))
{
$is_two = ($y->{sign} eq '+' && $MBI->_is_two($y->{_m}) && $MBI->_is_zero($y->{_e}));
}
else
{
$is_two = ($y == 2);
}
# normal square root if $y == 2:
if ($is_two)
{
$x->bsqrt($scale+4);
}
elsif ($y->is_one('-'))
{
# $x ** -1 => 1/$x
my $u = $self->bone()->bdiv($x,$scale);
# copy private parts over
$x->{_m} = $u->{_m};
$x->{_e} = $u->{_e};
$x->{_es} = $u->{_es};
}
else
{
# calculate the broot() as integer result first, and if it fits, return
# it rightaway (but only if $x and $y are integer):
my $done = 0; # not yet
if ($y->is_int() && $x->is_int())
{
my $i = $MBI->_copy( $x->{_m} );
$MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
my $int = Math::BigInt->bzero();
$int->{value} = $i;
$int->broot($y->as_number());
# if ($exact)
if ($int->copy()->bpow($y) == $x)
{
# found result, return it
$x->{_m} = $int->{value};
$x->{_e} = $MBI->_zero();
$x->{_es} = '+';
$x->bnorm();
$done = 1;
}
}
if ($done == 0)
{
my $u = $self->bone()->bdiv($y,$scale+4);
delete $u->{_a}; delete $u->{_p}; # otherwise it conflicts
$x->bpow($u,$scale+4); # el cheapo
}
}
$x->bneg() if $sign == 1;
# shortcut to not run through _find_round_parameters again
if (defined $params[0])
{
$x->bround($params[0],$params[2]); # then round accordingly
}
else
{
$x->bfround($params[1],$params[2]); # then round accordingly
}
if ($fallback)
{
# clear a/p after round, since user did not request it
delete $x->{_a}; delete $x->{_p};
}
# restore globals
$$abr = $ab; $$pbr = $pb;
$x;
}
sub bsqrt
{
# calculate square root
my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x->bnan() if $x->{sign} !~ /^[+]/; # NaN, -inf or < 0
return $x if $x->{sign} eq '+inf'; # sqrt(inf) == inf
return $x->round($a,$p,$r) if $x->is_zero() || $x->is_one();
# we need to limit the accuracy to protect against overflow
my $fallback = 0;
my (@params,$scale);
($x,@params) = $x->_find_round_parameters($a,$p,$r);
return $x if $x->is_nan(); # error in _find_round_parameters?
# no rounding at all, so must use fallback
if (scalar @params == 0)
{
# simulate old behaviour
$params[0] = $self->div_scale(); # and round to it as accuracy
$scale = $params[0]+4; # at least four more for proper round
$params[2] = $r; # round mode by caller or undef
$fallback = 1; # to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it is not
# enough...
$scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
}
# when user set globals, they would interfere with our calculation, so
# disable them and later re-enable them
no strict 'refs';
my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
# we also need to disable any set A or P on $x (_find_round_parameters took
# them already into account), since these would interfere, too
delete $x->{_a}; delete $x->{_p};
# need to disable $upgrade in BigInt, to avoid deep recursion
local $Math::BigInt::upgrade = undef; # should be really parent class vs MBI
my $i = $MBI->_copy( $x->{_m} );
$MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
my $xas = Math::BigInt->bzero();
$xas->{value} = $i;
my $gs = $xas->copy()->bsqrt(); # some guess
if (($x->{_es} ne '-') # guess can't be accurate if there are
# digits after the dot
&& ($xas->bacmp($gs * $gs) == 0)) # guess hit the nail on the head?
{
# exact result, copy result over to keep $x
$x->{_m} = $gs->{value}; $x->{_e} = $MBI->_zero(); $x->{_es} = '+';
$x->bnorm();
# shortcut to not run through _find_round_parameters again
if (defined $params[0])
{
$x->bround($params[0],$params[2]); # then round accordingly
}
else
{
$x->bfround($params[1],$params[2]); # then round accordingly
}
if ($fallback)
{
# clear a/p after round, since user did not request it
delete $x->{_a}; delete $x->{_p};
}
# re-enable A and P, upgrade is taken care of by "local"
${"$self\::accuracy"} = $ab; ${"$self\::precision"} = $pb;
return $x;
}
# sqrt(2) = 1.4 because sqrt(2*100) = 1.4*10; so we can increase the accuracy
# of the result by multipyling the input by 100 and then divide the integer
# result of sqrt(input) by 10. Rounding afterwards returns the real result.
# The following steps will transform 123.456 (in $x) into 123456 (in $y1)
my $y1 = $MBI->_copy($x->{_m});
my $length = $MBI->_len($y1);
# Now calculate how many digits the result of sqrt(y1) would have
my $digits = int($length / 2);
# But we need at least $scale digits, so calculate how many are missing
my $shift = $scale - $digits;
# That should never happen (we take care of integer guesses above)
# $shift = 0 if $shift < 0;
# Multiply in steps of 100, by shifting left two times the "missing" digits
my $s2 = $shift * 2;
