1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
#include "Genome_Index_TableQ.h"
CGenome_Index_TableQ::CGenome_Index_TableQ(void)
{
initialization();
}
CGenome_Index_TableQ::~CGenome_Index_TableQ(void)
{
// this->pgenomeNTInBits and this->pgenome will be deleted in parent class;
}
int CGenome_Index_TableQ::initialization(void)
{
this->bExcludeAmbiguous = true;
return(0);
}
bool CGenome_Index_TableQ::getSeqFromFasta(const char* genomeListfileName, string refFormat)
{
getBasename(genomeListfileName, this->caRefName);
if (fileExist(genomeListfileName)) {
this->getGenomeNTdata(genomeListfileName, refFormat);
TIME_INFO(this->pgenomeNTInBits = new CGenomeInBits(this->pgenomeNT), "Build genome in bits ");
this->pgenomeNT->freeChromosomeSpace();
return(true);
} else {
cout << "File " << genomeListfileName << " not found!" << endl;
return(false);
}
}
bool CGenome_Index_TableQ::getSeqFromDS(CGenomeNTdata* pgenomeNT)
{
this->pgenomeNT = pgenomeNT;
myStrCpy(this->caRefName, pgenomeNT->refName, FILENAME_MAX);
TIME_INFO(this->pgenomeNTInBits = new CGenomeInBits(this->pgenomeNT), "Build genome in bits ");
this->pgenomeNT->freeChromosomeSpace();
return(true);
}
// (1) Query each seed pattern for hit. (2) Check each hit for valid alignment and put in the palignmentsQ
// (3) Return the minDiff for alignment
pair<CIndex_Type*, CIndex_Type*> CGenome_Index_TableQ::queryKmer\
(CReadInBits window, unsigned int shift) const
{
unsigned int BIN_SIZE_CHECK_THRESHOLD = 1; // If there are only this number in bin, check
window = window.getSuffixStr(shift);
unsigned int uiHashValue = this->getHashValue(window);
unsigned int uiSeedKeyL = this->getSeedKey(window);
unsigned int uiSeedKeyU;
if (bEXTEND_SEED) {
uiSeedKeyU = this->getSeedKeyUpperBound(window, shift);
} else {
uiSeedKeyU = uiSeedKeyL;
}
// cout << uiHashValue << ',' << uiSeedKey << endl;
unsigned int bucketStart = this->pHashIndexTable->aiIndexTable[uiHashValue];
unsigned int nextBucketStart = this->pHashIndexTable->aiIndexTable[uiHashValue + 1];
if (bucketStart > nextBucketStart) ERR; // Error Case
if (bucketStart >= nextBucketStart) { // empty bucket
CIndex_Type* tmp = NULL;
return(pair<CIndex_Type*, CIndex_Type*>(tmp, tmp)); //No hit
}
CIndex_Type* hitStart = &this->pIndexTable[bucketStart];
CIndex_Type* hitEndPlus1 = &this->pIndexTable[nextBucketStart];
// If the bin is large enough, use binary search to find the correct hituiSeedKey
if (bucketStart + BIN_SIZE_CHECK_THRESHOLD < nextBucketStart) {
hitStart = lower_bound(hitStart, hitEndPlus1, uiSeedKeyL, CcompareFunctor4LowerBound(this));
// TODO fill the suffix digit for the uiSeedKey
hitEndPlus1 = upper_bound(hitStart, hitEndPlus1, uiSeedKeyU, CcompareFunctor4UpperBound(this));
} // else assume everything in the bucket is a hit without equal_range check
return(pair<CIndex_Type*, CIndex_Type*>(hitStart, hitEndPlus1));
}
unsigned int CGenome_Index_TableQ::getSeedKeyUpperBound(CReadInBits window, unsigned int shift) const
{
//WORD_SIZE padding = 0xffffffffffffffff;
WORD_SIZE padding = -1;
if (this->bMapReadInColors) {
padding <<= (this->uiRead_Length - 1 - shift);
} else {
padding <<= (this->uiRead_Length - shift);
}
window.UpperBits |= padding;
window.LowerBits |= padding;
return(this->getSeedKey(window));
}
// Query a read in bases (Illumina) for hit and check uiDiff and put the result into the given Queue
unsigned int CGenome_Index_TableQ::queryReadBases(CReadInBits readInBases, CAlignmentsQ& aQue, bool bClearQ, bool bForward) const
{
if (bClearQ) {
aQue.clearHits();
}
if (!bForward) { //Query reverse complement read for alignment
readInBases = reverseCompliment(this->uiRead_Length, readInBases);
}
bool bUseShortCut = this->bExcludeAmbiguous && !(aQue.qAllInThreshold());
bool qAllHits = aQue.qAllInThreshold();
for (unsigned int shift = 0; shift <= this->uiNoOfShift; shift++) {
// If the best match is exact matched, no need to go to the next shift
// for all exact matches must be found previously.
