File: ColorSpaceRead.cpp

package info (click to toggle)
perm 0.4.0-8
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 976 kB
  • sloc: cpp: 13,499; makefile: 98; sh: 12
file content (448 lines) | stat: -rw-r--r-- 16,165 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
#include "stdafx.h"
#include "ColorSpaceRead.h"

// private function
WORD_SIZE colors2Bases(WORD_SIZE readInColors)
{
    WORD_SIZE readInBases = readInColors & 0x01; //Copy the first bit
    WORD_SIZE mask = 0x01;
    readInColors >>= 0x01; //shift the first encoded base bit
    for (int i = 0; i < CReadInBits::iReadLength; i++) {
        //get the ith digit and do the x
        WORD_SIZE nextBase = (readInBases ^ readInColors) & mask;
        mask <<= 0x01;
        readInBases += (nextBase << 0x01);
    }
    return(readInBases);
}

// Assum the first bits is encoded in readInColor
CReadInBits colors2Bases(CReadInBits readInColors)
{
    CReadInBits readInBases;
    readInBases.UpperBits = colors2Bases(readInColors.UpperBits);
    readInBases.LowerBits = colors2Bases(readInColors.LowerBits);

    return (readInBases);
}
int getSNPtype(CReadInBits readInColors, CReadInBits refInColors)
{
    readInColors = readInColors.getPrefixStr((unsigned int)CReadInBits::iReadLength);
    refInColors = refInColors.getPrefixStr((unsigned int)CReadInBits::iReadLength); // compare only the first readlength bits
    WORD_SIZE upperBitsDiff = readInColors.UpperBits ^ refInColors.UpperBits;
    WORD_SIZE lowerBitsDiff = readInColors.LowerBits ^ refInColors.LowerBits;
    WORD_SIZE a = upperBitsDiff | lowerBitsDiff;

    int diff;
    // magic function to caculate how many ones are there
#ifdef __GNUC__
    // #ifdef AMD
    diff = __builtin_popcountll(a);
#else
    for (diff = 0; a; diff++) {
        a &= a - 1; // clear the least significant bit set
    }
#endif

    // check SNP type case
    if (diff >= 2 && diff <= 3) {
        // (1) Complement Type of SNP, (A <-> T, C<->G)
        // Indicated by two consecutive of color changed R <-> B or Y <-> G
        WORD_SIZE diffStr = upperBitsDiff & lowerBitsDiff;
        WORD_SIZE snpFlag = diffStr & (diffStr >> 1); // Note the first bit set is the position of SNP
        if (snpFlag) {
            return (-1);
        }

        // (2) Transversion Type of SNP, (A <-> C, G <-> T)
        // Indicated by two consecutive of color changed R <-> Y or B <-> G
        diffStr = ~upperBitsDiff & lowerBitsDiff;
        snpFlag = diffStr & (diffStr >> 1);
        if (snpFlag) {
            return (-2);
        }

        // (3) Transition Type of SNP, (A <-> G, C <-> T)
        // Indicated by two consecutive of color changed B <-> Y or R <-> G
        diffStr = upperBitsDiff & ~lowerBitsDiff;
        snpFlag = diffStr & (diffStr >> 1);
        if (snpFlag) {
            return (-3);
        }
    }
    return(diff);
}

bool encodeColorsNas3(const char* colorsStr, CReadInBits& readInColors)
{
    const WORD_SIZE bit = 0x01;
    readInColors.LowerBits = 0;
    readInColors.UpperBits = 0;
    setFirstBase(base2Color(colorsStr[0], colorsStr[1]), readInColors);
    for (int i = 2; ; i++) {
        switch (colorsStr[i]) {
        case '0':
            break;
        case '1':
            readInColors.LowerBits += (bit << (i - 1));
            break;
        case '2':
            readInColors.UpperBits += (bit << (i - 1));
            break;
        case '3':
            readInColors.UpperBits += (bit << (i - 1));
            readInColors.LowerBits += (bit << (i - 1));
            break;
        case 'N':
        case '.': // encode unknown as 3
            printf("Warning! Encode '.' in %s as color '3'\n", colorsStr);
            readInColors.UpperBits += (bit << (i - 1));
            readInColors.LowerBits += (bit << (i - 1));
            break;
        case '\0':
            return (true);
        default:
            return (false);
        }
    }
}

bool encodeColors(const char* colorsStr, CReadInBits& readInColors)
{
    bool bNormalRead = true;
    const WORD_SIZE bit = 0x01;
    readInColors.LowerBits = 0;
    readInColors.UpperBits = 0;
    if (!setFirstBase(base2Color(colorsStr[0], colorsStr[1]), readInColors)) {
        bNormalRead = false;
    }
    if (colorsStr[1] == '.') {
        return(false);
    }
    for (int i = 2; ; i++) {
        switch (colorsStr[i]) {
        case '0':
            break;
        case '1':
            readInColors.LowerBits += (bit << (i - 1));
            break;
        case '2':
            readInColors.UpperBits += (bit << (i - 1));
            break;
        case '3':
            readInColors.UpperBits += (bit << (i - 1));
            readInColors.LowerBits += (bit << (i - 1));
            break;
        case '\0':
            return (bNormalRead);
        default:
            bNormalRead = false;
            break;
        }
    }
    return(bNormalRead);
}