# We now make sure that $y1 has the same odd or even number of digits than
# $x had. So when _e of $x is odd, we must shift $y1 by one digit left,
# because we always must multiply by steps of 100 (sqrt(100) is 10) and not
# steps of 10. The length of $x does not count, since an even or odd number
# of digits before the dot is not changed by adding an even number of digits
# after the dot (the result is still odd or even digits long).
$s2++ if $MBI->_is_odd($x->{_e});
$MBI->_lsft( $y1, $MBI->_new($s2), 10);
# now take the square root and truncate to integer
$y1 = $MBI->_sqrt($y1);
# By "shifting" $y1 right (by creating a negative _e) we calculate the final
# result, which is than later rounded to the desired scale.
# calculate how many zeros $x had after the '.' (or before it, depending
# on sign of $dat, the result should have half as many:
my $dat = $MBI->_num($x->{_e});
$dat = -$dat if $x->{_es} eq '-';
$dat += $length;
if ($dat > 0)
{
# no zeros after the dot (e.g. 1.23, 0.49 etc)
# preserve half as many digits before the dot than the input had
# (but round this "up")
$dat = int(($dat+1)/2);
}
else
{
$dat = int(($dat)/2);
}
$dat -= $MBI->_len($y1);
if ($dat < 0)
{
$dat = abs($dat);
$x->{_e} = $MBI->_new( $dat );
$x->{_es} = '-';
}
else
{
$x->{_e} = $MBI->_new( $dat );
$x->{_es} = '+';
}
$x->{_m} = $y1;
$x->bnorm();
# shortcut to not run through _find_round_parameters again
if (defined $params[0])
{
$x->bround($params[0],$params[2]); # then round accordingly
}
else
{
$x->bfround($params[1],$params[2]); # then round accordingly
}
if ($fallback)
{
# clear a/p after round, since user did not request it
delete $x->{_a}; delete $x->{_p};
}
# restore globals
$$abr = $ab; $$pbr = $pb;
$x;
}
sub bfac
{
# (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
# compute factorial number, modifies first argument
# set up parameters
my ($self,$x,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
($self,$x,@r) = objectify(1,@_) if !ref($x);
return $x if $x->{sign} eq '+inf'; # inf => inf
return $x->bnan()
if (($x->{sign} ne '+') || # inf, NaN, <0 etc => NaN
($x->{_es} ne '+')); # digits after dot?
# use BigInt's bfac() for faster calc
if (! $MBI->_is_zero($x->{_e}))
{
$MBI->_lsft($x->{_m}, $x->{_e},10); # change 12e1 to 120e0
$x->{_e} = $MBI->_zero(); # normalize
$x->{_es} = '+';
}
$MBI->_fac($x->{_m}); # calculate factorial
$x->bnorm()->round(@r); # norm again and round result
}
sub _pow
{
# Calculate a power where $y is a non-integer, like 2 ** 0.5
my ($x,$y,$a,$p,$r) = @_;
my $self = ref($x);
# if $y == 0.5, it is sqrt($x)
$HALF = $self->new($HALF) unless ref($HALF);
return $x->bsqrt($a,$p,$r,$y) if $y->bcmp($HALF) == 0;
# Using:
# a ** x == e ** (x * ln a)
# u = y * ln x
# _ _
# Taylor: | u u^2 u^3 |
# x ** y = 1 + | --- + --- + ----- + ... |
# |_ 1 1*2 1*2*3 _|
# we need to limit the accuracy to protect against overflow
my $fallback = 0;
my ($scale,@params);
($x,@params) = $x->_find_round_parameters($a,$p,$r);
return $x if $x->is_nan(); # error in _find_round_parameters?
# no rounding at all, so must use fallback
if (scalar @params == 0)
{
# simulate old behaviour
$params[0] = $self->div_scale(); # and round to it as accuracy
$params[1] = undef; # disable P
$scale = $params[0]+4; # at least four more for proper round
$params[2] = $r; # round mode by caller or undef
$fallback = 1; # to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it is not
# enough...
$scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
}
# when user set globals, they would interfere with our calculation, so
# disable them and later re-enable them
no strict 'refs';
my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
# we also need to disable any set A or P on $x (_find_round_parameters took
# them already into account), since these would interfere, too
delete $x->{_a}; delete $x->{_p};
# need to disable $upgrade in BigInt, to avoid deep recursion
local $Math::BigInt::upgrade = undef;
my ($limit,$v,$u,$below,$factor,$next,$over);
$u = $x->copy()->blog(undef,$scale)->bmul($y);
$v = $self->bone(); # 1
$factor = $self->new(2); # 2
$x->bone(); # first term: 1
$below = $v->copy();
$over = $u->copy();
$limit = $self->new("1E-". ($scale-1));
#my $steps = 0;
while (3 < 5)
{
# we calculate the next term, and add it to the last
# when the next term is below our limit, it won't affect the outcome
# anymore, so we stop
$next = $over->copy()->bdiv($below,$scale);
last if $next->bacmp($limit) <= 0;
$x->badd($next);
# calculate things for the next term
$over *= $u; $below *= $factor; $factor->binc();
last if $x->{sign} !~ /^[-+]$/;
#$steps++;
}
# shortcut to not run through _find_round_parameters again
if (defined $params[0])
{
$x->bround($params[0],$params[2]); # then round accordingly
}
else
{
$x->bfround($params[1],$params[2]); # then round accordingly
}
if ($fallback)
{
# clear a/p after round, since user did not request it
delete $x->{_a}; delete $x->{_p};
}
# restore globals
$$abr = $ab; $$pbr = $pb;
$x;
}
sub bpow
{
# (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
# compute power of two numbers, second arg is used as integer
# modifies first argument
# set up parameters
my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$a,$p,$r) = objectify(2,@_);
}
return $x if $x->{sign} =~ /^[+-]inf$/;
return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
return $x->bone() if $y->is_zero();
return $x if $x->is_one() || $y->is_one();
return $x->_pow($y,$a,$p,$r) if !$y->is_int(); # non-integer power
my $y1 = $y->as_number()->{value}; # make CALC
# if ($x == -1)
if ($x->{sign} eq '-' && $MBI->_is_one($x->{_m}) && $MBI->_is_zero($x->{_e}))
{
# if $x == -1 and odd/even y => +1/-1 because +-1 ^ (+-1) => +-1
return $MBI->_is_odd($y1) ? $x : $x->babs(1);
}
if ($x->is_zero())
{
return $x->bone() if $y->is_zero();
return $x if $y->{sign} eq '+'; # 0**y => 0 (if not y <= 0)
# 0 ** -y => 1 / (0 ** y) => 1 / 0! (1 / 0 => +inf)
return $x->binf();
}
my $new_sign = '+';
$new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+');
# calculate $x->{_m} ** $y and $x->{_e} * $y separately (faster)
$x->{_m} = $MBI->_pow( $x->{_m}, $y1);
$MBI->_mul ($x->{_e}, $y1);
$x->{sign} = $new_sign;
$x->bnorm();
if ($y->{sign} eq '-')
