1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
#pragma once
/******
* Purpose: This program is design to do mapping SOLiD or Illumina Reads,
* The input is a set of short reads file and a Genome_Indes_TableQ
* The mapping result is output to a file
* Author: Yangho Chen
*/
#include "LongReadsSet.h"
#include "PairedReadsSet.h"
#include "ReadsMappingStats.h"
#include "MappingResult.h"
#include "Genome_Index_TableQ.h"
#include "ParameterList.h"
#include "AlignmentsQ.h"
#include "ReadInBitsSet.h"
#include "ReadInBits.h"
#include "ShortReadUtil.h"
#include "ColorSpaceRead.h"
#include "GenomeNTdata.h"
#include "chromosomeNTdata.h"
#include "stdafx.h"
#include <time.h>
#include <vector>
#ifdef WIN32
#include <direct.h>
#endif
// Use OpenMP is gcc version is later than 4.2
#ifdef __GNUC__
#ifdef __GNUC_PATCHLEVEL__
#define __GNUC_VERSION__ (__GNUC__ * 10000 \
+ __GNUC_MINOR__ * 100 \
+ __GNUC_PATCHLEVEL__)
#else
#define __GNUC_VERSION__ (__GNUC__ * 10000 \
+ __GNUC_MINOR__ * 100)
# endif
#if __GNUC_VERSION__ >= 40200
#include <omp.h>
#endif
#else
#ifdef _MSC_VER
#if _MSC_VER >= 2000
#include <omp.h>
#endif
#endif
#endif
// Macro for Parallelization with OpenMP
#ifndef _OPENMP
#define __OPENMP_FOR_PARALLEL__(SHARP_SIGN, openmp_flag) \
{LOG_INFO("Info %d: Use single CPU because OpenMP is not available.\n", CONFIG_LOG);}
#else
#define __OPENMP_FOR_PARALLEL__(SHARP_SIGN, openmp_flag) {\
int numberOfCPUs = omp_get_num_procs();\
std::cout << numberOfCPUs << " CPUs." << BLANK_LINE << "\n";\
SHARP_SIGN##openmp_flag omp parallel for\
}
#endif
// For both counter for chromosome and tolerated substitution error
const int ALIGNMENT_RESULT_FILE_BUFFER_SIZE = 1000000;
int parallelMappingLongReads(vector<string>& readSetsList,\
CGenome_Index_TableQ& indexTable, MappingOpts P);
int parallelMapping(vector<string>& readSetsList,\
CGenome_Index_TableQ& indexTable, MappingOpts P);
/*
* This class maps Illumina or SOliD short reads to reference genome.
* It switches different ways to do read mapping, according to different options.
*/
class CReadsMapping: public CReadsMappingStats
{
public:
CReadsMapping(void);
CReadsMapping(MappingOpts P);
~CReadsMapping(void);
MappingOpts opt;
char cOutputFormat;
int mapReadsSets(const char* ReadsSetsList, CGenome_Index_TableQ& table, bool bDiscardReadsWN = true);
int mapReads(CReadInBitsSet& readsSet, const CGenome_Index_TableQ& table);
int mapLongReads(CLongReadsSet& pairedReadSet, const CGenome_Index_TableQ& table);
int queryALongReadInColors(CReadInBits& r1stHalf, CReadInBits& r2ndHalf, const CGenome_Index_TableQ& table, CAlignmentsQ& aQue) const;
int queryALongReadInBase(CReadInBits& r1stHalf, CReadInBits& r2ndHalf, const CGenome_Index_TableQ& table, CAlignmentsQ& aQue) const;
protected:
int printMapInfo(CReadInBitsSet& readsSet, int seedOpt);
int setUpIO4Aligment(const char* Solexafile, const CGenome_Index_TableQ& table);
int tearDownIO4Aligment(void);
FileOutputBuffer* AlignResult;
FileOutputBuffer* AmbiguousReads;
FileOutputBuffer* BadReads;
FileOutputBuffer* MissReads;
time_t start, end;
const static unsigned int CHECK_POINTS = 1000000;
int dealMappedRead(const CGenome_Index_TableQ& table, CAlignmentsQ& aQue);
int dealMappedLongRead(const CGenome_Index_TableQ& table, CAlignmentsQ& aQue, CMappingResult& m);
int dealMissedRead(CMappingResult& m);
int dealMissedRead(bool bMapReadInColors, const char* readName, CReadInBits r, const char* qs = NULL);