/*
 * This funciton translate a color string in CReadInBits to a string start with ACGT followed by 0123
 */
char* decodeColors(char* colorsStr, CReadInBits readInColors)
{
    int i;
    for (i = 0; i < CReadInBits::iReadLength; i++) {
        WORD_SIZE c = (readInColors.UpperBits & 0x01) << 1 | (readInColors.LowerBits & 0x01);
        if (i == 0) {
            switch (c) {
            case 0x00:
                colorsStr[0] = 'A';
                break;
            case 0x01:
                colorsStr[0] = 'C';
                break;
            case 0x02:
                colorsStr[0] = 'G';
                break;
            case 0x03:
                colorsStr[0] = 'T';
                break;
            default:
                colorsStr[0] = 'N';
            }
        } else {
            colorsStr[i] = '0' + (char)(c);
        }
        readInColors.LowerBits >>= 1;
        readInColors.UpperBits >>= 1;
    }
    colorsStr[i] = '\0';
    return(colorsStr);
}

/*
 * This funciton translate a color string to pure string of 0123
 */
char* decodePureColors(char* colorsStr, CReadInBits readInColors)
{
    int i;
    for (i = 0; i < CReadInBits::iReadLength; i++) {
        WORD_SIZE upperBit = (readInColors.UpperBits & 0x01);
        WORD_SIZE lowerBit = (readInColors.LowerBits & 0x01);
        WORD_SIZE c = upperBit * 2 + lowerBit;
        colorsStr[i] = '0' + (char)(c);
        readInColors.LowerBits >>= 1;
        readInColors.UpperBits >>= 1;
    }
    colorsStr[i] = '\0';
    return(colorsStr);
}

char* decodeLongColors(char* colorsStr, CReadInBits readInColors1stHalf, CReadInBits readInColors2ndHalf, bool oddReadLength)
{
    int secondHalfStart = 0;
    if (oddReadLength) {
        secondHalfStart = CReadInBits::iReadLength - 1;
    } else {
        secondHalfStart = CReadInBits::iReadLength;
    }
    decodeColors(colorsStr, readInColors1stHalf);
    //decodeColors(&colorsStr[secondHalfStart], readInColors2ndHalf);
    decodePureColors(&colorsStr[secondHalfStart], readInColors2ndHalf);
    // TODO !!! The middle bit
    return(colorsStr);
}

// Correct the single color mismatch and adopted the valid SNP color
// return number of type of SNP it involved.
int correctReadInColorSpace(CReadInBits readInColors, CReadInBits refInColors, CReadInBits& correctedRead)
{
    // printBitsStr(readInColors, CReadInBits::iReadLength);// DEBUG
    // printBitsStr(refInColors, CReadInBits::iReadLength); // DEBUG
    // compare only the first read-length bits
    readInColors = readInColors.getPrefixStr((unsigned int)CReadInBits::iReadLength);
    refInColors  = refInColors.getPrefixStr((unsigned int)CReadInBits::iReadLength);
    correctedRead = refInColors; // Default is the same