{
# modify $x in place!
my $z = $x->copy(); $x->bzero()->binc();
return $x->bdiv($z,$a,$p,$r); # round in one go (might ignore y's A!)
}
$x->round($a,$p,$r,$y);
}
###############################################################################
# rounding functions
sub bfround
{
# precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
# $n == 0 means round to integer
# expects and returns normalized numbers!
my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x);
return $x if $x->modify('bfround');
my ($scale,$mode) = $x->_scale_p($self->precision(),$self->round_mode(),@_);
return $x if !defined $scale; # no-op
# never round a 0, +-inf, NaN
if ($x->is_zero())
{
$x->{_p} = $scale if !defined $x->{_p} || $x->{_p} < $scale; # -3 < -2
return $x;
}
return $x if $x->{sign} !~ /^[+-]$/;
# don't round if x already has lower precision
return $x if (defined $x->{_p} && $x->{_p} < 0 && $scale < $x->{_p});
$x->{_p} = $scale; # remember round in any case
delete $x->{_a}; # and clear A
if ($scale < 0)
{
# round right from the '.'
return $x if $x->{_es} eq '+'; # e >= 0 => nothing to round
$scale = -$scale; # positive for simplicity
my $len = $MBI->_len($x->{_m}); # length of mantissa
# the following poses a restriction on _e, but if _e is bigger than a
# scalar, you got other problems (memory etc) anyway
my $dad = -(0+ ($x->{_es}.$MBI->_num($x->{_e}))); # digits after dot
my $zad = 0; # zeros after dot
$zad = $dad - $len if (-$dad < -$len); # for 0.00..00xxx style
# p rint "scale $scale dad $dad zad $zad len $len\n";
# number bsstr len zad dad
# 0.123 123e-3 3 0 3
# 0.0123 123e-4 3 1 4
# 0.001 1e-3 1 2 3
# 1.23 123e-2 3 0 2
# 1.2345 12345e-4 5 0 4
# do not round after/right of the $dad
return $x if $scale > $dad; # 0.123, scale >= 3 => exit
# round to zero if rounding inside the $zad, but not for last zero like:
# 0.0065, scale -2, round last '0' with following '65' (scale == zad case)
return $x->bzero() if $scale < $zad;
if ($scale == $zad) # for 0.006, scale -3 and trunc
{
$scale = -$len;
}
else
{
# adjust round-point to be inside mantissa
if ($zad != 0)
{
$scale = $scale-$zad;
}
else
{
my $dbd = $len - $dad; $dbd = 0 if $dbd < 0; # digits before dot
$scale = $dbd+$scale;