if ((aQue.MinDiff == 0) && (shift > 0) && (aQue.load > 0) && !qAllHits) {
break;
}
pair<CIndex_Type*, CIndex_Type*> hits = queryKmer(readInBases, shift);
if (hits.first != NULL) {
for (CIndex_Type* it = hits.first; it < hits.second; it++) {
if (*it >= shift) {
unsigned int alignStart = *it - shift;
if (isMasked(alignStart)) {
continue;
} else {
CReadInBits ref = this->pgenomeNTInBits->getSubstringInBits(alignStart);
unsigned int uiDiff = bitsStrNCompare(ref, readInBases, this->uiRead_Length);
// The flag in alignmentsQ decide whether all alignments within uiDiff or
// only the alignments with minimum Diff are queue.
if (uiDiff <= this->uiSubDiffThreshold) {
aQue.saveHits(alignStart, (unsigned short)uiDiff);
}
if (bUseShortCut) { // short cut to exclude ambiguous reads
bool bMap2Repeat = this->pbaRepeatRepresentativeFlag->b(alignStart);
if (bMap2Repeat) {
aQue.AmbiguousFlag = true;
}
if (aQue.MinDiff == 0 && (aQue.load >= 2 || bMap2Repeat)) {
aQue.setForwardLoad(bForward);
return(0);
}
}
}
}
}
if (aQue.MinDiff == 0) {
// short cut. Output no more than iMaxCapacity exaxt alignment
/* if (aQue.load >= aQue.iMaxCapacity - 1) {
aQue.setForwardLoad(bForward);
return(0);
}*/
// short cut. All exact matches will be found after first shift
if (bUseShortCut && aQue.load >= 2) {
aQue.setForwardLoad(bForward);
return(1);
}
}
}
}
/* DEBUG
if(palignmentsQ.MinDiff <= this->uiSubDiffThreshold) {
CReadInBits ref = this->pgenomeNTInBits->getSubstringInBits(aQue.aiHitIndex[0]);
printBitsStrCompare(ref, readInBases, "Good Alignments!!");
}*/
// The records before are for the forward direction if this is a forward query
aQue.setForwardLoad(bForward);
return(aQue.MinDiff);
}
// Query a read in bases (Illumina) for hit and check uiDiff and put the result into the given Queue
unsigned int CGenome_Index_TableQ::queryLongReadBases(CReadInBits r1, CReadInBits r2, bool oddReadLength, CAlignmentsQ& aQue, int queryHalf, bool bClearQ, bool bForward) const
{
const unsigned int firstPartLength = this->uiRead_Length;
const unsigned int secondPartLength = oddReadLength ? this->uiRead_Length - 1 : this->uiRead_Length;
if (bClearQ) {
aQue.clearHits();
}
if (!bForward) { //Query reverse complement read for alignment
CReadInBits tmp = r2;
r2 = reverseCompliment(firstPartLength, r1);
r1 = reverseCompliment(firstPartLength, tmp);
}
CReadInBits readInBases = (queryHalf == 1) ? r1 : r2;
bool bUseShortCut = this->bExcludeAmbiguous && !(aQue.qAllInThreshold());
bool qAllHits = aQue.qAllInThreshold();
for (unsigned int shift = 0; shift <= this->uiNoOfShift; shift++) {
// If the best match is exact matched, no need to go to the next shift
// for all exact matches must be found previously.