    WORD_SIZE upperBitsDiff = readInColors.UpperBits ^ refInColors.UpperBits;
    WORD_SIZE lowerBitsDiff = readInColors.LowerBits ^ refInColors.LowerBits;
    WORD_SIZE d = upperBitsDiff | lowerBitsDiff; //bits string indicating which bits are different
    int diff;
#ifdef AMD
    diff = __builtin_popcountll(d); // magic function to caculate how many ones are there
#else
    for (diff = 0; d; diff++) {
        d &= d - 1; // clear the least significant bit set
    }
#endif
    WORD_SIZE lastBit = SHIFT_LEFT(0x01, (CReadInBits::iReadLength - 1));
    WORD_SIZE diffStr = upperBitsDiff | lowerBitsDiff;
    WORD_SIZE snpBits = diffStr & (diffStr >> 1);
    if (snpBits == 0) { // no consecutive mismatches
        if (diffStr == lastBit) {
            correctedRead = correctReadInColorSpace(readInColors, refInColors, lastBit);
        }
        return(diff);
    } else if (snpBits & (snpBits >> 1)) {
        correctedRead = refInColors;
        return(-1); // Three consecutive mismatches
    } else {
        WORD_SIZE replacedBits = 0x00;
        {
            // (1) Complement Type of SNP, (A <-> T, C<->G)
            WORD_SIZE diffStr = upperBitsDiff & lowerBitsDiff;
            WORD_SIZE snpBits = diffStr & (diffStr >> 1);
            replacedBits |= ( snpBits | (snpBits << 1) );
        } // Indicated by two consecutive of color changed R <-> B or Y <-> G
        {
            // (2) Transversion Type of SNP, (A <-> C, G <-> T)
            WORD_SIZE diffStr = ~upperBitsDiff & lowerBitsDiff;
            WORD_SIZE snpBits = diffStr & (diffStr >> 1);
            replacedBits |= ( snpBits | (snpBits << 1) );
        } // Indicated by two consecutive of color changed R <-> Y or B <-> G
        {
            // (3) Transition Type of SNP, (A <-> G, C <-> T)
            WORD_SIZE diffStr = upperBitsDiff & ~lowerBitsDiff;
            WORD_SIZE snpBits = diffStr & (diffStr >> 1);
            replacedBits |= ( snpBits | (snpBits << 1) );
        } // Indicated by two consecutive of color changed B <-> Y or R <-> G
        // if the bit before last bit is not mismatched

        bool lastBitDiff = ((diffStr & lastBit) != 0);
        if (lastBitDiff && !(diffStr & ( lastBit >> 0x01 ) ) ) {
            // no consecutive mismatches in the end
            replacedBits |= lastBit; // take the last bit from read
        }
        correctedRead = correctReadInColorSpace(readInColors, refInColors, replacedBits);

        // ASSERT
        CReadInBits read = colors2Bases(correctedRead);
        // printBitsStr(read, (unsigned int)CReadInBits::iReadLength);
        CReadInBits ref = colors2Bases(refInColors);
        // printBitsStr(ref, (unsigned int)CReadInBits::iReadLength);
        unsigned int NoSNP = bitsStrNCompare(read, ref, (unsigned int)CReadInBits::iReadLength);
        // assert(NoSNP <= 5);
        // assertSNP(type, refInColors, correctedRead);
        return(diff - (int)NoSNP * 2 + (int)lastBitDiff);
    }
}

char* correctAndDecodeRead \
(CReadInBits read, CReadInBits ref, bool correct, char* caRead, char* caQscore)
{
    if (correct) {
        CReadInBits correctedRead;
        int colorMis = correctReadInColorSpace(read, ref, correctedRead);
        if ( colorMis >= 0 ) {
            colorQV2baseQV(read, correctedRead, caQscore);
        } else {
            // TODO: use DP to get the base inferred by color string.
            // The corrected reads will be the reference reads.
            colorQV2baseQV(read, correctedRead, caQscore);
        }
        colors2Bases(correctedRead).decode(caRead);
    } else {
        decodeColorReadWithPrimer(caRead, read); // decodeColors(caRead, reads);
    }
    return(caRead);
}

// Given strings in bases, return the corresponding color signal in A=0 C=1 G=2, T=3 representation
string readInBases2ColorsInACGT_Format(string readInBases)
{
    char colorsPresentInACGT[MAX_READ_LENGTH];
    CReadInBits r(readInBases.c_str());
    bases2Colors(r).decode(colorsPresentInACGT);
    return(string(colorsPresentInACGT));
}

// Given the color reads in ACGT format, return the corresponding read in 0123 format
string colorReadInACGTto0123Format(string colorReadInACGT)
{
    CReadInBits r(colorReadInACGT.c_str());
    char colorsIn0123Format[MAX_READ_LENGTH];
    // translate into 0123 format
    decodeColors(&(colorsIn0123Format[1]), r);
    colorsIn0123Format[0] = colorsIn0123Format[1];
    colorsIn0123Format[1] = '0';
    return(string(colorsIn0123Format));
}