}
}
}
else
{
# round left from the '.'
# 123 => 100 means length(123) = 3 - $scale (2) => 1
my $dbt = $MBI->_len($x->{_m});
# digits before dot
my $dbd = $dbt + ($x->{_es} . $MBI->_num($x->{_e}));
# should be the same, so treat it as this
$scale = 1 if $scale == 0;
# shortcut if already integer
return $x if $scale == 1 && $dbt <= $dbd;
# maximum digits before dot
++$dbd;
if ($scale > $dbd)
{
# not enough digits before dot, so round to zero
return $x->bzero;
}
elsif ( $scale == $dbd )
{
# maximum
$scale = -$dbt;
}
else
{
$scale = $dbd - $scale;
}
}
# pass sign to bround for rounding modes '+inf' and '-inf'
my $m = Math::BigInt->new( $x->{sign} . $MBI->_str($x->{_m}));
$m->bround($scale,$mode);
$x->{_m} = $m->{value}; # get our mantissa back
$x->bnorm();
}
sub bround
{
# accuracy: preserve $N digits, and overwrite the rest with 0's
my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x);
if (($_[0] || 0) < 0)
{
require Carp; Carp::croak ('bround() needs positive accuracy');
}
my ($scale,$mode) = $x->_scale_a($self->accuracy(),$self->round_mode(),@_);
return $x if !defined $scale; # no-op
return $x if $x->modify('bround');
# scale is now either $x->{_a}, $accuracy, or the user parameter
# test whether $x already has lower accuracy, do nothing in this case
# but do round if the accuracy is the same, since a math operation might
# want to round a number with A=5 to 5 digits afterwards again
return $x if defined $_[0] && defined $x->{_a} && $x->{_a} < $_[0];
# scale < 0 makes no sense
# never round a +-inf, NaN
return $x if ($scale < 0) || $x->{sign} !~ /^[+-]$/;
# 1: $scale == 0 => keep all digits
# 2: never round a 0
# 3: if we should keep more digits than the mantissa has, do nothing
if ($scale == 0 || $x->is_zero() || $MBI->_len($x->{_m}) <= $scale)
{
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale;
return $x;
}
# pass sign to bround for '+inf' and '-inf' rounding modes
my $m = Math::BigInt->new( $x->{sign} . $MBI->_str($x->{_m}));
$m->bround($scale,$mode); # round mantissa
$x->{_m} = $m->{value}; # get our mantissa back
$x->{_a} = $scale; # remember rounding
delete $x->{_p}; # and clear P
$x->bnorm(); # del trailing zeros gen. by bround()
}
sub bfloor
{
# return integer less or equal then $x
my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('bfloor');
return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
# if $x has digits after dot
if ($x->{_es} eq '-')
{
$x->{_m} = $MBI->_rsft($x->{_m},$x->{_e},10); # cut off digits after dot
$x->{_e} = $MBI->_zero(); # trunc/norm
$x->{_es} = '+'; # abs e
$MBI->_inc($x->{_m}) if $x->{sign} eq '-'; # increment if negative
}
$x->round($a,$p,$r);
}
sub bceil
{
# return integer greater or equal then $x
my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('bceil');
return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
# if $x has digits after dot
if ($x->{_es} eq '-')
{
$x->{_m} = $MBI->_rsft($x->{_m},$x->{_e},10); # cut off digits after dot
$x->{_e} = $MBI->_zero(); # trunc/norm
$x->{_es} = '+'; # abs e
$MBI->_inc($x->{_m}) if $x->{sign} eq '+'; # increment if positive
}
$x->round($a,$p,$r);
}
sub brsft
{
# shift right by $y (divide by power of $n)
# set up parameters
my ($self,$x,$y,$n,$a,$p,$r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
}
return $x if $x->modify('brsft');
return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
$n = 2 if !defined $n; $n = $self->new($n);
$x->bdiv($n->bpow($y),$a,$p,$r,$y);
}
sub blsft
{
# shift left by $y (multiply by power of $n)
# set up parameters
my ($self,$x,$y,$n,$a,$p,$r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
}
return $x if $x->modify('blsft');
return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
$n = 2 if !defined $n; $n = $self->new($n);
$x->bmul($n->bpow($y),$a,$p,$r,$y);
}
###############################################################################
sub DESTROY
{
# going through AUTOLOAD for every DESTROY is costly, avoid it by empty sub
}
sub AUTOLOAD
{
# make fxxx and bxxx both work by selectively mapping fxxx() to MBF::bxxx()
# or falling back to MBI::bxxx()
my $name = $AUTOLOAD;
$name =~ s/(.*):://; # split package
my $c = $1 || $class;
no strict 'refs';
$c->import() if $IMPORT == 0;
if (!method_alias($name))
{
if (!defined $name)
{
# delayed load of Carp and avoid recursion
require Carp;
Carp::croak ("$c: Can't call a method without name");
}
if (!method_hand_up($name))
{
# delayed load of Carp and avoid recursion
require Carp;
Carp::croak ("Can't call $c\-\>$name, not a valid method");
}
# try one level up, but subst. bxxx() for fxxx() since MBI only got bxxx()
$name =~ s/^f/b/;
return &{"Math::BigInt"."::$name"}(@_);
}
my $bname = $name; $bname =~ s/^f/b/;
$c .= "::$name";
*{$c} = \&{$bname};
&{$c}; # uses @_
}
sub exponent
{
# return a copy of the exponent
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
my $s = $x->{sign}; $s =~ s/^[+-]//;
return Math::BigInt->new($s); # -inf, +inf => +inf
}
Math::BigInt->new( $x->{_es} . $MBI->_str($x->{_e}));
}
sub mantissa
{
# return a copy of the mantissa
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
my $s = $x->{sign}; $s =~ s/^[+]//;
return Math::BigInt->new($s); # -inf, +inf => +inf
}
my $m = Math::BigInt->new( $MBI->_str($x->{_m}));
$m->bneg() if $x->{sign} eq '-';
$m;
}
sub parts
{
# return a copy of both the exponent and the mantissa
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
my $s = $x->{sign}; $s =~ s/^[+]//; my $se = $s; $se =~ s/^[-]//;
return ($self->new($s),$self->new($se)); # +inf => inf and -inf,+inf => inf
}
my $m = Math::BigInt->bzero();
$m->{value} = $MBI->_copy($x->{_m});
$m->bneg() if $x->{sign} eq '-';
($m, Math::BigInt->new( $x->{_es} . $MBI->_num($x->{_e}) ));
}
##############################################################################
# private stuff (internal use only)
sub import
{
my $self = shift;
my $l = scalar @_;
my $lib = ''; my @a;
$IMPORT=1;
for ( my $i = 0; $i < $l ; $i++)
{
if ( $_[$i] eq ':constant' )