if ((aQue.MinDiff == 0) && (shift > 0) && (aQue.load > 0) && !qAllHits) {
break;
}
pair<CIndex_Type*, CIndex_Type*> hits = queryKmer(readInBases, shift);
if (hits.first != NULL) {
for (CIndex_Type* it = hits.first; it < hits.second; it++) {
if (*it >= shift) {
unsigned int alignStart = *it - shift;
if (queryHalf == 2 ) {
if ( alignStart >= secondPartLength) {
alignStart -= secondPartLength;
} else {
continue;
}
}
if (isMasked(alignStart) || isMasked(alignStart + secondPartLength)) {
continue; // if the two windows contain N or is in references' border
} else {
unsigned int uiDiff = checkAlignment(alignStart, r1, r2, oddReadLength);
// The flag in alignmentsQ decide whether all alignments within uiDiff or
// only the alignments with minimum Diff are queue.
if (uiDiff <= this->uiSubDiffThreshold) {
aQue.saveHits(alignStart, (unsigned short)uiDiff);
}
if (bUseShortCut) { // short cut to exclude ambiguous reads
bool bMap2Repeat = this->pbaRepeatRepresentativeFlag->b(alignStart);
if (bMap2Repeat) {
aQue.AmbiguousFlag = true;
}
if (aQue.MinDiff == 0 && (aQue.load >= 2 || bMap2Repeat)) {
aQue.setForwardLoad(bForward);
return(0);
}
}
}
}
}
if (aQue.MinDiff == 0) {
// short cut. Output no more than iMaxCapacity exaxt alignment
/* if (aQue.load >= aQue.iMaxCapacity - 1) {
aQue.setForwardLoad(bForward);
return(0);
}*/
// short cut. All exact matches will be found after first shift
if (bUseShortCut && aQue.load >= 2) {
aQue.setForwardLoad(bForward);
return(1);
}
}
}
}
// The records before are for the forward direction if this is a forward query
aQue.setForwardLoad(bForward);
return(aQue.MinDiff);
}
// TODO Complete the function
// Query a read in bases (Illumina) for hit and check uiDiff and put the result into the given Queue
unsigned int CGenome_Index_TableQ::queryLongReadColors(CReadInBits r1, CReadInBits r2, bool oddReadLength, CAlignmentsQ& aQue, int queryHalf, bool bClearQ, bool bForward) const
{
// const unsigned int firstPartLength = this->uiRead_Length;
const unsigned int secondPartLength = oddReadLength ? this->uiRead_Length - 1 : this->uiRead_Length;
if (bClearQ) {
aQue.clearHits();
}
if (!bForward) { // Query reverse complement read for alignment
reverseLongColorRead(r1, r2, oddReadLength);
}
CReadInBits readInBases = (queryHalf == 1) ? r1 : r2;
bool bUseShortCut = this->bExcludeAmbiguous && !(aQue.qAllInThreshold());
bool qAllHits = aQue.qAllInThreshold();
for (unsigned int shift = 0; shift <= this->uiNoOfShift; shift++) {
// If the best match is exact matched, no need to go to the next shift
// for all exact matches must be found previously.
if ((aQue.MinDiff == 0) && (shift > 0) && (aQue.load > 0) && !qAllHits) {
break;
}
pair<CIndex_Type*, CIndex_Type*> hits = queryKmer(readInBases, shift);
if (hits.first != NULL) {
for (CIndex_Type* it = hits.first; it < hits.second; it++) {
if (*it >= shift) {
unsigned int alignStart = *it - shift;
if (queryHalf == 2 ) {
if ( alignStart >= secondPartLength) {
alignStart -= secondPartLength;
} else {
continue;
}
}
if (isMasked(alignStart) || isMasked(alignStart + secondPartLength)) {
continue; // if the two windows contain N or is in references' border
} else {
// TODO implement the checkColor
unsigned int uiDiff = checkColorAlignment(alignStart, r1, r2, oddReadLength);
// The flag in alignmentsQ decide whether all alignments within uiDiff or
// only the alignments with minimum Diff are queue.