int dealAmbiguousRead(CMappingResult& m);
int dealAmbiguousRead(bool bMapReadInColors, const char* readName, CReadInBits r, const char* qs = NULL);
int printSingleEndReads(CMappingResult& m);
int printLogFile(const char* inputFile);
inline void printCheckPointInfo(int i);
protected:
void initialization(void);
inline void printRead(FileOutputBuffer* FileBuf, CMappingResult& m);
inline void printRead(FileOutputBuffer* FileBuf, bool bMapReadInColors, const char* readName, CReadInBits r, const char* qs);
inline void getLongBaseReadInfo(CReadInBitsSet& readsSet1stHalf, CReadInBitsSet& readsSet2ndHalf, int readId,\
CReadInBits& r1stHalf, CReadInBits& r2ndHalf, CMappingResult& m);
inline void getLongColorReadInfo(CReadInBitsSet& readSet1stHalf, CReadInBitsSet& readSet2ndHalf, int readId, \
CReadInBits& r1stHalf, CReadInBits& r2ndHalf, CMappingResult& m);
string getMappingFileN(const char* caReadsSetName, const CGenome_Index_TableQ& table);
unsigned int checkPairedReadSetSize(CReadInBitsSet& firstHalfSet, CReadInBitsSet& SecondHalfSet);
};
inline void CReadsMapping::getLongBaseReadInfo\
(CReadInBitsSet& readSet1stHalf, CReadInBitsSet& readSet2ndHalf, int readId, \
CReadInBits& r1stHalf, CReadInBits& r2ndHalf, \
CMappingResult& m)
{
m.uiReadLength = this->opt.readLength; // Check the read length
// Get read tag
if ((int)readSet1stHalf.pReadsID->size() > readId) {
strcpy(m.QNAME, readSet1stHalf.pReadsID->at(readId).id);
} else {
sprintf(m.QNAME, "Read_%d", this->iReadCounter + readId);
}
// Get read sequence
//unsigned int halfReadLength = this->opt.readLength / 2;
unsigned int halfReadLength = this->opt.anchorLength;
unsigned int secondHalfStart = this->opt.readLength - this->opt.anchorLength;
r1stHalf.decode(m.caRead);
r2ndHalf.decode(&(m.caRead[secondHalfStart]));
// Get the quality score
if (readSet1stHalf.pQualScores != NULL) {
const char* qS1stHalf = readSet1stHalf.pQualScores->qScores((unsigned int)readId);
trQScores(halfReadLength, 0, qS1stHalf, m.rawScores);
const char* qS2ndHalf = readSet2ndHalf.pQualScores->qScores((unsigned int)readId);
trQScores(halfReadLength, 0, qS2ndHalf, &m.rawScores[secondHalfStart]);
trQScores(m.uiReadLength, SolexaScoreEncodingShift, m.rawScores, m.QScores);
}
if (this->cOutputFormat == 's') {
m.getReverseReadandQual();
}
}
inline void CReadsMapping::getLongColorReadInfo\
(CReadInBitsSet& readSet1stHalf, CReadInBitsSet& readSet2ndHalf, int readId, \
CReadInBits& r1stHalf, CReadInBits& r2ndHalf, \
CMappingResult& m)
{
m.uiReadLength = this->opt.readLength; // Check the read length
// Get read tag
if ((int)readSet1stHalf.pReadsID->size() > readId) {
strcpy(m.QNAME, readSet1stHalf.pReadsID->at(readId).id);
} else {
sprintf(m.QNAME, "Read_%d", this->iReadCounter + readId);
}
// Get read sequence
unsigned int halfReadLength = this->opt.anchorLength;
unsigned int secondHalfStart = this->opt.readLength - this->opt.anchorLength;
decodeColors(m.caRead, r1stHalf);
decodePureColors(&(m.caRead[secondHalfStart]), r2ndHalf);
// Get the quality score for SOLiD
/* TODO fix the SOLiD score (base score and color space score*/
if (readSet1stHalf.pQualScores != NULL) {
const char* qS1stHalf = readSet1stHalf.pQualScores->qScores((unsigned int)readId);
trQScores(halfReadLength, 0, qS1stHalf, m.rawScores);
const char* qS2ndHalf = readSet2ndHalf.pQualScores->qScores((unsigned int)readId);
trQScores(halfReadLength, 0, qS2ndHalf, &m.rawScores[secondHalfStart]);