{
# This causes overlord er load to step in. 'binary' and 'integer'
# are handled by BigInt.
overload::constant float => sub { $self->new(shift); };
}
elsif ($_[$i] eq 'upgrade')
{
# this causes upgrading
$upgrade = $_[$i+1]; # or undef to disable
$i++;
}
elsif ($_[$i] eq 'downgrade')
{
# this causes downgrading
$downgrade = $_[$i+1]; # or undef to disable
$i++;
}
elsif ($_[$i] eq 'lib')
{
# alternative library
$lib = $_[$i+1] || ''; # default Calc
$i++;
}
elsif ($_[$i] eq 'with')
{
# alternative class for our private parts()
# XXX: no longer supported
# $MBI = $_[$i+1] || 'Math::BigInt';
$i++;
}
else
{
push @a, $_[$i];
}
}
# let use Math::BigInt lib => 'GMP'; use Math::BigFloat; still work
my $mbilib = eval { Math::BigInt->config()->{lib} };
if ((defined $mbilib) && ($MBI eq 'Math::BigInt::Calc'))
{
# MBI already loaded
Math::BigInt->import('lib',"$lib,$mbilib", 'objectify');
}
else
{
# MBI not loaded, or with ne "Math::BigInt::Calc"
$lib .= ",$mbilib" if defined $mbilib;
$lib =~ s/^,//; # don't leave empty
# replacement library can handle lib statement, but also could ignore it
if ($] < 5.006)
{
# Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is
# used in the same script, or eval inside import().
require Math::BigInt;
Math::BigInt->import( lib => $lib, 'objectify' );
}
else
{
my $rc = "use Math::BigInt lib => '$lib', 'objectify';";
eval $rc;
}
}
if ($@)
{
require Carp; Carp::croak ("Couldn't load $lib: $! $@");
}
$MBI = Math::BigInt->config()->{lib};
# any non :constant stuff is handled by our parent, Exporter
# even if @_ is empty, to give it a chance
$self->SUPER::import(@a); # for subclasses
$self->export_to_level(1,$self,@a); # need this, too
}
sub bnorm
{
# adjust m and e so that m is smallest possible
# round number according to accuracy and precision settings
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $x if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $zeros = $MBI->_zeros($x->{_m}); # correct for trailing zeros
if ($zeros != 0)
{
my $z = $MBI->_new($zeros);
$x->{_m} = $MBI->_rsft ($x->{_m}, $z, 10);
if ($x->{_es} eq '-')
{
if ($MBI->_acmp($x->{_e},$z) >= 0)
{
$x->{_e} = $MBI->_sub ($x->{_e}, $z);
$x->{_es} = '+' if $MBI->_is_zero($x->{_e});
}
else
{
$x->{_e} = $MBI->_sub ( $MBI->_copy($z), $x->{_e});
$x->{_es} = '+';
}
}
else
{
$x->{_e} = $MBI->_add ($x->{_e}, $z);
}
}
else
{
# $x can only be 0Ey if there are no trailing zeros ('0' has 0 trailing
# zeros). So, for something like 0Ey, set y to 1, and -0 => +0
$x->{sign} = '+', $x->{_es} = '+', $x->{_e} = $MBI->_one()
if $MBI->_is_zero($x->{_m});
}
$x; # MBI bnorm is no-op, so dont call it
}
##############################################################################
sub as_hex
{
# return number as hexadecimal string (only for integers defined)
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
return '0x0' if $x->is_zero();
return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
my $z = $MBI->_copy($x->{_m});
if (! $MBI->_is_zero($x->{_e})) # > 0
{
$MBI->_lsft( $z, $x->{_e},10);
}
$z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
$z->as_hex();
}
sub as_bin
{
# return number as binary digit string (only for integers defined)
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
return '0b0' if $x->is_zero();
return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
my $z = $MBI->_copy($x->{_m});
if (! $MBI->_is_zero($x->{_e})) # > 0
{
$MBI->_lsft( $z, $x->{_e},10);
}
$z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
$z->as_bin();
}
sub as_number
{
# return copy as a bigint representation of this BigFloat number
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
my $z = $MBI->_copy($x->{_m});
if ($x->{_es} eq '-') # < 0
{
$MBI->_rsft( $z, $x->{_e},10);
}
elsif (! $MBI->_is_zero($x->{_e})) # > 0
{
$MBI->_lsft( $z, $x->{_e},10);
}
$z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
$z;
}
sub length
{
my $x = shift;
my $class = ref($x) || $x;
$x = $class->new(shift) unless ref($x);
return 1 if $MBI->_is_zero($x->{_m});
my $len = $MBI->_len($x->{_m});
$len += $MBI->_num($x->{_e}) if $x->{_es} eq '+';
if (wantarray())
{
my $t = 0;
$t = $MBI->_num($x->{_e}) if $x->{_es} eq '-';
return ($len, $t);
}
$len;
}
1;
__END__
=head1 NAME
Math::BigFloat - Arbitrary size floating point math package
=head1 SYNOPSIS
use Math::BigFloat;
# Number creation
$x = Math::BigFloat->new($str); # defaults to 0
$nan = Math::BigFloat->bnan(); # create a NotANumber
$zero = Math::BigFloat->bzero(); # create a +0
$inf = Math::BigFloat->binf(); # create a +inf
$inf = Math::BigFloat->binf('-'); # create a -inf
$one = Math::BigFloat->bone(); # create a +1
$one = Math::BigFloat->bone('-'); # create a -1
# Testing
$x->is_zero(); # true if arg is +0
$x->is_nan(); # true if arg is NaN
$x->is_one(); # true if arg is +1
$x->is_one('-'); # true if arg is -1
$x->is_odd(); # true if odd, false for even
$x->is_even(); # true if even, false for odd
$x->is_pos(); # true if >= 0
$x->is_neg(); # true if < 0
$x->is_inf(sign); # true if +inf, or -inf (default is '+')
$x->bcmp($y); # compare numbers (undef,<0,=0,>0)