// TEST
void assertSNP(int SNPType, CReadInBits refInColors, CReadInBits crInColors)
{
    if (SNPType == 0) {
        ASSERT_TRUE(refInColors == crInColors, "MISMATCHES after correction");
    } else {
        CReadInBits ref = colors2Bases(refInColors);
        CReadInBits cr = colors2Bases(crInColors);
        ref = ref.getPrefixStr(CReadInBits::iReadLength);
        cr = cr.getPrefixStr(CReadInBits::iReadLength);
        WORD_SIZE u = (cr.UpperBits ^ ref.UpperBits);
        WORD_SIZE l = (cr.LowerBits ^ ref.LowerBits);

        if (SNPType == 1) {
            ASSERT_TRUE((u & l) > 0,  "Not real complement SNP");
        } else if (SNPType == 2) {
            ASSERT_TRUE((~u & l) > 0, "Not real transverstion SNP");
        } else if (SNPType == 3) {
            ASSERT_TRUE((u & ~l) > 0, "Not real transition SNP");
        } else {
            ASSERT_TRUE(2 == bitsStrCompare(ref, cr), "Not double SNPs");
        }
    }
}

void colorQV2baseQV(CReadInBits readInColors, CReadInBits& correctedRead, char* Qscores)
{
    if (Qscores[0] != '0') { // In case quality score are not available
        colorQV2baseQV(getDiffBits(readInColors, correctedRead), Qscores, \
                       (unsigned int)CReadInBits::iReadLength); // TODO the read length is fixed under 64 now.
    }
}

// The input Q-scores, output is in the Phed char representation.
bool colorQV2baseQV(WORD_SIZE singleColorErrorflag, char* Qscores, unsigned int readLength)
{
    bool negativeQ = false;
    const char PhedScoreShift = 33;
    for (unsigned int i = 0; i < readLength; i++) {
        bool errorColorFlag = ((singleColorErrorflag & 0x01) > 0);
        Qscores[i] -= PhedScoreShift;
        if (errorColorFlag) {
            if (Qscores[i] > 0) {
                Qscores[i] *= (char)-1;
            } else if (Qscores[i] < 0) {
                Qscores[i] = 0;
                negativeQ = true;
            }
        }
        singleColorErrorflag >>= 0x01;
    }
    for (unsigned int i = 0; i < readLength; i++) {
        Qscores[i] = Qscores[i] + Qscores[i + 1];
        if (Qscores[i] < 0) {
            Qscores[i] = 0;
        }
        Qscores[i] += PhedScoreShift;
    }
    return(negativeQ);
}

void testLonglongShift(void)
{
    unsigned long long constNum = 1 << 30;
    unsigned long long word = constNum * 8;
    word = longlongShiftRight(word, 32);
    if ( word != 2) {
        cout << "testShift64Bit got unexpected result " << word << endl;
    } else {
        cout << "testShift64Bit got expected result " << word << endl;
    }
}

void testLongBases2ColorsCases(void)
{
    const char* read1 = "AAAACCCCGGGGTTTTAAAACCCCGGGGTTTTACGTACGTACGTACGTAAAACCCCGGGGTTTTA";
    const char* color1 ="A0001000300010003000100030001000313131313131313130001000300010003";
    testLongBases2Colors(read1, color1);
    const char* read2 = "AAAACCCCGGGGTTTTAAAACCCCGGGGTTTTTCGTACGTACGTACGTAAAACCCCGGGGTTTTAA";
    const char* color2 ="A00010003000100030001000300010000231313131313131300010003000100030";
    testLongBases2Colors(read2, color2);
}

void testLongBases2Colors(const char* longRead, const char* expLongColorSignals)
{
    unsigned int readLength = (unsigned int) strlen(longRead);
    bool oddReadLength = false;
    if (readLength % 2 == 1) {
        CReadInBits::iReadLength = (readLength + 1) / 2;
        oddReadLength = true;
    } else {
        CReadInBits::iReadLength = readLength / 2;
        oddReadLength = false;
    }
    CReadInBits r1stHalf, r2ndHalf, r1stHalfInColors, r2ndHalfInColors;
    encodeLongRead(longRead, r1stHalf, r2ndHalf);
    longBases2Colors(r1stHalf, r2ndHalf, r1stHalfInColors, r2ndHalfInColors, oddReadLength);

    char caBuf[FILENAME_MAX];
    decodeLongColors(caBuf, r1stHalfInColors, r2ndHalfInColors, oddReadLength);
    if ( strcmp(expLongColorSignals, caBuf) != 0 ) {
        cout << "The decoded  read in color is:" << caBuf << endl;
        cout << "The expected read is color is:" << expLongColorSignals << endl;
    }
}

void testReverseColorSignals(const char* colorSignalStr)
{
    char caBuf[MAX_LINE];
    char caBuf2[MAX_LINE];
    strcpy(caBuf, colorSignalStr);
    CReadInBits::iReadLength = (int)strlen(caBuf) - 1;
    CReadInBits r;
    encodeColors(caBuf, r);
    decodeColors(caBuf2, r);
    cout << caBuf2 << endl;
    r = reverseColorRead(r);
    decodeColors(caBuf,r);
    cout << caBuf << endl;
}