if (uiDiff <= this->uiSubDiffThreshold) {
aQue.saveHits(alignStart, (unsigned short)uiDiff);
}
if (bUseShortCut) { // short cut to exclude ambiguous reads
bool bMap2Repeat = this->pbaRepeatRepresentativeFlag->b(alignStart);
if (bMap2Repeat) {
aQue.AmbiguousFlag = true;
}
if (aQue.MinDiff == 0 && (aQue.load >= 2 || bMap2Repeat)) {
aQue.setForwardLoad(bForward);
return(0);
}
}
}
}
}
if (aQue.MinDiff == 0) {
// short cut. All exact matches will be found after first shift
if (bUseShortCut && aQue.load >= 2) {
aQue.setForwardLoad(bForward);
return(1);
}
}
}
}
// The records before are for the forward direction if this is a forward query
aQue.setForwardLoad(bForward);
return(aQue.MinDiff);
}
// check match for long read
unsigned int CGenome_Index_TableQ::checkAlignment(unsigned int alignStartGenomeIndex, CReadInBits& half1, CReadInBits& half2, bool oddReadLength) const
{
unsigned int uiDiff = 0;
CReadInBits ref1, ref2;
ref1 = this->pgenomeNTInBits->getSubstringInBits(alignStartGenomeIndex);
uiDiff += bitsStrNCompare(ref1, half1, this->uiRead_Length);
int secondPartStart;
if (oddReadLength) {
secondPartStart = alignStartGenomeIndex + this->uiRead_Length - 1;
ref2 = this->pgenomeNTInBits->getSubstringInBits(secondPartStart);
uiDiff += bitsStrMNCompare(ref2, half2, 1, this->uiRead_Length - 1); // skip the 1st (middle) base
} else {
secondPartStart = alignStartGenomeIndex + this->uiRead_Length;
ref2 = this->pgenomeNTInBits->getSubstringInBits(secondPartStart);
uiDiff += bitsStrNCompare(ref2, half2, this->uiRead_Length);
}
return(uiDiff);
}
// TODO complete the function for color alignment
unsigned int CGenome_Index_TableQ::checkColorAlignment(unsigned int alignStartGenomeIndex, CReadInBits& half1, CReadInBits& half2, bool oddReadLength) const
{
unsigned int uiDiff = 0;
CReadInBits ref1 = this->pgenomeNTInBits->getSubstringInBits(alignStartGenomeIndex);
CReadInBits ref1InColors = bases2Colors(ref1);
uiDiff += bitsStrNCompare(ref1InColors, half1, this->uiRead_Length);
int secondPartStart = alignStartGenomeIndex + this->uiRead_Length - 1;
if (oddReadLength) {
CReadInBits ref2 = this->pgenomeNTInBits->getSubstringInBits(secondPartStart - 1);
CReadInBits ref2InColor = bases2PureColors(ref2);
uiDiff += bitsStrMNCompare(ref2, half2, 1, this->uiRead_Length - 1);
// TODO Check the middle and last color signal.
// Watch out the boundary
} else {
CReadInBits ref2 = this->pgenomeNTInBits->getSubstringInBits(secondPartStart - 1);
CReadInBits ref2InColor = bases2PureColors(ref2);
// Warning! The last base info is missing due to bases2PureColors
uiDiff += bitsStrNCompare(ref2, half2, this->uiRead_Length - 1);
}
return(uiDiff);
}
// Given alignments in alignmentsQ, check reads can be also aligned in the extended position
unsigned int CGenome_Index_TableQ::extendAlignment\
(CAlignmentsQ& alignmentsQ, CReadInBits extendedReadHalf) const
{
unsigned int i;
int minDiff = this->uiRead_Length;
bool extendForward = true;
for (i = 0; i < alignmentsQ.ForwardAlignmentLoad; i++) {
unsigned int alignStart = alignmentsQ.aiHitIndex[i] + this->uiRead_Length;
if (alignStart + this->uiRead_Length >= this->pgenomeNT->iGenomeSize || this->isMasked(alignStart)) {
alignmentsQ.asdiff[i] += (unsigned short)this->uiRead_Length; // no space to align
} else {
CReadInBits ref = this->pgenomeNTInBits->getSubstringInBits(alignStart, this->uiRead_Length);
alignmentsQ.asdiff[i] += (unsigned short)bitsStrNCompare(ref, extendedReadHalf, this->uiRead_Length);
if (alignmentsQ.asdiff[i] < minDiff)
minDiff = alignmentsQ.asdiff[i];
}
}
extendForward = false;
CReadInBits reverseComplimentRead = reverseCompliment(this->uiRead_Length, extendedReadHalf);
for (; i < alignmentsQ.load; i++) { // reverse read
if ( alignmentsQ.aiHitIndex[i] < this->uiRead_Length) {
alignmentsQ.asdiff[i] += (unsigned short)this->uiRead_Length; // no space to align
} else {
unsigned int alignStart = alignmentsQ.aiHitIndex[i] - this->uiRead_Length;
if ( this->isMasked(alignStart) ) {
alignmentsQ.asdiff[i] += (unsigned short)this->uiRead_Length; // no space to align
} else {
CReadInBits ref = this->pgenomeNTInBits->getSubstringInBits(alignStart, this->uiRead_Length);
alignmentsQ.asdiff[i] += (unsigned short)bitsStrNCompare(ref, reverseComplimentRead, this->uiRead_Length);
alignmentsQ.aiHitIndex[i] = alignStart;
if (alignmentsQ.asdiff[i] < minDiff) {
minDiff = alignmentsQ.asdiff[i];
}
}
}
}
alignmentsQ.MinDiff = minDiff;
// The alignments may exceed the threshold so it should be checked outside the function.