$x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
$x->sign(); # return the sign, either +,- or NaN
$x->digit($n); # return the nth digit, counting from right
$x->digit(-$n); # return the nth digit, counting from left
# The following all modify their first argument. If you want to preserve
# $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
# neccessary when mixing $a = $b assigments with non-overloaded math.
# set
$x->bzero(); # set $i to 0
$x->bnan(); # set $i to NaN
$x->bone(); # set $x to +1
$x->bone('-'); # set $x to -1
$x->binf(); # set $x to inf
$x->binf('-'); # set $x to -inf
$x->bneg(); # negation
$x->babs(); # absolute value
$x->bnorm(); # normalize (no-op)
$x->bnot(); # two's complement (bit wise not)
$x->binc(); # increment x by 1
$x->bdec(); # decrement x by 1
$x->badd($y); # addition (add $y to $x)
$x->bsub($y); # subtraction (subtract $y from $x)
$x->bmul($y); # multiplication (multiply $x by $y)
$x->bdiv($y); # divide, set $x to quotient
# return (quo,rem) or quo if scalar
$x->bmod($y); # modulus ($x % $y)
$x->bpow($y); # power of arguments ($x ** $y)
$x->blsft($y); # left shift
$x->brsft($y); # right shift
# return (quo,rem) or quo if scalar
$x->blog(); # logarithm of $x to base e (Euler's number)
$x->blog($base); # logarithm of $x to base $base (f.i. 2)
$x->band($y); # bit-wise and
$x->bior($y); # bit-wise inclusive or
$x->bxor($y); # bit-wise exclusive or
$x->bnot(); # bit-wise not (two's complement)
$x->bsqrt(); # calculate square-root
$x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
$x->bfac(); # factorial of $x (1*2*3*4*..$x)
$x->bround($N); # accuracy: preserve $N digits
$x->bfround($N); # precision: round to the $Nth digit
$x->bfloor(); # return integer less or equal than $x
$x->bceil(); # return integer greater or equal than $x
# The following do not modify their arguments:
bgcd(@values); # greatest common divisor
blcm(@values); # lowest common multiplicator
$x->bstr(); # return string
$x->bsstr(); # return string in scientific notation
$x->as_int(); # return $x as BigInt
$x->exponent(); # return exponent as BigInt
$x->mantissa(); # return mantissa as BigInt
$x->parts(); # return (mantissa,exponent) as BigInt
$x->length(); # number of digits (w/o sign and '.')
($l,$f) = $x->length(); # number of digits, and length of fraction
$x->precision(); # return P of $x (or global, if P of $x undef)
$x->precision($n); # set P of $x to $n
$x->accuracy(); # return A of $x (or global, if A of $x undef)
$x->accuracy($n); # set A $x to $n
# these get/set the appropriate global value for all BigFloat objects
Math::BigFloat->precision(); # Precision
Math::BigFloat->accuracy(); # Accuracy
Math::BigFloat->round_mode(); # rounding mode
=head1 DESCRIPTION
All operators (inlcuding basic math operations) are overloaded if you
declare your big floating point numbers as
$i = new Math::BigFloat '12_3.456_789_123_456_789E-2';
Operations with overloaded operators preserve the arguments, which is
exactly what you expect.
=head2 Canonical notation
Input to these routines are either BigFloat objects, or strings of the
following four forms:
=over 2
=item *
C</^[+-]\d+$/>
=item *
C</^[+-]\d+\.\d*$/>
=item *
C</^[+-]\d+E[+-]?\d+$/>
=item *
C</^[+-]\d*\.\d+E[+-]?\d+$/>
=back
all with optional leading and trailing zeros and/or spaces. Additonally,
numbers are allowed to have an underscore between any two digits.
Empty strings as well as other illegal numbers results in 'NaN'.
bnorm() on a BigFloat object is now effectively a no-op, since the numbers
are always stored in normalized form. On a string, it creates a BigFloat
object.
=head2 Output
Output values are BigFloat objects (normalized), except for bstr() and bsstr().
The string output will always have leading and trailing zeros stripped and drop
a plus sign. C<bstr()> will give you always the form with a decimal point,
while C<bsstr()> (s for scientific) gives you the scientific notation.
Input bstr() bsstr()
'-0' '0' '0E1'
' -123 123 123' '-123123123' '-123123123E0'
'00.0123' '0.0123' '123E-4'
'123.45E-2' '1.2345' '12345E-4'
'10E+3' '10000' '1E4'
Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>)
return either undef, <0, 0 or >0 and are suited for sort.
Actual math is done by using the class defined with C<with => Class;> (which
defaults to BigInts) to represent the mantissa and exponent.