trQScores(m.uiReadLength, Phred_SCALE_QUAL_SHIFT, m.rawScores, m.QScores);
}
// TODO for sam Format, one need reversed quality and Seq
if (this->cOutputFormat == 's') {
m.getReverseReadandQual();
}
}
inline void CReadsMapping::printCheckPointInfo(int readNo)
{
if (readNo % this->CHECK_POINTS == 0) {
printf("Mapping no %u reads.\r", this->iReadCounter + readNo);
fflush(stdout);
}
}
// The following function fill different part of CMappingResult
inline
bool getSingleMappingIndex(CGenomeNTdata& pgenomeNT, CAlignmentsQ& aQue, int mappingIndex, CMappingResult &m)
{
m.uiDiff = aQue.asdiff[mappingIndex];
m.MultipleMappedNo = aQue.load;
m.strand = (mappingIndex >= (int)aQue.ForwardAlignmentLoad) ? '-' : '+' ;
m.uiGlobalMappedPos = aQue.aiHitIndex[mappingIndex];
m.uiRefId = pgenomeNT.genomeIndex2chrID(m.uiGlobalMappedPos);
m.uiPOS = pgenomeNT.genomeLocusID2chrIndex(m.uiGlobalMappedPos);
ChrIndex2GeneName& geneVec = pgenomeNT.paChromosomes[m.uiRefId]->geneVec;
if (geneVec.table.size() > 0) {
CGene g = geneVec.query(m.uiPOS);
strcpy(m.RNAME, g.name.c_str());
if(!g.isValid) { // this is for handeling mapping exception for mapping 2 NULL_REGION
char* chrName = pgenomeNT.paChromosomes[m.uiRefId]->caInputFileName;
char* strBuf = &m.RNAME[strlen(g.name.c_str())];
myStrCpy(strBuf, chrName, FILENAME_MAX/2);
return(false);
}
// g.startIndex is the translated index of m.uiPOS. Not the start index of gene
m.uiPOS = g.startIndex;
} else {
sprintf(m.RNAME, "%d", m.uiRefId);
}
return(true);
}
void getQscores4Solexa(CAlignmentsQ& aQue, CMappingResult& m, bool samFormat);
void getReadQscores4Solexa(CAlignmentsQ& aQue, CMappingResult& m, bool samFormat);
void getSingleMappingSeqAndQ4SOLiD\
(const CGenome_Index_TableQ& table, CAlignmentsQ& aQue, CMappingResult& m, bool samFormat);
void getSingleMappingSeq4Solexa(const CGenome_Index_TableQ& table, CMappingResult& m, bool samFormat);
void getLongMappingInfo(const CGenome_Index_TableQ& table, CAlignmentsQ& aQue, bool samFormat,\
unsigned int mappingId, CMappingResult& m);
void getSingleMappingInfo(const CGenome_Index_TableQ& table, CAlignmentsQ& aQue,\
unsigned int mappingId, CMappingResult& m, bool samFormat);
inline void printSamHeader(FileOutputBuffer* AlignResult, vector<CGene>&refs, const char* RG, const char* CL)
{
sprintf(AlignResult->caBufp, "@HD\tVN:0.1.5c\tSO:queryname\n");
AlignResult->UpdateSize();
for (vector<CGene>::iterator it = refs.begin(); it != refs.end(); it++ ) {
sprintf(AlignResult->caBufp, "@SQ\tSN:%s\tLN:%u\n", it->name.c_str(), it->startIndex);
AlignResult->UpdateSize(); // startIndex is actually the length of reference.
}
sprintf(AlignResult->caBufp, "%s\n@PG\tID:PerM\tVN:0.4.0\tCL:\"%s\"\n", RG, CL);
AlignResult->UpdateSize();
}
inline const char* getLongRefSeq(const CGenome_Index_TableQ& table, CMappingResult& m, bool bNoRef)
{
if(bNoRef) {
m.caRef[0] = '\0';
} else {
unsigned int secondHalfStart = m.uiReadLength - table.uiRead_Length;
CReadInBits ref1stHalf = table.pgenomeNTInBits->getSubstringInBits\
(m.uiGlobalMappedPos, table.uiRead_Length);
CReadInBits ref2ndHalf = table.pgenomeNTInBits->getSubstringInBits\
(m.uiGlobalMappedPos + secondHalfStart, table.uiRead_Length);
ref1stHalf.decode(m.caRef);
ref2ndHalf.decode(&(m.caRef[secondHalfStart]));
if(m.strand == '-') {
reverseComplementKmer(m.caRef); // reverse complement reference
}
}
return(m.caRef);
}
bool wrongIndex(const CReadInBitsSet& readsSet, const CGenome_Index_TableQ& table);
|