return(alignmentsQ.MinDiff);
}
// Query a read in colors (SOLiD) for hit and check uiDiff and put the result into the given Queue
unsigned int CGenome_Index_TableQ::queryReadColors(CReadInBits readInColors, CAlignmentsQ& alignmentsQ, bool bClearQ, bool bForward, bool bDEBUG) const
{
if (bClearQ) {
alignmentsQ.clearHits();
}
CReadInBits pureColors = readInColors.getSuffixStr(1); // query colors
if (!bForward) { // Query alignment with reversed color. (Reverse complement reads has color in reversed direction)
pureColors = reversePureColors(pureColors, this->uiRead_Length - 1);
}
bool bUseShortCut = this->bExcludeAmbiguous && !(alignmentsQ.qAllInThreshold());
bool qAllHits = alignmentsQ.qAllInThreshold();
for (unsigned int shift = 0; shift <= this->uiNoOfShift; shift++) {
// If the best alignment is exact matched, no need to go to the next shift, for all exact matches must be found previously.
if ((alignmentsQ.MinDiff == 0) && (shift > 0) && (alignmentsQ.load > 0) && !qAllHits) {
break;
}
/*
if(bDEBUG) {
cout << shift << "-Shift" << endl;
if(shift == 7) {
cout << "Got you" << endl;
}
}*/
// printBitsStr(pureColors.getSuffixStr(shift), this->uiSeedLength);// DEBUG
pair<CIndex_Type*, CIndex_Type*> hits = queryKmer(pureColors, shift);
if (hits.first != NULL) { // for each hit, check if it is a good alignment.
for (CIndex_Type* it = hits.first; it < hits.second; it++) {
if (*it >= shift) {
unsigned int alignStart = *it - shift;
if (isMasked(alignStart)) {
continue;
} else {
CReadInBits ref = this->pgenomeNTInBits->getSubstringInBits(alignStart, this->uiRead_Length);
unsigned int uiDiff;
if (bForward) {
CReadInBits refInColors = bases2Colors(ref);
uiDiff = bitsStrNCompare(refInColors, readInColors, this->uiRead_Length);
} else { //reverse complement the reference to compare in the read
CReadInBits rcRefInColors = bases2Colors(reverseCompliment(this->uiRead_Length, ref));
uiDiff = bitsStrNCompare(rcRefInColors, readInColors, this->uiRead_Length);
}
// To queue all alignment within uiDiff or the alignments with min difference are set in flag of alignmentsQ
if (uiDiff <= this->uiSubDiffThreshold) {
alignmentsQ.saveHits(alignStart, (unsigned short)uiDiff);
}
if (bUseShortCut) { // short cut to exclude ambiguous reads
bool bMap2Repeat = this->pbaRepeatRepresentativeFlag->b(alignStart);
if (bMap2Repeat) {
alignmentsQ.AmbiguousFlag = true;
}
if (alignmentsQ.MinDiff == 0 && (alignmentsQ.load >= 2 || bMap2Repeat)) {
alignmentsQ.setForwardLoad(bForward);
return(0);
}
}
}
}
}
if (alignmentsQ.MinDiff == 0) {
/*
// short cut to exclude reads that has too many ambiguous mapping
if (alignmentsQ.load >= MAX_Q_CAPACITY) {
alignmentsQ.setForwardLoad(bForward);
return(alignmentsQ.MinDiff);
}
*/
// short cut for ambiguous reads
if (bUseShortCut && alignmentsQ.load >= 2) {
alignmentsQ.setForwardLoad(bForward);
return(1);
}
}
}
}
alignmentsQ.setForwardLoad(bForward);
return(alignmentsQ.MinDiff);
}
|