The sign C</^[+-]$/> is stored separately. The string 'NaN' is used to
represent the result when input arguments are not numbers, as well as
the result of dividing by zero.
=head2 C<mantissa()>, C<exponent()> and C<parts()>
C<mantissa()> and C<exponent()> return the said parts of the BigFloat
as BigInts such that:
$m = $x->mantissa();
$e = $x->exponent();
$y = $m * ( 10 ** $e );
print "ok\n" if $x == $y;
C<< ($m,$e) = $x->parts(); >> is just a shortcut giving you both of them.
A zero is represented and returned as C<0E1>, B<not> C<0E0> (after Knuth).
Currently the mantissa is reduced as much as possible, favouring higher
exponents over lower ones (e.g. returning 1e7 instead of 10e6 or 10000000e0).
This might change in the future, so do not depend on it.
=head2 Accuracy vs. Precision
See also: L<Rounding|Rounding>.
Math::BigFloat supports both precision and accuracy. For a full documentation,
examples and tips on these topics please see the large section in
L<Math::BigInt>.
Since things like sqrt(2) or 1/3 must presented with a limited precision lest
a operation consumes all resources, each operation produces no more than
the requested number of digits.
Please refer to BigInt's documentation for the precedence rules of which
accuracy/precision setting will be used.
If there is no gloabl precision set, B<and> the operation inquestion was not
called with a requested precision or accuracy, B<and> the input $x has no
accuracy or precision set, then a fallback parameter will be used. For
historical reasons, it is called C<div_scale> and can be accessed via:
$d = Math::BigFloat->div_scale(); # query
Math::BigFloat->div_scale($n); # set to $n digits
The default value is 40 digits.
In case the result of one operation has more precision than specified,
it is rounded. The rounding mode taken is either the default mode, or the one
supplied to the operation after the I<scale>:
$x = Math::BigFloat->new(2);
Math::BigFloat->precision(5); # 5 digits max
$y = $x->copy()->bdiv(3); # will give 0.66666
$y = $x->copy()->bdiv(3,6); # will give 0.666666
$y = $x->copy()->bdiv(3,6,'odd'); # will give 0.666667
Math::BigFloat->round_mode('zero');
$y = $x->copy()->bdiv(3,6); # will give 0.666666
=head2 Rounding
=over 2
=item ffround ( +$scale )
Rounds to the $scale'th place left from the '.', counting from the dot.
The first digit is numbered 1.
=item ffround ( -$scale )
Rounds to the $scale'th place right from the '.', counting from the dot.
=item ffround ( 0 )
Rounds to an integer.
=item fround ( +$scale )
Preserves accuracy to $scale digits from the left (aka significant digits)
and pads the rest with zeros. If the number is between 1 and -1, the
significant digits count from the first non-zero after the '.'
=item fround ( -$scale ) and fround ( 0 )
These are effectively no-ops.
=back
All rounding functions take as a second parameter a rounding mode from one of
the following: 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'.
The default rounding mode is 'even'. By using
C<< Math::BigFloat->round_mode($round_mode); >> you can get and set the default
mode for subsequent rounding. The usage of C<$Math::BigFloat::$round_mode> is
no longer supported.
The second parameter to the round functions then overrides the default
temporarily.
The C<as_number()> function returns a BigInt from a Math::BigFloat. It uses
'trunc' as rounding mode to make it equivalent to:
$x = 2.5;
$y = int($x) + 2;
You can override this by passing the desired rounding mode as parameter to
C<as_number()>:
$x = Math::BigFloat->new(2.5);
$y = $x->as_number('odd'); # $y = 3
=head1 EXAMPLES
# not ready yet
=head1 Autocreating constants
After C<use Math::BigFloat ':constant'> all the floating point constants
in the given scope are converted to C<Math::BigFloat>. This conversion
happens at compile time.
In particular
perl -MMath::BigFloat=:constant -e 'print 2E-100,"\n"'
prints the value of C<2E-100>. Note that without conversion of
constants the expression 2E-100 will be calculated as normal floating point
number.
Please note that ':constant' does not affect integer constants, nor binary
nor hexadecimal constants. Use L<bignum> or L<Math::BigInt> to get this to
work.
=head2 Math library
Math with the numbers is done (by default) by a module called
Math::BigInt::Calc. This is equivalent to saying:
use Math::BigFloat lib => 'Calc';
You can change this by using:
use Math::BigFloat lib => 'BitVect';
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
use Math::BigFloat lib => 'Foo,Math::BigInt::Bar';
Calc.pm uses as internal format an array of elements of some decimal base
(usually 1e7, but this might be differen for some systems) with the least
significant digit first, while BitVect.pm uses a bit vector of base 2, most
significant bit first. Other modules might use even different means of
representing the numbers. See the respective module documentation for further
details.
Please note that Math::BigFloat does B<not> use the denoted library itself,
but it merely passes the lib argument to Math::BigInt. So, instead of the need
to do:
use Math::BigInt lib => 'GMP';
use Math::BigFloat;
you can roll it all into one line:
use Math::BigFloat lib => 'GMP';
It is also possible to just require Math::BigFloat:
require Math::BigFloat;
This will load the neccessary things (like BigInt) when they are needed, and
automatically.
Use the lib, Luke! And see L<Using Math::BigInt::Lite> for more details than
you ever wanted to know about loading a different library.
=head2 Using Math::BigInt::Lite
It is possible to use L<Math::BigInt::Lite> with Math::BigFloat:
# 1
use Math::BigFloat with => 'Math::BigInt::Lite';
There is no need to "use Math::BigInt" or "use Math::BigInt::Lite", but you
can combine these if you want. For instance, you may want to use
Math::BigInt objects in your main script, too.
# 2
use Math::BigInt;
use Math::BigFloat with => 'Math::BigInt::Lite';
Of course, you can combine this with the C<lib> parameter.
# 3
use Math::BigFloat with => 'Math::BigInt::Lite', lib => 'GMP,Pari';
There is no need for a "use Math::BigInt;" statement, even if you want to
use Math::BigInt's, since Math::BigFloat will needs Math::BigInt and thus
always loads it. But if you add it, add it B<before>:
# 4
use Math::BigInt;
use Math::BigFloat with => 'Math::BigInt::Lite', lib => 'GMP,Pari';
Notice that the module with the last C<lib> will "win" and thus
it's lib will be used if the lib is available:
# 5
use Math::BigInt lib => 'Bar,Baz';
use Math::BigFloat with => 'Math::BigInt::Lite', lib => 'Foo';
That would try to load Foo, Bar, Baz and Calc (in that order). Or in other
words, Math::BigFloat will try to retain previously loaded libs when you
don't specify it onem but if you specify one, it will try to load them.
Actually, the lib loading order would be "Bar,Baz,Calc", and then
"Foo,Bar,Baz,Calc", but independend of which lib exists, the result is the
same as trying the latter load alone, except for the fact that one of Bar or
Baz might be loaded needlessly in an intermidiate step (and thus hang around
and waste memory). If neither Bar nor Baz exist (or don't work/compile), they
will still be tried to be loaded, but this is not as time/memory consuming as
actually loading one of them. Still, this type of usage is not recommended due
to these issues.
The old way (loading the lib only in BigInt) still works though:
# 6
use Math::BigInt lib => 'Bar,Baz';
use Math::BigFloat;
You can even load Math::BigInt afterwards:
# 7
use Math::BigFloat;
use Math::BigInt lib => 'Bar,Baz';
But this has the same problems like #5, it will first load Calc
(Math::BigFloat needs Math::BigInt and thus loads it) and then later Bar or
Baz, depending on which of them works and is usable/loadable. Since this
loads Calc unnecc., it is not recommended.
Since it also possible to just require Math::BigFloat, this poses the question
about what libary this will use:
require Math::BigFloat;
my $x = Math::BigFloat->new(123); $x += 123;
It will use Calc. Please note that the call to import() is still done, but
only when you use for the first time some Math::BigFloat math (it is triggered
via any constructor, so the first time you create a Math::BigFloat, the load
will happen in the background). This means:
require Math::BigFloat;
Math::BigFloat->import ( lib => 'Foo,Bar' );
would be the same as:
use Math::BigFloat lib => 'Foo, Bar';
But don't try to be clever to insert some operations in between:
require Math::BigFloat;
my $x = Math::BigFloat->bone() + 4; # load BigInt and Calc
Math::BigFloat->import( lib => 'Pari' ); # load Pari, too
$x = Math::BigFloat->bone()+4; # now use Pari
While this works, it loads Calc needlessly. But maybe you just wanted that?
B<Examples #3 is highly recommended> for daily usage.
=head1 BUGS
Please see the file BUGS in the CPAN distribution Math::BigInt for known bugs.
=head1 CAVEATS
=over 1
=item stringify, bstr()
Both stringify and bstr() now drop the leading '+'. The old code would return
'+1.23', the new returns '1.23'. See the documentation in L<Math::BigInt> for
reasoning and details.
=item bdiv
The following will probably not do what you expect:
print $c->bdiv(123.456),"\n";
It prints both quotient and reminder since print works in list context. Also,
bdiv() will modify $c, so be carefull. You probably want to use
print $c / 123.456,"\n";
print scalar $c->bdiv(123.456),"\n"; # or if you want to modify $c
instead.
=item Modifying and =
Beware of:
$x = Math::BigFloat->new(5);
$y = $x;
It will not do what you think, e.g. making a copy of $x. Instead it just makes
a second reference to the B<same> object and stores it in $y. Thus anything
that modifies $x will modify $y (except overloaded math operators), and vice
versa. See L<Math::BigInt> for details and how to avoid that.
=item bpow
C<bpow()> now modifies the first argument, unlike the old code which left
it alone and only returned the result. This is to be consistent with
C<badd()> etc. The first will modify $x, the second one won't:
print bpow($x,$i),"\n"; # modify $x
print $x->bpow($i),"\n"; # ditto
print $x ** $i,"\n"; # leave $x alone
=back
=head1 SEE ALSO
L<Math::BigInt>, L<Math::BigRat> and L<Math::Big> as well as
L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
The pragmas L<bignum>, L<bigint> and L<bigrat> might also be of interest
because they solve the autoupgrading/downgrading issue, at least partly.
The package at
L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
more documentation including a full version history, testcases, empty
subclass files and benchmarks.
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 AUTHORS
Mark Biggar, overloaded interface by Ilya Zakharevich.
Completely rewritten by Tels http://bloodgate.com in 2001, 2002, and still
at it in 2003.
=cut
|